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Abstract
Outlier detection approaches show their efficacy while extracting unforeseen knowledge in domains such as intrusion detec-
tion, e-commerce, and fraudulent transactions. A prominent method like the K-Nearest Neighbor (KNN)-based outlier 
detection (KNNOD) technique relies on distance measures to extract the anomalies from the dataset. However, KNNOD 
is ill-equipped to deal with dynamic data environment efficiently due to its quadratic time complexity and sensitivity to 
changes in the dataset. As a result, any form of redundant computation due to frequent updates may lead to inefficiency while 
detecting outliers. In order to address these challenges, we propose an approximate adaptive grid-based outlier detection 
technique by finding point density using kernel density estimate (KAGO) instead of any distance measure. The proposed 
technique prunes the inlier grids and filters the candidate grids with local outliers upon a new point insertion. The grids 
containing potential outliers are aggregated to converge on to at most top-N global outliers incrementally. Experimental 
evaluation showed that KAGO outperformed KNNOD by more than an order of ≈3.9 across large relevant datasets at about 
half the memory consumption.
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1  Introduction

Anomaly1 or outlier detection relates to the task of filtering 
patterns in data that deviate from normal behavior. These 
non-conforming or deviating patterns are often designated 
as anomalies, outliers, exceptions or aberrations [6]. Fig-
ure 1 demonstrates the outliers and normal patterns in a 2-D 
data. The points which appear in isolation from the expected 
patterns are shown as outliers, while the two groups of 

accumulated points in close neighborhood of each other 
form the clusters.

Motivation: Outlier detection finds its importance in 
a wide range of applications such as network intrusion 
detection [19, 34], credit card transactions [30], healthcare 
[11], detecting faults in safety critical system [20]. In all 
the aforementioned applications, there exists a possibility 
of frequent data updates in a dynamic environment [2, 3, 
27, 37]. For example, consider the following scenarios: a 
credit card transaction in a place far from its usual location 
of use may indicate a fraud. Similar transactions carried out 
in such unexpected locations in course of time may reaffirm 
the involvement of fraudulent means. On the contrary, as the 
count of such transactions increases from a particular new 
location, the prior usage of credit card from this new place 
may appear legal instead of being suspicious. In both the 
cases, if a new transaction is mapped to the entry of a data 
point upon the base dataset2, then as the number of transac-
tions increase with the passage of time, we may either have 
new outliers (fraudulent transactions from a new location) 
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or conforming patterns of data (expected transactions from 
a usual place).

However, against every new insert upon the base dataset, 
involving all the points in their entirety to detect anomalies 
may lead to following disadvantages:

•	 The run time of the outlier detection algorithm may 
increase disproportionately (Tables 1, 2 and 3).

•	 Every new update may lead into an increased consump-
tion of computing resources.

•	 A delayed extraction of outliers due to processing of data 
in totality against frequent changes.

Baseline method and the associated challenges: A promi-
nent method viz. (namely) the K-Nearest Neighbors outlier 
detection [7] (KNNOD) algorithm relies on the measure of 
distance to extract outliers. For each point x ∈ D (base data-
set), the algorithm identifies the distance of x with its K th 

nearest neighbor ( dK (say)). If t is considered as a threshold 
value, then all the data points whose dK value is more than 
t are considered as outliers, while rest of the points remain 
as inliers (Refer Fig. 2). However, with the size and veloc-
ity of data growing continually, the discovery of outliers in 
an automated manner becomes crucial. Against every new 
update made to the base dataset, a KNN-based approach may 
require re-computation of the K-Nearest Neighbors for each 
data item. Since KNNOD has a quadratic time complexity, 

Fig. 1   Illustration of outliers in a 2-D data

Table 1   Tabular summary about the motivation behind our work

Motivation Description

High response time Non-adaptive algorithms suffer from the issue of redundant computation while handling dynamic data. They involve 
the entire data against every new update made to the dataset leading to a high response time. Therefore, it becomes 
critical to design efficient algorithms to get rid of redundant computation

Small frequent updates When fewer number of insertions are inflicted upon a larger base dataset, the changes in output (anomalies) are also 
expected to be minimal. As a result, there is no need to process the dataset in its totality

KNNOD [7] fails in effi-
cient hanling of point 
insertion dynamically

KNNOD [7] is a non-adaptive anomaly detection algorithm. Due to addition of data points one at a time, the anomaly 
detection process may get slower as the volume of the base dataset increases. The time of checking is bound to 
increase with the size of base dataset. As a result, there is a need to process updates intelligently to quicken the 
outlier detection process against new insertions

KNNOD [7] relies on 
inefficient distance 
based technique

KNNOD [7] involves quadratic time in detecting outliers. On frequent updates, a re-computation of outliers may turn 
expensive. Moreover, distance-based methods show their limitations in extracting outliers [1, 7, 10] in variable 
density areas. Therefore, adopting a density based approach by relying on statistical properties of data (e.g., KDE) 
may lead towards robustness

Fig. 2   Brief illustration of the scheme adopted in case of KNNOD 
algorithm (2D)
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such an approach may suffer from high response time, 
resource constraint and redundant computation in a dynamic 
environment. Therefore, while handling frequently chang-
ing data (insertion in this work), it is critical to develop a 
mechanism that provides an adaptive extension to KNNOD 
[7] without incorporating any redundant computation.

In our pursuit to design an efficient version of KNNOD 
[7], we aim to identify outliers based on point density instead 
of directly using any distance-based techniques (e.g., KNN). 
This is due to the fact that in variable density regions of a 
data-space, distance-based methods are rendered inappropri-
ate [1, 7] while filtering outliers. Regions of uniform density 
in different subspaces have often been ignored resulting in 
detection of false outliers [10]. Therefore, adopting a den-
sity-based approach to extract outliers based on the statisti-
cal properties of data may resolve such issues. Our proposed 
technique revolves around the use of the probability density 
approximation method viz. kernel density estimation (KDE) 
[18, 24, 28, 29, 31] while finding point densities. Contrary 
to the KNN-based method [7] for outlier detection which is 
sensitive to data updates, KDE evaluates point density tak-
ing into consideration the statistical features of the dataset. 
Therefore, our proposed approach leads towards robustness 
in a dynamic data environment as compared to the static 
KNNOD [7] method.

Foundation of the proposed approach: In this work, we 
propose an approximate adaptive grid-based outlier detec-
tion algorithm using kernel density estimate (KAGO) in 
order to address the bottlenecks faced by KNNOD [7] work-
ing on a static snapshot of data (Sect. 3 presents details of 
the KAGO algorithm). Initially, we divide the d-dimensional 
data-space into grids such that there are pd grid cells in total 
with p being the number of partitions per dimension. For an 

individual grid cell, we measure the density (local density)3 
of all the data points within it by applying a suitable KDE 
function [24, 29]. The grid cell itself is treated as the local 
neighborhood for any point within it (Refer Fig. 3). On find-
ing the density estimate of each point within a grid cell, we 
compute the grid local outlier score (glos) for individual 
points within the cell. The average glos taking all the points 
within a grid provides a measure of the mean grid local out-
lier score (mglos) for the concerned cell. Subsequently, we 
find the mglos values of all the non-empty grid cells (maxi-
mum pd ) lying across the data-space. The grid cells with 
higher mglos values above a certain threshold (algorithm 
determined) are pruned, while those with lower mglos values 
are considered as candidate outlier grids (COG). From the 
grid cells belonging to COG, we are able to filter the top-N 
global outliers based on their glos estimate. The value of N 
is set as the square root of updated dataset size ( |D′| ). How-
ever, with possible fluctuations in COG post any given point 
insertion, the KAGO algorithm may end up detecting lesser 
than N outliers. This may happen due to persistent inser-
tion of data points in a subspace resulting into formation of 
higher density grids.

While computing the local density of all the points within 
a grid cell, the KAGO algorithm only takes into consid-
eration the reduced sub-space of the cell itself instead of 
whole data-space. For any grid cell gc, c = 1, 2, 3,… , pd , 
we consider multiple cell bound kernel centers4 [24, 39] to 

Fig. 3   Brief illustration of the 
scheme adopted for the KAGO 
algorithm (2D)

3  The density at a point here signifies the local density since it is 
computed wrt. (with respect to) the grid cell behaving as local neigh-
borhood of the concerned point. We use the term density and local 
density interchangeably while describing concepts related to the 
KAGO algorithm.
4  Kernel centers are data points sampled from input dataset. A 
detailed definition of kernel center is presented in Sect. 2.
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have an influence on the local density of any point. Given 
that the data points are d-dimensional, any grid cell gc will 
have 2d corners and a center point. If gc contains more than 
2d + 1 points then, it is considered to be a relatively denser 
grid, otherwise a sparse grid. As per the KAGO algorithm, 
a sparsely populated grid allows most points within it to 
behave as kernel centers. However, we adopt an opportun-
istic scheme for the densely populated grids where only a 
set of points representing gc cast their influence as kernel 
centers. The biased sampling of kernel centers depending 
on grid density enables to improve the overall efficiency of 
the KAGO algorithm while extracting a maximum of top-N 
global outliers. Our proposed algorithm therefore aims to 
provide an efficient outlier detection mechanism incremen-
tally at a minimum loss of accuracy.

