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Abstract
Railroad track health monitoring is a challenging yet important task as it affects the safety of railroad systems. Railroad 
track extraction presents an immediate advantage during railroad inspections in an efficient and cost-effective manner. At 
present, human inspectors, inspection trains, and rail-mounted vehicles equipped with cameras are prevalent image acqui-
sition systems(IAS) in the track extraction module. However, these IAS face various challenges such as high operability 
cost, railroad closed for normal traffic, and inaccessibility to certain geographical locations. In such scenarios, drones act 
as effective IAS. Therefore, this paper presents a novel and adaptive railroad track extraction framework for drone images 
(DI) captured under uneven illumination, at different drone flight heights, with varying rail line orientations, and in complex 
railroad environments. We termed this framework as DroneRTEF. This work primarily focuses on two aspects of drone-based 
railroad track images: image enhancement and image analysis. With regard to the first aspect, a global image enhancement 
algorithm named adaptive colour space-based masking (ACSM) is developed to enhance railroad track images and identify 
rail lines. The rail lines and background can be highlighted and homogenized, respectively, in DI captured under various 
sunlight intensity using ACSM due to its illuminance independence. With regard to the second aspect, the Hough param-
eter space analysis-based novel Hough transform-ground sample distance(HT-GSD) method is presented in this paper. The 
proposed HT-GSD method emphasizes on rail line detections at varying line orientations and different flight heights. The 
track extraction is then performed by a coordinate transformation technique. The approach has been successfully tested and 
validated on various DI. The efficacy of our framework for rail line detection is identified by comparing it with other line 
detection model. Performances of these methods are tested using metrics such as precision, recall and accuracies of the 
detections. Results obtained show that our method is superior to another model. Therefore, DroneRTEF is an efficient and 
feasible method for railroad track extraction in DI.
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1  Introduction

Railroad tracks are a prime focus in the railroad environment 
as they largely benefit the community through the provi-
sion of passenger comfort, effective railroad operations, and 

train speed modulations. A railroad track comprises of two 
rail lines, the track space between these lines and the lateral 
area (right and left side of the rail lines) comprising of the 
ballast as shown in Fig. 1a. Railroad track monitoring is 
essential to ensure the effective maintenance of operational 
rail lines in the safety–critical railroad infrastructure. Rail-
road track extraction is an important pre-requisite step in 
the track monitoring module. Track extraction is a crucial 
step as it helps to rapidly segment the railroad track (target 
area). This extraction of track area facilitates tasks such as 
inspection and detection of rail surface defects [1, 7], auto-
mated fastener classification and defect detection [4], train 
driver assistance and obstacle identification [2, 12] provi-
sion of autonomous train control systems [3], computation 
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Fig. 1   a Study Image 1  b Study Image 2 c Study Image 3 d Study Image 4 with their corresponding image histogram in RGB
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of asset-sighting distance [13] and vegetation condition 
monitoring [14] in a convenient, and cost-effective manner.

There has been an advent of various railroad track IAS in 
conjunction with research on models using image process-
ing and computer vision techniques for track detection and 
extraction. Dynamic Programming is used for the extraction 
of railroad track space through video sequences captured by 
a camera placed in front of a train engine [2]. A combination 
of image processing algorithms and line segment detector 
(LSD) is used for track detection in images captured through 
cameras hung below a train coach [4]. The camera is fixed 
behind the windshield and the track extraction is carried out 
using techniques such as priori shape model and gradient 
information [5, 6]. The semantic segmentation method is 
computed in the visual-based track inspection (VITS) col-
lected images in order to extract rail tracks and locate ROIs 
using U-Net [7]. In fact, there are several other methods 
which include HOG feature extraction for track detection 
in images captured through a camera placed in the vehicle 
[8], histogram-based track extraction (HBTE) where IAS 
is under a test train [9], geometry constraints-based track 
extraction in images captured from the camera installed in 
the front of a train [10], track extraction based on projection 
profile (TEBP) in rail track images captured by a camera 
fixed on a train [11]. Also, the target tracks have been seg-
mented by feature analysis in the hue channel [1]. However, 
this method uses a portable track defect vision inspection 
prototype for image acquisition. Angle alignment measure 
is computed for real-time railroad extraction in images cap-
tured using a mobile phone [12]. Rail track detection is per-
formed in image data captured from a rail-mounted vehicle 
camera using cubic Bezier curves [13]. HOG and mean-shift 
clustering are used for the detection of rails in images cap-
tured from DSLR camera placed within a trolley[14].

However, these aforementioned IAS have varying inevi-
table drawbacks which include high cost, limited detection 
range, railroad becomes closed to normal train traffic dur-
ing operations, and inaccessibility to remote geographical 
locations. Therefore, researchers are exploring drone-based 
image acquisition that may come to rescue during such sce-
narios. Usage of drones or unmanned vehicles for railroad 
infrastructure monitoring is the latest trend and currently, the 
camera sensors are the richest data sources[15–17]. Drones 
are lightweight UAVs (Unmanned Aerial Vehicles) which 
provide various advantages such as cost-effectiveness, effi-
cient image acquisition while capturing track images without 
blocking the railroad traffic, ease of control, and flexibility 
while aiming areas inaccessible to human inspectors, inspec-
tion trains or rail-mounted vehicles.

Although the drone-based image acquisition module 
offers various advantages, still research on drone-based rail-
road track extraction faces the following challenges:

1.	 Due to different sunlight conditions (sunny, partially 
sunny/cloudy), there might be illumination inconsist-
ency. Also, partial occlusion due to infrastructures 
(such as overhead catenaries along with respective sup-
port structures), rail reflectance properties, shaking of 
the drone along with other environmental aspects leads 
to uneven and low contrast and brightness of the cap-
tured DI. This necessitates an adaptive method for track 
extraction in uneven illumination.

2.	 Rail line positions vary in drone images. The angle of 
the HD camera installed on the drone is sensitive to vari-
ous environmental factors (which includes turbulence 
and wind) as well as operators. Although drone can bal-
ance itself through GPS flight mode still positions of 
rail lines are extremely variable in drone images. Hence, 
these variances in the rail line positions lead to complex 
track extraction scenarios.

3.	 Flying drones at various flight heights may lead to cap-
turing different views of the same area/different areas. 
Also, the presence of poles lying beside rail lines, oil 
lines between rail lines, track area under grass, train 
running over railroad tracks are some complex rail-
road environments in the captured DI which make track 
extraction a difficult task.

Due to these challenges, it is difficult to exercise the 
above discussed various IAS-based track detection and 
extraction models on drone railroad track images. This acts 
as the motivation to overcome these shortcomings and pro-
pose a novel railroad track extraction framework that can 
locate the rail lines and extract the railroad track from drone 
images acquired in uneven sunlight intensity, at varying 
flight heights, and with different rail line positions.

