
Vol.:(0123456789)1 3

Pattern Analysis and Applications (2021) 24:1441–1449
https://doi.org/10.1007/s10044-021-00980-2

ORIGINAL ARTICLE

A new method of hybrid time window embedding
with transformer‑based traffic data classification in IoT‑networked
environment

Rafał Kozik1,2 · Marek Pawlicki1,2 · Michał Choraś1,2

Received: 15 January 2021 / Accepted: 29 April 2021 / Published online: 12 May 2021
© The Author(s) 2021

Abstract
The Internet of Things (IoT) appliances often expose sensitive data, either directly or indirectly. They may, for instance, tell
whether you are at home right now or what your long or short-term habits are. Therefore, it is crucial to protect such devices
against adversaries and has in place an early warning system which indicates compromised devices in a quick and efficient
manner. In this paper, we propose time window embedding solutions that efficiently process a massive amount of data and
have a low-memory-footprint at the same time. On top of the proposed embedding vectors, we use the core anomaly detection
unit. It is a classifier that is based on the transformer’s encoder component followed by a feed-forward neural network. We
have compared the proposed method with other classical machine-learning algorithms. Therefore, in the paper, we formally
evaluate various machine-learning schemes and discuss their effectiveness in the IoT-related context. Our proposal is sup-
ported by detailed experiments that have been conducted on the recently published Aposemat IoT-23 dataset.

Keywords Deep learning · Transformers · Anomaly detection

1 Introduction

In March of 2019, only two months after a similar attack
on Altran Technologies, the LockerGoga ransomware was
used against Norsk Hydro, the largest aluminum manufac-
turer in Europe, hiring over 35000 people and having sites
in more than 50 countries all across the globe. The attack
caused a serious decrease in production and issues with the
execution of the ongoing contracts. The losses were esti-
mated to equal millions of dollars per day, and the grand
total of losses was estimated to reach hundreds of millions
of dollars. The attack occurred on 18/19 March 2019, mostly
impacting the infrastructure in Norway, and other countries
to a lesser extent. It resulted in the shutdown of the global
Norsk Hydro network.

The attack affected work at the offices (causing, for
example, problems with order documentation) as well as

the industrial manufacturing, where, besides other issues, the
manufacturing drivers had to be uploaded manually through
usb drives.

The attack was a cyber-criminal case committed for
financial gains. The ransomware had turned off a part of the
system’s security mechanisms, as well as the data backup
processes, before starting data encryption. All the local user
passwords were changed.

The ‘Ransom’ was not paid, the recovery of data from
backups took months. As of March 2019, the LockerGoga
ransomware was undetectable by 67 of the state-of-the-art
antiviruses. The experts noted that better anomaly detection
systems could have prevented the incident.

In June 2019, a vulnerability in the Amazon Ring Video
Doorbell was discovered. The flaw in the product’s security
made it possible to connect to the home WiFi and possi-
bly exploit other connected devices [2]. A similar issue was
discovered in the Amazon Blink XT2 security camera. The
security flaw, which was discovered in August 2019, allowed
unauthorised users to view the footage from the cameras and
listen to their audio. In fact, the flaw made it extremely easy
to gain root access to the device [16].

 * Rafał Kozik
 rkozik@utp.edu.pl

1 UTP University of Science and Technology, Bydgoszcz,
Poland

2 ITTI Sp. Z o.o., Poznań, Poland

http://orcid.org/0000-0001-7122-3306
http://orcid.org/0000-0001-5881-6406
http://orcid.org/0000-0003-1405-9911
http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-021-00980-2&domain=pdf

1442 Pattern Analysis and Applications (2021) 24:1441–1449

1 3

The ’Attack Landscape’ report illustrates that a number
of network attacks are carried over Telnet and Secure Shell
(SSH) with a high probability of targeting IoT devices [7].

Therefore, in this paper, we propose a new innovative
method to detect anomalies in IoT environment.

The major contribution of this work is the proposition of
a time window embedding solution with a transformer-based
classification scheme.

The remainder of this paper is structured as follows: In
Sect. 2, the related work is overviewed, in Sects. 3- 5 the
proposed method is described, experimental setup is pre-
sented in Sect. 6, while the results are reported in Sect. 7.
Conclusions are drawn thereafter.

2 Related work

In the literature, there are two approaches to intrusion detec-
tion, namely the signature-based and anomaly-based ones.
Typically, when the attack is deterministic, one can develop
a signature that will allow for its detection. However, nowa-
days attackers use various obfuscation techniques to evade
such detection mechanisms. Therefore, the cybersecurity
community is investing its efforts in the anomaly detection
system. These turn to be more effective in detecting new and
unknown (so called 0-day) cyber-attacks [21].