Since the kernel centers involved in the point density 
computation remain localized to the grid cell itself, KAGO 
effectively determines the degree of local outlierness for 
a point in the data-space instead of relying on any global 
threshold [5]. The idea of finding top-N global outliers 
depends on the aggregation of local outliers from individ-
ual grid cells within COG. The motivation behind involving 
local outliers lies on the fact that real world datasets at times 
exhibit variable distribution properties at different regions of 

the data-space. As a result, it is often more desirable to con-
verge on the anomaly status of a point based on the density 
variation with points in its local neighborhood (grid cell in 
our case) instead of relying on any global density measure.

Our contribution(s): Next, we briefly mention the con-
tributions made in this paper. 

1.	 We propose an approximate adaptive extension to 
KNNOD [7] in the form of KAGO algorithm.

2.	 Use grid structure for subspace creation instead of any 
expensive clustering technique.

3.	 Facilitate inlier pruning by focusing on a set of candidate 
outlier grids (COG). This prevents unnecessary checking 
of inlier points for not being anomalous.

4.	 Introduce an opportunistic scheme of kernel center 
selection based on the grid density for a cost effective 
design of the KAGO algorithm.

5.	 Prove the efficiency of KAGO over KNNOD [7].

Organization of paper: Section 2 presents the important 
definitions related to the work along with problem formula-
tion. This is followed by a detailed description of the KAGO 
algorithm in Sect. 3. The analysis of time complexity of 
KAGO is provided in Sect. 4. This is followed by the experi-
mental observations covering results from relevant datasets 
proving the efficiency of KAGO over KNNOD in Sect. 5. 
Some of the key analytical points affecting the proposed 
algorithm and the related work are mentioned in Sects. 6 
and 7. The paper concludes by highlighting the conclusion 
and future work in Sect. 8.

2 � Preliminaries and problem formulation

In this section, we present the definitions of ideas and con-
cepts that have been used while developing the KAGO 
algorithm. We also provide a formal representation of our 
problem in contention.

Table 2   Brief overview of the baseline method and our proposed approach in this paper

Algorithm Brief working mechanism Limitations Improvement

KNNOD [7] Finds the distance to the Kth nearest neighbor 
of any point. On the basis of this distance, 
the degree of outlierness of a point is deter-
mined (Fig. 2)

Quadratic time complexity. Re-computation of outliers 
may be expensive. High resource consumption with every 
update. Inappropriate for variable density subspaces

KAGO algorithm

KAGO Divides data-space into grids. Computes point 
density using KDE. Prunes inlier grids to 
improve efficiency. Extracts local outliers to 
find the top-N global outliers incrementally 
without much loss of accuracy (Fig. 3)

Possible memory overhead. Sensitive to size of grids

Table 3   Major notations used in the paper

Notation Description

O Set of outliers in base dataset
O′ Set of outliers after dataset is updated
D Original dataset prior to any update
D′ Changed dataset after a point insertion
n Size of base dataset
i Number of new insertions
Outlier (.) Set of outliers of dataset
Lcj jthKernel center.
p No. of partitions per dimension
d No. of dimensions
S The set of points within a grid cell
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2.1 � Local outlier

A point xi is termed as a local outlier if the data density at xi 
is substantially lower than the densities at xi ’s neighboring 
points. As shown in Fig. 4, the density at point xi appears 
relatively lesser than that of its neighboring points. There-
fore, xi is more likely to be a local outlier where the neigh-
borhood taken into consideration is the containing grid cell.

Following steps are involved in designating a point xi as 
local outlier: 

1.	 Compute the density at point xi along with the densities 
at xi ’s neighboring points.

2.	 Estimate xi ’s local outlierness score. This is based on 
the deviation of density at xi contrary to those lying in 
its neighborhood.

2.2 � Neighborhood

For any point xi ∈ D (base dataset)[1 ≤ i ≤ n, |D| = n] and 
a grid cell gc, c = 1, 2, 3, ....pd , xi ’s neighborhood or local 
neighborhood is represented by the corresponding gc that 
contains xi.

2.3 � Kernel centers

Let S be any sample of data ( S ⊆ D ), then we denote a ker-
nel center by Lcj, 1 ≤ j ≤ m , such that |S| = r and m ≤ r . 
Typically S represents the set of points within a grid cell 
gc, 1 ≤ k ≤ pd and Lcj is a data point sampled from S. The 
chosen set of kernel centers must adequately represent the 
data distribution of S [29].

For any given kernel center Lcj , there exists a kernel func-
tion Kh . The influence of a kernel center Lcj on the density 
of a point xi ∈ S, [1 ≤ i ≤ r] is estimated on the basis of dis-
tance from Lcj to the concerned point xi and is given as: 
Kh(|xi − Lcj|).

2.4 � Kernel density estimate (KDE)

The kernel density estimate (KDE) is a non-parametric 
method applied to compute the probability density function 
(PDF) of any data sample S = {x1, x2, x3, ....., xr} . For any 
given point xi ∈ S where 1 ≤ i ≤ r , the KDE on dataset S 
is used to estimate the likelihood of a point xi being drawn 
from S. The probability estimated through the kernel den-
sity estimator may be interpreted as the “point density” at 
any xi ∈ S . In context of this work, the overall density at xi 
is given as the average of individual density contributions 
made by all the chosen kernel centers. The following equa-
tion gives the measure of overall local density at xi.

where l is the number of influencing kernel centers, Kh(.) 
represents the kernel function, h is the kernel bandwidth or 
the smoothing factor and Lcj represents the jth kernel center. 
In this paper, we adopt the cosine similarity [23] measure for 
evaluating the distance between xi and Lcj.

For illustrative purpose, in Fig. 5, we have shown the 
effect of three kernel centers, each of them a carrying a 
Gaussian kernel function (red curve). The final density 

(1)fD(xi) =
1

l

l∑

j=1

Kh(|xi − Lcj|)

Fig. 4   Illustration of local outliers within a grid cell using localized 
density

Fig. 5   Gaussian kernel as 
univariate KDE with different 
kernel bandwidth

(a) (b)



1830	 Pattern Analysis and Applications (2021) 24:1825–1846

1 3

function across all kernels assumes the shape of a curve 
represented by blue color. From Fig. 5 (a) (left), we observe 
that the kernel bandwidth (h) takes a value of 0.1 resulting in 
sharper curves as compared to Fig. 5 (b) (left) with h = 0.3 
having flatter curves.

2.5 � Kernel functions

A variety of kernel functions may be applied for estimating 
the density using KDE [29]. The Gaussian kernel [1] is one 
of the most frequently used kernel functions. In this paper, 
we use the Gaussian kernel as our KDE function.

where v signifies the distance from a kernel center Lcj to 
the target point xi . Here, 1 ≤ j ≤ m, 1 ≤ i ≤ r (|S| = r,m ≤ r) 
with S being the data sample. The kernel bandwidth h is 
also known as the smoothing factor that controls smoothness 
of the curve obtained from KDE function. A higher value 
of h ensures a smoother curve of the density function fD(.) 
(Refer Fig. 5).

2.6 � Grid local outlier score (glos)

Let S = {x1, x2, x3, ...., xr} be the set of points in a grid cell 
such that |S| = r , then ∀xi ∈ S, i = 1, 2, 3,… , r , the glos 
value is defined as follows: Given a set of kernel centers 
Lc = {Lc1, Lc2, Lc3, ...., Lcm} where Lc ⊆ S and m ≤ r , the 
glos value of a target point xi ∈ S is measured as:

where z − score(P,Q) =
P−Q

�Q
 [40] signifies that if Q is the 

mean of a set of values, then how many standard deviations 
the value P is below or above Q. Therefore, from Eq. 3, we 
observe that variable P is equivalent to the overall local den-
sity at point xi  i.e., fD(xi) , while variable Q represents the 
mean local density of all the chosen kernel centers Lcj ∈ Lc 
where 1 ≤ j ≤ m and m ≤ r . The value of glos(xi) effectively 
measures the degree of difference between the local density 
of xi to that of its neighboring kernel centers within the same 
grid cell. A smaller glos(xi) value indicates a higher proba-
bility of point xi being an outlier.

2.7 � Mean grid local outlier score (mglos)

Let S = {x1, x2, x3, ...., xr} represent the set of points in any 
grid cell gc, c = 1, 2, 3,… , pd , then we define the mglos 
value of any gc by the following equation:

(2)KGauss(v) =
1

h(
√
2�)

exp(−
1

2

v2

h2
)

(3)glos(xi) = z − score

(
fD(xi),

1

m

m∑

j=1

fD(Lcj)

)

2.8 � Adaptive anomaly detection

Let the initial outliers be defined by a mapping: f: D → O 
where O represents the set of outliers obtained from the non-
adaptive algorithm. Let an insertion sequence of i points 
be made over a base dataset D(|D| = n, i << n) . After i 
insertions let D′ be the new dataset, then an adaptive outlier 
detection is defined as a mapping h : D′ → O′ , where O′ 
represents the outliers produced from the adaptive version. 
The outliers obtained through h(D�

) is similar to the one 
time outliers f (D′ ) produced by the non-adaptive algorithm.