1.1 � Contributions

The main contributions of the proposed work are summa-
rized as follows:

1.	 We propose a novel and adaptive railroad track extrac-
tion method for drone images termed as DroneRTEF. 
This framework is based on computing colour feature-
based adaptive image enhancement of DI to locate rail 
lines and Hough parameter space-based novel image 
analysis method for track extraction. To the best of 
our knowledge, this is the first attempt to examine the 
hybrid approach of the colour feature and Hough param-
eter space analysis for railroad track extraction in drone 
images captured at varying flight heights, with different 
rail lines orientations, and in uneven illumination.

2.	 Due to the unavailability of a standard railroad track 
dataset comprising of drone images captured in diverse 
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railroad environments, the image acquisition is also per-
formed to capture datasets of track DI for the research 
work.

3.	 The performance of the proposed rail line detection 
module is evaluated and validated with different experi-
ments upon 3 different metrics and is compared with 
another rail line detection algorithm.

The organization of the article is as follows: In Sect. 2, 
algorithms related to railroad track detection and extraction 
are discussed. Image acquisition and dataset description are 
presented in Sect. 3. The theoretical background is presented 
in Sect. 4. The proposed novel adaptive railroad track extrac-
tion framework is discussed in Sect. 5. In Sect. 6, we pre-
sent experimental results and discussions. In this section, 
we have also discussed the evaluation and validation of the 
proposed method. Finally, this paper is concluded along with 
future work in Sect. 7.

2 � Related work

A typical approach for railroad track extraction can be car-
ried out using image processing algorithms [18]. These algo-
rithms can be generalized into two steps: image enhance-
ment and image analysis. The image enhancement method is 
used to pre-process the track drone image and then segment 
it in order to highlight the rail line feature information. This 
is advantageous as it helps to eliminate or weaken the inter-
ference of background information and identify rail lines. 
The image analysis step is performed by extracting the fea-
tures (shape features/geometric features) of the identified rail 
lines. Several studies have been previously reported in the 
literature on railroad track image enhancement and analysis 
for track detection and subsequent extraction in DI.

The local weber-like contrast(LWLC) algorithm has 
been used for the enhancement of rail images [19]. How-
ever, this method is performed on a local window after rail 
track extraction step. Therefore, it is unable to give adequate 
insight into if LWLC is an effective global image enhance-
ment step for track extraction in high-altitude drone images. 
Colour pattern template matching is computed for constrain-
ing rail search locations by detecting railroad profile using 
ROI technique [20]. Although it has been noted that these 
results are only possible if the template of railroad of inter-
est is used. Histogram equalization (HE) is also a popular 
method for image enhancement in global lighting conditions 
[19, 20, 21]. However, it poses disadvantages such as loss 
of detail information from the image and noise amplifica-
tion [19]. Mask bank technique is found advantageous for 
locating railroad tracks in aerial images [22]. However, this 
mask bank contains masks that run only from top to bot-
tom. Also, this method works in two phases: training and 

detection where further testing is required to prove function-
ality. Nonetheless, masks prove to be versatile and provide 
a quick way to access information. Also, colour is a distinc-
tive and powerful feature for identification in the railroad 
environment[1, 23, 24]. It has been observed that colour 
spaces in conjunction with masks are quite helpful for rail 
line identification in DI while working in complex railroad 
environments [22, 25]. Through this critical analysis, it is 
observed that colour space-based masking seems an effec-
tive image enhancement method for the segmentation and 
identification of rail lines in railroad track DI captured in 
uneven illumination.

In earlier studies, a range of image processing techniques 
has been developed for image analysis of rail lines in DI. 
Linear regression model is used for detecting valid rail lines 
[26]. However, the regression method is less robust to noisy 
data [27]. Several other rail line detection algorithms have 
also been discussed such as correlation matching, Touzi 
filters, CNN-based semantic segmentation [28]. All these 
methods hint at using a prior infrastructure ground coverage 
mask for improved performance [28]. Canny detector and 
k-NN Mean Euclidean distances classifier have also been 
used for the detection of rail tracks [29]. In this work, k-NN 
classifier faces challenges as it is slow, consumes a lot of 
memory, and requires rail edges for training. Deep drone 
vision uses 2-step CNN for computing rail track detection 
[30]. However, this method is computationally intensive as 
it requires training and the dataset faces limitations due to 
its inability to accommodate varying degrees of illumina-
tions at different times of the day. Hough transform (HT) 
is based on the duality of line and can be used for railroad 
track extraction [19, 31]. Hough transform and cumulative 
grey value of each pixel column have been implemented 
for track extraction in drone images captured only at 30 m 
[19]. Several variants of this transform have already been 
discussed in the literature [17, 31, 32]. Also, Probabilistic 
Hough transform (PHT) [31] is one of the variants. However, 
PHT cannot be used instead of HT pertaining to the compu-
tational complexity of PHT [33]. Hough transform (an under 
constraint line fitting algorithm) serves advantageous over 
other line detection algorithms such as RANSAC (constraint 
bound) [6, 17] and Least Squares Fit (over constraint). Also, 
the Hough transform model can handle a higher percent-
age of outlier points and is best suited for highly noisy data 
[34]. Therefore, inspired by these successes, HT is a suitable 
solution for geometrical representation of Hough parameter 
space of rail lines oriented at varying angles. Nonetheless, 
the detection of rail lines in drone images captured at dif-
ferent altitudes is another essential step for track extraction 
at different flight heights. In order to fulfil this aim, ground 
sample distance (GSD) method [35]is useful as changing the 
altitude of the drone alters the GSD of the image which in 
turn helps to detect valid rail lines (rail line pairs) at different 
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flight heights and subsequently extract the railroad track. 
Alongside, the other advantages of the method include: 
global image transformation of drone images which provides 
adequate insight into track extraction, template of the rail-
road of interest is not required, ground truth is not required 
at any stage of the framework, training is not required which 
makes the algorithm less computationally intensive.

Therefore, our aim is railroad track extraction in DI cap-
tured with uneven illumination, varying rail line orienta-
tions, and at different flight heights. To achieve this aim, 
we propose the novel DroneRTEF framework in this paper 
as follows:

1.	 Present a global image enhancement algorithm termed 
as adaptive colour space-based masking (ACSM). This 
algorithm is adaptive as it computes colour space to 
enhance DI captured under uneven natural light and then 
creates track mask to segment these images and identify 
rail lines in them.

2.	 Propose Hough parameter space analysis-based novel 
Hough transform-ground sample distance(HT-GSD) 
algorithm for rail line detection and track extraction. In 
this image analysis method, we first detect valid identi-
fied rail lines at varying orientations and flight heights, 
which then augments segmenting the required railroad 
track area.

3 � Image acquisition and dataset description

3.1 � Study area and data sets used

In this work, the image acquisition has been carried out 
using DJI phantom quadcopter. This drone constitutes a 
high definition 4 K resolution RGB colour camera, with an 
integrated GPS unit in order to capture geotagged stand-
ardized RGB (sRGB) images each of size 3000 × 4000 
( Ih × Iw ) pixels. The acquired track datasets have about 415 
track DI, captured during the course of various flights taken 
over railroad tracks at different track locations near Roorkee, 

Haridwar district, India. These DI are field acquired frame 
by frame at varying flight heights and with different rail line 
orientations, different locations, different time durations and 
have managed to capture gamut of variations in complex 
railroad environments under different sunlight illumination.