In [3], the authors performed a survey of current tenden-
cies in cybersecurity and concluded that two major trends
emerge - one is that old, proven methods are still in use
in many applications. The other is that machine-learning-
based (ML) approaches are increasingly more prominent.
Furthermore, [17] points out that ML is now used on both
the malware and security sides.

When it comes to network traffic analysis, two popu-
lar approaches are used by experts from the cybersecurity
domain. One is based on deep packet inspection [4], while
the other relies on network flows analysis [11]. One of the
most popular protocols for network flow data collection is
NetFlow [6]. That kind of data is often captured by Internet
service providers for auditing and performance monitoring
purposes. NetFlow samples do not contain much of sensi-
tive data and therefore are widely available. However, the
disadvantage is that such samples do not contain the raw
content of network packets. Such details are valuable and
can improve the effectiveness of malware detection. How-
ever, these are rarely available because of the encryption,
which is often utilized by the end-points terminal.

The current research shows that the network flow data
can be effectively analyzed using various machine-learning
techniques such as unsupervised clustering [8], Random-
Forests (RF) [22], or deep learning [19]. The authors of [5]
present a range of deep neural network topologies and test
the influence of hyperpaprameter setups on the accuracy of

the solution. On the flip-side, in [12], a stream processing
framework capable of employing a range of ML algorithms
for intrusion detection is presented.

Obviously, the different methods vary in the way they
process the NetFlow data. For instance, in [10], the authors
proposed a solution called CCDetector. It uses a state-based
behavioral model of the Command and Control channels.
The author of this algorithm adapts the Markov Chain to
model malware behavior and to detect similar traffic in
unknown real networks. The difference from the BClus (and
our approach) is the fact that instead of analyzing the com-
plete traffic of an infected computer as a whole, the authors
separate each individual connection from each IP address
and treat these as an independent connection. The results
obtained with this method are very promising. However, one
of the concerns is the complex and time-consuming learn-
ing phase.

In opposite to that, in [19], the authors have adapted
recurrent neural networks (RNN) with long short-term
memory (LSTM) units on top of the NetFlow data. In addi-
tion to that they also used a flexible distributed architecture
to handle the curation of large amount of data.

An interesting approach, which maps the NetFlow data
to the image representation, has been presented in [13]. In
order to construct the images, the authors have used such
techniques as feature correlation analysis and correlation
matrices. The images have been analyzed with a convolution
neural network (CNN) in order to detect intrusions. Accord-
ing to the authors, this method achieves high accuracy.

A CNN for flow-based malware detection is also pro-
posed in [20]. The authors advocate that current detection
systems are overreliant on certain network features, like the
port number, which could introduce a blind spot in the sys-
tem. Thus, they calculate 35 features with the use of Net-
mateto to fully express the state of the network and provide
those to the CNN and other ML algorithms.

The authors of [18] present a deep network model capa-
ble of automatic feature extraction, which takes time-related
characteristics into consideration. To achieve that a GRU
network along with a multilayer perceptron (MLP) is used.
The authors also test a network with LSTM cells.

The authors of [14] evaluate autoencoders (sparse,
denoising, contractive, convolutional), LSTM, and CNN for
network intrusion detection. Autoencoders obtain the latent
representation of the feature set. When the hidden layer has
fewer neurons than the input/output layers, it is called a bot-
tleneck, discriminative, coding, or abstraction layer. Using
such a bottleneck forces the topology to acquire the most
significant features.

In [9], instead of flow classification, the flow predic-
tion approach is used. In order to achieve this, the authors
combine an RNN (with gated recurrent units) with the so-
called linear regression layer, which allows for producing

1443Pattern Analysis and Applications (2021) 24:1441–1449

1 3

prediction in a similar fashion as auto-regressive integrated
moving average (ARIMA) models do with time series.

In [1], the authors used the auto-regressive fractionally
integrated moving average (ARFIMA) model and proposed
the Hyndman-Khandakar algorithm to estimate the polymo-
nials parameters and the Haslett and Raftery algorithm to
estimate the differencing parameters for network anomaly
detection.

3 Proposed method

The proposed solution (see Fig. 1) captures network flows
(as streams), calculates feature vectors over a predefined
time window, provides these vectors to a binary classifier,
which eventually produces the detection output (benign for
normal traffic or anomaly for traffic containing suspicious
patterns). In the next section, the details on each of these
processing steps will be provided. First, the overview of the
input data is given, and then, the effective methods for fea-
ture extraction are elaborated upon. Finally, a brief descrip-
tion of the classification methods incorporated in this work
is provided.