2.9 � Problem formulation

For k number of insertions where k ∈ � , Rd , let Tnon−adaptive 
be the total time taken by the non-adaptive algorithm, 
Tpoint−adaptive be the time taken by the point-based approx-
imate adaptive method against every insertion. Let 
Onon−adaptive and Opoint−adaptive be the respective set of clusters 
obtained after i number of updates, then we establish the 
following objectives:

•	 Tpoint−adaptive < Tnon−adaptive
•	 Opoint−adaptive ≈ Onon−adaptive

3 � The KAGO algorithm

3.1 � Framework of the KAGO algorithm

The KAGO algorithm is built around the framework as listed 
in phases below (Refer Fig. 6). 

1.	 Phase-1 Build grid structure: Initially, the whole data-
space D ∶ |D| = n is divided into grids. The usage of 
grids eliminates the task of any clustering [24] technique 
for demarcating noiseless points from outliers.

2.	 Phase-2 Compute glos, mglos, COG values: From the 
existing grid structure containing the base dataset D, 
the glos value of each data point from all the grid cells 
is evaluated using the KDE technique (Gaussian kernel) 
[1]. This is followed by the computation of mglos val-
ues for individual grids. Grids with higher mglos values 
beyond a certain threshold determined in course of the 
algorithm are inducted into the set of candidate outlier 
grids (COG).

3.	 Phase-3 New point insertion: The next phase deals with 
the insertion of a new data point. A newly inserted point 

(4)mglos(gc) =
1

r

r∑

i=1

glos(xi)
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occupies a single grid. As a result, the glos and mglos 
values of that concerned grid are updated accordingly. 
This may result in a change within the set COG. A cell 
previously belonging to COG may cease to exist within 
it post insertion of a new point due to reduced mglos 
value.

4.	 Phase-4 Filter top-N global outliers from the updated 
COG set: From the set of updated COG, the potential 
outlier data points are aggregated. Based on the glos 
value of the data points, the top-N global outliers are 
segregated for the current iteration.

5.	 Repetition of Phases 3 and 4 until all the data points are 
inserted.

3.2 � Theoretical model

Let O = {o1, o2, o3, ....., om} be the set of outliers 
from base dataset D = {x1, x2, x3, ....., xn} such that 
O ⊆ D and m ≤ n . Each item in D is represented by a 
d-dimensional vector ⟹ xi = {xi1, xi2...., xid} where 
xiq ∈ R, 1 ≤ i ≤ n, 1 ≤ q ≤ d . Let xn+1 be the new data 
point added to D. Therefore, D changes to D′ where 
D�

= {x1, x2...., xn, xn+1} becomes the current set of points 
from which the updated outliers are to be extracted. We aim 

to address the issue of re-computing outliers post increase 
in the size of the dataset. The new set of outliers can be 
obtained by applying the KNNOD [7] algorithm on D′ . 
However, we avoid this procedure by developing a less 
expensive scheme in form of the KAGO algorithm.

Let OKNNOD and O′

KNNOD
 be the set of outliers obtained by 

executing KNNOD upon dataset D and D′ . Also, let O′

KAGO
 

be the set of outliers obtained by executing the proposed 
KAGO algorithm incrementally, then we may have the fol-
lowing interpretations:

I f  OKNNOD ← KNNOD(D);O�

KNNOD
← KNNOD(D�

) 
;O�

KAGO
← KAGO(D�

) then we establish the following objec-
tives: TimeKAGO(D�

) < TimeKNNOD(D
�
) and O�

KAGO
≃ O�

KNNOD
.

3.3 � Steps of the KAGO algorithm

Prior to insertion of any new data point, we execute the first 
two phases of our proposed KAGO algorithm. This includes 
creation of the grid structure (GridStruct) for base dataset 
D and identification of the set COG wrt. D. We define a 
new term called Algorithm-Components (Algo-Comp). 
The GridStruct and COG are included as a part of the 
Algo-Comp along with the base dataset D. Once the Algo-
Comp values are determined, the algorithm receives a new 

Fig. 6   KAGO framework
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incoming point. The pre-determined Algo-Comp values are 
then used by the KAGO algorithm for extracting the new set 
of outliers incrementally.

Next, we present the steps of our proposed KAGO algo-
rithm supported by necessary explanation as and when 
required. The parameter taken by KAGO is the number of 
partitions per dimension denoted as p. For readers’ conveni-
ence, we also mention the pseudo-code (Refer Algorithm 1) 
of the KAGO algorithm. 

1.	 Step 1- Set the AlgoComp

(a)	 Load the base dataset D.
(b)	 Set the no. of grid cells to pd.
(c)	 Create GridStruct by dividing the dataspace con-

taining D into pd d-dimensional grids.
(d)	 Set the variable VolGrid = 2d + 1 . VolGrid gives 

a measure of the minimum number of points per 
grid required for it to be a relatively denser grid.

(e)	 COG ← �.
(f)	 For each d-dimensional non-empty grid cell 

gc, [1 ≤ c ≤ pd],
	   If ( |gc| = 0 ), process the next grid.
	   If |gc| > VolGrid), where |gc| = r(say) , then gc is 

considered to be relatively dense. For a dense grid 
gc , KAGO selects m kernel centers[m = 3] within 
that grid such that it represents the data distribu-
tion within the grid gc (Fig. 7). The chosen kernel 
centers within gc are:

	   xi ∈ gc[1 ≤ i ≤ r] , and xi is closest to the cen-
troid of gc.

	   xi ∈ gc[1 ≤ i ≤ r] , and xi is closest to the mini-
mal point5 of gc.

	   xi ∈ gc[1 ≤ i ≤ r] , and xi is closest to the maxi-
mal point6 of gc.

	   If ( |gc| ≤ VolGrid ) with |gc| = r(say) , then the 
grid gc is considered to be a sparse grid. Under 
this scenario, m kernel centers [m ≤ r] within gc 
influence the local density of any point within gc 
(Figs. 7 and 8).

	   Estimate the KDE (Defined in Sect.  2) of 
∀xi[i = 1, 2, 3, ...., r] ∈ gc.

	   ∀xi ∈ gc[i = 1, 2, 3,… , r] , compute glos(xi) 
(Fig. 9) (Defined in Sect. 2).

	   Compute mglos(gc) (Fig. 9) (Defined in Sect. 2).
(g)	 Sort the non-empty grids cells in GridStruct 

according to their increasing mglos(gc) value 
where c ∈ [1, pd].

(h)	 COG ← COG ∪ {gc} such that gc ∈ the top 50% 
non-empty grids from GridStruct with lowest 
mglos(gc) scores. Designate top N points from 
COG as potential outliers based on their increas-
ing glos value (Fig. 10).

2.	 Step 2- New point insertion A new point npt (say) is 
inserted upon D. The base dataset D therefore changes 
to D′ where |D�| = |D| + 1.

3.	 Step 3- Identify the affected grid Post insertion of 
new point npt, KAGO identifies the affected grid cell 

Fig. 7   Selection of kernel centers for relatively denser grids

Fig. 8   Identification of denser and sparser grids

5  The point within g
c
 where each co-ordinate in a given dimension is 

the minimum of all the current points ∈ g
c
 in that dimension.

6  The point within g
c
 where each co-ordinate in a given dimension is 

the maximum of all the current points ∈ g
c
 in that dimension.
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gc[1 ≤ c ≤ pd] where npt gets positioned (Fig. 11). The 
strength of gc(|gc| = r) (say) increases by 1. Therefore 
|gc| = r + 1.

4.	 Step 4- Update the variables related to AlgoComp 
wrt. affected grid

(a)	 For the affected grid cell gc[1 ≤ c ≤ pd] where 
[|gc| = r + 1(say)],

	   If ( |gc| > VolGrid ), then gc is considered to be 
a dense grid cell. KAGO selects m kernel cent-
ers[m = 3] (Similar to Step 1 (f) (ii)) such that it 
represents the data distribution within gc.

	   If ( |gc| ≤ VolGrid ), then it continues to be a 
sparse grid. Under this scenario m kernel cent-
ers[m ≤ |gc|] influence the local density of any 
point within the grid cell.

	   E s t i m a t e  t h e  u p d a t e d  K D E  o f 
∀xi[i = 1,… , r + 1] ∈ gc.

	   ∀xi ∈ gc[i = 1, 2, 3,… , r + 1] , compute the 
updated glos(xi).

	   Compute the updated value of mglos(gc).
(b)	 Sort the non-empty grids cells in GridStruct 

according to their updated mglos(gc) value in 
increasing order post insertion of npt.

