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Abstract
Dictionaries are known tools used in different branches of image processing like edge detection, inpainting and, etc. Segmen-
tation is the task of extracting an object as the part of a particular image. The common drawback of different segmentation 
methods is that they perform the extraction task incompletely. Tasks like edge detection, denoising and smoothing, as the 
parts of segmentation, can be done through applying the dictionaries. In this paper, we propose three new contrast stretch-
ing function. Based on one of the stretching functions and shearlets as a dictionary, we improved the previous version of a 
method that has been used in binary segmentation for magnetic resonance angiography images (MRI). We also introduce a 
three-stage binary image segmentation algorithm for vessel segmentation in MRI images. There are some disadvantages in 
recent proposed methods when dealing with extracting vessels of medical images. Our algorithm does the task with a more 
accurate extraction in detecting vessels having low intensity and weak edges in MRI.

Keywords  Vessel segmentation · Medical images · Shearlets · Contrast stretching

1  Introduction

Segmentation is a process of partitioning an image into dis-
tinct parts in which the pixels in each part are homogene-
ous with respect to a particular feature like intensity. This 
process is usually applied to extract a target object out of 
the image. There is a broad application of this procedure in 
medical sciences, where for example we analyze magnetic 
resonance angiography images (MRI).

Medical imaging is a noninvasive approach used for 
observing and studying interior tissues of human body. Seg-
mentation of tube-like objects in 2D images is an important 
problem, and the result of this task can be used to solve 
some other problems like vessel segmentation in medical 
images. The main purpose of this paper is to detect tubular 

and branching structures , especially for the images with 
weak edges and intensity close to the background.

There are involved parameters, e.g., varying intensities 
and thickness, false discontinuities and twisting, when deal-
ing with medical images that make this kind of problems 
hard to deal with. Furthermore, in this type of images, there 
are some additional factors, e.g., noise and blur that make 
the segmentation process complicated. In medical images, 
contamination of images with blur and noise might occur 
in any stage of the imaging process. Moreover, we must 
consider other factors like inhomogeneity and low contrast 
in the images. Considering segmentation problem, the effi-
ciency of an algorithm is the potential of it when segmenting 
an image in the presence of all these factors.

Segmentation is a very powerful tool in different branches 
of medicine, like anatomy identification of a tissue, planning 
for surgery, discovering of abnormal tissues like tumors, 
assessing a patient’s condition before surgery, determina-
tion of vessels obstruction in heart disease and angiography 
and, etc.

The segmentation methods that are based on space feature 
of images can be grouped as: 

1.	 Edge-based methods
2.	 Region-based methods
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3.	 Pixel- or intensity-based methods .

By this classification, our algorithm is in the first and the 
second groups.

There are different approaches in the literature for vessel 
segmentation [1–11]. For some good review on the subject, 
see [12–14]. Below, we give a brief account of some of these 
methods.

Deformable models are applied to the vessel segmenta-
tion [3, 5, 8, 10, 11]. They are initiated from a curve as an 
object boundary estimation and then a functional depending 
on the regularity and structure of a surface is minimized by 
the curve evolution. Explicit deformable models [15] have 
some disadvantages such as inaccurate computation of nor-
mal and curvatures and costly computations. Level-set mod-
els, as implicit deformable models, are applied to tubular 
structure segmentation as well [6, 9, 16, 17]. Similarly, they 
are computationally expensive methods. The model intro-
duced in [8] for volume data is not capable of detecting the 
thin vessels with having intensity close to the background 
[18]. The geometric deformable model in [5] presented for 
the tubular-like structures segmentation which deforms the 
distance function by a PDE obtained from a total variation 
model. Due to the use of diffusion tensor for the governing 
of directionality, it has the ability in detecting twisted, con-
voluted and, occluded vessels. However, this method also 
has difficulty in dealing with the noisy and blurred vessels 
having weak edges.

Deep learning-based vessel segmentation method pro-
posed in [19] that performed the segmentation task as a 
pixel classification problem. The model introduced in [20] 
benefits of cross-modality data from the retinal image to 
the vessel map and get the label map from all of the given 
image patch pixels. Not using from a global correlation, it 
fails in dealing with a local pathological region. Also, due 
to training and testing phases, it has heavy computational 
complexity.

In [21], as a retinal vessel segmentation method, the 
authors addressed the segmentation task as a boundary 
detection problem using a novel deep learning system, deep 
vessel, constructed by a convolutional neural network and a 
conditional random field. The method presented in [22] was 
specifically designed using U-net [23] as the most promising 
deep learning frameworks for the segmentation tasks which 
has shown high performance for the segmentation of bio-
medical images. Depending on the training data that may not 
be available, is the important disadvantage of such methods.

Besides the above-mentioned methods, tight-frame-based 
approaches in texture classification and segmentation are 
proposed [24, 25]. A minimization model proposed in [4], as 
a convexed version of the Chan–Vese active contour model 
[1], has the minimal partition property and multiresolution 
analysis advantages inherited of the Chan–Vese model and 

tight-frame systems, respectively. This method performs the 
segmentation task of complex structures successfully, but it 
has a weak performance in front of the thin vessels having 
low intensity [18].