Some of these railroad track images have been selected 
as study images as shown in Fig. 1. These images are taken 
from the field captured track datasets for evaluating the pro-
posed framework. The details of these study images, as men-
tioned in Table 1, include their data ID, date of acquisition 
(DOA), flight height ( Fh ) (in metres (m)), central latitude 
and longitude, GSD, illumination conditions and the total 
number of images in the dataset from which the correspond-
ing study image has been selected. The railroad environ-
ment scenarios in which these study images are captured are 
described as follows:

Scenario 1: Study image 1(D1) as shown in Fig. 1a is 
captured at 4:48p.m. at a flight height of 22 m on a sunny 
day with little occlusion and constitutes poles beside tracks 
and oil lines.

Scenario 2: Study image 2 (D2) shown in Fig. 1b is cap-
tured on a bright sunny day at 6:04 p.m. at 25 m flight height 
and showcases illumination irregularity with partial occlu-
sion on the track. The other components constitute train 
running over a railroad track, catenary wires, dense bushes 
along the track.

Scenario 3: Study image 3(D3) in Fig. 1c is also cap-
tured at 2:50 p.m. at 25 m. Even though images both in 
Figs. 1b and c are captured at the same height still Fig. 1c 
image showcases a low brightness (dark) environment. It 
also comprises of assets along the track and overhanging 
catenary wires.

Scenario 4: Study image 4(D4) in Fig. 1d is captured at 
11:53 a.m. at 11 m on a little brighter day and showcases 
varying rail line orientations along with track areas covered 
with vegetation and shadowed by catenary wires.

Table 1   Dataset description SN ID F
h
(m) DOA Central Lat/Long GSD (cm) Illumination Scenario No. of 

images in 
dataset

(1) D1 22 m 10–05-2018 29°51′0.2884″N/
77°52′52.7952″E

0.89 Sunny, Little occlusion 56

(2) D2 25 m 30–08-2017 29°49′38.5572″N/
77°55′31.3284″E

1.06 Quite Sunny,
Partially occluded

201

(3) D3 25 m 07–07-2017 29°51′13.4073″N/
77°52′11.9761″E

1.06 Dark 63

(4) D4 11 m 25–04-2017 29°46′3.3492″N/
78°0′35.0172E

0.47 Little bright 96
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3.2 � Challenges faced while processing DI

As discussed in Introduction (Sect. 1), DI show variations 
in terms of railroad tracks captured under different sunlight 
intensity, with varying rail line orientations, at different 
flight heights and in complex railroad environment scenar-
ios. These variations make it challenging to process DI for 
rail line segmentation and identification. In such scenarios, 
the following observations have been made:

1.	 Image characteristics vary under challenging railroad 
environment imaging conditions. Each of the study 
image(D1, D2, D3, D4)plots in Figs. 1a–d showcase the 
pixel intensity count for red, green, and blue channels of 
the corresponding DI in the form of red, green, and blue 
histograms, respectively. It can be observed that plots of 
different DI exhibit different histogram behaviours when 
viewed in RGB colour space.

2.	 Rail lines are a constant feature in all the DI. However, 
it has been inferred from the histogram analysis that no 
uniform histogram pattern indicating the presence of rail 
lines has been observed among the colour channel(s) of 
different images. This is because the rail line area is very 
small and the external effects (such as illumination) are 
quite inconsistent. Therefore, it is difficult to accurately 
segment and identify the rail lines from the background 
using a histogram-based thresholding method that may 
be useful for the creation of a railroad track mask com-
prising of only the rail lines.

3.	 The aim is to segment and identify only rail lines in 
DI. For this purpose, various thresholding algorithms 
like Otsu’s method[36], entropy-based thresholding [37] 
have also been attempted. However, it has been observed 
that it is difficult to apply a common thresholding algo-
rithm for all images in order to obtain a track mask.

Therefore, this makes it a challenging task to devise an 
algorithm to create a track mask in order to segment and 
identify the rail lines in DI captured under varied image 
acquisition scenarios in the railroad environments.

4 � Theoretical background

In view of the discussion in Sect. 2, it is essential to address 
non-uniform illumination, rail line orientations, and change 
in flight heights in order to detect rail lines and extract rail-
road tracks from DI. As discussed in Sect. 3, there is no 
uniform histogram pattern in order to threshold only the rail 
lines(rail line area) in images and even other thresholding 
algorithms do not hold good results. Therefore, colour space 
transformations are essential for track mask creation to iden-
tify only the rail lines in DI with uneven illumination. Also, 

the analysis of the GSD is essential as it facilitates track 
extraction at various flight heights and rail line orientations. 
To fulfil the aforementioned aims, we have critically ana-
lysed the following parameters.

4.1 � Colour space transformations

Colour is a fundamental descriptive property of objects in 
various object identification and segmentation frameworks 
[38–40]. However, perception subjectivity and extensive 
need of the application draw an uncertainty over which col-
our space fits a certain application during the segmentation 
process. In our work, no prior preference has been given 
to any specific colour models (colour spaces). The human 
eye is considered more sensitive to the colour changes than 
the grey-scale variations. Hence, here, we have concen-
trated on the following colour models: RGB, HSV, L*a*b*, 
YCbCr [40]. The colour space transformation functions are 
described in Table 2.

RGB colour model is widely used for the storage of digi-
tal data in railways [44]. The colour space is additive in 
nature and is defined by the sum combination of three pri-
mary colours which are represented by red (R), green (G), 
blue (B) chromaticities. The aim is to obtain a railroad track 
mask which comprises of only the rail lines while the rest 
of the background (comprising of the vegetation, sleepers, 
ballast, poles lying beside the rail lines) in DI is removed. 
However, the RGB colour space holds disadvantages (1) 
It is device-dependent (2) It is associated with an inher-
ent problem of mixing the luminance and the chrominance 
data(present in all three channels) [41, 42].

Hue, saturation and value (HSV) are a cylindrical trans-
formation [23] where H,S,V components denote dominant 
wavelength, purity of the colour and intensity value, respec-
tively. The H and S are invariant to shading and shadows 
[40]. Also, hue(H) component is found to be independent 
of illumination conditions[1] and specularities [40]. The 
equations for RGB to HSV space transformation function 
T are stated in Table 2. Even though the HSV colour space 
is device-dependent but it presents with an advantage that 
the colour information is intact only in one channel (H). It 
also presents the advantage of the separation of luminance 
from chrominance information[42]. Also, the colour space 
provides an advantage of easily selecting the desired hue 
which can be slightly modified by adjusting the saturation 
and value [42, 45]. HSV histograms for images are as shown 
in Appendix A.

Luminance-based L*a*b* (CIELAB or Lab) colour space 
stems from the CIE colour model and is considered as per-
ceptually uniform colour space [24, 40]. The L*a*b* colour 
space is device independent, and the colour information is 
encoded in only two colour channels (a* and b*). The RGB 
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to L*a*b* space conversion is carried out using the respec-
tive transformation function T stated in Table 2.