(c)	 Update the set COG by selecting a maximum 
of top 50% non-empty grids7 from GridStruct 
according to the updated mglos(gc) values. An 
inlier grid prior to addition of npt will not become 
a part of COG post insertion in spite of a relatively 
lesser mglos score.

(d)	 If COG ← � , there are no outliers post insertion 
of npt. Go to Step 6.

5.	 Step 5- Filter a maximum of top-N global outliers 
Gather all data points from the updated set of COG. 
Sort the data points in increasing order of their glos and 
extract a maximum of top-N8 global outliers (Fig. 12). 
A point having an inlier status prior to addition of npt 
will not be an outlier after its insertion even if it has a 
relatively lesser glos value.

6.	 Set D ← D′.
7.	 Repeat Steps 2 to 6 till k number of points are inserted.

COG as potential outliers based on their increas-
ing glos value (Figure 10).

Fig. 9   Finding of glos and mglos values

Fig. 10   Sorting the grids in COG based on their increasing mglos val-
ues

Fig. 11   Affected grid post insertion of new point

7  Post entry of new point, any grid previously a part of COG might 
not be a part of it anymore.
8  With repeated insertions, the number of existing outliers may be 
less than N.
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Algorithm 1: The KAGO algorithm (pseudo-code)
1 Initialize parameter p; // p represents the no. of partitions/dimension

// Step 1
2 Load the base dataset D with d dimensions;
3 GridCells ← pd; // No. of grid cells in the grid space

4 GridStruct ← ∪pd

c=1gc; // GridStruct is the set of all d dimensional grid cells gc
5 V olGrid ← 2d + 1;
6 COG ← φ;
7 for c ← 1 to pd do
8 if |gc| = 0 // empty grid cell
9 then

10 continue;

11 if |gc| > V olGrid, where |gc| = r (say) // denser grid cell
12 then
13 Select m = 3 kernel centers from gc such that it represents the data distribution within gc;
14 The chosen kernel centers are:

– xi ∈ gc[1 ≤ i ≤ r] AND xi is closest the centroid of gc;
– xi ∈ gc[1 ≤ i ≤ r] AND xi is closest the minimal point of gc;
– xi ∈ gc[1 ≤ i ≤ r] AND xi is closest the maximal point of gc;

15 if |gc| ≤ V olGrid, where |gc| = r (say) // sparse grid cell
16 then
17 Select m ≤ r kernel centers that influence the local density of any point in gc;

18 for i ← 1 to r do
19 for j ← 1 to m do
20 Estimate KDE (xi, Lcj); // Find KDE for each xi ∈ gc

21 for i ← 1 to r do
22 Compute glos(xi) for xi ∈ gc;

23 Compute mglos(gc);

24 GridStructNonEmpty ← φ;// Find the non-empty grid cells

25 for c ← 1 to pd do
26 if |gc| > 0 then
27 GridStructNonEmpty ← GridStructNonEmpty ∪ {gc};

28 GridStructNonEmpty ←Sort (GridStructNonEmpty); // Sorting based on increasing mglos(gc)
29 for c ← 1 to �|GridStructNonEmpty|/2� do
30 COG ← COG ∪ {gc}; // Select the top 50% grid cells into COG

31 Outliers ← φ;
32 for c ← 1 to |COG| do
33 for x ∈ gc do
34 Outliers ← Outliers ∪ {x}

35 Outliers ← Sort(Outliers); // Sorting based on increasing glos(x)
36 topNOutliers ← φ;N ←

√
|D|;

37 for i ← 1 to N do
38 if xi ∈ Outliers then
39 topNOutliers ← topNOutliers ∪ {xi};

// Step 2
40 |D′| ← |D|+ 1; // A new point ′npt′ (say) is inserted upon the base dataset D

// Step 3

41 for c ← 1 to pd do
42 if npt ∈ gc then
43 |gc| ← r + 1; [where prior to insertion of ’npt’ |gc| = r(say)]
44 break ;

// Step 4
45 if |gc| > V olGrid, where |gc| = r + 1 // denser grid cell post insertion of ′npt′

46 then
47 Select m = 3 kernel centers from gc such that it represents the data distribution within gc;
48 The chosen kernel centers are:

– xi ∈ gc[1 ≤ i ≤ r + 1] AND xi is closest the centroid of gc;
– xi ∈ gc[1 ≤ i ≤ r + 1] AND xi is closest the minimal point of gc;
– xi ∈ gc[1 ≤ i ≤ r + 1] AND xi is closest the maximal point of gc;
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49 if |gc| ≤ V olGrid, where |gc| = r + 1 (say) // sparse grid cell
50 then
51 Select m ≤ r + 1 kernel centers that influence the local density of any point in gc;

52 for i ← 1 to r + 1 do
53 for j ← 1 to m do
54 Estimate KDE (xi, Lcj); // Find KDE for each xi ∈ gc

55 for i ← 1 to r + 1 do
56 Compute glos(xi) for xi ∈ gc;

57 Compute mglos(gc);
// If the affected grid cell gc was empty pre-insertion

58 if gc �∈ GridStructNonEmpty then
59 GridStructNonEmpty ← GridStructNonEmpty ∪ {gc}
60 GridStructNonEmpty ←Sort (GridStructNonEmpty); // Sorting based on increasing mglos(gc)
61 COGnew ← φ; // Initialize the new COG post-insertion
62 for c ← 1 to �|GridStructNonEmpty|/2� do
63 if gc ∈ COG then
64 COGnew ← COGnew ∪ {gc};// Retain a previously outlier grid cell

65 COG ← COGnew;
66 if COG ← φ then
67 GoTo Step 6; // No outliers present

// Step 5
68 topNOutliersnew ← φ; // Updating the top N global outliers
69 for c ← 1 to |COG| do
70 foreach x ∈ gc do
71 topNOutliersnew ← topNOutliersnew ∪ {x};

72 topNOutliersnew ← Sort(topNOutliersnew);
73 N ←

√
|D′|;

74 i ← 1;
75 foreach xi ∈ topNOutliersnew do
76 if i > N then
77 break;

78 if xi �∈ topNOutliers AND xi = newpt then
79 //do nothing;

80 if xi �∈ topNOutliers AND xi �= newpt then
81 topNOutliersnew ← topNOutliersnew − {xi}; // Previously xi was not an outlier

82 i ← i+ 1;

83 topNOutliers ← topNOutliersnew

// Step 6
84 D ← D′; // Update the base dataset D
85 r ← r + 1; // In case the same grid cell is affected next time

// Step 7
86 Insert a new point ’npt’ and GoTo Line #40 ; // Repeat Steps 2 to 6 till k points are inserted

4 � Time and space complexity of the KAGO 
algorithm

The time complexity of KAGO is determined through ana-
lyzing individual steps of the algorithm (Refer Sect. 3). The 
first five component steps (Step 1(a) to 1(e)) within Step 
1 of the KAGO algorithm mainly involve loading of the 
base dataset and creation of grid structure. As a result, Step 
1 involves a constant running time of O(1) . For Step 1(f), 
two scenarios may arise while processing a certain grid 
cell gc [1 ≤ c ≤ pd] . If gc is a dense grid (|gc| > VolGrid) 
as per KAGO, then the algorithm considers three kernel 
centers to have an influence for determining point wise 
glos values. Considering grid strengths not exceeding 

n(|D| = n) , a running time of O((3r + 3r) ∗ gc) ≃ O(1) 
[ ∵r, gc << n, |gc| = r , O(3r) each for kernel center selection 
and KDE computation ∀xi ∈ gc, i = 1, 2,… , r, r > VolGrid 
] is required for Step 1(f(ii)). However, for sparse grids 
(|gc| ≤ VolGrid) (Step 1(f(iii))), O(r2 ∗ gc) ≈ O(1) time is 
required given that all the r points within a gc act as ker-
nel centers. For skewed datasets with certain highly dense 
grids ( r ≈ n ), a combined running time of O(1) +O(n ∗ gc) 
is involved for evaluation of glos(xi)[1 ≤ i ≤ n].

The mglos value for each grid takes either O(r) or O(n) 
time (Step 1(f(vi))) depending on grid density. Step 1 (g) 
involves sorting of grids on the basis of their increas-
ing mglos values which leads towards completion in 
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O(gc ∗ log gc) ≃ O(1) [∵|gc| << n] time. Step 1 (h) also 
involves a constant time. The following steps 2 and 3 take 
O(1) time where the insertion of new point and its grid cell 
identification takes place. The next step (Step 4) deals with 
updation of glos value for each point within the affected grid 
and mglos value for the grid itself. Depending on the grid 
density, Step (4(a)) involves a total time of O(r2) (sparse 
grid) or O(r) [r ≤ n] (dense grid). Sorting of grids post 
insertion of new point takes O(gc ∗ log gc) ≃ O(1) time. The 
new list of COG is rebuilt in constant time.

