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Abstract
Automatic latent fingerprint identification is beneficial during forensic investigations. Usually, latent fingerprint identifi-
cation algorithms are used to find a subset of similar fingerprints from those previously captured on databases, which are 
finally examined by latent examiners. Yet, the identification rate achieved by latent fingerprint identification algorithms is far 
from those obtained by latent examiners. One approach for improving identification rates is the fusion of the match scores 
computed with fingerprint matching algorithms using a supervised classification algorithm. This approach fuses the results 
provided by different lower-level algorithms to improve them. Thus, we propose a fusion of fingerprint matching algorithms 
using a supervised classifier. Our proposal starts with two different local matching algorithms. We substitute their global 
matching algorithms with another independent of the local matching, creating two lower-level algorithms for fingerprint 
matching. Then, we combine the output of these lower-level algorithms using a supervised classifier. Our proposal achieves 
higher identification rates than each lower-level algorithm and their fusion using traditional approaches for most of the rank 
values and reference databases. Moreover, our fusion algorithm reaches a Rank-1 identification rate of 74.03% and 71.32% 
matching the 258 samples in the NIST SD27 database against 29,257 and 100,000 references, the two largest reference 
databases employed in our experiments.
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1  Introduction

Fingerprint matching algorithms are at the core of finger-
print verification and latent fingerprint identification. Fin-
gerprint verification performs a one-to-one comparison to 
verify a claimed identity with a previously captured finger-
print [19, 24]. Contrarily, latent fingerprint identification 
performs a one-to-many comparison searching for the most 
similar fingerprints, enrolled in a reference database, to a 

latent fingerprint [17, 24]. Most of the fingerprint matching 
algorithms have been developed for fingerprint verification 
[36]. As a consequence, fingerprint verification algorithms 
have reported a high accuracy (see the results in the Fin-
gerprint Verification Competition FVC-onGoing [7]), while 
latent fingerprint identification algorithms have considerable 
room for improvement.

Latent fingerprint identification has essential applications 
for forensic investigations. For example, missing persons 
can be traced through their last fingerprints found at some 
places as latent fingerprints, police departments conduct 
criminal investigations using latent fingerprints, and latent 
fingerprints are pieces of evidence during a trial. Due to the 
sensitivity of its applications, latent fingerprint identification 
requires high identification rates. Nevertheless, the results 
in Table 1 indicate that the identification rates reported in 
the literature are insufficient for meeting this requirement.

One infrequently explored approach for improving the 
identification rates of latent fingerprint identification algo-
rithms involves ensembles of fingerprint matching algo-
rithms using supervised learning. An ensemble in machine 
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learning is a general method that combines lower-level 
algorithms using a high-level algorithm to achieve higher 
accuracy than the lower-level algorithms [35]. In fingerprint 
matching research, this approach can be classified as a fusion 
scheme.

Although supervised classifiers have been used as fusion 
algorithms for fingerprint verification  [4, 8, 13, 24], they 
are less frequent for latent fingerprint identification [30]. In 
the latent fingerprint identification problem, an algorithm 
must determine a list of references (fingerprints previously 
enrolled in a background database) with the highest match 
score (continuous value) to the sample (latent fingerprint) 
but supervised classifiers determine a class (nominal value) 
for each example [20]. However, there exist supervised clas-
sifiers that compute the probability of belonging to each 
class. In our proposal, we use the probability of belonging 
to the matching class as the fused match score.

In this work, we propose an ensemble of two fingerprint 
matching algorithms with the aim of improving the Rank-1 
identification rate for latent fingerprint identification. We 
start by combining two different minutia descriptors, which 
have shown to be suitable for latent fingerprint identifica-
tion [36]: Minutia cylinder codes (MCC) [5] and mtriplet 
[25]. We have substituted the global matchers of these algo-
rithms with the algorithm deformable minutiae clustering 
(DMC) [26] to improve their performances. Moreover, we 
have tuned the parameters of both minutia descriptors for 
latent fingerprint identification because they were proposed 
for fingerprint verification. For fusing the match scores, we 
propose a multilayer perceptron, although we explored other 
fusion approaches in our experimentations. In summary, the 
contributions of this work are as follows: 

1.	 We propose a novel match-score fusion scheme for latent 
fingerprint identification, which outperforms the Rank-1 
identification rates output by the methods reported in the 
literature that match only minutiae. Such fusion scheme 
is based on an ensemble of two state-of-the-art finger-

print matching algorithms via a multilayer perceptron 
(MLP). We obtained the best fusion algorithm from 
the comparison between several supervised classifiers, 
various deep learning models, and two traditional fusion 
algorithms (a weighted sum and a product rule). This 
work explores 30 traditional supervised classifiers and 
30 deep learning models as fusion algorithms for latent 
fingerprint identification.

