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Abstract
The Internet of Things (IoT) appliances often expose sensitive data, either directly or indirectly. They may, for instance, tell 
whether you are at home right now or what your long or short-term habits are. Therefore, it is crucial to protect such devices 
against adversaries and has in place an early warning system which indicates compromised devices in a quick and efficient 
manner. In this paper, we propose time window embedding solutions that efficiently process a massive amount of data and 
have a low-memory-footprint at the same time. On top of the proposed embedding vectors, we use the core anomaly detection 
unit. It is a classifier that is based on the transformer’s encoder component followed by a feed-forward neural network. We 
have compared the proposed method with other classical machine-learning algorithms. Therefore, in the paper, we formally 
evaluate various machine-learning schemes and discuss their effectiveness in the IoT-related context. Our proposal is sup-
ported by detailed experiments that have been conducted on the recently published Aposemat IoT-23 dataset.
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1  Introduction

In March of 2019, only two months after a similar attack 
on Altran Technologies, the LockerGoga ransomware was 
used against Norsk Hydro, the largest aluminum manufac-
turer in Europe, hiring over 35000 people and having sites 
in more than 50 countries all across the globe. The attack 
caused a serious decrease in production and issues with the 
execution of the ongoing contracts. The losses were esti-
mated to equal millions of dollars per day, and the grand 
total of losses was estimated to reach hundreds of millions 
of dollars. The attack occurred on 18/19 March 2019, mostly 
impacting the infrastructure in Norway, and other countries 
to a lesser extent. It resulted in the shutdown of the global 
Norsk Hydro network.

The attack affected work at the offices (causing, for 
example, problems with order documentation) as well as 

the industrial manufacturing, where, besides other issues, the 
manufacturing drivers had to be uploaded manually through 
usb drives.

The attack was a cyber-criminal case committed for 
financial gains. The ransomware had turned off a part of the 
system’s security mechanisms, as well as the data backup 
processes, before starting data encryption. All the local user 
passwords were changed.

The ‘Ransom’ was not paid, the recovery of data from 
backups took months. As of March 2019, the LockerGoga 
ransomware was undetectable by 67 of the state-of-the-art 
antiviruses. The experts noted that better anomaly detection 
systems could have prevented the incident.

In June 2019, a vulnerability in the Amazon Ring Video 
Doorbell was discovered. The flaw in the product’s security 
made it possible to connect to the home WiFi and possi-
bly exploit other connected devices [2]. A similar issue was 
discovered in the Amazon Blink XT2 security camera. The 
security flaw, which was discovered in August 2019, allowed 
unauthorised users to view the footage from the cameras and 
listen to their audio. In fact, the flaw made it extremely easy 
to gain root access to the device [16].
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The ’Attack Landscape’ report illustrates that a number 
of network attacks are carried over Telnet and Secure Shell 
(SSH) with a high probability of targeting IoT devices [7].

Therefore, in this paper, we propose a new innovative 
method to detect anomalies in IoT environment.

The major contribution of this work is the proposition of 
a time window embedding solution with a transformer-based 
classification scheme.

The remainder of this paper is structured as follows: In 
Sect. 2, the related work is overviewed, in Sects. 3- 5 the 
proposed method is described, experimental setup is pre-
sented in Sect. 6, while the results are reported in Sect. 7. 
Conclusions are drawn thereafter.

2 � Related work

In the literature, there are two approaches to intrusion detec-
tion, namely the signature-based and anomaly-based ones. 
Typically, when the attack is deterministic, one can develop 
a signature that will allow for its detection. However, nowa-
days attackers use various obfuscation techniques to evade 
such detection mechanisms. Therefore, the cybersecurity 
community is investing its efforts in the anomaly detection 
system. These turn to be more effective in detecting new and 
unknown (so called 0-day) cyber-attacks [21].

In [3], the authors performed a survey of current tenden-
cies in cybersecurity and concluded that two major trends 
emerge - one is that old, proven methods are still in use 
in many applications. The other is that machine-learning-
based (ML) approaches are increasingly more prominent. 
Furthermore, [17] points out that ML is now used on both 
the malware and security sides.