3.1 Flow‑based data acquisition

Conceptually, in this approach, the data are collected from
the network in the form of communication flows travers-
ing such devices as switches, routers, or hosts. This kind
of data captures aggregated network properties and statis-
tics. From the architectural point of view, the network traf-
fic going through the flow-enabled devices is collected and
later on sent to the collectors - the network elements, which
store them and keep them for the operator for later analysis.
In particular, network flows are often used by the network
administrators for auditing purposes. A single flow aggre-
gates such characteristics as:

– incoming and outgoing number of bytes
– IP addresses taking part in the communication
– utilized source and destination ports

– utilized type of protocol (e.g., Transmission Control Pro-
tocol (TCP) or User Datagram Protocol (UDP))

(e.g., the number of bytes sent and received) about packets
that have been sent by a specific source address to a specific
destination address. It is obvious that it must be possible to
identify some patterns of anomalous behavior of network
nodes from such kind of data. Some of these patterns may be
related to malware infection or help the network administra-
tor to identify adversaries.

3.2 Time window embedding with probabilistic
data structures

The rationale behind the proposed embedding is to encode a
network flow using only its nearest neighborhood in the time
domain. This approach allows us to capture some short-term
malicious behavior of specific network elements and nodes.

In the proposed approach, we calculate the statistical
properties of a group of flows that have been collected for a
specific source IP address within short and fix-length time
spans called time windows.

As it was presented in the previous section, a single flow
exhibits various characteristics describing the two-way com-
munication (e.g., number of flows, destination IP, etc.). For
each of these characteristics, it is possible to calculate vari-
ous statistical properties such as mean, median value, min/
max values. In order to make it clear what is being calculated
for each of those characteristics, we have included Table 1.
Overall, it leads to the situation where the traffic character-
istics produced by a single IP address within the considered
tumbling time window are described by 37 values.

In general, counting the number of flows and/or accu-
mulating the sum of inbound and outbound packets may
be trivial, but the situation is different when it comes to
distinct counting or finding the most frequent element (e.g.,
destination port) in the stream of data. The straightforward
approach would be to maintain a dynamic list. Whenever a
new element is retrieved from the stream, one must scan the
entire list and check whenever that element is there. If not,
the list needs to be resized and new element added. Moreo-
ver, there is another level of complexity when we want to

Fig. 1 Tumbling windows -
example of window statistics
embedding

Metrics
[1.2,33.4,55.6,334.6,664,…]

N+3 Time WindowN Time
Window

N+1 Time
Window

N+4 Time
Window

N+5 Time
Window

1444 Pattern Analysis and Applications (2021) 24:1441–1449

1 3

merge the results obtained from two concurrent processes
that perform distinct counting.

There is a class of data structures which are known as
probabilistic (or sketchy). These have the ability to describe
remarkably large sets with sub-logarithmic or constant space
complexity. That implies that there is no need to scale-up
the data processing system when it undergoes the transition
from thousands, to millions, or even billions of records that
need to be analyzed.

Probabilistic data structures rely on various mechanisms
to compress data, and often, these mechanisms may cause
them to contain inaccurate information.

However, this inaccuracy should not have a strong impact
on the detection part. The assumption is based on the obser-
vation that the classifiers can handle such changes to some
extent and be able to return the correct decision. It must be
noted that here we are talking about changes that are within
a range of 1–2% for one of the features building the vector.

Probabilistic data structures have several advantages. First
of all, the size of such structures grows significantly slower
with respect to the input data. In many cases, it is orders of
magnitude smaller. Moreover, it is also possible to make the
trade-off between the accuracy of prediction vs. the size of
the data structure. They are naturally suited for measuring
network traffic, which has a form of streaming data, where
each item in the stream needs to be analyzed quickly and in
needs to update a data structure that summarises some prop-
erties (e.g., the number of distinct IP addresses or the most
frequently used service). A substantially useful property of
the probabilistic data structures is the ability to be merged.
It means that when the stream is split into two parts and the
summary over them is calculated separately, the result will
be the same as if it was calculated over the entire (original)
stream. As a result, this makes the probabilistic structure
highly parallelizable and suitable for distributed computing
platforms (e.g., Hadoop, Spark, Druid, etc.)