2.	 We describe a subset of four attributes constructed from 
the comparison results between fingerprint pairs using 
the matching algorithms. These attributes characterize 
the similarities between each sample and reference.

3.	 We provide an experimental study comparing our results 
against those reached by the lower-level algorithms, 
other fusion algorithms, and the previous methods 
reported in the literature using three latent fingerprint 
databases: NIST SD27 [9], GCDB [18], and MOLF 
DB4 [32], and different references databases: NIST 
SD27 [9], NIST SD4 [38], NIST SD14 [37], GCDB 
[18], and MOLF DB1 [32]. Our proposal improves 
the identification rate of the lower-level algorithms for 
most of the rank values. Moreover, our fusion algorithm 
obtains 74.03% of Rank-1 identification rate matching 
258 samples (NIST SD27 [9]) against 29,257 references 
(27,000 NIST SD14 [37], 2000 NIST SD4 [38], and 257 
NIST SD27 [9]), and 71.32% against 100,000 references 
(27,000 NIST SD14 [37], 2000 NIST SD4 [38], 257 
NIST SD27 [9], and a non-public database).

We organize the remainder of this paper as follows. We dis-
cuss some related work with fusion algorithms for latent 
fingerprint identification in Sect. 2. We continue describing 
our proposal and parameter tuning of the minutia descrip-
tors for latent fingerprint identification in Sect. 3. Next, we 
analyze our experimental results and the computation time 
required to identify a latent fingerprint in Sect. 4. Finally, we 
state our conclusions and future work in Sect. 5.

Table 1   Recent Rank-1 identification rates reported in the literature. 
These results were reported using reference databases with different 
sizes. Usually, forensic investigations use large reference databases. 

However, the higher the background database is, the lower the identi-
fication rate for any latent fingerprint identification algorithm

Proposal Rank-1 identification rate (%) Reference 
database size

Improving automated latent fingerprint identification using extended minutia types 
[18]

92.7 151

Latent fingerprint recognition: role of texture template [2] 78.2 10,000
Latent fingerprint matching using distinctive ridge points [6] 70.9 29,257
End-to-end latent fingerprint search [3] 65.7 100,000
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2 � Related work

Some authors [28, 31] have classified the fusion schemes 
for fingerprint matching [1, 11, 14, 27, 31] as feature level, 
match-score level, rank level, or data level. When fusing 
the match scores for latent fingerprint identification, every 
lower-level algorithm fused deals with the complexities 
of latent fingerprints, such as the partial information of 
latent fingerprints, background noise, nonlinear distortion, 
and brightness variations. As a consequence, match-score 
level fusion has gained popularity for latent fingerprint 
identification [31].

An early work published by Jain et al. [12] proposed a 
latent fingerprint identification algorithm combining the 
match scores computed using minutiae and orientation 
fields. The authors employed a weighted sum with weights 
empirically determined: 0.8 for the match score between 
minutiae and 0.2 for the match score between orientation 
fields. Their fusion algorithm reached a Rank-1 identifi-
cation rate of 79.5% matching the samples in the database 
NIST SD27 [9] against the references in databases NIST 
SD27 [9] and NIST SD4 [38].

Another paper presented by Jain and Feng [11] com-
bined several fingerprint features using successive 
weighted sums. The authors computed match scores 
between the minutiae, skeleton images, singular points, 
ridge quality maps, ridge frequency maps, and ridge 
wavelength maps. Successively, they fused the new match 
score with the accumulated match score using a weighted 
sum with weights empirically determined. Their proposal 
achieved a Rank-1 identification rate of 74% comparing the 
samples in the database NIST SD27 [9] against the refer-
ences in the databases NIST SD27 [9], NIST SD4 [38], 
and NIST SD14 [37].