In [18], the authors introduced a novel algorithm for 
MRIs that estimates the interval included boundary pixels 
of the vessels and refines it iteratively. Based on the interval, 
it classified boundary pixels as a vessel or background in 
each iteration gradually. Recently, several vessel segmen-
tation methods are proposed based on the shearlets frame 
[26–29]. In [26], the shearlets frame is applied as a regular-
izer of a convex multiclass method. We used shearlets frame 
as a denoising and smoothing tools in [27]. In [28], the 
authors benefit from the shearlets as a denoising tool in the 
preprocessing step of a vessel segmentation algorithm. The 
study [29] proposed a retinal vessel segmentation approach 
using shearlet transform and indeterminacy filtering. In this 
way, the green channel of the fundus image is mapped to the 
neutrosophic domain. Then, indeterminacy filtering is per-
formed on the resulted image to remove uncertain informa-
tion. Finally, the vessels are detected using a neural network.

We build our algorithm based on the proposed effective 
method in [18]. Methods presented in [18, 30] are called 
TFA1, and their modifications are referred to as TFAE2 [27, 
31]. In this paper, using shearlets and a novel stretching 
function, we modify TFA approach which is called SA.3 We 
then introduce a three-stage binary segmentation algorithm 
based on the SA algorithm for vessel segmentation in MRI 
images. We use the fact that in MRI images the intensity 
value of the vessels is usually higher than the background 
intensities.

We describe our proposed algorithm as follow:

•	 Extracting the vessels with high intensity using the SA 
method.

•	 Making a new image by combining the result of the first 
stage and the original image.

•	 Implementing SA on the new image resulted from the 
previous stages.

Our algorithm automatically extracts twisted, convoluted 
and occluded vessels with low intensity and weak edges. 
It can also extract branching structures with various 
thickness accurately. Also, due to using shearlets in each 
stage, this algorithm is more robust against noise. Since 
our algorithm is based on SA method, it has the conver-
gence property as well. The produced results of our algo-
rithm show the efficacy higher than those from TFA, SA 

1  Tight-frame-based algorithm.
2  TFA with Eigenvector.
3  Shearlet-based algorithm.
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and TFAE when applying to synthetic and real medical 
images with a, respectively, quantitative and qualitative 
comparison (see Sect. 5).

We present the rest of the paper as follows. In Sect. 2, 
we explain shearlets as a dictionary and show some their 
advantages. In Sect. 3, we explain TFA and TFAE meth-
ods as the related works. Three novel contrast stretch-
ing functions, our modifications of the TFA algorithm 
and our proposed algorithm are described in Sect. 4. In 
Sect. 5, we compare the results of our algorithm with the 
results of the TFA, SA and TFAE methods. Finally, the 
conclusions are outlined and possible developments of the 
algorithm are suggested.

2 � Shearlets

In applied mathematical analysis, shearlets are a multi-
scale framework that allows efficient encoding of aniso-
tropic features in multivariate problem classes. They were 
introduced for the analysis and sparse approximation of 
functions f ∈ L2(ℝ2) . Since wavelets, as isotropic objects, 
are not capable of capturing anisotropic features such as 
edges in images and multivariate functions are typically 
governed by such phenomena, therefore, we need the 
shearlets as a natural extension of wavelets. Similar to 
wavelets, shearlets arise from the affine group and allow 
a unified treatment of the continuum and digital situation 
leading to faithful implementations. Although they do not 
constitute an orthonormal basis for L2(ℝ2) , they still form 
a frame allowing stable expansions of arbitrary functions 
f ∈ L2(ℝ2).

One of the most important properties of shearlets is 
that they represent a sparse approximation of a function 
f ∈ L2(ℝ2) [32] which means

where fN is a nonlinear approximation of f using shearlets 
[33], which is extracted by using N largest coefficients. 
Shearlets have the following advantages to the other 2D 
dictionaries that allows faithful implementation:

•	 Having analogous structures in both continuous and 
discrete cases.

•	 Initiating from a group of square integrable functions.

Shearlets have a wide range of applications in image pro-
cessing like edge detection, denoising, inpainting and, 
etc, see [34–38]. One of the main properties of shearlets 
that can result in a faster algorithm is that they can be 
implemented by fast Fourier transform.

(1)‖‖f − fN
‖‖2L2 ≤ CN−2(logN)3, N ⟶ ∞

2.1 � Continuous shearlets

Let Aa , Ss be parabolic scaling and shearing matrices, 
respectively, defined as

Then, continuous shearlets �a,s,t is derived by scaling, shear-
ing and translation of the function � ∈ L2(ℝ) :

which has the following Fourier transformation

For every f ∈ L2(ℝ) , the corresponding shearlet transforma-
tion is defined as

For discussions in more details, see [32].
Shearlets have been implemented in different ways [39, 

40], the newest of them used the compact support shearlets 
for the implementation. The related toolbox is available 
as shearlab4 in [41]. We benefit from this toolbox at the 
implementation of the proposed algorithm. The difference 
between shearlets frame and linear piecewise B-spline 
tight-frame in dealing with the additive noise is presented 
in Fig. 1. We see the efficiency of the shearlets frame com-
pared to the linear piecewise B-spline tight-frame.

3 � Related works

In this section, we explain two binary segmentation meth-
ods which have been recently introduced for vessel extract-
ing of MRI images. It should be emphasized that the algo-
rithm introduced in this paper is based on TFA method.