4 Frequent items and distinct counting ‑
the problem overview

In order to calculate the most frequent destination port or
destination host (or even concatenation of both) originating
from a specific IP address, one may use data structures such
as a hash table to accomplish that. In such a case, the new
item is put in the hash table and the counter for that item is
set to 0. Whenever the entry in the hash table already exists,
a counter is just incremented. However, such an approach
may quickly become impractical when the amount of input
data is significant, because of two reasons. Firstly, along
with the growing size of the input data, the hash table will
grow as well and eventually its capacity will exceed the
amount of available RAM memory. Secondly, the colli-
sions in the hash table are handled as a linked list. It means
that whenever a new item is hashed to the bucket that is
already taken, it will be appended (linked) after the existing
one. Therefore, when the list becomes longer and longer,
the access time to such elements in the hash table will be
substantially longer as well. Also, the dynamic allocation of
the memory (for a new element) is also time consuming. In
this section, the most important sketchy data structures that
have been used in this research are described.

4.1 Count‑min data structure

Count-min (CM) data structure allows for counting of items
that are of a different type, e.g., how many times a specific
IP address has contacted port 8080. From the scientific point
of view, CM is an array of width w and depth d CM[1, 1]
...CM[d, w]. It uses a set of d hash functions:

(1)h1 … hd ∶ {1… n} → {1… d}

Table 1 Overview of all the
features extracted from network
flows

Min Max Avg Median Unique count Most frequent

Number of flows + + + +

Destination port + +

Destination address + +

Protocol + +

Inbound packets + + + +

Outbound packets + + + +

Total packets + + + +

Inbound bytes + + + +

Outbound bytes + + + +

Total bytes + + + +

Port-protocol pair +

IP-port pair +

IP-port-prot. triplet +

1445Pattern Analysis and Applications (2021) 24:1441–1449

1 3

which belong to a random pairwise-independent family of
functions. The width w and depth d are chosen based on
allowed by user error rates and are calculated as:

where � (an acceptable error in estimation) is the error factor
and � is the error probability. At the beginning, the CM array
is initialized with 0 values. Each time the count needs to be
updated for a specific value x, the hash functions are calcu-
lated and modded with the width w. This yields the column
number col = hn(x)%w . Finally, the cell at position (n, col)
in the CM array is incremented by one. We use a similar
approach when querying the data structure. We simply take
the modded values obtained from hash functions and find the
minimum. The visual representation of the concept behind
the count-min data sketch is presented in Fig. 2.

4.2 HyperLogLog sketch

HyperLogLog (HLL) belongs to a family of algorithms that
aim at estimating the cardinality of a dataset. It relies on
the probabilistic counting method. Assuming that we have
a large data set with duplicated entries, we can evenly dis-
tribute the elements in the dataset using a hashing func-
tion and estimate the cardinality using the hashed values.
The common approach is to count the leading zeros in the
binary representation of the hashed values. The probability
of observing n leading zeros is equal to 1

2n
 . In other words, if

we denote p(v1) as a number of leading zeros in v1 , we can
calculate the cardinality as n = 2R , where:

The visual representation of the HyperLogLog data sketch
is presented in Fig. 3.

(2)w =

⌈

e

�

⌉

d =

⌈

ln
1

�

⌉

(3)R = max(p(v1), p(v1),… , p(vm))

Obviously, a single estimator of that kind is subject to
high variance. Therefore, the common approach is to use
several estimators and to average the results. This can be
achieved using several independent hash functions.

5 Classification with transformer

Transformers have been proposed in the area of natural lan-
guage processing (NLP). This is a relatively novel archi-
tecture that aims at solving sequence-to-sequence problems
while handling long-range dependencies. The original trans-
former architecture involves the so-called encoding and
decoding parts. In this research, only the encoder is used
(see Fig.4), since the aim is to encode the behavior of spe-
cific node elements using the latent representation produced
by the encoder part of the transformer architecture.

The data are ingested into the transformer using the time
windows embedding technique described in the previous
section. In general, several network flows belonging to a
specific time window and related with a specific IP address
are encoded using the technique leveraging probabilistic data
sketches. This operation results in vectors of a fixed length.
The transformer works with sequences, which in our case
describe the behavior of a specific network element over the
defined time period. The sequence is composed by putting
several embedding vectors one next to another.

Next, the sequence of vectors goes through the positional
encoding, which allows us to capture the order of the vector
in the input sequence. This looks quite useful from our per-
spective, because usually the attacker executes some series
of actions in order to carry out a successful cyberattack.

Afterward, the positionally encoded input reaches the
multiheaded attention layer. From a high perspective, this
layer allows the model to look at other positions in the
input sequence for clues that can improve the final detec-
tion. For example, the infected machine would try to contact
the botmaster if a few moments before it was infected with
malware.