YCbCr colour space is considered perceptually uniform 
with an approximation [40]. The YCbCr colour space is 
device-dependent and the colour information is encoded in 
both Cb and Cr (only two colour channels). Additionally, it 
is advantageous as it separates the RGB into chrominance 
and luminance information[42]. The RGB to YCbCr conver-
sion formulae T is stated in Table 2.

4.2 � Edge characterization and geometrical 
representation

The prerequisite to rail line detection process is creation of 
an edge map (discussed in Sect. 5.2). This edge map com-
prises the detected edges from the railroad track mask by 
using an edge detection algorithm. Such an edge detection 
algorithm should be able to provide localization and detect 
right number of rail line edge responses. Localization cor-
responds to detection of rail line edges at the right location.

The accurate shape and geometrical representation of 
edge map in Hough parameter space are necessary for rail 
line detection as many objects in the railroad environment 

are characterized by straight lines. It is essential to determine 
which edge belongs to which line and record all possible 
lines upon which edge points (of the edge map) lie (dis-
cussed in Sect. 5.3).

4.3 � GSD calculation

GSD is defined as the distance between the pixel centres of the 
camera sensor as measured on the ground and indicates how 
big each pixel is on the ground. As the flight height changes, 
the corresponding pixel size changes (GSD (in cm)), as shown 
in Table 1. This change in the pixel size leads to a subsequent 
increase or decrease in the number of pixels between two valid 
rail lines of the rail line pair. Therefore, the calculated number 
of pixels is essential during rail line pair selection (discussed in 
Sect. 5.3.3). Consequently, GSD helps in railroad track extrac-
tion from DI at any given fight height Fh and makes the algo-
rithm adaptive. The calculated distance,GSD , is a function of 
the flight height, sensor dimensions, and image measurements 
(in pixels). For any pixel, the GSD mapping on the ground is 
represented by the pair GSD length ( GSDh ) and GSD width 
( GSDw ), which is computed as in (1), (2) and (3) [35]:

Table 2   Colour space 
transformations

Colour space Conversion formulae

Standardized or Normalized RGB(rgb/sRGB) [41]
r =

R

R + G + B

g =
G

R + G + B

b =
B

R + G + B

r + g + b = 1

HSV [42] V ← max(R,G,B)

S ←

⎧⎪⎨⎪⎩

V −min(R,G,B)

V

0

⎧⎪⎨⎪⎩

ifV ≠ 0

otherwise

⎫⎪⎬⎪⎭

H ←

⎧⎪⎨⎪⎩

60(G − B)∕(V −min(R,G,B)){ifV = R}

120 + 60(B − R)∕(V −min(R,G,B)){ifV = G}

240 + 60(R − G)∕(V −min(R,G,B)){ifV = B}

CIE L*a*b* [42]

L ∗=

⎧⎪⎪⎨⎪⎪⎩

116(
Y

Yn
)1∕3 − 16

�
if

Y

Yn
> 0.008856

�

903.3(
Y

Yn
) − 16

�
if

Y

Yn
<= 0.008856

�

a ∗= 500 ∗ (f (X∕Xn
) − f (Y∕Yn

))

b ∗= 200 ∗ (f (Y∕Yn
) − f (Z∕Zn

))

YCbCr [41, 43] ⎡⎢⎢⎢⎣

Y

Cb

Cr

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

16

128

128

⎤⎥⎥⎥⎦
+

⎡⎢⎢⎢⎣

0.24 0.50 0.098

−0.14 - 0.291 0.439

0.43 - 0.368 − 0.071

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

R

G

B

⎤⎥⎥⎥⎦
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Here, Fh denotes the flight height above ground which 
is evaluated from Table 1, Flen represents the focal length 
of the camera sensor, Sw and Sh are the sensor width and 
height, respectively,Ih and Iw are the image height and width, 
respectively (in pixels).

5 � The proposed algorithm

The primary objective of the proposed algorithm Dron-
eRTEF is to develop a framework for railroad track extrac-
tion from DI captured under uneven sunlight intensity, 
with different rail line orientations and at varying flight 
heights in the railroad environment. This aim is facilitated 
by the capability of the algorithm to characterize the col-
our, shape, and geometric features of rail lines for railroad 
track extraction. The proposed DroneRTEF framework is 
divided into two stages:

1.	 ACSM algorithm is developed to identify rail lines in 
DI captured in uneven illumination. In order to achieve 
this aim, an adequate colour space is selected and then 
thresholding is performed to create a railroad track 
mask. This mask segments DI to identify rail lines in 
them.

2.	 HT-GSD algorithm is a novel method for Hough param-
eter space-based characterization of shape and geometric 
features of rail lines. This method uses Hough param-

(1)GSDh =
Fh × Sh

Flen × Ih

(2)GSDw =
Fh × Sw

Flen × Iw

(3)GSD = GSDh × GSDw

eters � and � , to detect the identified rail lines and then 
perform rail line pair selection. Coordinate transforma-
tion is then computed for extraction of the railroad track 
from DI captured at different orientations and flight 
heights.

The complete flow diagram of the proposed algorithm is 
as shown in Fig. 2, and the steps are discussed in Sect. 5.1, 
5.2 and 5.3.

5.1 � Adaptive Colour Space‑based masking (ACSM)

In order to create a railroad track mask to identify rail 
lines in DI, we propose a global image enhancement 
algorithm adaptive colour space-based masking (ACSM) 
as described in Algorithm 1 in Fig. 3. As mentioned in 
Sect. 4.1, four colour spaces: RGB, HSV, L*a*b*, YCbCr 
have been proposed for railroad track mask creation in 
DI. The visual analysis of track masks is discussed in 
Sect. 5.1.1.

The track mask creation method is devised to perform 
rail line identification during uneven sunlight illumination 
in DI. This work is challenging as:

1.	 Rail lines occupy small areas and are difficult to locate 
uniformly in DI.

2.	 A greater variation in the range of the grey values has 
been observed in the global scope. This may be due to 
the reflectance properties of the railroad surfaces and 
uneven illumination.

The ACSM method is devised to overcome these chal-
lenges and create a track mask. Each step is given in Algo-
rithm 1 and is performed as follows:

Drone Data Acquisition

Colour Space-based Railroad 
Track Mask Generation 

Edge Map Creation

Candidate Rail Line 
Detection

Hough Parameter Space 
Evaluation

GSD based Line Pair 
Selection

Coordinate System 
Transformation based 

Railroad Track Extraction

HT-GSD

ACSM

Fig. 2   DroneRTEF framework Fig. 3   ACSM algorithm
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1.	 Global Image transformation: In this method, we per-
form evaluations of different colour spaces based on 
their discriminative power and their ability to provide 
photometric invariance in DI. This technique applies dif-
ferent colour space transformations T(in Sect. 4.1) using 
Eqs. 4,5 and 6, with the aim to enhance DI Di.

	   where Oi is transformed(enhanced) colour output 
drone image, Di is colour input drone image,oj and lj 
denote colour components of the transformed colour 
output image Oi(x, y) and colour input image Di(x, y) at 
any point (x,y), tj implies colour mapping function, n 
equals number of colour components and n functions, 
tj , combine to implement one transformation function,T .