3.1 � TFA method

TFA is a tight-frame-based method which is designed 
for blood vessel segmentation in MRI images [18, 30]. 
This method has advantages, being designed based on 
simple mathematical structure to other methods like 
Chan–Vese active contour model [1], frame-based model 
[4], CURVES method [8] and anisotropic deformable 
method [5]. It has very simple and precise calculation 
results, consequently having less computational complex-
ity than the other methods.
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.
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TFA method uses a special property of MRI images, the 
potential boundary pixels are in an interval which does not 
include pixels of other parts. The main idea is to approxi-
mate this interval and update it in each iteration and clas-
sify the unclassified pixels according to this interval. Pix-
els with the values lower than this interval are mapped to 
zero, those with higher values are mapped to 1 and the 
pixels inside the interval are stretched by a linear method 
described in [42]. Using 2D piecewise linear B-spline, it 
performs smoothing and denoising on the derived image. 
In fact, this technique gradually moves the given image 
toward becoming a binary image in each iteration.

The TFA method is described as follow:
Without loss of generality suppose that the values of 

pixels in the given image are in [0, 1] . The stages of the 
algorithm are as follows:

Stage 0 (Initialization) Regarding f as the given image,

where � is the set of image indices, ∇f j is the jth pixel of 
the discrete gradient of f . �(0) is the initial estimation of the 
positions of the potential boundary pixels.

Following stages are the ith iteration steps:

Stage1 (Computing 
[
�i, �i

]
 ) First, compute the average of f (i) 

On �(i)

Set

(6)f 0 = f

(7)�(0) =

{
j ∈ � ∶

‖‖‖∇fj
‖‖‖1 ≥ �

}

(8)�(i) =
1

||�(i)||
∑
j∈�(i)

f
(i)

j
.

and compute the average of f (i) on them

where |.| is the cardinality of the set and f (i)
j

 is the jth pixel 
value in f (i) ; compute

Stage 2 (Stretching and Thresholding) By setting

if |Q(i)| = 0 , then f (i) is the binary image and the algorithm 
is terminated; otherwise, Mi , mi are computed by

Finally, stretching and thresholding are performed as below

(9)B(i) =

{
j ∈ �(i)|f (i)

j
≤ �(i)

}
,

(10)A(i) =

{
j ∈ �(i)|f (i)

j
≥ �(i)

}

(11)�(i)
−

=
1

||B(i)||
∑
j∈B(i)

f
(i)

j

(12)�
(i)

+ =
1

||A(i)||
∑
j∈A(i)

f
(i)

j
,

(13)�i = max

{
�(i) + �(i)

−

2
, 0

}

(14)�i = min

{
�(i) + �

(i)

+

2
, 1

}
.

(15)Q(i) =

{
f
(i)

j
|�i ≤ f

(i)

j
≤ �i, j ∈ �(i)

}
,

(16)Mi = maxQ(i), mi = minQ(i).

Fig. 1   a Is a noisy MRI b is a 
denoising by the linear piece-
wise B-spline tight-frame and c 
is a denoising by the shearlets 
frame
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Here, the indices of unclassified pixels are obtained by

Stage 3 (Denoising) In this stage, denoising and of f (i+
1

2
) on 

�(i+1) are done.

where A is the linear piecewise B-spline tight-frame trans-
form [43] and T�(.) is the local soft thresholding operator.

Stop criterion The algorithm is terminated when f (i+
1

2
) is a 

binary image or equivalently ||�(i)|| = 0.

∀j ∈ �, f
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1

2
)

j
=
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0, f
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f
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j
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, �i ≤ f
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j
≤ �i

1, f
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j
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(i+
1

2
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.
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j
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f
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1

2
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j
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T
�
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1

2
)
���

j
, j ∈ �(i+1)

A summary of TFA method is provided in Table 1.
The convergence of TFA method is proved by the fol-

lowing argument:
Assume in ith iteration the set Q(i) is nonempty; there-

fore, one of the values in this set is certainly equal to 
Mi(or mi ), which was mapped to 1 (or 0) in stretching 
and thresholding stage. Result is that in the ith iteration 
at least one pixel of the unclassified pixels is reduced. 
Since the number of pixels is finite, so the method will 
be convergent.

3.2 � TFAE method

This method is a modification of TFA based on following 
changes on the original method.

Modifying the stage 0 Replace discrete gradient of the image 
in TFA by convoluting Gaussian kernel derivation with the 
image and use norm 2 instead of norm 1 in the thresholding 
step.

Modifying the stage 1 Add the following parameters to the 
decision parameters of the TFA:

where ��⃗vj is the eigenvector corresponding to the greatest 
absolute value of the eigenvalues of the Hessian matrix of 
the jth pixel of f (i) and �⃗vpmax

.��⃗vj is the dot product of two vec-
tors that measures the similarity of them. Other elements 
are defined as

where pmax is the corresponding index to gradmax . In fact, 
mean(i) is the parameter that measures the average of the 
similarity between eigenvector of pmax and other eigenvec-
tors corresponding to the indices in �(i).

Modifying the stage 2 Change the thresholding and stretch-
ing function to the following:

(18)mean(i) =

∑
j∈𝛬(i) �⃗vpmax

.��⃗vj

��𝛬(i)��
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‖‖‖2 ∣ j ∈ �(i)
}
=
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2
)
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0, f
(i)

j
≤ �i

1,
�
f
(i)

j
≥ �(i), v(pmax).vj ≥ mean(i)

�

f
(i)

j
−mi

Mi−mi

, otherwise.

or
�
f
(i)

j
≥ �i

�

Table 1   TFA algorithm

1. Input: given image f
2. Initialization : set f 0 = f  and compute �(0)

3. While ||�(i)|| = 0 compute:
      (a) compute 

[
�i, �i

]
      (b) stop if |Q(i)| = 0

      (c) compute f (i+
1

2
)

      (d) stop if f (i+
1

2
) is a binary image

      (e) compute �(i+1)

      (f) obtain f (i+1)

4. Output : f (i+
1

2
)
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Modifying the stage 3 Instead of denoising by linear piece-
wise B-Spline tight-frame, use curvelets.