While deciding the final set of outliers (Step 5), all the 
potential outliers lying within COG are sorted at a cost of 
O(gc ∗ r log(gc ∗ r)) [Taking an average grid density of r] 
or O(n log n) [r ≈ n ] based on their increasing glos values. 
We assume the initial size of top-N outliers as 

√
n . There-

fore, checking a point for its outlier status is done by com-
paring it with the previous list involves a running time of 
O(

√
n ∗ n) ≃ O(n) time. Contrary to quadratic running time 

of KNNOD [7], the overall time complexity (worst case) of 
KAGO is therefore O(n + n log n) ≃ O(n log n) for a skewed 
distribution otherwise O(1) [∵r, gc << n] for uniformly dis-
tributed grids.

Space complexity analysis The storage required for exe-
cuting the KAGO algorithm is influenced by both the num-
ber of points (n) and dimensions (d). For storing the base 
dataset O(n ∗ d) space is required. We additionally maintain 
two 2-D matrices for storing the grid structure and the point 
densities. This consumes a space of O(r ∗ pd) where r ( r ≈ n 
for denser grid cells) may be considered as the size of each 
grid cell. In order to store COG and the set of outliers, a stor-
age space of around O(n + pd) is required. If d << n , then pd 
may be taken as a constant entity given that the value of p is 
not substantially high. Increasing the value of p may lead to 
creation of more grid cells involving higher computational 
cost overall. The KAGO algorithm will therefore have a lin-
ear space complexity in the average case.

However, scaling the value of d (d >> n) may eventually 
result in consumption of exponential amount of space. This 
is due to a significant increase in the number of grid cells 
( pd ) which would require additional storage. Therefore with 
increase in number of dimensions, the advantages derived 
from the efficient designing of KAGO may be nullified with 
a much higher memory overhead.

5 � Experimental evaluation

In this section, we provide key experimental observa-
tions and their analysis thereby proving the efficiency of 
KAGO over KNNOD [7] and some other benchmark outlier 
detection methods. We also compared the memory usage 
between both the algorithms. Further, evaluation of correct-
ness of results was performed based on Rand-index (RI) 
and F1-scores (https://​nlp.​stanf​ord.​edu/​IR-​book/​html/​htmle​
dition/).

5.1 � Experimental setup, datasets used 
and observations

We simulated our proposed KAGO algorithm in C++ on a 
Linux platform (Intel (R) Xeon (R) CPU E5530 @ 2.40GHz) 
with 32GB RAM. The experiments were performed on two 
network intrusion detection dataset(s): NSL-KDD (PCA 
(Principal Component Analysis) [36] reduced to 3 and 4 
dimensions respectively) (See https://​www.​unb.​ca/​cic/​datas​
ets/​nsl.​html) and a bidding data for market advertisement: 
A1 for Yahoo! Search (See https://​websc​ope.​sandb​ox.​yahoo.​
com/​catal​og.​php?​datat​ype=a). In this paper, we use the PCA 
reduced NSL-KDD datasets by the name of NSL-KDD3 
and NSL-KDD4 respectively, while the Yahoo! bidding data 
have been named as A1-Yahoo! (Refer Table 4 for dataset 
details). In addition, we also used the Vowel dataset from 
UCI Machine Learning Repository [9] for conducting our 
experiments.

Prior to execution of KAGO, we involve the entire dataset 
to decide the starting and ending point of each dimension. 
The minimum and the maximum end for each dimension is 
decided by the following relations:

Here, min{Di},max{Di} [1 ≤ i ≤ d] represent the minimum 
and maximum of all the values along ith dimension. The 
GridStruct (Refer Sect. 3) is therefore constructed with its 
origin containing Min (Eq. 5) and every dimension extends 
to an identical length till Max (Eq. 6). The purpose of build-
ing GridStruct with entire dataset is to ensure the positioning 

(5)Min = min{min{D1},min{D2}, ....,min{Dd}}

(6)Max = max{max{D1},max{D2}, ....,max{Dd}}

Fig. 12   Extracting at most top-N global outliers

https://nlp.stanford.edu/IR-book/html/htmledition/
https://nlp.stanford.edu/IR-book/html/htmledition/
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html
https://webscope.sandbox.yahoo.com/catalog.php?datatype=a
https://webscope.sandbox.yahoo.com/catalog.php?datatype=a
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of newly added points within the same co-ordinate system as 
the base dataset points while executing KAGO.

For our experimental purpose, in case of dense grid 
( |gc| > VolGrid, c = 1, 2, 3,… , pd ), we select three kernel 
centers (centroid, minimal, maximal) ( m = 3 , Refer Sect. 3) 
to exert influence on each xi ∈ gc [1 ≤ i ≤ r, r > VolGrid] 
while evaluating x′

i
 s kernel density. In case of a sparse 

grid ( |gc| ≤ VolGrid  ), ∀xi ∈ gc [1 ≤ i ≤ r, r ≤ VolGrid] , 
we assume each xi to behave as an influential kernel center 
within gc . Therefore, for any sparse grid gc, |gc| = r (say), 
we assume m = r . Next, we describe our observations based 
on experiments conducted for each dataset while detecting 
a maximum of top-N outliers through the KAGO algorithm 
dynamically.

Observations for NSL-KDD3: For NSL-KDD3 dataset, 
the value of parameter p (# partitions/dimension) was taken 
to be 5. As a result, the total number of grid cells within 
GridStruct is 125[∵#Grids = pd, d = 3 (#dimensions) ]. 
After analyzing the entire dataset (25000 points), the Min 
and Max values were computed to be −4.09628 and 111.051, 
respectively. The origin of the co-ordinate system is there-
fore located at (−4.09628, −4.09628, −4.09628), while the 
maximal point of GridStruct should be at (111.051, 111.051, 
111.051). For each of the 125 grid cells, the grid height (h) 
in every dimension is identical to a value of 23.0295.

Key result(s): The base dataset size was taken to be 
20000 with 5000 additional points were inserted one at a 
time. Prior to insertion of any new point npt (say), there 
were five grids filled with data points: 1, 26, 51, 76 and 
101. Grid #1 was the only dense grid with more than 8 
(∵VolGrid = 2d + 1) points. From Fig. 13 (top figure), we 
observed that our proposed KAGO algorithm (lower curve) 
consistently outperformed KNNOD [7] till the entry of the 
final point. Based on our observation, a maximum speedup 
of about 6660 times ( ≈ order 3.8) was achieved by KAGO 
when 4000th point was inserted. However, a curve dip 
(Fig. 13 (top figure)) was observed after 615th and 3954th 
insertion in case of KAGO. Reason(s): The high speedup 
of KAGO can be attributed to its grid-based approach of 
dealing with subspaces instead of  the entire dataset scan. 
The efficiency curve dip (Fig. 13 (top figure)) for KAGO 
occurred because two new grids: Grid# 101 and Grid# 76 
were affected when 615th and 3954th point were inserted. 
These newly affected grids remain sparse due to which the 

time required to compute the glos values of the points within 
the affected grid is less as compared to the denser grids.

Key result(s): The number of COG (Candidate Outlier 
Grids) was consistent throughout the insertion process of 
all the data points (Figure 13 (middle figure)). Reason(s): 
A constancy in the number of COG implies that no new 
grids were affected due to point insertion and that the list of 
initial COG with probable outliers remains untouched after 
repeated addition of points. It may also be the case that a 
single grid in a COG of any iteration had been dismantled by 
a newly affected grid, while rest of the grids with erstwhile 
COG retain their position. No deviation in the number of 
COG also means that the potential outliers were selected 
post every insertion from the three COG (for NSL-KDD3 
dataset), while at most top-N (N=⌊

√
D⌋,D = 20000 ) outli-

ers were selected.
Key result(s): We observed a steady decrease in the num-

ber of top-N outliers from 141 to 131 after all the insertions 
were made. Reason(s): The reason for this steady decrease 
in the number of outliers may be attributed to the increase in 
glos values of the data points due to a dense neighborhood 
within affected grids. Redundant insertions on certain grid(s) 
initiate this phenomenon where a previous outlier point may 
gradually lose its outlier status due to a sufficiently filled 
containing parent grid with a higher mgols value.

Observations for NSL-KDD4: The parameter p’s 
value was taken to be 5 resulting in a total of 625 grid cells 
( ∵d = 4 ). The base dataset size equaled 20000 facilitating 
insertion of 5000 points. The Min and Max values for NSL-
KDD4 dataset were −6.28682 and 111.051 respectively, 
with a grid height h of 23.4676 in each of the four dimen-
sions. Prior to insertion of any new data point, a total of five 
grids were filled with Grid# 1 being the densest containing 
19985 points.

Key result(s): On observing the results for subsequent 
insertions from Fig. 14 (top figure), we found that KAGO 
achieved a maximum speedup of around 6445 times ( ≈ order 
3.8) over KNNOD post insertion of the last point. No change 
was was observed in the number of COG throughout all 
point insertions (Fig. 14 (middle figure)). However, a curve 
dip (Fig. 14 (top figure)) was observed after 615th, 2991st 
and 3955th insertion was made. Reason(s): Similar reasons 
as applicable for the previous dataset. The newly affected 
grids in this case were: Grid# 101, Grid# 126 and Grid# 76, 
respectively, over all insertions.