When it comes to network traffic analysis, two popu-
lar approaches are used by experts from the cybersecurity 
domain. One is based on deep packet inspection [4], while 
the other relies on network flows analysis [11]. One of the 
most popular protocols for network flow data collection is 
NetFlow [6]. That kind of data is often captured by Internet 
service providers for auditing and performance monitoring 
purposes. NetFlow samples do not contain much of sensi-
tive data and therefore are widely available. However, the 
disadvantage is that such samples do not contain the raw 
content of network packets. Such details are valuable and 
can improve the effectiveness of malware detection. How-
ever, these are rarely available because of the encryption, 
which is often utilized by the end-points terminal.

The current research shows that the network flow data 
can be effectively analyzed using various machine-learning 
techniques such as unsupervised clustering [8], Random-
Forests (RF) [22], or deep learning [19]. The authors of [5] 
present a range of deep neural network topologies and test 
the influence of hyperpaprameter setups on the accuracy of 

the solution. On the flip-side, in [12], a stream processing 
framework capable of employing a range of ML algorithms 
for intrusion detection is presented.

Obviously, the different methods vary in the way they 
process the NetFlow data. For instance, in [10], the authors 
proposed a solution called CCDetector. It uses a state-based 
behavioral model of the Command and Control channels. 
The author of this algorithm adapts the Markov Chain to 
model malware behavior and to detect similar traffic in 
unknown real networks. The difference from the BClus (and 
our approach) is the fact that instead of analyzing the com-
plete traffic of an infected computer as a whole, the authors 
separate each individual connection from each IP address 
and treat these as an independent connection. The results 
obtained with this method are very promising. However, one 
of the concerns is the complex and time-consuming learn-
ing phase.

In opposite to that, in [19], the authors have adapted 
recurrent neural networks (RNN) with long short-term 
memory (LSTM) units on top of the NetFlow data. In addi-
tion to that they also used a flexible distributed architecture 
to handle the curation of large amount of data.

An interesting approach, which maps the NetFlow data 
to the image representation, has been presented in [13]. In 
order to construct the images, the authors have used such 
techniques as feature correlation analysis and correlation 
matrices. The images have been analyzed with a convolution 
neural network (CNN) in order to detect intrusions. Accord-
ing to the authors, this method achieves high accuracy.

A CNN for flow-based malware detection is also pro-
posed in [20]. The authors advocate that current detection 
systems are overreliant on certain network features, like the 
port number, which could introduce a blind spot in the sys-
tem. Thus, they calculate 35 features with the use of Net-
mateto to fully express the state of the network and provide 
those to the CNN and other ML algorithms.

The authors of [18] present a deep network model capa-
ble of automatic feature extraction, which takes time-related 
characteristics into consideration. To achieve that a GRU 
network along with a multilayer perceptron (MLP) is used. 
The authors also test a network with LSTM cells.

The authors of [14] evaluate autoencoders (sparse, 
denoising, contractive, convolutional), LSTM, and CNN for 
network intrusion detection. Autoencoders obtain the latent 
representation of the feature set. When the hidden layer has 
fewer neurons than the input/output layers, it is called a bot-
tleneck, discriminative, coding, or abstraction layer. Using 
such a bottleneck forces the topology to acquire the most 
significant features.

In [9], instead of flow classification, the flow predic-
tion approach is used. In order to achieve this, the authors 
combine an RNN (with gated recurrent units) with the so-
called linear regression layer, which allows for producing 
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prediction in a similar fashion as auto-regressive integrated 
moving average (ARIMA) models do with time series.

In [1], the authors used the auto-regressive fractionally 
integrated moving average (ARFIMA) model and proposed 
the Hyndman-Khandakar algorithm to estimate the polymo-
nials parameters and the Haslett and Raftery algorithm to 
estimate the differencing parameters for network anomaly 
detection.