4 � The proposed algorithm

Our work includes three parts as follows: 

1.	 Three new contrast stretching functions are introduced
2.	 TFA method is modified by using one of the new con-

trast stretching functions and shearlet transformation.
3.	 A new three stage segmentation algorithm is constructed 

based on the contrast stretching function and a modified 
version of the TFA.

4.1 � Novel contrast stretching functions

The main purpose of enhancing the contrast of the image 
is that the improved image is better than the original image 
for a particular application, such as segmentation. Improv-
ing the contrast of the image improves the interpretation 
or perception of image information for human beings and 
makes it more suitable for other processing tasks. Image 
contrast enhancement techniques usually depend on the in 
hand problem [42]. This means that a contrast stretching 
function may work for a specific range of images but no that 
practical for other type of images.

Contrast stretching methods can be classified into two 
categories. 

1.	 Spatial domain methods
2.	 Frequency domain methods

In the spatial techniques, we deal with the intensity values 
of the pixels directly. The intensities are given as inputs of 
a function, and the outputs are considered as the alternative 
intensity values.

Image enhancement is applied where the images need to 
be understood and analyzed, such as medical and satellite 
image analysis.

In this section, we propose three new contrast stretching 
functions which are classified as the spatial domain methods. 
They are constructed based on the Sin function and its inver-
sion and called Trigonometric Contrast Stretching (TCS) 
functions. We describe them as the following: 

1.	 The first TCS function we introduce is as follows: 

 where A =
2x−(m+M)

M−m
 . This function is made using a regu-

larized version of the Heaviside function [44].
2.	 The second TCS function is defined as 

 where A =
x−m

M−m
.

3.	 The third TCS function is defined as the inverse of the 
second TCS function: 

 where A =
x−m

M−m
.

In all of the TCS functions, [m,M] ⊆ [0, 1].
In Fig. 2 ,considering [m,M] = [0, 1] , we plot the TCS 

functions. Increasing the variance of the intensities in the 
middle and reducing the variance of the intensities at the 
beginning and the end of the domain is the main property 
of the first and the second TCS functions. In other words, 
they stretch the intensities of the image to begin and end 
of the domain. In MRI images, the intensities in the mid-
dle of the domain are the boundaries of the vessels. The 
artifacts in the background of MRI images disappear, and 
the vessels are brighter after applying the first and the sec-
ond TCS functions. Against them, the third TCS function 
stretches the intensities of the image toward the middle of 

(21)
f1 ∶ [m,M] → [0, 1]

f1(x) =
1

2
(1 + A +

1

�
sin(�A))

(22)
f2 ∶ [m,M] → [0, 1]

f2(x) =
1

2
(1 + sin(�(A −

1

2
)))

(23)
f3 ∶ [m,M] → [0, 1]

f3(x) =
1

2
+

1

�
sin−1(2A − 1)

Fig. 2   The proposed stretching functions: green is f1 , blue is f2 , gray 
is f3 and black is the linear stretching function. All of them are drawn 
on [0, 1]
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the interval. Described properties of the TCS functions are 
demonstrated in Sect. 5.

Choosing the correct interval [m, M] for the stretch-
ing task is the base of the contrast stretching functions. 
Without loss of generality, let the intensity values of the 
image be in [0, 1].

Based on the statistical confidence interval, we use the 
following interval for the TCS functions:

where � and � are the mean and the standard deviation of the 
intensities of the image in interval (0, 1). In this paper, we 
get n = 1.96 . There are some image segmentation technique 
based on the confidence interval in the literature [45]. We 
show the effectiveness of our TCS functions in Sect. 5.

4.2 � Modified version of TFA: SA method

We improve the TFA method by changing some basic parts 
of TFA as follows: 

1.	 As a preprocessing step, we improve the contrast of the 
image by using the TCS functions with a 95 percent 
confidence interval(not necessary for all of the images).

2.	 Contrast stretching and thresholding in TFA (stage 2) 
replaced by: At first, we do the following computational 
task: 

 based on, contrast stretching and thresholding are per-
formed using the second TCS function: 

 where A =
f
(i)

j
−mi

Mi−mi

.
3.	 According to Sect. 2, shearlets are better tools compared 

to wavelets in dealing with 2D signals, and their use in 
the TFA algorithm makes it robust against the noise. 
Also, they do smoothing the boundaries of detected ves-
sels, and modifying vessel disconnections in the results, 

(24)m = � − n�,M = � + n�

(25)

M1
i
= maxQ(i)

m1
i
= minQ(i)

M2
i
= meanQ(i) + 1.96stdQ(i)

m2
i
= meanQ(i) − 1.96stdQ(i)

mi = max{m1
i
,m2

i
}

Mi = min{M1
i
,M2

i
}.

(26)

f
(i+

1

2
)

j
=

⎧⎪⎨⎪⎩

0, f
(i)

j
≤ mi

1

2
(1 + sin(�(A −

1

2
))), mi ≤ f

(i)

j
≤ Mi

1, f
(i)

j
≥ Mi

,∀j ∈ �

therefore instead of linear piecewise B-spline tight frame 
we use the shearlet transform SH in the denoising stage. 
Since denoising do not make any changes to pixels 
whose values become 0 and 1 in the previous stages, 
and just cost us some computational complexity result-
ing in reducing the speed of the algorithm, we apply 
these tasks only on those pixels related to �(i+1) . It must 
be noticed that we produce an image ( F(i+

1

2
) ) which has 

nonzero values just to the pixels inside �(i+1) , i.e., the 
nonzero components of F(i+

1

2
) are related to the unclassi-

fied pixels. By applying these modifications, the relation 
(17) will be as the following 

 where � , as the thresholding value, is local value depend 
on image noise.