Table 4   Datasets and 
their partition size used in 
experiments

Dataset #Features #Points Base dataset size #Added points

NSL-KDD3 3 25000 20000 5000
NSL-KDD4 4 25000 20000 5000
A1-Yahoo! Search 4 18000 15000 3000
Vowel-UCI 3 500 100 400
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Key result(s): For the set of outliers (Fig. 14 (bottom 
figure)), we observed that upon entry of the first point, a 
total of 141 outliers were extracted which reduced to 124 
post entry of the 5000th point. Reason(s): This is because 
upon entry of any new point, a sparse grid may turn into a 
dense grid resulting in an overall increase of the mglos score 
of that affected grid. This results in a significant decrease in 
the number of top-N global outliers.

Observations for A1-Yahoo!: Parameter p was assigned 
a value of 5. The dataset being used consisted of four dimen-
sions resulting in a total of 625 grid cells. The base dataset 
size was fixed at 15000 with an additional 3000 points were 
added one at a time. The Min and Max values were cal-
culated to be 0 and 1133, respectively, with a grid height 
h equaling 226.6 per dimension. Post insertion of all the 
data points, we observed that (Refer Fig. 15 (top figure)) 
for A1-Yahoo! dataset, the KAGO algorithm outperformed 
KNNOD [7] by an order ≈ 3.92 (around 8403 times faster).

Key result(s): We observed that there is a periodic dip in 
the efficiency graph (Refer Fig. 15 (top figure)) for KAGO 
over subsequent point insertions. Reason(s): Initially pre-
ceding any insertion, 6 grids were filled with data points: 
Grid# 46 (321 points), Grid# 17 (404 points), Grid# 22 (227 
points), Grid# 47 (3928 points), Grid# 16 (5779 points) and 
Grid# 21 (4341 points). Once the new insertions were made, 
a new grid (Grid# 52) started filling up from the 37th inser-
tion periodically. The new grid continued to be a sparse grid 
till the entry of first seventeen points with each point behav-
ing as kernel centers. Further insertion into the same grid 
transformed Grid# 52 into a relatively denser grid. However, 
the total number of points within Grid# 52 was still less than 
the other affected grid (Grid #47) during repeated inser-
tions. As per the KAGO algorithm (Sect. 3), a running time 
of O(3r + 3r) (Sect. 4) is required for a dense grid while 
computing the glos value of individual points. Let |Grid# 
47|= r1 and |Grid# 52|= r2, ∵r2 < r1 across all insertions, 
we observe a periodic dip in the time required by KAGO 
(Fig. 15 (top figure)) when Grid# 52 is affected.

Key result(s): Contrary to the previous datasets, we 
observed that the number of COG (Refer Fig. 15 (mid-
dle figure)) remained as three till the insertion of the 36th 
point. While 37th point was inserted, the number of COG 
increased to 4. Reason(s): This may be possible when new 
grids are affected (previously empty) post insertion of data 
points. We observed that a new grid (Grid# 52) was targeted 
when the 37th point was entered. Upon observing the set 
of populated grids prior to any data insertion, we clearly 
noticed that Grid# 52 was previously empty. This triggers a 
re-shuffle of the new COG list resulting in an addition of one 
or more grids as potential outlier grids based on the updated 
mglos values.

Key result(s): The set of top-N (N = 122) outliers after 
the entry of the first point experienced a sharp decrease 

(Refer Fig. 15 (bottom figure)) till the entry of the 890th 
point (N = 28). During this phase of steep decrease in the 
number of top-N outliers, Grid# 47 and #52 were repeatedly 
affected. From the insertion of 891st point, no more reduc-
tion in outliers was observed. Reason(s): This may happen 
when the glos values of existing points are at least as low 
as the value necessary for retaining the outlier status due to 
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previous insertion and the new points are a part of the dense 
grids. Redundant positioning of new points in previously 
affected grids ensures a higher glos value for the contained 
points within the grid itself therefore ensuring a decrease 
or constancy in the number of outliers. A brief summary of 
experimental results comparing KAGO with KNNOD [7] 
on all the datasets has been shown in Table 5.

Comparison of KAGO with other prominent outlier 
detection algorithms We also compared KAGO with some 
of the other well-established anomaly detection algorithms 
viz. LOF [4], iLOF [22], MiLOF [26] and DILOF [21]. We 
primarily focused on comparing the efficiency of these algo-
rithms with that of KAGO.

Observations wrt. LOF [4]: While drawing comparisons 
with LOF [4], we used all the four datasets (Refer Table 4). 
For Vowel, we chose the size of base dataset as 100. A total 
of 400 points were inserted upon the base dataset in a point 
wise manner. For the other three datasets viz. NSL-KDD3, 
NSL-KDD4 and A1-Yahoo!, the partitions were made as 
shown in Table 5. The parameter p was assigned a value of 
3 with each data point having three dimensions. Therefore, 
the data space was divided into 27 grid cells. From Fig. 16 
(top figure), we observe that the KAGO algorithm consist-
ently maintained a better efficiency than LOF [4]. A highest 
efficiency of the order of ≈ 1.34 was achieved in favour of 
KAGO after 400th insertion.

We further noticed that (Refer Fig. 16) there is an occa-
sional dip in the curve corresponding to KAGO after 147th 
and 148th insertion, respectively. Subsequently, a dip also 
occurred at the end of 257th insertion. Similar phenom-
enon was observed for three more timestamps before the 
final insertion. Moreover, the COG curve (Fig. 16 (middle 
figure)) showed a fluctuating tendency unlike the previous 
cases. In addition, the set of outliers (Figure 16 (bottom fig-
ure)) appeared to diminish after the addition of 130th point.

Reason(s): With increasing updates, the quadratic run-
ning time of LOF results in it being outperformed by our 
proposed KAGO algorithm on a consistent basis. As the 
size of base dataset increases with additional inserts, KAGO 
continues to achieve a greater efficiency over LOF.

The temporal dip in the efficiency curve of KAGO may 
be attributed to the processing of a sparse grid after a given 
insertion has taken place. This happens when either a grid gets 
newly affected due to an insert or the grid cell is yet to obtain 
a dense status. However, a significant dip observed against 
the above entries was mostly due to insertion happening in a 
sparse grid cell with very lesser number of data points.

The varying size of COG at various phases of point inser-
tions is mainly due to the grid cells moving in and out of 
contention for producing outliers. In case of a grid cell being 
targeted with repeated insertions, the size of COG is likely to 
shrink with more number of denser points. However, we also 
observed that as new grids are affected, the COG expands 

and accommodates more number of grid cells with potential 
outliers. Along with COG, a consistent reduction in the num-
ber of top-N outliers happens when repeated insertions take 
place across the data space. Effectively, the sparse regions 
gradually become dense resulting in diminishing outliers.

As observed, the KAGO algorithm consistently outper-
formed LOF [4] across all the four datasets: NSL-KDD3, 
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NSL-KDD4, A1-Yahoo! and Vowel (Refer Fig. 17, Fig. 16). 
While in case of NSL-KDD3 and NSL-KDD4, KAGO 
achieved an overall efficiency of the order of ≈ 3.90 and 3.98 
respectively, for A1-Yahoo!, KAGO outperformed LOF by 
an order of ≈ 4.12. Table 6 provides a brief summary of the 
results obtained while comparing the efficiency of KAGO 
over LOF.

Comparisons with other algorithms: We further evalu-
ated the effectiveness of KAGO in terms of efficiency and 
performance for Vowel [9] dataset and compared with meth-
ods: iLOF, MiLOF and DILOF (Fig. 18). Experimentally, 
we observed that KAGO was about 10,715 times faster than 
iLOF (order of ≈ 4) post insertion of 100th point or a win-
dow size of 200. Upon comparing with MiLOF and DILOF 
for similar insertion timestamp, KAGO achieved an overall 
efficiency of about 507 times and 169.82 times, respectively, 
thereby outperforming both the algorithms.

In terms of performance, the KAGO algorithm showed 
a higher RI score as compared to LOF. For the NSL-KDD3 
dataset, KAGO achieved an accuracy measure of about 
47.56%, while LOF was about 39.97%. In case of NSL-KDD4 
dataset, the proposed algorithm achieved a better RI measure 
with 40.78% accuracy while LOF measured about 37.78%. 
The Vowel dataset recorded the highest improvement with 
KAGO showing an enhanced accuracy of about 38% wrt. 
(with respect to) LOF. For A1-Yahoo! dataset, identical values 
were achieved by both the algorithms (RI = 1.0).

Furthermore, while validating the outliers by computing 
the F1-score, we observed that KAGO was about 7% higher 
in comparison with iLOF [22] algorithm for the NSL-KDD3 
dataset. Similar observations were made while comparing 
the algorithms for NSL-KDD4 with KAGO outperforming 
iLOF by about 3%. The iLOF algorithm achieved a valida-
tion score of about 54.83% against KAGO which equiva-
lently resulted for about 57.94%. In case of A1-Yahoo! data-
set, both the algorithms achieved similar results with an F1 
measure of 1.0 in either case.