Sankaran et  al. [31] developed a two-level fusion 
algorithm for simultaneous latent fingerprint identifica-
tion. In the first level, they combined the match scores 
computed for each latent fingerprint extracted from the 
simultaneous image using a weighted sum and a product 
of the likelihood ratio. The weighted sum fusion sur-
passed the product of the likelihood ratio for all cases. 
In the second level, the authors fused the ranks output 
by each fusion algorithm using weighted Borda count. 
Although the rank-level fusion improved the Rank-10 
identification rate, the match-score level fusion still 
reported the highest Rank-1 identification rate using a 
weighted sum.

Paulino et al. [27] proposed a fusion of the match scores 
computed between the minutiae and the orientation fields. 
The fusion approach was a weighted sum with weights 
empirically determined (0.6 for minutiae and 0.4 for orienta-
tion fields). The authors reported a 53.5% of Rank-1 identifi-
cation rate comparing the samples in NIST SD27 [9] against 
31,998 references in the databases NIST SD27 [9], WVU, 
and NIST SD14 [37].

Similarly, Jeyanti et al. [14] fused the match scores com-
puted between minutiae and pores from the sample and 
the references. They used a weighted sum with weights 
empirically determined. Differently to the previous works, 
the authors assigned higher weights to the pores than the 
minutiae.

Krish et al. [18] combined some conventional finger-
print matching algorithms with a fitting error at the match-
score level. The fitting error was computed using extended 
minutiae types. An extended minutia is a minutia different 
from the ridge ending and bifurcation, such as deviation, 
bridge, or fragment [18]. They fused the match scores with 
a weighted sum with weights equal to 0.5.

Cao and Jain [1] combined two minutia templates and 
a texture template at the match-score level. They used a 
weighted sum with weights empirically determined. Their 
proposal achieved a Rank-1 identification rate of 64.7% 
matching the samples in the database NIST SD27 [9] against 
100,000 references in the NIST SD27 [9], NIST SD14 [37], 
and a forensic agency. Later, Cao et al. [3] improved that 
identification rate up to 65.7% using the same databases by 
including a third minutia template in the fusion. Addition-
ally, the author explored a fusion at rank levels using Borda 
count. They found that the results using a weighted sum 
exceed the results of the fusion using Borda count.

These works corroborate that the match-score level has 
excellent popularity as a fusion scheme for latent fingerprint 
identification. Moreover, these papers show two conven-
tional approaches for fusing match scores, the weighted sum 
[1, 3, 11, 12, 14, 18, 27, 31] and the product rule [31]. The 
weighted sum has reported the highest identification rates. 
However, both approaches lack of adaptability to changes in 
the reference database because their fusion formula remains 
the same. Moreover, some of them depend on fixed weights 
empirically determined. Conversely, match-score fusion 
using supervised classifiers can compute more complex 
functions than weighted sums or product rules. Besides, if 
the references database changes, the supervised classifiers 
can be retrained to update the fusion relation.
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3 � A fusion of fingerprint matching 
algorithms at match‑score level

Latent fingerprint identification algorithms usually iden-
tify latent fingerprints via a hybrid approach [24], start-
ing with a local matcher and following a global matcher. 
Global algorithms match fingerprints using features that 
describe the full fingerprint. Global matchers are also 
known as consolidation steps and they can follow differ-
ent strategies, such as single or multiple transformations, 
a consensus of transformations, or an incremental con-
solidation [24]. Local algorithms match small regions of 
fingerprints, such as two minutia descriptors [24]. A minu-
tia descriptor is a fingerprint feature representation with 
additional information to the minutia standard representa-
tion (ISO/IEC 19794-2:2005). This additional information 
can be, for example, the ridge orientations, the number of 
ridges between minutiae, or the relationships a minutia 
holds with others, either in a neighborhood or with a pre-
defined number of minutiae.

Our proposal starts with two local matching algorithms 
MCC [5] and mtriplet [25], which has shown to be suitable 
for latent fingerprint identification [36]. These local algo-
rithms match the minutiae in the sample against those in 
the reference and output the match scores between minu-
tiae, which are input to the global matching algorithm 
(see step 1 in Fig. 1). A global matcher consolidates the 
output of each local matcher. Each hybridization between 
the global matching algorithm and each local matching 
algorithm is a lower-level algorithm in our ensemble. We 
will describe our selection for the lower-level algorithms 
in Sect. 3.1

We include a third step in our latent fingerprint identi-
fication algorithm. In this step, we fuse the output of the 
lower-level algorithms by configuring a vector of attributes 
(v) with their output. Then, a supervised classifier computes 
the fused match score with the vector of attributes as input. 
This supervised classifier is the high-level algorithm of our 
ensemble (see step 3 in Fig. 1 and Algorithm 1). 