We called the modified TFA as SA method. We know that 
the convergence of the TFA method depends on the contrast 
stretching interval that we changed, so we need to prove the 
convergence of the SA method.

Theorem 1  (Convergance of SA method) The SA method 
is converged in finite iterations.

Proof  In order to reduce the unclassified pixels in each 
iteration, some values out of [mi,Mi] must be converted 
to zero or one. According to the relations 25, we have 
m1

i
≤ mi, Mi ≤ M1

i
 ; therefore, [mi,Mi] ⊆ [m1

i
,M1

i
] . Since 

TCS function converts mi and Mi to 0 and 1, respectively, 
so at least one pixel is classified in each iteration. Since 
the number of image pixels is finite, the SA method will be 
converged at finite iterations. 	�  ◻

To see the effect of the shearlet frame in the modified ver-
sion of TFA (SA), we run SA with linear stretching function 
as well as TFA. Both of them are performed on the noisy 
image represented in Fig. 1 by � = 0.05 as the threshold-
ing parameter in the edge detection stage. Considering the 
yellow ellipses on the results, we see that the LCS-based 
SA has been modified false disconnections in the vessels 
approximately (see Fig. 3). In Sect. 5, we show the advan-
tages of the SA method to the original TFA version by the 
several experiments.

(27)f
(i+1)

j
=

⎧
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4.3 � Proposed algorithm

Magnetic resonance angiography technology is based on 
detecting the flowing blood signals and suppressing the static 
tissue signals. The vessels in this type of images have high 
intensities. The main problem here is that this type of images 
have low contrast, and some thin vessels have intensities close 
to the background. To maintain the brightness ratio among the 
details of the image to each other, our idea is using linear con-
trast stretching (LCS) in the segmentation process. Let pixel 
values of a given images be in [0, 1] . Stretching the interval 
[m,M] , where m and M are minimum and maximum of the 
pixel values, respectively, to [0, 1] is done by the following 
relation:

Fig. 3   a Original image, b TFA 
result by � = 0.05 and, c LCS-
based SA result by � = 0.05

Table 2   TSA algorithm

0. Input : given image f
1. compute Ft using (29)
2.    (a) compute g by (30)

      (b) compute G by (34)
      (c) compute H by (35)
      (d) compute F by (36)

3. obtain Kt using (37)
4. Output : Kt

Fig. 4   A general flow diagram of the proposed method



599Pattern Analysis and Applications (2021) 24:591–610	

1 3

For [m,M] = [0, 1] , this function is the identity function. In 
MRI images, usually m and M are close to 0 and 1, respec-
tively, so LCS does not effect on the given image. To solve 
the problem, we separate vessels with high intensity and 
then perform LCS on other pixel values. Then, by making 

(28)
ST ∶ [m,M] → [0, 1]

ST(x) =
x−m

M−m

a new image out of the original image and another one with 
high-intensity vessels(the binary image), we extract the ves-
sels with low-intensity and weak edges from the new image. 
We explain the details of our algorithm as following:

Stage 1 (Extracting high-intensity vessels) Extract the high-
intensity vessels by performing the SA on the given image 
f, the result Ft is a binary image:

Fig. 5   Experimental results on 
natural gray images: first col-
umn is the original images with 
corresponding histograms (a). 
Second column is the results of 
the first TCS function (b). Third 
column is the results of the 
second TCS function (c). Forth 
column is the results of the third 
TCS function (d)
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where SA is the function corresponding to SA.

Stage 2 (Making the new image) Make a new image using 
the original image and the one resulted from the first stage.

The procedure of making a new image is in this way: first, 
convert the pixel values related to high-intensity vessels to 
zero, other pixel values are kept as their values in the original 
image. We define last image, g, as

where fj, gj are the jth pixel of f and g, respectively, and

(29)Ft = SA(f )

(30)gj =

⎧⎪⎨⎪⎩

fj, j ∈ J

0, j ∉ J

where Ftj is the jth pixel of Ft.
Define

Mg is much smaller than 1; therefore, LCS is effective. Actu-
ally, the vessels with low intensity and weak edges become 
brighter by LCS. We call the image resulted from LCS of 
g as G:

(31)J =
{
j|Ftj = 0, j ∈ �

}

(32)mg = min
{
gj|0 < gj < 1, j ∈ 𝛺

}
,

(33)Mg = max
{
gj|0 < gj < 1, j ∈ 𝛺

}
.

(34)Gj =

⎧⎪⎨⎪⎩

gj, gj = 0, 1

gj−mg

Mg−mg

, 0 < gj < 1

Fig. 6   Experimental results on 
two type of MRI images: first 
column is the original images 
with corresponding histograms 
(a). Second column is the 
results of the first TCS function 
(b). Third column is the results 
of the second TCS function (c). 
Forth column is the results of 
the third TCS function (d)
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where Gj is the jth pixel of G. Since LCS increases the pixel 
values corresponding to the speckle noise in the image as 
well as the low-intensity vessels, it generates a problem in 
the segmentation. To solve this problem, denoising is per-
formed applying shearlets. We used the shearlets toolbox as 
shearlab 4 available in [41]. The resulted image is named H:

Also, we could use deblurring [46] at this stage to make the 
image more clear, but we did not find it necessary. Next, we 
make the combination image from H and Ft and call it F:

It is possible that some of the pixel values end up being 
outside of [0, 1] , we need to map those points of F into the 
interval as well.