In the next step, the information coming from the self-
attention is normalized and goes to the feed-forward layer,
the output of which is normalized as well. As it is depicted in
the diagram, there are two residual connections: one around
the self-attention and the other around the feed-forward
layer.

Because the input leaving the transformer layer contains
one output vector for each element in the input sequence, we
use the average pooling layer. It takes the mean across all
the elements in the input. Finally, on top of the entire model,
we used two layers of the feed-forward network with two
outputs, one to indicate the benign sequence and the other
to indicate the anomalous sequence.Fig. 2 Count-min data structure - overview of the architecture

1446 Pattern Analysis and Applications (2021) 24:1441–1449

1 3

6 Experiments

6.1 The goal of the experiments

The goal of the experiments is to compare the proposed
approach with the state-of-the-art methods. In this paper, we
have considered two different evaluation scenarios. Firstly,
we investigate how the proposed time window embedding
technique operates along with the transformer-based anom-
aly detection architecture. In that regard, we have compared
our approach with RandomForest (with 500,100,10 trees,
respectively), vanilla REPTree (decision/regression tree),
and AdaBoosted version of REPTree. Secondly, we investi-
gate to what extends the proposed model is able to general-
ize to unknown malware infection scenarios. In that regard,
we have considered various test-case scenarios where the
models are trained and evaluated on malicious samples that
have been recorded for different attacks (or infections).

6.2 Aposemat IoT‑23 dataset

IoT-23 is a dataset of network traffic from Internet of Things
(IoT) devices. It has 20 malware captures executed in IoT
devices, and three captures for benign IoT devices traffic. It
was first published in January 2020, with captures ranging
from 2018 to 2019. This IoT network traffic was captured
in the Stratosphere Laboratory, AIC group, FEL, CTU Uni-
versity, Czech Republic. Its goal is to offer a large dataset of
real and labelled IoT malware infections and IoT benign traf-
fic for researchers to develop machine-learning algorithms.
This dataset and its research is funded by Avast Software,
Prague. In addition to easier reproducibility of the study,
using a benchmark dataset allows to handle various privacy
issues, as outlined in [15].

6.3 Experimental protocol

The dataset was split into training and testing parts. This is
explained in Table 2. Different scenarios are used, where
different parts of the original dataset have been employed.
We followed such an approach in order to prove that the
proposed method can generalize well to unknown malware
families. In that regard, we have used different scenarios
(malware families) for training and testing the models.
Nonetheless, some malware names appear both in training
and testing. However, these malware are recorded in dif-
ferent network captures, which concern different contexts
(different network elements, different IoT devices, etc.)

Additionally, for the training part of the dataset, five-
fold cross-validation was adapted. This allowed to cal-
culate the standard deviation of measured performance

characteristics. Moreover, this also enables the discussion
on the significance of differences obtained for various
approaches. For that matter, t-test statistical hypothesis
test was used.

Table 2 IoT23 dataset - scenarios setup (x and – indicate training and
validation sets, respectively)

Scenario Malware

1 2 3 4

CTU-Honeypot-Capture-4-1 x x x x Benign
CTU-Honeypot-Capture-5-1 x x x x Benign
CTU-Honeypot-Capture-7-1 x x x x Benign
CTU-IoT-Malware-Capture-34-1 x x x x Mirai
CTU-IoT-Malware-Capture-43-1 x x x x Mirai
CTU-IoT-Malware-Capture-1-1 x x x x Hide&Seek
CTU-IoT-Malware-Capture-3-1 x x x x Muhstik
CTU-IoT-Malware-Capture-35-1 x x x x Mirai
CTU-IoT-Malware-Capture-39-1 x x x - IRCBot
CTU-IoT-Malware-Capture-7-1 x x x - Mirai
CTU-IoT-Malware-Capture-8-1 x x x - Hakai
CTU-IoT-Malware-Capture-9-1 x x x - Hajime
CTU-IoT-Malware-Capture-20-1 x x x - Torii
CTU-IoT-Malware-Capture-21-1 x x x - Torii
CTU-IoT-Malware-Capture-42-1 x x x - Trojan
CTU-IoT-Malware-Capture-17-1 x x - - Kenjiro
CTU-IoT-Malware-Capture-36-1 x x - - Okiru
CTU-IoT-Malware-Capture-33-1 x - - - Kenjiro
CTU-IoT-Malware-Capture-48-1 x - - - Mirai
CTU-IoT-Malware-Capture-44-1 - - - - Mirai
CTU-IoT-Malware-Capture-49-1 - - - - Mirai
CTU-IoT-Malware-Capture-52-1 - - - - Mirai
CTU-IoT-Malware-Capture-60-1 - - - - Gagfyt

Fig. 3 Architecture of HyperLogLog data structure

1447Pattern Analysis and Applications (2021) 24:1441–1449

1 3

6.4 Evaluation metrics

Before using various machine-learning algorithms, the raw
network flows are processed in order to produce the time
window embedding vectors. The procedure is detailed in
the previous sections. The procedure for calculating met-
rics is as follows:

1. communication flows are aggregated into time windows
(here we have used 3 min. time windows).