3 � Proposed method

The proposed solution (see Fig. 1) captures network flows 
(as streams), calculates feature vectors over a predefined 
time window, provides these vectors to a binary classifier, 
which eventually produces the detection output (benign for 
normal traffic or anomaly for traffic containing suspicious 
patterns). In the next section, the details on each of these 
processing steps will be provided. First, the overview of the 
input data is given, and then, the effective methods for fea-
ture extraction are elaborated upon. Finally, a brief descrip-
tion of the classification methods incorporated in this work 
is provided.

3.1 � Flow‑based data acquisition

Conceptually, in this approach, the data are collected from 
the network in the form of communication flows travers-
ing such devices as switches, routers, or hosts. This kind 
of data captures aggregated network properties and statis-
tics. From the architectural point of view, the network traf-
fic going through the flow-enabled devices is collected and 
later on sent to the collectors - the network elements, which 
store them and keep them for the operator for later analysis. 
In particular, network flows are often used by the network 
administrators for auditing purposes. A single flow aggre-
gates such characteristics as:

–	 incoming and outgoing number of bytes
–	 IP addresses taking part in the communication
–	 utilized source and destination ports

–	 utilized type of protocol (e.g., Transmission Control Pro-
tocol (TCP) or User Datagram Protocol (UDP))

(e.g., the number of bytes sent and received) about packets 
that have been sent by a specific source address to a specific 
destination address. It is obvious that it must be possible to 
identify some patterns of anomalous behavior of network 
nodes from such kind of data. Some of these patterns may be 
related to malware infection or help the network administra-
tor to identify adversaries.

3.2 � Time window embedding with probabilistic 
data structures

The rationale behind the proposed embedding is to encode a 
network flow using only its nearest neighborhood in the time 
domain. This approach allows us to capture some short-term 
malicious behavior of specific network elements and nodes.

In the proposed approach, we calculate the statistical 
properties of a group of flows that have been collected for a 
specific source IP address within short and fix-length time 
spans called time windows.

As it was presented in the previous section, a single flow 
exhibits various characteristics describing the two-way com-
munication (e.g., number of flows, destination IP, etc.). For 
each of these characteristics, it is possible to calculate vari-
ous statistical properties such as mean, median value, min/
max values. In order to make it clear what is being calculated 
for each of those characteristics, we have included Table 1. 
Overall, it leads to the situation where the traffic character-
istics produced by a single IP address within the considered 
tumbling time window are described by 37 values.

In general, counting the number of flows and/or accu-
mulating the sum of inbound and outbound packets may 
be trivial, but the situation is different when it comes to 
distinct counting or finding the most frequent element (e.g., 
destination port) in the stream of data. The straightforward 
approach would be to maintain a dynamic list. Whenever a 
new element is retrieved from the stream, one must scan the 
entire list and check whenever that element is there. If not, 
the list needs to be resized and new element added. Moreo-
ver, there is another level of complexity when we want to 

Fig. 1   Tumbling windows - 
example of window statistics 
embedding
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merge the results obtained from two concurrent processes 
that perform distinct counting.

There is a class of data structures which are known as 
probabilistic (or sketchy). These have the ability to describe 
remarkably large sets with sub-logarithmic or constant space 
complexity. That implies that there is no need to scale-up 
the data processing system when it undergoes the transition 
from thousands, to millions, or even billions of records that 
need to be analyzed.

Probabilistic data structures rely on various mechanisms 
to compress data, and often, these mechanisms may cause 
them to contain inaccurate information.

However, this inaccuracy should not have a strong impact 
on the detection part. The assumption is based on the obser-
vation that the classifiers can handle such changes to some 
extent and be able to return the correct decision. It must be 
noted that here we are talking about changes that are within 
a range of 1–2% for one of the features building the vector.