Stage 3 (Applying SA on the new image) We perform SA on 
the new image and call the result Kt:

where Kt is the final binary result of our algorithm, within 
pixels with values zero are the background and those with 
values 1 are the vessels.

(35)H = SH
T
(
T�(SH(G))

)
.

(36)F = H + Ft =
{
Hj + Ftj|j∈ �

}
.

(37)Kt = SA(F)

Convergence of our algorithm is inherited from SA method 
which has proved in the previous subsection. We refer to our 
algorithm as TSA, all the stage of TSA are summarized in 
Table 2. Also, a general flow diagram of the proposed method 
is presented in Fig. 4.

By this approach, all of the methods in [1, 4, 5, 8] and edge 
detection methods can be improved as well.

5 � Experimental results

5.1 � Comparing the results of the TCS functions

Through some practical application of the method, we 
showed the effect of the TCS functions on different images 
using their histograms. We applied our TCS functions 
on natural gray and colorful images as well as medical 
images. The results of the first and second TCS functions 
are almost the same, but the result of the third function is 
different from them. We use the second function that is 
suitable for our work and MRI images. But, either of them 
may be appropriate for a different problem.

In Fig. 5, the first row is a child’s image, the second row 
is an areal image of a satellite and the third row is an image 
of the surface of the moon. In all of the results, the image 
contrast has improved.

Fig. 7   Experimental results on 
colorful images: first column 
contains the original images 
(a). Second column contains the 
results of the first TCS function 
(b). Third column contains the 
results of the second TCS func-
tion (c). Forth column contains 
the results of the third TCS 
function (d)
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In Fig. 6, observing the results of our TCS functions on 
two type of MRI images, we see that the results of the first 
and the second TCS functions are better than the result of 
the third function. Because the maximum and the minimum 
intensity are close to 1 and 0, respectively, LCS will be inef-
fective in this type of image. Because the maximum and the 
minimum intensity are close to 1 and 0, respectively, LCS 
will be ineffective in this type of image.

In Fig. 7, we showed the effect of our TCS functions on 
the colorful images without their histograms. In the first 
row, the third TCS function is effective, but the first and the 
second TCS functions are failed. The second TCS function 
is more effective than the others in the second and the third 
rows.

5.2 � Quantitative evaluation metrics

Evaluation of segmentation results is an important step 
in validating a segmentation method that confirms its 

reliability. Most segmentation results are measured 
qualitatively and visually. This method of evaluation is 
either subjective or depends on specific applications. One 
can judge the performance of a segmentation method 
objectively.

For quantitative evaluation of a segmentation tech-
nique, the results of the segmentation method with its 
corresponding Ground truth are compared. There are dif-
ferent metrics for this comparison. For example, the ratio 
of the number of pixels that are correctly detected to the 
total pixels is one of the metrics. The common metrics 
used to evaluate segmentation techniques are Accuracy, 
Sensitivity, and Specificity. Let I be the given image, S be 
the tissue in the segmented image and G be the tissue in 
the corresponding Ground truth, the metrics are defined 
as the following:

(38)Accuracy =
|S ∩ G| + |S� ∩ G�|

|I| ,

Table 3   Parameter values used in all of the algorithms

TFA TFAE, SA TSA

Figure 8 � = 0.003 � = 0.001 �1 = 0.1, �2 = 0.01

Figure 9 � = 0.003 � = 0.001 �1 = 0.1, �2 = 0.001

Figure 10 � = 0.005 � = 0.001 �1 = 0.1, �2 = 0.01

Figure 11 � = 0.005 � = 0.001 �1 = 0.1, �2 = 0.06

Figure 12 � = 0.01 � = 0.001 �1 = 0.1, �2 = 0.01

Figure 13 � = 0.01 � = 0.001 �1 = 0.1, �2 = 0.001

Figure 14 � = 0.01 � = 0.001 �1 = 0.1, �2 = 0.01

Figure 15 � = 0.01 � = 0.001 �1 = 0.1, �2 = 0.01

Fig. 8   a Is ground truth, b is 
clean image, c is noisy and 
blurred image and d–g are the 
results of TFA, TFAE, SA and 
our TSA, respectively

Table 4   Quantitatively evaluation of the performance of the seg-
mentation methods on the first synthetis image (Fig. 8) using known 
described measures

Accuracy Sensitivity Specificity Jaccard Dice

TFA 0.9197 0.7919 � 0.7918 0.8839
TFAE 0.9364 0.8351 � 0.8348 0.9101
SA 0.9219 0.7975 � 0.7970 0.8873
TSA �.���� �.���� � �.���� �.����
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(39)Sensitivity =
|S ∩ G|
|G| ,

(40)Specificity =
|S� ∩ G�|
|G�|

Some other common metrics used in the quantitatively eval-
uations are defined as

where |.| is the cardinality of the set. The higher the value of 
the metrics, the better the segmentation result.

5.3 � Experimental results of the proposed 
segmentation method

We applied our algorithm on some synthetic and real MRI 
images. Some of them are provided by Azar Mehr Imaging 
Center Tabriz-Iran, and some others adopted from [18, 47]. 