2.	 Track Mask creation: In this method, the transformed 
image Oi is now segmented to identify rail lines using 
Eq. (7). The colour threshold-based segmentation is per-
formed in each of the colour spaces on corresponding 
oj components in order to obtain mask Mi . The thresh-
olds used in equation (7) are determined through critical 
analysis of different values for the lower and upper limit 
in the range of intensity values of colour channels. Thus, 
in this mask only the rail lines may be visible and the 
rest of the background in DI(such as catenaries, assets 

(4)oj = tj(l1, l2, l3,… , ln) j = 1, 2, 3,… n

(5)T = {t1, t2, t3 … tn}

(6)Oi = T[Di]

along the track, track signs, vegetation along-track, bal-
last, sleepers, pole lines) may be eliminated.

	   where Mi denotes track mask,Oi|thresh denotes 
thresholded Oi image ( oj components) in the range 
∈ [low_ lim itcolor_space, upper_ lim itcolor_space]   , 
[low_limitcolor_space, upper_limitcolor_space] denotes the 
range of intensity values of colour channels for enhanced 
rail lines in respective colour spaces.

Therefore, the ability of ACSM method to identify rail 
lines in DI captured in uneven sunlight intensity makes it 
adaptive.

5.1.1 � Visual Analysis

The main aim of the visual analysis is to choose a colour 
space in which the respective colour space transformation 
is carried out on the track DI and the obtained railroad 
track mask consists of only rail lines. This way the railroad 
mask is able to eliminate uneven illumination, and back-
ground in DI. Here, track masks for D2 and D3 images in 
all four colour spaces are shown in Fig. 4.

Upon applying the thresholds, the RGB mask is created. 
It is observed in Fig. 4a that even though the rail lines 
in the RGB mask of D2 are prominent along with clutter 
(ballast between the rail lines and along the left and right 
rail lines), the rail lines in the mask for D3 are invisible. 
Hence, it is not feasible to consider an RGB colour space 
mask for further creation of edge map.

(7)Mi = Oi|thresh

Fig. 4   Railroad Track masks for images D2 (above) and D3 (below ) in a RGB Colour Space b HSV Colour Space c L*a*b* Colour Space d 
YCbCr Colour Space
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Upon creation of HSV mask for D2, the rail lines can be 
definitively traced in the mask as shown in Fig. 4b. Also, 
the HSV mask for D3 is present with quite distinct rail 
lines and negligent background clutter (ballast, pole lines, 
etc.) as seen in Fig. 4b. Hence, the HSV colour space has 
been considered for further evaluation.

Upon computation of the L*a*b* mask in Fig. 4c, we 
observe that the ballast surrounding the rail lines in D2 
mask is also distinctively visible. However, the rail lines in 
D3 mask are still not visible in Fig. 4c. Hence, we discard 
this colour space due to inability to obtain proper railroad 
track mask comprising of only rail lines.

The YCbCr mask for D2 in Fig. 4d shows the rail lines 
distinctly. However, the D3 mask has white blobs and huge 
clutter as the railroad background, as shown in Fig. 4d. 
Hence, YCbCr colour space mask is not examined further.

Therefore, HSV colour space is selected for track 
mask creation. The masks for study images are shown in 
Figs. 6b,7b, 8b, and 9b and they act as an input for edge 
map generation.

5.2 � Edge Map Generation

The objective of this step is to generate an edge map from 
the railroad track mask (obtained in Sect. 5.1). For this 
purpose, a suitable edge detection algorithm needs to be 
selected and we have examined the following edge detec-
tion techniques: Prewitt, Sobel, Roberts, LOG and Canny 
[10, 23]. Upon evaluation of the comparison results, Canny 
is selected as the suitable edge detector [17]for rail lines.

The Canny edge detector poses the following advantages:

1.	 The Canny edge detector[46] uses hysteresis threshold-
ing in which the connectivity characteristic is taken into 
consideration.

2.	 Also, in this detector, the computation of the first deriva-
tive (gradient) of Gaussian very closely approximates 
the operator, which causes optimization of the product 
of localization and signal-to-noise ratio.

3.	 Another advantage of Canny is that it uses the direction 
of the gradient to detect the rail edges.

The smoothing of the masked drone image is performed 
using the Gaussian kernel spread � . The smoothened image 
is filtered with the Sobel kernel of size,Sobsiz , to compute the 
image gradients in the horizontal ( Mi|x)and vertical ( Mi|y ) 
direction. The gradient magnitude ( Mi|canny ) and gradient 
direction ( � ) are computed as in Eqs. (8) and (9):

(8)Mi|canny =
√

M2
i|x+M

2
i|y

Then, hysteresis thresholding is applied on all the edges, 
with threshold values minval and maxval, in order to remove 
small noise pixels(edge detections in the mask apart from 
rail line edges) and obtain localized rail line edge detections. 
These detections have been vividly outlined for all the study 
images using the Canny operator as shown in Figs. 6c, 7c,8c, 
and 9c.

5.3 � Geometrical Representation of Hough 
Parameter Space

The goal of this step is to take the generated edge map 
(computed in Sect. 5.2) as input, perform efficient Hough 
parameter space evaluation in order to obtain the geometri-
cal representation of the rail lines and detect these lines at 
varying orientations. Thereafter, GSD-based line pair selec-
tion facilitates detection of rail line pairs at different flight 
heights. Railroad track extraction is then performed through 
coordinate transformation. This algorithm is termed as HT-
GSD method and is described as Algorithm 2 in Fig. 5

5.3.1 � Candidate rail line detection

In order to detect the rail lines, firstly their shape represen-
tation is obtained. To accomplish this task, we compute 
Hough transform [47] on the railroad track edge map for the 
detection of rail lines as straight lines that run through DI. 
A rail line is represented as a straight line in the Cartesian 
coordinate as in Eq. (10):

where (x,y) is a point on the line, g is gradient and c is 
y-intercept. A rail line is represented in the Hough trans-
form in the polar coordinate system, as a function of two 
parameters � and � , as depicted in Eq. (11):

where, � = perpendicular distance from the coordinate ori-
gin((0,0), top-left corner in the image) to the line.� is the 
angle formed by � . This geometrical representation of Hough 
parameter space in the DI is as shown in Figs. 6a,7a,8a and 
9a. The Hough transform for the study images is computed 
in Figs. 6d,7d,8d, and 9d.