2. for given time, windows embedding vectors are calcu-
lated

3. within the ground-truth communication flows, labels are
examined against the predicted ones and the TP, TN, FP,
and FN errors (true and false positives and negatives) are
measured.

4. finally, Recall, Precision, F-measure Rate are estimated
and reported.

Fig. 4 The architecture of the
proposed transformer-based
classifier

1448 Pattern Analysis and Applications (2021) 24:1441–1449

1 3

7 Results

The results for classification parts are presented in Table 3.
We have compared the proposed transformer-based
approach against various and popular machine-learn-
ing techniques. On the list, there is a decision tree and

classifiers ensembles (one is AdaBoost, while the other is
the well-known RandomForest).

The t-test statistical hypothesis test was used to vali-
date that the results obtained by the proposed approach are
significantly different from the other compared methods.
In that regard, the values followed by ± symbol (Table 3)
indicate standard deviation.

It must be noted that we have used different sce-
narios for training and testing the models. This proves
the approach can generalize well to unknown malware
families.

What can be found in Table 3 is that these base-line
methods behave quite well. However, the transformer-
based approach outperforms other methods in most of the
considered scenarios. It is quite vivid for f1-score metric
that has been visually presented in Fig.5. It must be noted
that the transformer-based approach allowed us to achieve
remarkably good results for the fourth scenario, where less
than 40% of the original datasets is used.

The second good results are reported for the Random-
Forest. The experiments show that increasing the number
of trees above 100 does not bring much to the effective-
ness. The Adaptive Boosting (AdaBoost) ensemble of
REPTrees performs well for the first and the second sce-
narios; for the scenarios 3 and 4, this method stays a bit
behind the RandomForest.

What can be found interesting is the observation that
the f1-score does not change that much between scenarios
1,2,3 and 4 for the proposed method. On the other hands,
one can observe quite significant fluctuations for the other
approaches. In particular, this change is much more sig-
nificant for Reduced Error Pruning Decision Tree (REP-
Tree) and Adaptive Reduced Error Pruning Decision Tree
(AdaREPT) classifiers.

Table 3 Effectiveness comparison for different classifiers and sce-
narios

Scenario Method Precision Recall f1-score

1 Proposed
method

0.902 ± 0.001 0.967 ± 0.005 0.934 ± 0.003

2 0.912 ± 0.003 0.940 ± 0.008 0.926 ± 0.005

3 0.916 ± 0.003 0.977 ± 0.002 0.945 ± 0.002

4 0.910 ± 0.002 0.964 ± 0.004 0.936 ± 0.002

1 RF500 0.866 ± 0.001 0.928 ± 0.001 0.896 ± 0.001

2 0.858 ± 0.001 0.803 ± 0.000 0.829 ± 0.001

3 0.866 ± 0.000 0.877 ± 0.000 0.872 ± 0.000

4 0.859 ± 0.001 0.930 ± 0.000 0.893 ± 0.001

1 RF100 0.877 ± 0.002 0.943 ± 0.001 0.909 ± 0.001

2 0.861 ± 0.002 0.791 ± 0.004 0.825 ± 0.001

3 0.871 ± 0.003 0.873 ± 0.000 0.872 ± 0.002

4 0.867 ± 0.001 0.928 ± 0.003 0.896 ± 0.002

1 RF10 0.838 ± 0.002 0.814 ± 0.003 0.826 ± 0.002

2 0.803 ± 0.003 0.670 ± 0.005 0.730 ± 0.003

3 0.861 ± 0.003 0.909 ± 0.001 0.884 ± 0.001

4 0.846 ± 0.007 0.826 ± 0.002 0.836 ± 0.004

1 REPTree 0.833 ± 0.004 0.762 ± 0.001 0.796 ± 0.002

2 0.846 ± 0.005 0.717 ± 0.002 0.776 ± 0.002

3 0.808 ± 0.005 0.766 ± 0.003 0.786 ± 0.003

4 0.844 ± 0.003 0.945 ± 0.003 0.892 ± 0.002

1 AdaBoost 0.813 ± 0.002 0.763 ± 0.003 0.788 ± 0.002

2 0.836 ± 0.006 0.643 ± 0.003 0.727 ± 0.004

3 0.819 ± 0.005 0.710 ± 0.003 0.761 ± 0.003

4 0.807 ± 0.003 0.697 ± 0.003 0.748 ± 0.001

0.
93

0.
93 0.