(41)Dice =
2|S ∩ G|
|G| + |S|

(42)Jaccard =
|S ∩ G|
|S ∪ G|

Fig. 9   a Is ground truth, b is 
clean image, c is noisy and 
blurred image and d–g are the 
results of TFA, TFAE, SA and 
our TSA, respectively

Table 5   Quantitatively evaluation of the performance of the segmen-
tation methods on the second synthetis image (Fig.  9) using known 
described measures

Accuracy Sensitivity Specificity Jaccard Dice

TFA 0.9716 0.7458 � 0.7450 0.8544
TFAE 0.9816 0.8348 � 0.8340 0.9100
SA 0.9769 0.7935 � 0.7930 0.8848
TSA �.���� �.���� � �.���� �.����
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Because the proposed method is designed to blood vessel 
segmentation from MRI images, it has been attempted to 
select images having the challenges of this field. The first 
synthetic image simulates circular vascular systems having 
thin vessels with the intensity close to the background, and 

the second simulates a branching structure with low intensi-
ties in the tips. These are applied to the quantitative evalu-
ation of the proposed method. Experimental real images 
include some challenges such as twisting branching vessels 
with false discontinuity, low-intensity and weak edges.

Fig. 10   a Is an MRI image of 
carotid vascular system and b–e 
are the results of TFA, TFAE, 
SA and TSA results

Fig. 11   a Is an MRI image of 
Kidney vascular system and b–e 
are the results of TFA, TFAE, 
SA and TSA results
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Since the results of TFA and TFAE have been proved as 
the better results compared to the other methods [18, 31] 
like Chan–Vese active model [1], frame-based method [4], 
CURVES vessel segmentation method [8] and anisotropic 
deformable method [5], we only compare our results with 
TFA and TFAE.

We tried to take the best results out of TFA and TFAE 
methods, then compare them with our results. In synthetic 
images, we compared the results by the metrics described 
in 5.2. But in real MRI images, the comparison is qualita-
tive, based on the visualizing by taking similar boxes on the 
resulted images, as there are no ground truth segmentations 
for those images. Even manually segmentation could not be 
considered as ground truth since many thin vessels are hard 
to detect and many faulty detections can be included due to 
the high noise presented in the data set. These comparisons 
show that our algorithm has the best performance among 
them. Our algorithm is capable of detecting the vessels with 
weak edges and those with intensity close to the background.

The shearlets toolbox used in denoising step in the SA 
method is provided from [41]. We set � = 0.05 as the stand-
ard deviation of the noise in all of the images. SA method 
has two parameters, one of them is � , initial edge detection 
parameter, the other is the standard deviation of the noise 
level in the image, � . We get � = 0.05 in SA method for 

all of the images. Our algorithm has two parameters �1, �1 
which both are applied in the first stage; and also there is a 
parameter related to the second stage which is related to the 
standard deviation of the speckle noise in the new image � , 
and same as the first stage, we have two parameters, namely 
�2, �2 , in the third stage. We assume �1 = 0.05, � = 0.05 , 
�2 = 0.001 and �1 = 0.1 in TSA method for all of the 
examples. The other variable parameter values used in the 
examples are presented in description of the examples and 
Table 3. All of the cods related to the SA, TFA and TFAE 
algorithms are provided by the authors in MATLAB R2018a 
software.

Figure 8 contains a synthetic image with four circles and 
two diagonal lines of different thicknesses. The line in the 
minor diagonal of the image has intensities close to the back-
ground. The circles are also designed to be scaled down 
by moving away from the center on circles. This synthetic 
image simulates the circular vascular systems having thin 
vessels with the intensities close to the background in MRI 
images. The blurred and noisy image is obtained by adding 
a Gaussian noise and Gaussian blur to the clean image. The 
blur is created by a 3 × 3 Gaussian filter with standard devia-
tion 0.5. The Gaussian additive noise is created with the 
average 0.01 and the variance 0.001. We get � = 0.001 as the 

Fig. 12   Original images in col-
umn a are MRTA images from 
three orthogonal viewpoints. 
Original image in the first, 
second and third rows is Z-axis, 
Y-axis and X-axis viewpoints 
of human head vessels with the 
skull removed. Columns b–e are 
the results of TFA, TFAE, SA 
and TSA, respectively
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SA parameter and �1 = 0.1, �2 = 0.01 as the TSA parameters 
for this image.

Observing Fig. 8, we see that the SA method have a 
better performance than the TFA in detecting the exterior 
circle. All of the TFA, SA and TFAE methods have a weak 
performance in detecting minor diagonal and exterior cir-
cle, but our TSA has a great performance than the others. 
In Table 4, we compare the results of the methods by using 
the known measures. According to the table and based on 
all of the measures, we see that SA (a modified version 
of TFA) has a better performance than TFA, but TFAE is 
better than SA and our TSA result is the best. The values 
with bold values shows higher values in any column.

Figure 9 is a synthetic image which have a branching 
structure. The tips of the branches have intensities close 
to the background and are the challenging points for the 
segmentation techniques. This synthetic image simulates 
the branching vascular systems having thin vessels with 
the weak edges in MRI images. The blurred and noisy 
image is obtained by adding a Gaussian noise and Gauss-
ian blur to the clean image. The blur is created by a 3 × 3 
Gaussian filter with standard deviation 0.5. The Gaussian 
additive noise is created with the average 0.01 and the 
variance 0.001. We get � = 0.001 as the SA parameter and 
�1 = 0.1, �2 = 0.001 as the TSA parameters.

Figure 8 illustrates the fact that the SA method has better 
performance than the TFA in detecting more thin tips of the 
branches . Our TSA has the best performance in revealing 
of the tip pixels and the thin branching structures with low 

intensity and weak edges. In Table 5, we compare the results 
of the methods by using the known measures. According 
to the table and based on all of the measures, we see that 
SA (an improvement of TFA) has a better performance than 
TFA, but TFAE is better than SA and our TSA has the best 
performance. The bold values shows a higher values in any 
column.