In order to hold the values of the two parameters, a rep-
resentation of the Hough parameter space is created in the 
form of a 2-D array, Acc(�, �) . This array will store the (�, �) 
value pairs of the detected lines. The values of � are a func-
tion of distance resolution,�acc(in pixels), and values of � 
are governed by angle resolution �acc(in radians). Here, �acc 

(9)� = tan−1
(
Mi|y
Mi|x

)

(10)y = gx + c

(11)� = x cos � + y sin �
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and �acc denote the minimum difference between any two � 
and � values, respectively. The generated rail lines cover a 
range of angles � ∈[0,180], and the angle is then measured in 
radians. If the angle resolution ( �acc ) is set to a larger value 
lesser (�, �) pairs are recorded, however, this may cause the 
orientation precision of the rail lines to decrease. All drone 
images are of the same size but the length of the rail lines 
may differ as they are orientated at different angles (as seen 
in Fig. 1). The parameter values ( �t, �t ) of Hough space with 
the number of votes equivalent or greater than the thresh-
old Hthe , which indicates minimum line length or the mini-
mum number of intersections to detect a line, are recorded 
in houg(�t,�t) for the corresponding lines to be selected as 
rail line candidates.

5.3.2 � Parameter space evaluation

The candidate rail lines in DI (computed in Sect. 5.3.1) are 
aligned in horizontal or vertical direction at different orienta-
tions. The analysis of this rail line alignment (direction) is 
important so that all rail lines located horizontally or verti-
cally at varying orientations are detected. In the geometry of 
rail lines, the Hough parameters � and � play a fundamental 
role. Therefore, it is essential to extract parameter space values 
�i and �i from houg(�t,�t) , which upon Cartesian Coordinate 
transformation produce lines that map approximately to the rail 
line locations in the right direction and at proper orientations 
in DI. It is observed that �first , the first � value of houg(�t,�t) 
is indicative of the direction of the rail lines in the DI and 
is examined to determine if the rail lines are horizontally or 
vertically oriented. For this, the following relationships are 
evaluated:

where, �t = value of � in every iteration of the Hough param-
eter space houg(�t,�t) , �t = value of � corresponding to �t , 
�i = value of �t greater or lesser than zero based on condi-
tions evaluated in Eq. (12) and �i = value of � corresponding 
to �i . These parameter values (�i,�i) are recorded and updated 
in another array rhoLines(�i,�i) . The conditions stated in 
Eq. (12) are evaluated in both the cases, i.e. if the orienta-
tion of all the rail lines is the same or if the orientation of 
rail lines differ.

After examination of the aforementioned conditions, 
now rhoLines(�i,�i) comprises of Hough parameter values, 
�i and �i corresponding to the rail lines which would match 
to the rail line orientations and directions at their respective 
locations in DI. It is now important to determine another 

(12)rhoLines(𝜌i,𝜃i) =

⎧
⎪⎪⎨⎪⎪⎩

𝜌i = 𝜌t If 𝜌first > 0, 𝜌t > 0 or

𝜃i = 𝜃t 𝜌first < 0, 𝜌t < 0

t = t + 1 Otherwise

Fig. 5   HT-GSD algorithm
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Fig. 6   Study Image 1: D1 a Geometrical Representation of Hough Parameter Space b HSV Colour Space Mask c Canny edge detection d Hough 
Transform e Detected lines based on Hough Parameter Space Evaluation f HT-GSD-based detected lines g Corresponding extracted tracks

Fig. 7   Study Image 2: D2 a Geometrical Representation of Hough Parameter Space b HSV Colour Space Mask c Canny edge detection d Hough 
Transform e Detected lines based on Hough Parameter Space Evaluation f HT-GSD-based detected lines g Corresponding extracted tracks
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Fig. 8   Study Image 3: D3 a Geometrical Representation of Hough Parameter Space b HSV Colour Space Mask c Canny edge detection d Hough 
Transform e Detected lines based on Hough Parameter Space Evaluation f HT-GSD-based detected lines g Corresponding extracted tracks

Fig. 9   Study Image 4: D4 a Geometrical Representation of Hough Parameter Space b HSV Colour Space Mask c Canny edge detection d Hough 
Transform e Detected lines based on Hough Parameter Space Evaluation f HT-GSD-based detected lines g Corresponding extracted tracks
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parameter lin which is the number of rail lines to be detected 
in the DI. Sometimes, setting a very small value for lin does 
not output all required rail lines while setting a very large 
value may provide with spurious output in the form of more 
number of lines than the actual number of rail lines present 
in DI. As much as it is essential to select the correct value 
of lin , it is important to remove these extra line detections 
except rail lines (if any). Therefore, in order to achieve this, 
the sensitivity range for lin is set to linsen pixels.

The detections within the sensitivity range are performed 
as follows:

where �i,�r denotes any pair of � parameter values in 
rhoLines(�i,�i) . If any value �r falls within the range given 
in Eq. (13), it implies the pair �i,�r values are placed within 
the linsen range and hence, �r is discarded. Otherwise, both 
the �i,�r values are retained in the parameter space and the 
corresponding �i, �r are the orientation values of the rail 
lines obtained in senLines(�s,�s) . The detections are shown 
in Figs. 6e,7e, 8e and 9e.

5.3.3 � GSD‑based rail line pair selection

In Sect. 5.3.2, even though we have tried to remove the spu-
rious rail line detections, it is possible that such detections 
may still remain outside the range as defined in Eq. (13). 
Consequently, GSD-based rail line pair selection method is 
accurate for the selection of valid rail lines(of the rail line 
pair) and subsequent extraction of railroad track.GSD is cal-
culated in Sect. 4.3 from Eqs. (1–3). The broad gauge length 
is represented by trackgauge . Consequently, the distance in 
pixels between the rail line pair,Nr , can be calculated as:

In this method, if the distance between the two rail lines 
is equal to Nr , they are parallel and belong to one rail line 
pair. To perform this computation, the following condition 
in Eq. 15 is computed between any pair of � values �s,�s+1 
in senLines(�s,�s):

(13)

senLines(𝜌s,𝜃s) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

i = i + 1 𝜌i − linsen <= 𝜌r <= 𝜌i + linsen

𝜌s = 𝜌i

𝜃s = 𝜃i

𝜌s+1 = 𝜌r

𝜃s+1 = 𝜃r Otherwise

(14)Nr = trackgauge∕GSD

where pixmax denotes the maximum number of pixels around 
the rail line which helps determine the range within which a 
rail line detection is considered as one of the rail lines of the 
rail line pair. The Hough space Lines(�l,�l) gives the param-
eter values of the selected rail line pairs which satisfy the 
distance condition in Eq. (14) while calculating Nr and these 
line pairs are mapped to the exact rail line locations in the 
DI. The HT-GSD-based line pair selection has been depicted 
visually in Figs. 6f,7f,8f and 9f for different study images.

5.3.4 � Coordinate system transformation‑based railroad 
track extraction

Once the parameters for the rail line pair have been calcu-
lated, as in the previous Sect. 5.3.3, it is now essential to 
obtain the Cartesian line forms as in Eq. (10) of the rail 
lines (of the rail line pair) from the corresponding para-
metric forms shown in Eq. (11). A rail line pair is repre-
sented by two lines L1 and L2 , as shown in Figs. 6a,7a,8a 
and 9a. The rail line L1 is described by points (p1, p2) 
and another rail line L2 is denoted by points (p3, p4) . For 
railroad track extraction, the coordinates of the rail line 
points need to be shifted by a value of lextract on the left 
side of the left rail line and on the right side of the right 
rail line. The value of lextract denotes the number of pix-
els (along the rail lines) which constitutes the ballast area 
along the left and right rail lines.