Algorithm 1: Latent fingerprint identification
algorithm with an ensemble of two fingerprint
matching algorithms with parameters tuned for
latent fingerprint identification.
function identifySample(l, T )
Data:
– l is the sample (latent fingerprint)
– T = {t1, t2, ..., tm}, where ti is the i-th reference

(impression)
– MCC(l, ti) is the local matching algorithm for MCC,

which computes the similarities between minutiae in the
sample l and each reference ti

– mtriplet(l, ti) is the local matching algorithm for
mtriplet, which computes the similarities between
minutiae in the sample l and each reference ti

– DMC(local matching algorithm output) is the global
matching algorithm, which computes the match score
and the matching minutia count between the sample l
and each reference ti using the similarities between
minutiae output by each local matching algorithm

– δ is the match-score fusion algorithm, a Multilayer
perceptron (MLP)

begin
Let S ←− φ be the set of fused match scores
between l and each ti

foreach ti ∈ T do
Let v ←− φ be a vector of matching features
v ←− DMC(MCC(l, ti)) concat
DMC(mtriplet(l, ti)): v receives a quartet
formed by the match score and the
matching minutia count computed by each
matching algorithm

si ←− δ(v): δ computes the fused match
score

Return 20 sorted references (ti) with the highest
match scores (si)

3.1 � Selection of lower‑level algorithms

The salient decisions in an ensemble are the lower-level 
algorithms and the fusion algorithm. Latent fingerprint 
identification algorithms proposed in the literature tend to 
apply fingerprint matching algorithms developed for fin-
gerprint verification [36]. However, algorithms with high 

Fig. 1   Diagram of the match-
score computation between a 
sample and a reference using 
our ensemble of fingerprint 
matching algorithms
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performance for fingerprint verification do not necessarily 
do just as well on latent fingerprint identification [36]. Thus, 
we have avoided a straightforward fusion of fingerprint 
matching algorithms without knowing their worthiness for 
latent fingerprint identification. Instead, we have selected 
local and global matching algorithms with a higher perfor-
mance identifying latent fingerprints.

Valdes-Ramirez et al. [36] compared the performance 
of various local matching algorithms of existing minutia 
descriptors for latent fingerprint identification. They found 
four local matching algorithms that outperform others: MCC 
[5], mtriplet [25], a combination of the orientations of ridges 
and minutiae in a spiral scheme [33], and the local structure 
proposed by Jiang and Yau [15]. Different performances of 
these matching algorithms on various subsets of latent fin-
gerprints motivate the idea of ensembling such matching 
algorithms. Thus, we have evaluated the performance of 
these four local matching algorithms using their particular 
global matching algorithms and comparing subsets of the 
samples and references in the NIST SD27 [9] database. This 
latent fingerprint database has samples classified by latent 
examiners into good, bad, or ugly, depending on the quality 
of the fingerprint features.

Figure 2 depicts the performance measure used to com-
pare identification algorithms: cumulative match character-
istic curves (CMC) (ISO/IEC 19795-1). A CMC curve plots 
an identification rate for each rank number, i.e., the fraction 
of genuine matching fingerprints with a computed match 
score higher than the match score in the i-th rank. Accord-
ing to the CMC curves, MCC [5] and mtriplet [25] always 
surpassed the other two. Besides, both output the highest 
identification rates for different rank values on diverse fin-
gerprint qualities. Hence, we selected MCC [5] and mtriplet 
[25] for local matching.

To be sure about the prediction power of the selected 
lower-level matching algorithms, we had to validate that it 
does not degrade regardless of what global matching algo-
rithm we choose to use. Therefore, we have compared the 
performance of the global matchers proposed within each 
local matching algorithm (mtriplet and MCC) against ver-
sions substituting their global matchers with the algorithm 
deformable minutiae clustering (DMC) [26]. The global 
matching algorithm proposed for mtriplet is M3gl [25], and 
for MCC [5], we have used the global matching algorithm 
provided by the authors in MCC SDK 1.4 [5].