Probabilistic data structures have several advantages. First 
of all, the size of such structures grows significantly slower 
with respect to the input data. In many cases, it is orders of 
magnitude smaller. Moreover, it is also possible to make the 
trade-off between the accuracy of prediction vs. the size of 
the data structure. They are naturally suited for measuring 
network traffic, which has a form of streaming data, where 
each item in the stream needs to be analyzed quickly and in 
needs to update a data structure that summarises some prop-
erties (e.g., the number of distinct IP addresses or the most 
frequently used service). A substantially useful property of 
the probabilistic data structures is the ability to be merged. 
It means that when the stream is split into two parts and the 
summary over them is calculated separately, the result will 
be the same as if it was calculated over the entire (original) 
stream. As a result, this makes the probabilistic structure 
highly parallelizable and suitable for distributed computing 
platforms (e.g., Hadoop, Spark, Druid, etc.)

4 � Frequent items and distinct counting ‑ 
the problem overview

In order to calculate the most frequent destination port or 
destination host (or even concatenation of both) originating 
from a specific IP address, one may use data structures such 
as a hash table to accomplish that. In such a case, the new 
item is put in the hash table and the counter for that item is 
set to 0. Whenever the entry in the hash table already exists, 
a counter is just incremented. However, such an approach 
may quickly become impractical when the amount of input 
data is significant, because of two reasons. Firstly, along 
with the growing size of the input data, the hash table will 
grow as well and eventually its capacity will exceed the 
amount of available RAM memory. Secondly, the colli-
sions in the hash table are handled as a linked list. It means 
that whenever a new item is hashed to the bucket that is 
already taken, it will be appended (linked) after the existing 
one. Therefore, when the list becomes longer and longer, 
the access time to such elements in the hash table will be 
substantially longer as well. Also, the dynamic allocation of 
the memory (for a new element) is also time consuming. In 
this section, the most important sketchy data structures that 
have been used in this research are described.

4.1 � Count‑min data structure

Count-min (CM) data structure allows for counting of items 
that are of a different type, e.g., how many times a specific 
IP address has contacted port 8080. From the scientific point 
of view, CM is an array of width w and depth d CM[1, 1] 
...CM[d, w]. It uses a set of d hash functions:

(1)h1 … hd ∶ {1… n} → {1… d}

Table 1   Overview of all the 
features extracted from network 
flows

Min Max Avg Median Unique count Most frequent

Number of flows + + + +

Destination port + +

Destination address + +

Protocol + +

Inbound packets + + + +

Outbound packets + + + +

Total packets + + + +

Inbound bytes + + + +

Outbound bytes + + + +

Total bytes + + + +

Port-protocol pair +

IP-port pair +

IP-port-prot. triplet +
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which belong to a random pairwise-independent family of 
functions. The width w and depth d are chosen based on 
allowed by user error rates and are calculated as:

where � (an acceptable error in estimation) is the error factor 
and � is the error probability. At the beginning, the CM array 
is initialized with 0 values. Each time the count needs to be 
updated for a specific value x, the hash functions are calcu-
lated and modded with the width w. This yields the column 
number col = hn(x)%w . Finally, the cell at position (n, col) 
in the CM array is incremented by one. We use a similar 
approach when querying the data structure. We simply take 
the modded values obtained from hash functions and find the 
minimum. The visual representation of the concept behind 
the count-min data sketch is presented in Fig. 2.

4.2 � HyperLogLog sketch

HyperLogLog (HLL) belongs to a family of algorithms that 
aim at estimating the cardinality of a dataset. It relies on 
the probabilistic counting method. Assuming that we have 
a large data set with duplicated entries, we can evenly dis-
tribute the elements in the dataset using a hashing func-
tion and estimate the cardinality using the hashed values. 
The common approach is to count the leading zeros in the 
binary representation of the hashed values. The probability 
of observing n leading zeros is equal to 1

2n
 . In other words, if 

we denote p(v1) as a number of leading zeros in v1 , we can 
calculate the cardinality as n = 2R , where:

The visual representation of the HyperLogLog data sketch 
is presented in Fig. 3.