The coordinates are calculated by evaluating a (�l,�l) 
pair under the following conditions:

1.	 If �first > 0 and �first ∈[1,180]:

	   The coordinates of the two endpoints for the rail line 
L1 , used for track extraction, are p1(0, x1 − lextract) 
and p2

(
Iw, x2 − lextract

)
 . Also, the endpoint coor-

(15)

Lines(𝜌l,𝜃l) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜌l = 𝜌s If

𝜃l = 𝜃s Nr − pixmax <= (abs(𝜌s+1) − abs(𝜌s))

𝜌l+1 = 𝜌s+1 <= Nr + pixmax

𝜃l+1 = 𝜃s+1

s = s + 1 Otherwise

x1 = �l∕ sin(�l)

x2 = (�l − Iw ∗ cos(�l))∕ sin(�l)

x3 = �l+1∕ sin(�l+1)

x4 = (�l+1 − Iw ∗ cos(�l+1))∕ sin(�l+1)
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dinates for rail line L2 are p3(0, x3 + lextract) and 
p4

(
Iw, x4 + lextract

)
.

2.	 If �first < 0 and �first ∈[0,180] or �first > 0 and 𝜃first < [0 − 1]

:

For track extraction in this scenario, the coordinates of 
the two endpoints for the line L1 are p1(x1 − lextract, 0) and 
p2

(
x2 − lextract, Ih

)
 . The endpoint coordinates for line L2 

are p3(x3 + lextract, 0) and p4
(
x4 + lextract, Ih

)
.

The above evaluated conditions calculate the coordi-
nates of L1 and L2 endpoints in both the scenarios. There-
fore, coordinate transformation facilitates railroad track 
extraction as shown in Figs. 6g,7g,8g and 9g.

6 � Experimental results and discussions

6.1 � Experimental setup

The track images have been captured by the DJI quad-
copter. The sensor parameter values of the drone are 
Flen = 3.61 mm,Sw = 6.16 mm, Sh = 4.62 mm. The image 
dimensions are Ih = 3000 pixels and Iw = 4000 pixels. 
The proposed algorithm has been implemented as a soft-
ware model using the OpenCV library function [48] and 
MATLAB R2016a. For evaluation, we have chosen 4–5 
study images each (including the study images) from 
the acquired datasets for representation of uneven illu-
mination, different rail line orientations and varied flight 
heights in different railroad environments.

6.2 � Analysis of colour spaces for mask creation

An extensive evaluation of the colour space thresholds is 
performed to obtain a railroad track mask such that only 
rail lines are visible.

In order to obtain the railroad track mask in RGB colour 
space an extensive evaluation of thresholds has been car-
ried out upon the two study images D2 and D3, as shown 
in Fig. 4 a. The range for all three channels in RGB ∈ 
[0–255]. For thresholding, the low_ lim itcolor_space values 
for channel 1, channel 2 and channel 3 are set to 110, 14 

x1 = �l∕ cos(�l)

x2 = (�l − Ih ∗ sin(�l))∕ cos(�l)

x3 = �l+1∕ cos(�l+1)

x4 = (�l+1 − Ih ∗ sin(�l+1))∕ cos(�l+1)

and 119, respectively, and upper_ lim itcolor_space values are 
set to 158,119 and 174, respectively.

In order to obtain the mask in HSV colour space, the 
hue range ∈ [0, 179], saturation range ∈ [0,255] and value 
range ∈ [0,255] are marked in the study images as shown 
in Fig. 4b. For this purpose, the low_ lim itcolor_space and the 
upper_ lim itcolor_space for mask thresholds for all three chan-
nels are set to [100, 40, 40] and [130,255,255], respectively.

L*a*b* expresses colour as: L* for lightness which 
scales from 0 (black)-100(white), a* axis and b* axis 
both in the range ∈ [-100,100], which represent green (−) 
– red ( +) and blue (−) – yellow ( +) component, respec-
tively. In order to obtain the masks, shown in Fig. 4c, the 
low_ lim itcolor_space and upper_ lim itcolor_space values for all 
three channels have been set to 43.419,0.751,-31.492 and 
63.950, 39.603, -5.247, respectively.

In the YCbCr, Y represents the luminance (intensity-
based information) component and ranges from 16 to 
235. The Cb, Cr channels are the chrominance (colour 
related) components both within the range ∈ [16,240]. 
Also, the threshold values for the Y, Cb, Cr channels 
range from low_ lim itcolor_space : 40, 130, 92, respectively, 
to upper_ lim itcolor_space : 82, 194, 137, respectively, for 
obtaining the masks as shown in Fig. 4d.

6.3 � Steps for Rail line detection and track 
extraction

1.	 In the ACSM method, it has been observed that rail lines 
have been distinctly identified upon segmentation only 
in the HSV colour space railroad track mask, as seen 
in Fig. 4b and discussed in Sect. 5.1. This colour space 
handles identification of rail lines well in non-uniform 
sunlight illumination.

2.	 Subsequently, edge detection is necessary in the HSV 
mask. After an exhaustive analysis of different sets 
of parameter values, it is observed that the following 
set of canny edge parameter values: Gaussian spread, 
� = 5 × 5 , Sobsiz = 3, minval = 50, maxval = 200, projects 
sharp rail line edges as depicted in Figs. 6c,7c,8c and 
9c. These edges are necessary as input for shape and 
geometric representations.

3.	 For computing shape representations of rail lines 
from edge map using Hough transform, the Hough 
parameter space resolutions are set to �acc = 2 pixels, 
�acc = 0.017453 radians ( 1◦ ). The value for Hthe is set to 
100 pixels.

4.	 The values for number of lines lin = 10,18,20,25,30 lines 
have been chosen such that the value of lin is able to 
detect all the rail lines in all DI which may include spuri-
ous detections also.
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5.	 The value for linsen is set to ± 80 pixels. The range is 
suitable in order to remove spurious rail line detections 
and is generally selected less than Nr . This is necessary 
to reduce the computational overhead for the next step 
by reducing the number of comparisons for line pair 
selections.

6.	 The GSD is calculated at any given flight height 
using Eqs. (1–3) and determines the pixel size on the 
ground as seen in Table 1. The broad gauge of tracks, 
trackgauge = 1676 mm ( ≈ 168 cm). The value of Nr is cal-
culated for any given flight height using Eq. (14) which 
facilitates rail line pair selection. Two rail lines are 
classified as rail line pair when the distance (in pixels) 
between these two lines is evaluated as per Eq. (15). The 
value for pixmax∈ [5, 14]. The lextract value has been set 
to 100 pixels (the width in pixels) in order to obtain the 
left and right side of the rail lines for extraction of the 
railroad track.

The aforementioned empirically selected parameter 
values lead to correctly matched rail lines (in red col-
our). This facilitates respective automated railroad track 

extractions despite multi-rail lines and complex back-
ground as shown in Figs. 6g,7g,8g and 9g.