DMC is a global matcher independent of the local 
matching algorithm, which has shown an improvement in 
the identification rates using different local matching algo-
rithms [26]. Additionally, a new parallel version of DMC 
[26] increased its previous matching speed by 44.7x [29]. 
Figure 3 shows that in our experiments, DMC [26] surpasses 
the identification rates of the particular global matcher MCC 
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Fig. 2   Curves CMC Rank-20 output by lower-level algorithms with 
their global matchers for good, bad, and ugly subsets of latent finger-
prints in the NIST SD27 [9] database. We can notice that MCC [5] 
and mtriplet [25] outperform the other two in all cases, but there is 
not an absolute winner between both. These results favor the idea of 
fusing these two local matching algorithms
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SDK 1.4 [5] and M3gl [25] for all rank values comparing 
the fingerprint pairs in the database NIST SD27 [9]. As a 
consequence, we have selected the algorithm DMC [26] for 
global matching. Besides, we have modified DMC [26] for 
computing the matching minutia count in addition to the 
match score (see step 2 in Fig. 1).

3.2 � Selection of the attributes and the fusion 
algorithm

To select the attributes and the fusion algorithm of our 
proposal, we have experimented with different setups. We 
explored three sets of attributes: using only the matching 
minutia count, using only the match score, and using both. 
Each set of attributes stores tuples of attributes with different 
sizes (two or four) that describe the matching relationship 
between a sample and a reference.

With these tuples of attributes, we set up three training 
datasets using the samples and references in a non-public 
database with 283 latent fingerprints matched with 243 
impressions. The fingerprint pairs were acquired and manu-
ally marked by latent examiners from criminal investiga-
tions. Hence, they pose the same difficulty for successful 
matching as those in the database NIST SD27 [9]. Next, we 
associate with each tuple the class attribute: 1 for fingerprint 
pairs that are matched and 0 for fingerprint pairs that are 
not. As a result, the three datasets add 283 examples to the 
matched class (1) and 68,486 (283 ∗ 243 − 283) examples 
to the not matched class (0). Such difference guides to class-
imbalance datasets with an imbalance ratio =

68,486

243
.

Methods that tackle class imbalance problems are often 
divided into three categories: data level, algorithm level, 
and cost-sensitive [20–23]. In this work, we have used a 
data-level approach to address class imbalance. We have 
undersampled data using 0.01% of not matched fingerprints 
and 100% of the matched fingerprints, hence yielding a new 
imbalance ratio of 684

243
.

We compare five candidate algorithms (three supervised 
classifiers, a weighted sum, and a product rule) to select the 
fusion algorithm. The weighted sum and the product rule 
are fusion algorithms commonly found in the literature [1, 
3, 11, 12, 14, 18, 27, 31]. We empirically set the weights 
for the weighted sum as follows: 0.4 and 0.1 for the match 
score and the matching minutia count computed with the 
local matcher MCC [5], respectively, and similar for those 
attributes computed with mtriplet [25]. The supervised 
classifiers are determined with two automatic tools, one for 
traditional machine learning algorithms and other for deep 
learning algorithms. For all supervised classifiers, we adopt 
the probability of each tuple belonging to the class 1 com-
puted by the supervised classifier as the fused match score.

We employed Auto-WEKA [34] developed for WEKA 
3.8.2 to determine the traditional machine learning algo-
rithms with the best performances. Auto-WEKA evaluates 
30 supervised classifiers with different parameter configura-
tions optimizing a user-defined measure with a tenfold cross-
validation test. We executed Auto-WEKA on a server with 
48 cores, 1 TB of RAM, and a 1-TB hard drive for 48 hours.

Similarly, we employed Auto-KERAS [16] to determine 
the deep learning model with the best performance. Auto-
KERAS is an automatic tool for deep learning based on 
KERAS, which tests the number of models predefined by 
the user. Also, Auto-KERAS outputs the best model accord-
ing to the loss function defined by the user. We tested 30 
different deep learning models for structured data with Auto-
KERAS, optimizing the balanced accuracy.

From our experiment, we obtained three different super-
vised classifiers as candidates for the fusion algorithm. Auto-
WEKA found with the undersampled training datasets that a 
Bayesian network maximized the balanced accuracy, and a 
multilayer perceptron (MLP) maximized the AUC-ROC. All 
nodes in the Bayesian network have only one parent, and the 
MLP has three layers: the input layer with four units, the hid-
den layer with two units, and the output layer with one unit. 
By contrast, Auto-KERAS outputs a deep learning model for 
structured data with two hidden layers with 32 and 16 units, 
respectively, using the full training datasets.