(2)w =

⌈

e

�

⌉

d =

⌈

ln
1

�

⌉

(3)R = max(p(v1), p(v1),… , p(vm))

Obviously, a single estimator of that kind is subject to 
high variance. Therefore, the common approach is to use 
several estimators and to average the results. This can be 
achieved using several independent hash functions.

5 � Classification with transformer

Transformers have been proposed in the area of natural lan-
guage processing (NLP). This is a relatively novel archi-
tecture that aims at solving sequence-to-sequence problems 
while handling long-range dependencies. The original trans-
former architecture involves the so-called encoding and 
decoding parts. In this research, only the encoder is used 
(see Fig.4), since the aim is to encode the behavior of spe-
cific node elements using the latent representation produced 
by the encoder part of the transformer architecture.

The data are ingested into the transformer using the time 
windows embedding technique described in the previous 
section. In general, several network flows belonging to a 
specific time window and related with a specific IP address 
are encoded using the technique leveraging probabilistic data 
sketches. This operation results in vectors of a fixed length. 
The transformer works with sequences, which in our case 
describe the behavior of a specific network element over the 
defined time period. The sequence is composed by putting 
several embedding vectors one next to another.

Next, the sequence of vectors goes through the positional 
encoding, which allows us to capture the order of the vector 
in the input sequence. This looks quite useful from our per-
spective, because usually the attacker executes some series 
of actions in order to carry out a successful cyberattack.

Afterward, the positionally encoded input reaches the 
multiheaded attention layer. From a high perspective, this 
layer allows the model to look at other positions in the 
input sequence for clues that can improve the final detec-
tion. For example, the infected machine would try to contact 
the botmaster if a few moments before it was infected with 
malware.

In the next step, the information coming from the self-
attention is normalized and goes to the feed-forward layer, 
the output of which is normalized as well. As it is depicted in 
the diagram, there are two residual connections: one around 
the self-attention and the other around the feed-forward 
layer.

Because the input leaving the transformer layer contains 
one output vector for each element in the input sequence, we 
use the average pooling layer. It takes the mean across all 
the elements in the input. Finally, on top of the entire model, 
we used two layers of the feed-forward network with two 
outputs, one to indicate the benign sequence and the other 
to indicate the anomalous sequence.Fig. 2   Count-min data structure - overview of the architecture
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6 � Experiments

6.1 � The goal of the experiments

The goal of the experiments is to compare the proposed 
approach with the state-of-the-art methods. In this paper, we 
have considered two different evaluation scenarios. Firstly, 
we investigate how the proposed time window embedding 
technique operates along with the transformer-based anom-
aly detection architecture. In that regard, we have compared 
our approach with RandomForest (with 500,100,10 trees, 
respectively), vanilla REPTree (decision/regression tree), 
and AdaBoosted version of REPTree. Secondly, we investi-
gate to what extends the proposed model is able to general-
ize to unknown malware infection scenarios. In that regard, 
we have considered various test-case scenarios where the 
models are trained and evaluated on malicious samples that 
have been recorded for different attacks (or infections).

6.2 � Aposemat IoT‑23 dataset

IoT-23 is a dataset of network traffic from Internet of Things 
(IoT) devices. It has 20 malware captures executed in IoT 
devices, and three captures for benign IoT devices traffic. It 
was first published in January 2020, with captures ranging 
from 2018 to 2019. This IoT network traffic was captured 
in the Stratosphere Laboratory, AIC group, FEL, CTU Uni-
versity, Czech Republic. Its goal is to offer a large dataset of 
real and labelled IoT malware infections and IoT benign traf-
fic for researchers to develop machine-learning algorithms. 
This dataset and its research is funded by Avast Software, 
Prague. In addition to easier reproducibility of the study, 
using a benchmark dataset allows to handle various privacy 
issues, as outlined in [15].