6.4 � Evaluation and validation of the proposed 
method

In order to validate our proposed method, the values of 
Central Latitude: 29°51′13.407399″N Central Longitude: 
77°52′11.9761″E for study image D3 are extracted and 
marked over the Google Earth image of that area as seen 
in Fig. 10a. The study image with detected rail lines in red 
colour is then overlapped over the respective Google Earth 
image as seen in Fig. 10b. It has been observed that these 
detections have matched well even at locations with difficult 
terrain.

The eff iciency of  our  proposed algor i thm 
DroneRTEF(ACSM + HT-GSD) for drone images is evalu-
ated using the following standard performance metrics: Pre-
cision, Recall and Accuracy(ACC) [49}. Before discussing 
these metrics, we should know about some prior notations. 
Suppose we classify our detections into two classes A(a rail 
line) and B(not a rail line), then true positive (TP) denotes 
number of correct matches(detections) which belong to A 
and are correctly identified as A, False Negative(FN) rep-
resents matches not correctly detected, False Positive(FP) 
denotes proposed matches that are incorrect and True 
Negative(TN) represents non-matches that are correctly 
rejected.

Precision is the measure of the proportion of the detected 
relevant instances or positive predictive value. It is repre-
sented as the ratio of TP and its sum with FP (depicted in 
Eq. 16).

Fig. 10   a Google Earth Imagery for D3 b Rail lines detected in red in 
image overlapped on Google Earth

Table 3   Performance measures for DroneRTEF (proposed approach)

No. of lines Precision Recall Accuracy

10lines 0.88 0.6875 0.603774
18lines 0.735294 0.78125 0.877395
20lines 0.75 0.84375 0.902778
25lines 0.693333 0.8125 0.902235
30lines 0.658228 0.83871 0.913146

Table 4   Performance measures for ACSM + HT

No. of lines Precision Recall Accuracy

10lines 0.471429 0.825 0.4125
18lines 0.321429 0.931034 0.313953
20lines 0.303571 0.934066 0.297203
25lines 0.282857 0.925234 0.276536
30lines 0.216667 0.938144 0.213615
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Fig. 11   DroneRTEF versus 
ACSM + HT evaluation with  a 
Precision b Recall c Accuracy
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Recall, also called sensitivity, is the measure of the pro-
portion of actual positives which are detected correctly. It is 
represented as the ratio of TP and its sum with FN (depicted 
in Eq. 17).

Accuracy (ACC) is the measure of correct detections made 
by the model over total number of detections(depicted in Eq. 18).

In order to access the efficiency of our proposed 
approach, we have compared it with ACSM + HT on our 
newly acquired dataset. The metric analysis is performed 
on both the algorithms in order to calculate the difference in 
detections and show the effectiveness of our framework. The 
detection in ACSM + HT is considered after computing HT 
on the image. In our proposed approach, the detection is con-
sidered after parameter space evaluation. The evaluations on 
the metrics are performed with values of lin = 10,18,20,25,30 
lines. The results are shown in Tables 3 and 4 for proposed 
approach and ACSM-HT approach, respectively.

The comparative analysis is obtained with three other 
methods K-NN mean Euclidean distances, Inception 
V4,ACSM-HT as shown in Table 5. The results have been 
obtained on our dataset. As observed the highest precision 
and accuracy values for the proposed framework DroneRTEF 
indicates robustness of the model upon comparison with other 
methods. However, recall values can be viewed to be compa-
rable to K-NN and ACSM-HT method. The adaptive behav-
iour of the method can be inferred from the above results.

6.5 � Discussion

The comparative analysis of Precision, Recall and Accuracy 
metrics between both the approaches is shown in Fig. 11a, 
b and c, respectively. These values have been computed for 
lin = 10,18,20, 25, 30 lines. In Fig. 11a, it has been observed 
that the Precision metric values for all lin values are more as 

(16)Precision =
TP

TP + FP

(17)Recall =
TP

TP + FN

(18)Accuracy (ACC) =
TP + TN

TP + TN + FP + FN

compared to the other method. Therefore, it can be inferred 
that the percentage of detected relevant lines is higher for 
the proposed approach as compared to the other method. 
In Fig. 11b, it has been observed that the recall values are 
higher for the other method. Recall values denote the pro-
portion of actual positives identified correctly. In the pro-
posed approach, it is observed that for each of the values in 
lin = 10,18,20, 25, 30 lines some of the actual detected lines 
are eliminated during the parameter evaluation method while 
removing the extra detections. Therefore, the recall value per-
centage is little lesser for our approach. The accuracy metric 
values are seen in Fig. 11c. It has been observed that the 
accuracy percentage is much higher for DroneRTEF. There-
fore, it can be inferred that our proposed approach is efficient 
as compared to other algorithm for all the rail line values.

7 � Conclusion and Future Work

In this paper, we have proposed DroneRTEF, a novel adap-
tive railroad track extraction framework for DI. This frame-
work is divided into two stages. The identification of the 
rail lines is performed by ACSM. ACSM is a global image 
enhancement method in which colour space-based segmen-
tation is performed for creation of a railroad track mask for 
DI comprising of only the rail lines. This approach facili-
tates rail line identification in DI with uneven illumination. 
Another step is Hough parameter space analysis-based novel 
HT-GSD algorithm. In this algorithm, hough parameters are 
evaluated in order to compute the shape and geometrical rep-
resentation of lines in DI. This parameter space evaluation 
helps in the detection of identified rail lines at varying ori-
entations, in different directions (horizontally or vertically) 
and also at different heights. This facilitates railroad track 
extraction. Our proposed framework is validated on large 
datasets and has achieved an accuracy of 90%. Therefore, the 
framework provides with the following advantages:

1	 Drone is introduced as an IAS and provides with advan-
tages such as image acquisition in inaccessible locations, 
is operative even during various railroad operations and 
provides cost-effectiveness.

2	 A new dataset has been developed to take into considera-
tion various railroad environment scenarios.

3	 It is inferred from the experiments that the proposed 
method is adaptive to uneven illumination, varying rail 
line orientations and change in flight heights during 
track extraction in DI.

4	 The algorithm has been tested and evaluated for large 
datasets in order to consider all railroad environment 
conditions and examine them for track extraction. This is 
in order to ensure safety of people travelling by railroad 
under any circumstances.

Table 5   Comparative Analysis

Precision Recall Accuracy

K-NN mean Euclidean distances [29] 0.75 0.92 0.83
Inception V4 [30] 0.45 0.60 0.50
ACSM-HT(Computed) 0.30 0.934 0.29
DroneRTEF(Proposed Method) 0.75 0.843 0.902
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5	 The effectiveness of the framework serves as an advan-
tage for fast railroad inspections, obstacle identification 
and driver assistance systems.

In future, a technique to discuss removal of small recall 
values may be discussed. This is major importance as detec-
tion of rail lines is of paramount importance. Improvement 
of the HT-GSD method is proposed to be taken under 
consideration.

Fig. A1   HSV histograms for (i) D3 (ii) D4 (iii) D2 (iv) D1

Appendix A
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