The CMC curves in Fig. 4 show that the fusion using the 
match scores and the matching minutia count with an MLP 
achieved the highest Rank-1 identification rate (87.98%) , 
slightly higher than the fusion algorithm with the weighted 
sum (87.60%).
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The results in Figs. 2 and 4 lead us to develop an ensem-
ble for latent fingerprint identification. Our proposal uses the 
local matching algorithms MCC [5] and mtriplet [25] with 
the global matching algorithm DMC [26] as the lower-level 
algorithms. Furthermore, we fuse both attributes computed 
by each lower-level matching algorithm with an MLP (as 
we described in Fig. 1 and Algorithm 1). Nonetheless, we 
can still improve the lower-level matching algorithms tuning 
the parameters of the local matching algorithms for latent 
fingerprint identification.

3.3 � Parameter tuning of the local matching 
algorithms for latent fingerprints

The local matching algorithms selected for our stacking were 
proposed for fingerprint verification. Hence, the authors 
determined their parameters using databases with impres-
sions, which are fingerprints with higher quality than the 
latent fingerprints. Since we are developing a latent finger-
print identification algorithm, we have tuned the parameters 
of both local matching algorithms MCC [5] and mtriplet 
[25] using a non-public database with 283 samples and their 
mated references.

Often, parameter tuning is a time-consuming task because 
it is necessary to explore a search space with as many dimen-
sions as the number of parameters. To address this issue, 
we search the best parameter values only in a range around 
the value proposed by the authors. When we find the best 
parameter value at the extremes of an interval, we restart the 
search with a new interval around the found value.

For a finer parameter tuning, we could compute the CMC 
curve for each set of parameters. However, computing the 
CMC curve is time-consuming. Alternatively, we tuned the 
parameters using the metric ZeroFMR of the DET curve, 
which can be computed faster than the CMC curve.

3.3.1 � Parameter tuning of the local matching algorithm 
Minutia cylinder code

We tuned the following parameters of the local matching 
algorithm MCC [5] for latent fingerprint identification by 
an exhaustive search:

•	 The length and width of the cuboid (Ns) with values in 
the range [14, 23], increasing the search with a step = 1.
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Fig. 4   Curves CMC Rank-20 of the five fusion algorithms computed 
with three different sets of attributes matching the samples and ref-
erences in the database NIST SD27 [9]. Note: The MLP algorithm 
fusing the matching minutia count and the match score, computed by 
each lower-level algorithm, obtained the highest identification rates
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•	 The height of the cuboid (Nd) with values in the range 
[4, 7], increasing the search with a step = 1.

•	 The radio of the cylinder (R) with values in the range 
[50, 76], increasing the search with a step = 2.

•	 The distance threshold with values in the range [2, 11], 
increasing the search with a step = 1.

•	 The angle threshold with values in the range 
[0.02, 0.74], increasing the search with a step = 0.1.

The best parameter values found regarding the ZeroFMR 
of the DET curve computed with the non-public database 
were (Ns = 21, Nd = 6, R = 60, distance threshold = 5, 
angle threshold = 0.12). The size of the cells increases 
from Ns = 16 and Nd = 5 to Ns = 21 and Nd = 6, due 
to the less presence of features in latent fingerprints. 
However, the radio and the thresholds diminish due to 
the nonlinear distortions in the latent fingerprints. Such 
distortions are higher for larger areas of the fingerprint. 
In particular, the radio goes from R = 70 to R = 60; the 
distance threshold goes from 7 to 5, and the angle thresh-
old goes from 0.52 to 0.12. The CMC Rank-20 curve with 
these parameters exceeds the CMC curve with the origi-
nal parameters for all rank values matching the minutiae 
of the fingerprints in the database NIST SD27 [9] (see 
Fig. 5 MCC).

3.3.2 � Parameter tuning of the local matching algorithm 
mtriplet

Similarly, we tuned the following parameters of the local 
matching algorithm mtriplet [25] for latent fingerprint 
identification through an exhaustive search:

•	 The threshold for the distance between minutiae (dThr) 
with values in the range [10, 50] increasing the search 
with a step = 1.

•	 The angle threshold (aThr) with values in the range 
[10, 25] increasing the search with a step = 0.25.

•	 The number of neighboring minutiae revised to form 
the triplets (neighborCount) with values in the range 
[3, 11] increasing the search with a step = 1.