6.3 � Experimental protocol

The dataset was split into training and testing parts. This is 
explained in Table 2. Different scenarios are used, where 
different parts of the original dataset have been employed. 
We followed such an approach in order to prove that the 
proposed method can generalize well to unknown malware 
families. In that regard, we have used different scenarios 
(malware families) for training and testing the models. 
Nonetheless, some malware names appear both in training 
and testing. However, these malware are recorded in dif-
ferent network captures, which concern different contexts 
(different network elements, different IoT devices, etc.)

Additionally, for the training part of the dataset, five-
fold cross-validation was adapted. This allowed to cal-
culate the standard deviation of measured performance 

characteristics. Moreover, this also enables the discussion 
on the significance of differences obtained for various 
approaches. For that matter, t-test statistical hypothesis 
test was used.

Table 2   IoT23 dataset - scenarios setup (x and – indicate training and 
validation sets, respectively)

Scenario Malware

1 2 3 4

CTU-Honeypot-Capture-4-1 x x x x Benign
CTU-Honeypot-Capture-5-1 x x x x Benign
CTU-Honeypot-Capture-7-1 x x x x Benign
CTU-IoT-Malware-Capture-34-1 x x x x Mirai
CTU-IoT-Malware-Capture-43-1 x x x x Mirai
CTU-IoT-Malware-Capture-1-1 x x x x Hide&Seek
CTU-IoT-Malware-Capture-3-1 x x x x Muhstik
CTU-IoT-Malware-Capture-35-1 x x x x Mirai
CTU-IoT-Malware-Capture-39-1 x x x - IRCBot
CTU-IoT-Malware-Capture-7-1 x x x - Mirai
CTU-IoT-Malware-Capture-8-1 x x x - Hakai
CTU-IoT-Malware-Capture-9-1 x x x - Hajime
CTU-IoT-Malware-Capture-20-1 x x x - Torii
CTU-IoT-Malware-Capture-21-1 x x x - Torii
CTU-IoT-Malware-Capture-42-1 x x x - Trojan
CTU-IoT-Malware-Capture-17-1 x x - - Kenjiro
CTU-IoT-Malware-Capture-36-1 x x - - Okiru
CTU-IoT-Malware-Capture-33-1 x - - - Kenjiro
CTU-IoT-Malware-Capture-48-1 x - - - Mirai
CTU-IoT-Malware-Capture-44-1 - - - - Mirai
CTU-IoT-Malware-Capture-49-1 - - - - Mirai
CTU-IoT-Malware-Capture-52-1 - - - - Mirai
CTU-IoT-Malware-Capture-60-1 - - - - Gagfyt

Fig. 3   Architecture of HyperLogLog data structure
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6.4 � Evaluation metrics

Before using various machine-learning algorithms, the raw 
network flows are processed in order to produce the time 
window embedding vectors. The procedure is detailed in 
the previous sections. The procedure for calculating met-
rics is as follows: 

1.	 communication flows are aggregated into time windows 
(here we have used 3 min. time windows).

2.	 for given time, windows embedding vectors are calcu-
lated

3.	 within the ground-truth communication flows, labels are 
examined against the predicted ones and the TP, TN, FP, 
and FN errors (true and false positives and negatives) are 
measured.

4.	 finally, Recall, Precision, F-measure Rate are estimated 
and reported.

Fig. 4   The architecture of the 
proposed transformer-based 
classifier
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7 � Results

The results for classification parts are presented in Table 3. 
We have compared the proposed transformer-based 
approach against various and popular machine-learn-
ing techniques. On the list, there is a decision tree and 

classifiers ensembles (one is AdaBoost, while the other is 
the well-known RandomForest).

The t-test statistical hypothesis test was used to vali-
date that the results obtained by the proposed approach are 
significantly different from the other compared methods. 
In that regard, the values followed by ± symbol (Table 3) 
indicate standard deviation.

It must be noted that we have used different sce-
narios for training and testing the models. This proves 
the approach can generalize well to unknown malware 
families.

What can be found in Table 3 is that these base-line 
methods behave quite well. However, the transformer-
based approach outperforms other methods in most of the 
considered scenarios. It is quite vivid for f1-score metric 
that has been visually presented in Fig.5. It must be noted 
that the transformer-based approach allowed us to achieve 
remarkably good results for the fourth scenario, where less 
than 40% of the original datasets is used.