5.2 � Support vector data description

In order to characterize the involved data by identifying 
meaningful spaces, a suitable description of data domain 
is considered an essential feature. In this regard, the use of 
support vector data description (SVDD) enables finding of a 
spherical boundary around the data and filter outliers [33]. In 
context of our experimental analysis, we treat a test instance 
� (say) as an accepted support vector if it lies at a distance 
less than or equal to the mean radius ��

�
 (say) of the sphere 

(denser region) with �
�
 being the center (Eq. 7).

Support vectors which fall outside this description are 
neglected, e.g., outliers. While expanding Eq. 7, a support 
vector may be expressed in terms of its inner products �.� 
[33]. However, in our case, we replace by a Gaussian Kernel 
function (Refer Sect. 2) that has been used in finding the 
KDE-based local outliers.

While demonstrating our comparisons for individual data-
set, we state the outlier instances implying that the accepted 

(7)||� − �
�
||2 ≤ �

�

�
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support vectors are determined. Since the glos value is 
directly dependent on KDE, the kernel density estimate 
comparison has been provided by representing the appro-
priate glos value of the outliers. The SVDD objects were 
identified for comparing KAGO with KNNOD [7] and LOF 
[4]. Due to presence of numerous values, we have included 
the SVDD comparisons in an online supplementary material 
(OSM)9 Since a large number of superfluous support vectors 
are identified, a limited observation is presented in the OSM.

5.3 � Memory usage

The high efficiency of KAGO over KNNOD [7] in terms of 
CPU execution time is achieved along with a significant reduc-
tion in memory consumption (Refer Table 7). For each dataset, 
we observed that the memory usage due to KAGO is approxi-
mately half as that of the KNNOD algorithm. Contrary to 
KAGO, a larger share of memory consumption due to KNNOD 
results from its storage of K-nearest neighbors for each data 
point in form of KNN matrix. The KAGO algorithm on the 
other hand allocates space only for the filled up grids within 
GridStruct facilitating the storage of glos value for each point. 
The grid indices and outliers occupy additional memory space.

5.4 � Brief outlier analysis

We conducted a brief study of outliers obtained through both 
KAGO and KNNOD [7] algorithm. For KNNOD, the size 
of K-Nearest Neighbor (KNN) and a cutoff threshold deter-
mines the outliers for a given dataset. In our experimental 
procedure, we initially identified the distances of each point 
xi ∈ D [1 ≤ i ≤ n] with its Kth nearest neighbor K(xi) (say). 
The mean of all such distances is treated as the threshold 
Kth (say). The value of K ( ⌈

√
n∕10⌉ ) [12] was chosen to be 

15, 15 and 12 for NSL-KDD3, NSL-KDD4 and A1-Yahoo! 
datasets. Any point whose K(xi) is greater than Kth obtained 
an outlier status.

We evaluated the RI measure and F1-score10 for compar-
ing the quality of results related to KAGO and KNNOD [7] 

Table 5   Key experimental 
results (KAGO vs. KNNOD)

Dataset #Grid cells #Added points Time KAGO (final 
point) (sec)

Time KNNOD (all 
points) (sec)

Speedupmax 
(#insertion)

NSL-KDD3 125 5000 0.06034 378.805 6660.12
(4000)

NSL-KDD4 625 5000 0.06064 390.89 6445.33
(5000)

A1-Yahoo! 625 3000 0.021 183.134 8403.72
(3000)
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Fig. 16   Efficiency comparison between KAGO and LOF, number of 
COG and top-N outliers post every insertion for the Vowel dataset

9  Please refer to the file ‘KAGO_SVDD_comparison.pdf‘ for further 
details.
10  https://​nlp.​stanf​ord.​edu/​IR-​book/​html/​htmle​ditio​n/.

https://nlp.stanford.edu/IR-book/html/htmledition/.
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(Table 9). RI provides a measure of the percentage of correct 
decisions. The calculation of RI is based on the evaluation of 
TP (True Positive), FP (False Positive), True Negative (TN), 
False Negative (FN). The RI measure is given as:

(8)RI =
TP + TN

TP + FP + FN + TN

The F-measure penalizes FN more than FP contrary to the 
RI measure. For our outlier evaluation purpose, we measure 
the F1-score given by:

Table 8 provides an estimate of individual measures required 
to obtain the desired values of outlier quality metrics. From 
Table 9, we observed that while evaluating the RI for both 
NSL-KDD3 and NSL-KDD4 dataset, our proposed algo-
rithm KAGO achieved an accuracy of around 47.50% and 
40.78% respectively. This elevated accuracy was about 
9% and 1% higher as compared to KNNOD. No change in 
accuracy was observed in case of A1-Yahoo! dataset. The 
reason for obtaining a better accuracy in case of KAGO as 
compared to KNNOD can be attributed to repeated inlier 
pruning based on glos value across point insertions instead 
of filtering outliers based on any predetermined threshold. 
The exactness wrt. both the algorithms have been compro-
mised to a certain extent; however, the usage of KAGO 
has ensured a more efficient and effective outlier detec-
tion scheme compared to KNNOD (Refer Tables 5 and 9) 
∴Tpoint−adaptive < Tnon−adaptive and Opoint−adaptive ≈ Onon−adaptive.

6 � Key analytical points of the KAGO 
algorithm

In this section, we dwell on the probable reasons behind 
certain assumptions made for our proposed algorithm. We 
also present few proofs related to some key possibilities in 
this work. 

1.	 Point (s): In the KAGO algorithm, any grid 
gc [1 ≤ c ≤ pd] is considered as sparse or rela-
tively dense depending on the number of contained 
points within gc which is below or above a threshold 
VolGrid = 2d + 1.

	   Analysis/Reason(s): If the average number of points 
per grid ( |D|∕#Grids ) was taken instead of VolGrid, 
then there exists a possibility that a reasonably filled up 
subspace (grid) might be potentially inducted into COG 
in spite of being an inlier grid. In order to prevent this 
scenario, we incorporated the threshold VolGrid. Any 
d−dimensional grid cell contains 2d corners and a center 
point. As a combination of these points can exert distinct 

(9)Precision(p) =
TP

TP + FP
Recall(r) =

TP

TP + FN

(10)F1 − score =
2pr

p + r
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Fig. 17   Efficiency comparison between KAGO and LOF for NSL-
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influence as kernel centers on any point within gc , we 
assumed VolGrid to be the threshold between a sparse 
and a relatively denser grid. By no means we impose 
the fact that any for gc, |gc| > VolGrid , the grid is an 
absolute dense grid, and hence, we use term “relativly 
dense” wrt. our KAGO algorithm.

2.	 Point (s): Three kernel centers are used for a dense 
grid, while all the data points within any sparse grid are 
involved as kernel centers.

	   Reason(s) For any sparse grid gc [1 ≤ c ≤ pd] , we 
have |gc| ≤ VolGrid . As compared to the size of base 
dataset D wrt. any given insertion, gc << |D| . There-
fore, a selective choice of kernel centers from gc may 
not represent the data distribution within completely. 

Moreover, due to sparse nature of the concerned grid, 
the included points in gc might be spatially dispersed. As 
result, ∀xi ∈ gc [1 ≤ i ≤ r, r ≤ VolGrid] , xi can poten-
tially act as a kernel center having a distinct impact on 
KDE (local density) of any other point within gc . Due to 
these reasons in the KAGO algorithm, each data point 
within a sparse grid is treated as kernel centers.

	   In case of a dense grid ( |gc| > VolGrid ), the points 
within gc are very close to each other. Effectively, a 
similar influence of such close neighboring points on 
KDE of any xi ∈ gc [1 ≤ i ≤ r, r > VolGrid] will lead 
to redundant computation. In order to efficiently com-
pute the KDE ∀xi ∈ gc , we chose to represent the data 
distribution within a dense gc with three kernel centers 
including minimal, maximal and centroid points of the 
grid.

3.	 Point(s): A relatively denser grid with higher number of 
points may belong to the set COG.

	   Analysis/reason(s): The COG is identified based 
on increasing mglos value of the grids. However, 
post sorting of all the non-empty grids, a certain grid 
gc [|gc| > VolGrid] may not obtain a sufficiently higher 
mglos so as to be pruned like an inlier grid. As a result gc 
continues to be a part of COG and produces the potential 
outliers.

4.	 Selected COG always may not extract the top-N global 
outliers post first insertion.

	   Reason(s): This is an exceptional scenario which may 
arise if repeated insertions result in single point filled 
grids. Under such a case, the dense grids will be pruned 
as inlier grids. However, due increase in the number 
of sparse grids, the list of COG may not include such 
potential outlier grids resulting in a fall in top-N global 
outliers initially. On the contrary, if we increase the per-
centage of COG, then unnecessary computations may be 
involved in accessing the points which are not outliers 
possessing a higher glos value.