The best parameter values found regarding the ZeroFMR 
of the DET curve computed with the non-public data-
base were (dThr = 13, aThr = 15, neighborCount = 10). 
The neighboring minutiae revised to create the triplets 
increases from neighborCount = 7 to neighborCount = 
10 due to the higher presence of low quality and spurious 
minutiae in latent fingerprints. The thresholds decrease 
from dThr = 15 to dThr = 13, and aThr = 21.25 to aThr 
= 15 due to the nonlinear distortions in the latent finger-
prints, which are higher for larger areas of the fingerprint. 

The CMC Rank-20 curve with these parameters is higher 
or equal to the CMC curve with the original parameters 
for all rank values matching the minutiae of the finger-
prints in the database NIST SD27 [9] (see Fig. 5 mtriplet).

4 � Results and discussion

Intending to compare the ensemble of fingerprint matching 
algorithms against the previous algorithms reported in the 
literature, we have configured seven testing datasets. Table 2 
describes such datasets in terms of the input fingerprint data-
bases, the number of samples, the number of references, and 
the minutia extraction method.

Testing for latent fingerprint identification in a closed 
scenario involves computing the CMC curve with the test-
ing datasets, which have not been previously “seen” by the 
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Fig. 5   Curves CMC Rank-20 output by the local matching algorithms 
MCC [5] and mtriplet [25] with the original parameters and the 
parameters tuned for latent fingerprint identification comparing the 
fingerprints pair in the database NIST SD27 [9]. We tuned the param-
eters with a non-public database regarding the zero false matching 
rate (ZeroFMR) of the DET curve. We have magnified the y-axis for 
visualization purposes
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algorithm. A closed scenario indicates that each sample has 
a mated reference in the reference database [24], which is 
our case.

Figure 6 depicts the curves CMC Rank-20 for the lower-
level matching algorithms, their fusion using a weighted 
sum, their fusion using an MLP with the original parameters 
of the local matching algorithms, and their fusion using an 

MLP with the parameters tuned for latent fingerprint iden-
tification. The curves corroborate that the fusion using an 
MLP improves the identification rates of the lower-level 
algorithms using all datasets and for most of the rank val-
ues. Additionally, we can observe that the fusion using an 
MLP exceeds the fusion using the weighted sum for larger 
databases (see the differences in datasets DS_3, DS_4, and 

Table 2   Description of the 
datasets employed to test 
our proposal. To provide 
comparisons with previous 
work, we have included DS_2 
with a subset of the references 
in DS_3, and DS_6 with the 
subset of samples and references 
with extended minutiae in the 
database GCDB [18]

Dataset Databases Samples References Latent features extraction

DS_1 NIST SD27 [9] SD4 [38] 258 2257 Manual
DS_2 NIST SD27 [9] SD14 [37] 258 10,000 Manual
DS_3 NIST SD27 [9] SD14 [37] 258 27,257 Manual
DS_4 NIST SD27 [9] SD4 [38] SD14 [37] 258 29,257 Manual
DS_5 MOLF [32] DB1 DB4 (subset) 859 1000 Automatic (NIST-NBIS)
DS_6 GCDB [18] 151 151 Manual
DS_7 NIST SD27 [9] SD4 [38] SD14 [37] 

non-public database
258 100,000 Manual
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Fig. 6   Curves CMC Rank-20 output by each evaluated algorithm 
using datasets DS_1, DS_3, DS_4, and DS_5. The evaluated algo-
rithms are the lower-level matching algorithms, their fusion using a 
weighted sum, their fusion using an MLP, and their fusion using an 

MLP with the parameters of the local matching algorithms tuned for 
latent fingerprint identification. We have pointed out the Rank-1 iden-
tification rates. We have adjusted the y-axis for each graph to improve 
the visualization
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DS_5). We can see that the parameter tuning using the 
ZeroFMR improves the Rank-1 identification rate for DS_1, 
DS_3, and DS_4, but it worsens for the DS_5. Unlike the 
other datasets, DS_5 stores minutiae automatically extracted 
from latent fingerprints. Although we used the minutiae 
extractor NIST-NBIS suggested by the authors of the data-
base MOLF [32], this automatic extractor detects more spu-
rious minutiae than the latent examiners. Considering that 
we tuned the parameters using a database with manually 
marked minutiae, we conclude that the set of parameters pro-
posed is inefficient for samples with minutiae automatically 
extracted. Nevertheless, the fusion using an MLP but with 
the original parameters outperforms the lower-level match-
ing algorithms and the fusion using a weighted sum for most 
of the rank values also using DS_5.