The second good results are reported for the Random-
Forest. The experiments show that increasing the number 
of trees above 100 does not bring much to the effective-
ness. The Adaptive Boosting (AdaBoost) ensemble of 
REPTrees performs well for the first and the second sce-
narios; for the scenarios 3 and 4, this method stays a bit 
behind the RandomForest.

What can be found interesting is the observation that 
the f1-score does not change that much between scenarios 
1,2,3 and 4 for the proposed method. On the other hands, 
one can observe quite significant fluctuations for the other 
approaches. In particular, this change is much more sig-
nificant for Reduced Error Pruning Decision Tree (REP-
Tree) and Adaptive Reduced Error Pruning Decision Tree 
(AdaREPT) classifiers.

Table 3   Effectiveness comparison for different classifiers and sce-
narios

Scenario Method Precision Recall f1-score

1 Proposed 
method

0.902 ± 0.001 0.967 ± 0.005 0.934 ± 0.003

2 0.912 ± 0.003 0.940 ± 0.008 0.926 ± 0.005

3 0.916 ± 0.003 0.977 ± 0.002 0.945 ± 0.002

4 0.910 ± 0.002 0.964 ± 0.004 0.936 ± 0.002

1 RF500 0.866 ± 0.001 0.928 ± 0.001 0.896 ± 0.001

2 0.858 ± 0.001 0.803 ± 0.000 0.829 ± 0.001

3 0.866 ± 0.000 0.877 ± 0.000 0.872 ± 0.000

4 0.859 ± 0.001 0.930 ± 0.000 0.893 ± 0.001

1 RF100 0.877 ± 0.002 0.943 ± 0.001 0.909 ± 0.001

2 0.861 ± 0.002 0.791 ± 0.004 0.825 ± 0.001

3 0.871 ± 0.003 0.873 ± 0.000 0.872 ± 0.002

4 0.867 ± 0.001 0.928 ± 0.003 0.896 ± 0.002

1 RF10 0.838 ± 0.002 0.814 ± 0.003 0.826 ± 0.002

2 0.803 ± 0.003 0.670 ± 0.005 0.730 ± 0.003

3 0.861 ± 0.003 0.909 ± 0.001 0.884 ± 0.001

4 0.846 ± 0.007 0.826 ± 0.002 0.836 ± 0.004

1 REPTree 0.833 ± 0.004 0.762 ± 0.001 0.796 ± 0.002

2 0.846 ± 0.005 0.717 ± 0.002 0.776 ± 0.002

3 0.808 ± 0.005 0.766 ± 0.003 0.786 ± 0.003

4 0.844 ± 0.003 0.945 ± 0.003 0.892 ± 0.002

1 AdaBoost 0.813 ± 0.002 0.763 ± 0.003 0.788 ± 0.002

2 0.836 ± 0.006 0.643 ± 0.003 0.727 ± 0.004

3 0.819 ± 0.005 0.710 ± 0.003 0.761 ± 0.003

4 0.807 ± 0.003 0.697 ± 0.003 0.748 ± 0.001
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Fig. 5   Comparison of the f1-score achieved for various algorithms and scenarios
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8 � Conclusions

In this paper, we propose innovative anomaly detection that 
utilizes innovative time windows embedding solutions that 
efficiently process a massive amount of data, while having a 
low-memory-footprint at the same time. The core anomaly 
detection is based on the transformer’s encoder unit followed 
by a two-layer feed-forward neural network. In the paper, we 
have formally evaluated various machine-learning schemes 
in order to compare these with the proposed approach and 
to discuss their effectiveness in the IoT-related context. The 
proposal is supported by detailed experiments that have been 
conducted on the recently published Aposemat IoT-23 data-
set. Our experiments show that the proposed approach that 
leverages the transformer-based classification performs best 
in most of the considered scenarios.
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