Lemma 1  5. Let qmax = max{�COG�} = ⌈ #Grids

2
⌉ produced 

from D. Let q ( q < qmax ) be the size of COG prior to any 

Table 6   Key experimental 
results (KAGO vs. LOF)

Dataset #Grid cells #Added points Time KAGO (final 
point) (sec)

Time LOF (all 
points) (sec)

Speedupmax 
(#insertion)

NSL-KDD3 125 5000 0.06034 483.442 8955.80
(4000)

NSL-KDD4 625 5000 0.06064 578.753 9542.97
(5000)

A1-Yahoo! 625 3000 0.021 292.808 13436.49
(3000)

Vowel 27 400 0.00354 0.0778 21.95
(400)
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Fig. 18   Efficiency comparison of KAGO with iLOF, MiLOF and 
DILOF for Vowel dataset

Table 7   Memory usage comparison between KAGO and KNNOD [7]

Dataset KAGO memory 
usage (MB)

KNNOD memory 
usage (MB)

Gain factor

NSL-KDD3 9.88 19.74 2.016
NSL-KDD4 10.42 20.13 1.93
A1-Yahoo! 6.64 15.76 2.37
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insertion, then ∀xi, i = 1, 2, 3,… , k , where D = D + xi , we 
have 0 ≤ |COG| ≤ qmax.

Proof  With every insertion xi , the ′mglos′ value of the 
affected grid gc, [1 ≤ c ≤ pd] gets updated. The new list of 
grids is produced to give a new COG. It is possible that the 
grids in old COG may become sufficiently dense to move out 
of new COG, while a previously inlier grid will not become 
a part of new COG ⟹ |COG| = 0.

If the old COG retains some of its grids post xi ’s inser-
tion, while some grids are removed due to increase in ′mglos′ 
value, then |COG| < q . If no loss in new COG is observed 
due to redundant insertion on same grid (s), |COG| = q,∴0 ≤ 
|COG| ≤ q. However, if previously empty grids are affected 
across insertions then at most all the grids may become non-
empty. In that case, q = qmax∴0 ≤ |COG| ≤ qmax.

Lemma 2  Degree of outlierness ∀p ∈ D ∝ 1∕glos(p).

Proof  From definition of ′glos′ value for any p ∈ D (Sect. 2), 
we have glos(p) = f(z-score(p)) [40]. ∵ z − score(P,Q) =

P−Q

�Q
 

where P is the density of x wrt. any grid gc and Q is the mean 
local density of the included kernel centers within gc , ∴ if 
z − score(P,Q) >> 0 ⟹

P−Q

𝜎Q
>> 0 ⟹ P >> Q 

[�Q ≠ 0]. Therefore, a highly dense point p has higher ′glos′ 
value. A low density point ( P << Q ) has low ′glos′ value and 
hence an higher probability of being an outlier. Effectively, 
grids containing points with lower ′glos′ values are more 
probable to become a part of COG.

7 � Related work

A study regarding incremental outlier detection known as 
iLOF [22] provides an insight about handling high veloc-
ity data streams. A similar work: I-IncLOF [14] considers 
sliding window to designate a set of points as inliers or 
outliers. The concept of KDE is also employed in another 
method involving data streams [24] for detecting local out-
liers. Another work that uses the local KDE [32] provides 
a simple yet efficient technique to find the density based 

outliers. The work proposed by Tang et’al introduces a rela-
tive density-based outlier score (RDOS) in order to measure 
the degree of local outlierness. The distribution of density 
for an object is computed by leveraging the idea of local 
KDE and extended nearest neighbors of the object.

Use of K-nearest neighbor classification is also done 
in [16] for detecting outliers in HTTP traffic data. The 
approach in this work incrementally learns the new traffic 
anomalies with advent of more data samples. An alterna-
tive novel adaptive outlier detection approach known as 
GEM [13] efficiently detects anomalies at a given level of 
significance. Moreover, for detecting online anomalies in 
unmanned vehicles, another research [15] has been carried 
out with encouraging results. We also covered a traditional 
KNN-based anomaly detection approach for detecting outli-
ers in large scale traffic data [7], a method which we chose 
to extend in an adaptive manner. Few prominent distance-
based algorithms were also proposed [17, 25] to extract out-
liers from large datasets and are also scalable over large data 
streams [5].

Among the latest works in outlier detection, a prominent 
survey [35] by Wang et’al extensively covers the evolution 
of relevant algorithms over a period of last two decades. 
Apart from categorizing the various outlier detection tech-
niques based on their scheme of extraction, the work also 
assesses the associated challenges and advantages with these 
algorithms. While emphasizing the density-based outlier 
extraction approach, the survey [35] suggests the possibil-
ity of finding outliers from a lower density region contain-
ing inliers. A simiar survey [38] on anomaly detection by 
Xu et’al also highlighted the advantages and limitations of 
various classes of such algorithms. Distance-based outlier 

Table 8   Measures required for 
outlier analysis metrics

Algorithm KAGO KNNOD

Dataset NSL-KDD3 NSL-KDD4 A1-Yahoo! NSL-KDD3 NSL-KDD4 A1-Yahoo!

TP 4050 3060 351 3479937 5317139 34498971
FP 4465 4443 0 5655738 8055067 0
TN 0 0 0 0 0 0
FN 0 0 0 0 0 0
p 0.475631 0.407837 1.0 0.380917 0.397626 1.0
r 1.0 1.0 1.0 1.0 1.0 1.0

Table 9   Algorithm correctness evaluation

Dataset #Classes KAGO KNNOD

RI F1-score RI F1-score

NSL-KDD3 22 0.47563 0.64464 0.38091 0.55168
NSL-KDD4 22 0.40783 0.57938 0.39762 0.55168
A1-Yahoo! 2 1.0 1.0 1.0 1.0
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detection approaches were said to have issues related to 
parameter sensitivity and performance.

The application of outlier detection has found its usage in 
traffic problems. Anomalies in spatio-temporal traffic flow 
in urban areas [8] have been highlighted. The flow distribu-
tion is considered within a given time duration which ena-
bles construction of the flow distribution probability (FDP). 
The FDP uses both the spatial and the temporal information. 
However, a KNN-based outlier detection scheme is adopted 
involving distance measures.

Challenges: Most of these existing outlier detection tech-
niques either apply a distance-based approach which remains 
a costly option for dynamic environment or involve stream-
ing data with expensive computations. Moreover, a lot of 
these methods also end up detecting only local outliers. Our 
grid-based approach coupled with the usage of KDE enables 
us to provide a global outlier detection algorithm without 
neglecting the regional sub-spaces. This makes our approach 
more robust to extract outliers from sub-spaces with varied 
densities.

8 � Discussion and conclusion

In this work, we proposed an adaptive extension to the 
KNNOD [7] outlier detection algorithm known as KAGO. 
Our proposed approach relies on local density derived 
through KDE instead of any distance measure while deter-
mining the local outlier status of a point. The local outliers 
obtained from different sub-spaces designated through grids 
combine to produce a set of at most top-N global outliers. In 
a dynamic setup with incoming data points, KAGO enables 
an efficient outlier detection by selectively handling the data 
points within the affected grid instead of entire data-space. 
Experimental results on large network datasets and a market 
bidding data showed the greater efficiency of KAGO over 
KNNOD, ∴Tpoint−adaptive < Tnon−adaptive (Refer Sect. 2). We 
also provided a brief description about the approximate cor-
rectness of the identified anomalies across datasets which 
shows that Opoint−adaptive ≈ Onon−adaptive (Refer Sect. 2).

A potential limitation of the proposed approach may 
involve the choice of number of partitions per dimension (p). 
A large value of p would lead to creation of more grid cells 
resulting in complex computation. On the contrary, a lesser 
number of grid cells may result in overlooking of outliers 
from sub-spaces with low densities. Therefore, a trade-off 
exists between the grid size and the accuracy of the proposed 
approach. Our choice of p in the experimental procedure was 
aimed at generating a reasonable number of grid cells for 
computation. The accumulation of grid cells in COG poten-
tially overrides the effect of the size of a cell. We have made 
a conscious effort not to reduce the value of p any further 
while extracting outliers from regions of varied granularity.

Another important factor is the formation of set COG. 
As per KAGO algorithm, half of the non-empty grid cells 
with lesser mglos scores constitute the initial formation of 
COG. With repeated insertions, the size of COG may reduce 
significantly. The extent of reduction in the size of COG may 
be influenced by the initial choice of the number of grid cells 
within it. This may have an impact on the overall extrac-
tion of outliers from the entire data space. We additionally 
observed that upon insertion of new data points, there exists 
a possibility of dense grid cells being filled up. In that case, 
the sparse regions of the data space may retain similar out-
lier configuration across insertions. The scheme followed by 
the KAGO algorithm requires computation of COG for find-
ing such outliers from sparse regions. Although the number 
of such grid cells within the COG may be relatively less, 
this may involve redundant computation in extracting the 
desired outliers.

As a part of our future work, we intend to compare our 
method with other state of the art outlier detection algo-
rithms. Also, it will be interesting to observe the influence or 
other kernels apart from the Gaussian kernel on the overall 
outliers extraction process.
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