Table 3 compares the identification rates achieved by the 
ensemble of fingerprint matching algorithms against those 
reported in the literature. Our algorithm with the parameters 
of the local matching algorithms tuned for latent fingerprint 
identification reached a higher Rank-1 identification rate 
than other methods, except when comparing the samples and 
references in the dataset DS_2. Nevertheless, our proposed 
mechanism outperforms the work of Cao and Jain 2018 [2] 
using only minutiae. Identifying latent fingerprints using 

only minutiae reduces the size of the reference databases 
and the computational time.

The average computational time of our proposal was 
six milliseconds matching a sample against a reference. 
Although we performed our training and validation experi-
ments on a high-performance server, we measured the 
computational time on a device with mobility considering 
remote crime scenes. Thus, we used a laptop with a Core 
i7 processor, 16 GB of RAM, and a solid-state hard drive. 
We measured the average computational time to identify 
the samples against the references in the NIST SD27 [9] 
database. Since this database is considered representative of 
latent fingerprints, we measured the average computational 
time as a more reliable measure than the computational time 
of identifying a randomly selected latent fingerprint.

5 � Conclusions

In this research, we have studied the latent fingerprint identi-
fication problem as a machine learning problem, fusing two 
lower-level algorithms for fingerprint matching. We have 
selected as attributes the matching score and the match-
ing minutia count computed by each lower-level matching 

Table 3   Comparison between the ensemble of fingerprint matching algorithms and previous works regarding the Rank-1 identification rate

Italic face type indicates our proposal
*indicates the results achieved by the previous algorithm when using only minutiae

Algorithm Rank-1 iden-
tification rate 
(%)

Fingerprint features used Reference database

Krish et al. 2019 [18] 92.72 Minutiae and extended minutiae DS_6 (151 references)
Our proposal with parameters of the lower-

level algorithms tuned for latent fingerprint 
identification

96.71 Minutiae

Cao and Jain 2018 [2] 78.20 Minutiae and texture template DS_2 (10,000 references)
*Cao and Jain 2018 [2] using only minutiae 75.60 Minutiae
Our proposal with parameters of the lower-

level algorithms tuned for latent fingerprint 
identification

76.74 Minutiae

Jain and Feng 2011 [11] 74.00 Minutiae, skeleton, singular point, region of 
interest, ridge quality map, ridge frequency 
map, ridge wavelength map

DS_4 (29,257 references)

*Jain and Feng 2011 [11] using only minutiae ≈ 35.00 Minutiae
Hernández-Palancar et al. 2014 [10] 58.13 Minutiae, singular point
Medina-Pérez et al. 2016 [26] 68.60 Minutiae
Castillo and Hernández-Palancar 2019 [6] 70.9 Minutiae and ridges
Our proposal with parameters of the lower-

level algorithms tuned for latent fingerprint 
identification

74.03 Minutiae

Cao et al. 2020 65.7 Minutiae and texture template DS_7 (100,000 references)
Our proposal with parameters of the lower-

level algorithms tuned for latent fingerprint 
identification

71.32 Minutiae
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algorithm. We have chosen two local matching algorithms 
from those suitable for latent fingerprint identification, tun-
ing their parameters for latent fingerprint identification. 
Moreover, we have substituted their global matching algo-
rithms by the algorithm DMC, which has shown to improve 
their performance. Finally, we have computed the fused 
match score between a sample and a reference using a func-
tion learned with a multilayer perceptron.

From our experiments, we found that the fusion of lower-
level matching algorithms using a supervised classifier 
improves the identification rate of the lower-level matching 
algorithms. We also observed that a supervised classifier 
reaches higher identification rates than a weighted sum as 
the fusion algorithm because a supervised classifier can find 
more complex functions than the weighted sum. Moreover, 
we noticed that the minutia extraction method affects the 
parameters for the local matching algorithms.

Other attributes extracted from the local matching algo-
rithms will be analyzed as future work to determine a new 
set of attributes that describes better the matching relation-
ship between a latent fingerprint and an impression. Fur-
thermore, ongoing work also involves exploring the use of 
other supervised classifiers that are known to be robust to 
class imbalance [23].
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