95

0.
94

0.
89

6

0.
82

9 0.
87

2

0.
89

3

0.
90

9

0.
82

5 0.
87

2

0.
89

6

0.
82

6

0.
73

0.
88

4

0.
83

6

0.
78

8

0.
72

7 0.
76

1

0.
74

80.
79

6

0.
77

6

0.
78

6

0.
89

2

0.70

0.75

0.80

0.85

0.90

0.95

1.00

S C E N A R I O 1 S C E N A R I O 2 S C E N A R I O 3 S C E N A R I O 4

F1
-S

CO
RE

 Proposed method

 RF-500

 RF-100

REPT

 RF-10

 AdaREPT

Fig. 5 Comparison of the f1-score achieved for various algorithms and scenarios

1449Pattern Analysis and Applications (2021) 24:1441–1449

1 3

8 Conclusions

In this paper, we propose innovative anomaly detection that
utilizes innovative time windows embedding solutions that
efficiently process a massive amount of data, while having a
low-memory-footprint at the same time. The core anomaly
detection is based on the transformer’s encoder unit followed
by a two-layer feed-forward neural network. In the paper, we
have formally evaluated various machine-learning schemes
in order to compare these with the proposed approach and
to discuss their effectiveness in the IoT-related context. The
proposal is supported by detailed experiments that have been
conducted on the recently published Aposemat IoT-23 data-
set. Our experiments show that the proposed approach that
leverages the transformer-based classification performs best
in most of the considered scenarios.

Acknowledgements This work is funded under PREVISION pro-
ject, which has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No.
833115.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Andrysiak T, Saganowski Ł, Choraś M, Kozik R (2014) Net-
work traffic prediction and anomaly detection based on arfima
model. In: International Joint Conference SOCO’14-CISIS’14-
ICEUTE’14, pp. 545–554. Springer

 2. BitDefender: Ring video doorbell pro under the scope (2019).
https:// www. bitde fender. com/ files/ News/ CaseS tudies/ study/ 294/
Bitde fender- White Paper- RDoor- CREA3 949- en- EN- Gener icUse.
pdf

 3. Caviglione L, Choraś M, Corona I, Janicki A, Mazurczyk W,
Pawlicki M, Wasielewska K (2020) Tight arms race: overview of
current malware threats and trends in their detection. IEEE Access

 4. Cheng Z, Beshley M, Beshley H, Kochan O, Urikova O (2020)
Development of deep packet inspection system for network traffic
analysis and intrusion detection. In: 2020 IEEE 15th International
Conference on Advanced Trends in Radioelectronics, Telecom-
munications and Computer Engineering (TCSET), pp. 877–881

 5. Choraś M, Pawlicki M (2020) Intrusion detection approach based
on optimised artificial neural network. Neurocomputing

 6. Claise B (2004) Cisco systems netflow services export version 9.
rfc 3954 (informational)

 7. F-Secure: the f-secure attack landscape report H1-2020 (2020).
https:// www.f- secure. com/ conte nt/ dam/ press/ de/ media- libra ry/
repor ts/F- Secure- attack- lands cape- h12020. pdf

 8. Flanagan K, Fallon E, Awad A, Connolly P (2017) Self-configur-
ing netflow anomaly detection using cluster density analysis. In:
2017 19th International Conference on Advanced Communication
Technology (ICACT), pp. 421–427

 9. Fu R, Zhang Z, Li L (2016) Using lstm and gru neural network
methods for traffic flow prediction. In: 2016 31st Youth Academic
Annual Conference of Chinese Association of Automation (YAC),
pp. 324–328

 10. Garcia S (2014) dentifying, modeling and detecting botnet behav-
iors in the network. Ph.D. thesis, Instituto Superior de Ingenier’ıa
de Software Tandil Departamento de Computacio’n y Sistemas

 11. Hardegen C, Pfülb B, Rieger S, Gepperth A (2020) Predicting
network flow characteristics using deep learning and real-world
network traffic. IEEE Transactions on Network and Service Man-
agement pp. 1–1