Figure 10 is a real MRI image of a carotid vascular sys-
tem which is adopted from [18]. In this image, the vessels 
have low and high intensities and the vessels between two 
branches are thin having intensities close to the background. 
The non-uniform intensities in the background remove sim-
ple thresholding choice for the segmentation. Intersections 
partial structures even make a hard segmentation problem. 
We applied � = 0.001 and �1 = 0.1, �2 = 0.01 as the values 
of the parameters in SA and TSA methods, respectively. 
According to the yellow boxes on the results, we conclude 
that TFA and TFAE have disconnections in detection of the 
middle vessels, but SA and TSA have not this wrong. The 
green boxes on the SA and TSA results show the advantage 
of our TSA with respect to the SA method.

Figure 11 is an MRI image of Kidney vascular system 
adopted from [18]. Non-uniform intensities in the back-
ground and some discontinuity in the vessels are a feature 
of this image which make a hard segmentation problem. 
� = 0.001 and �1 = 0.1, �2 = 0.06 are the parameter values 
for SA and TSA methods. The content of the yellow box 
show that the SA result is better than the TFA’s. In other 
words, SA has resolved the discontinuity problem in this 

Fig. 13   Column a is provided two MRI images of neck and brain. columns b–e contain the results of the TFA, TFAE, SA and TSA methods, 
respectively
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image. Some artifacts shown in red boxes are an over-seg-
mentation of TFAE, SA and TSA methods.

Figure 12 shows three magnetic resonance tomogra-
phy angiography of human head vessels with the skull 
removed, viewed from three different orthogonal view-
points. These images were also adopted from [18]. There 
are a lot of thin convoluted vessels in these images which 
increase the difficulty of the segmentation task. � = 0.001 
and �1 = 0.1, �2 = 0.01 are the parameter values for SA and 
TSA methods. Among the results of the first row, TFAE has 
detected vessels with unusual thicknesses. The results of SA, 
TFA approximately are the same. Because of completely 
detecting the tips of the thin vessels, the result of the TSA is 
the best. In the second row, the vessels in the yellow boxes 
show the better performance of the SA method with respect 
to the TFA. Among them, TSA have the best performance, 

for example see the green box on the result of TSA. The 
results in the third row are similar to the second row.

Two images in Fig. 13 are MRI images from neck and 
brain. These are borrowed from [47] and provided images 
with convoluted and occluded vessels. Also, they are low 
contrast images which make hard the work of the TFA, SA 
and TFAE techniques. � = 0.001 and �1 = 0.1, �2 = 0.001 are 
the parameter values for SA and TSA methods. Because of 
being low contrast and having weak intensities in thin ves-
sels, TFA, SA and TSA methods failed in detection of more 
thin vessels. However, the yellow boxes on the results of 
TFA, TFAE, SA show the advantages of SA to TFA, TFAE. 
The green boxes on the TSA result in the second row show 
that this result is the best. The prominence of the TSA result 
in the first row is clear.

Fig. 14   Column a is provided 
three carotid vascular system 
with thin vessels around the 
main artery vessels. Columns 
b–e show the results of the 
TFA, TFAE, SA and TSA meth-
ods, respectively
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The images in Fig. 14 are catched from different view-
points in Azar Mehr imaging center Tabriz-Iran. These 
are similar to the images in Fig. 10, but the difference is 

that these images have thin vascular structures around the 
main arteries. The thick carotid vessels at the bottom of 
the images have brightness levels close to the background 

Fig. 15   The first row is pro-
vided with three brain vascular 
system with thin disconnected 
vessels. Rows b–e show the 
results of the TFA, TFAE, SA 
and TSA methods, respectively
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where the TFA, TFAE and SA methods failed in detection 
of them. Against them, TSA somewhat did this task suc-
cessfully, see the contents of the yellow boxes. � = 0.001 
and �1 = 0.1, �2 = 0.01 are the parameter values for SA and 
TSA methods.

Figure 15 are MRI images from the cerebrovascular sys-
tem from different angles taken at Azarmahr imaging center 
Tabriz-Iran. These images have artifacts in the background 
that are not blood vessels but have similar intensity to the 
thin vessels in the image, so the thresholding methods can-
not handle these images. The second feature of these images 
is that the parts of the small vessels are so close to the back-
ground that the TFA, TFAE and SA methods detect them as 
a disconnected vessel, see the content of yellow boxes on the 
results. � = 0.005 and �1 = 0.1, �2 = 0.01 are the parameter 
values for SA and TSA methods.

6 � Conclusion and future works

First, we presented three new trigonometric contrast stretch-
ing (TCS) functions. Then, based on one of the TCS func-
tions and shearlets frame, we improved TFA as a strong 
method in the binary vessel segmentation by modifying 
some main parts of it like its stretching, thresholding and 
denoising steps and named it as SA method. Based on this 
modification, we introduced a three-stage algorithm. This 
method enabled us to detect tubular structures with low 
intensity and weak edges. Other methods in binary seg-
mentation and edge detection can be improved using the 
result we provided. It is also possible to localize some of 
the parameters and perform the method on inhomogeneous 
images as well. Using this method, it is possible to introduce 
multiphase segmentation algorithms. It can be suggested to 
use bendlets [48], which are known as the second generation 
of shearlets, instead of shearlets to get some better results.
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