 12. Komisarek M, Choraś M, Kozik R, Pawlicki M (2020) Real-time
stream processing tool for detecting suspicious network patterns
using machine learning. In: Proceedings of the 15th International
Conference on Availability, Reliability and Security, pp. 1–7

 13. Liu X, Tang Z, Yang B (2019) Predicting network attacks with cnn
by constructing images from netflow data. In: 2019 IEEE 5th Intl
Conference on Big Data Security on Cloud (BigDataSecurity),
IEEE Intl Conference on High Performance and Smart Comput-
ing, (HPSC) and IEEE Intl Conference on Intelligent Data and
Security (IDS), pp. 61–66

 14. Naseer S, Saleem Y, Khalid S, Bashir MK, Han J, Iqbal MM, Han
K (2018) Enhanced network anomaly detection based on deep
neural networks. IEEE Access 6:48231–48246. https:// doi. org/
10. 1109/ ACCESS. 2018. 28630 36

 15. Pawlicka A, Jaroszewska-Choras D, Choras M, Pawlicki M (2020)
Guidelines for stego/malware detection tools: achieving gdpr com-
pliance. IEEE Technol Soc Mag 39(4):60–70

 16. Tenable: Blink XT2 sync module multiple vulnerabilities (2019).
https:// www. tenab le. com/ secur ity/ resea rch/ tra- 2019- 51

 17. Thanh CT, Zelinka I (2019) A survey on artificial intelligence in
malware as next-generation threats. Mendel 25:27–34

 18. Xu C, Shen J, Du X, Zhang F (2018) An intrusion detection sys-
tem using a deep neural network with gated recurrent units. IEEE
Access 6:48697–48707. https:// doi. org/ 10. 1109/ ACCESS. 2018.
28675 64

 19. Yang C, Liu J, Kristiani E, Liu M, You I, Pau G (2020) Netflow
monitoring and cyberattack detection using deep learning with
ceph. IEEE Access 8:7842–7850

 20. Yeo M, Koo Y, Yoon Y, Hwang T, Ryu J, Song J, Park C (2018)
Flow-based malware detection using convolutional neural net-
work. In: 2018 International Conference on Information Network-
ing (ICOIN), pp. 910–913. https:// doi. org/ 10. 1109/ ICOIN. 2018.
83432 55

 21. Zaman M, Lung C (2018) Evaluation of machine learning tech-
niques for network intrusion detection. In: NOMS 2018 - 2018
IEEE/IFIP Network Operations and Management Symposium, pp.
1–5

 22. Zhang H, Dai S, Li Y, Zhang W (2018) Real-time distributed-ran-
dom-forest-based network intrusion detection system using apache
spark. In: 2018 IEEE 37th International Performance Computing
and Communications Conference (IPCCC), pp. 1–7

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://www.bitdefender.com/files/News/CaseStudies/study/294/Bitdefender-WhitePaper-RDoor-CREA3949-en-EN-GenericUse.pdf
https://www.bitdefender.com/files/News/CaseStudies/study/294/Bitdefender-WhitePaper-RDoor-CREA3949-en-EN-GenericUse.pdf
https://www.bitdefender.com/files/News/CaseStudies/study/294/Bitdefender-WhitePaper-RDoor-CREA3949-en-EN-GenericUse.pdf
https://www.f-secure.com/content/dam/press/de/media-library/reports/F-Secure-attack-landscape-h12020.pdf
https://www.f-secure.com/content/dam/press/de/media-library/reports/F-Secure-attack-landscape-h12020.pdf
https://doi.org/10.1109/ACCESS.2018.2863036
https://doi.org/10.1109/ACCESS.2018.2863036
https://www.tenable.com/security/research/tra-2019-51
https://doi.org/10.1109/ACCESS.2018.2867564
https://doi.org/10.1109/ACCESS.2018.2867564
https://doi.org/10.1109/ICOIN.2018.8343255
https://doi.org/10.1109/ICOIN.2018.8343255

	A new method of hybrid time window embedding with transformer-based traffic data classification in IoT-networked environment
	Abstract
	1 Introduction
	2 Related work
	3 Proposed method
	3.1 Flow-based data acquisition
	3.2 Time window embedding with probabilistic data structures

	4 Frequent items and distinct counting - the problem overview
	4.1 Count-min data structure
	4.2 HyperLogLog sketch

	5 Classification with transformer
	6 Experiments
	6.1 The goal of the experiments
	6.2 Aposemat IoT-23 dataset
	6.3 Experimental protocol
	6.4 Evaluation metrics

	7 Results
	8 Conclusions
	Acknowledgements
	References

