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Abstract
It is well-known that numerical weather prediction (NWP) models require considerable computer power to solve complex 
mathematical equations to obtain a forecast based on current weather conditions. In this article, we propose a novel light-
weight data-driven weather forecasting model by exploring temporal modelling approaches of long short-term memory 
(LSTM) and temporal convolutional networks (TCN) and compare its performance with the existing classical machine 
learning approaches, statistical forecasting approaches, and a dynamic ensemble method, as well as the well-established 
weather research and forecasting (WRF) NWP model. More specifically Standard Regression (SR), Support Vector Regres-
sion (SVR), and Random Forest (RF) are implemented as the classical machine learning approaches, and Autoregressive 
Integrated Moving Average (ARIMA), Vector Auto Regression (VAR), and Vector Error Correction Model (VECM) are 
implemented as the statistical forecasting approaches. Furthermore, Arbitrage of Forecasting Expert (AFE) is implemented 
as the dynamic ensemble method in this article. Weather information is captured by time-series data and thus, we explore 
the state-of-art LSTM and TCN models, which is a specialised form of neural network for weather prediction. The proposed 
deep model consists of a number of layers that use surface weather parameters over a given period of time for weather 
forecasting. The proposed deep learning networks with LSTM and TCN layers are assessed in two different regressions, 
namely multi-input multi-output and multi-input single-output. Our experiment shows that the proposed lightweight model 
produces better results compared to the well-known and complex WRF model, demonstrating its potential for efficient and 
accurate weather forecasting up to 12 h.

Keywords  Long short-term memory · Temporal convolutional networks · Weather prediction · WRF · Neural network · 
Time-series data analysis

1  Introduction

Weather forecasting refers to the scientific process of pre-
dicting the state of the atmosphere based on specific time 
frames and locations [1]. Numerical weather prediction 
(NWP) utilises computer algorithms to provide a forecast 
based on current weather conditions by solving a large sys-
tem of nonlinear mathematical equations, which are based 
on specific mathematical models. More specifically, these 
models define a coordinate system, which divides the earth 
into a 3-dimensional grid. The weather parameters such as 
winds, solar radiation, the phase change of water, heat trans-
fer, relative humidity, and surface hydrology are measured 

within each grid and their interaction with neighbouring 
grids to predict atmospheric properties for the future [2].

Meteorology adopted a more quantitative approach with 
the advancement of technology and computer science, and 
forecast models became more accessible to researchers, fore-
casters, and other stakeholders. Many NWP systems were 
developed in recent years, such as Weather Research and 
Forecasting (WRF) model, where increasing high-perfor-
mance computing power has facilitated the enhancement and 
the introduction of regional or limited area models [3]. As 
a consequence, the WRF model became the world’s most-
used atmospheric NWP model due to its higher resolution 
rate, accuracy, open-source nature, community support, and 
a wide variety of usability within different domains [4, 5].

According to [1], data-driven computer modelling sys-
tems can be utilised to reduce the computational power of 
NWPs. In particular, artificial neural network (ANN) can 
be used for this purpose due to their adaptive nature and 
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learning capabilities based on prior knowledge. This feature 
makes the ANN techniques very appealing in application 
domains for solving highly nonlinear phenomena. Deep 
models for multivariate time-series forecasting often use 
Recurrent Neural Networks (RNN) and Temporal Convolu-
tional Networks (TCN). Recently, a variant of RNN called 
Long Short-Term Memory (LSTM) has attached consider-
able attention due to its superior performance. Such models 
have attracted considerable attention due to their superior 
performance [6–8]. Deep networks often use stacked neural 
networks and include several layers as part of the overall 
composition known as nodes. The computation takes place 
at the node level since it allows the combination of data 
input through a set of coefficients. Subsequently, the activa-
tion function gets established on the basis of input-weight 
products while signal progresses through the network [9]. 
Regression technique is often employed to develop and eval-
uate neural network models for accurate weather prediction 
as the weather information is captured by time-series data 
consisting of real numbers [10].

This article presents developing and evaluating a light-
weight and novel weather forecasting system using mod-
ern neural networks. Figure 1 depicts a general overview 
of the research discussed in this article. More specifically, 
a suitable machine learning model is proposed by explor-
ing temporal modelling approaches of LSTM and TCN, and 
compare its performance with classical machine learning 
approaches, statistical forecasting models, and a dynamic 
ensemble method. Secondly, we use the proposed model 
for short-term weather prediction and compare the model 
accuracy with the well-established WRF model. Finally, we 
reform the model for long-term weather forecasting, and 
analyse the model accuracy and compared the performance 
to the state-of-art WRF model.

In this study, we investigate LSTM and TCN over RNN 
since there is an inherent issue of the vanishing gradient 
problem with the RNN [6]. The LSTM and TCN can over-
come this vanishing gradient issue, but it can easily use up 
the high capacity of memory [8, 11]. The rest of the arti-
cle is organised as follows: Sect. 2 focuses on related work, 

and Sect. 3 discusses the research aims and objectives. In 
Sect. 4, we present the WRF model and its challenges, and 
Sect. 5 discusses the sequence modelling and prediction. 
In Sects. 6 and 7, we discuss the methodology and results. 
Finally, Sect. 8 concludes the article.

2 � Related work

Numerical weather prediction (NWP) concept was proposed 
by Lewis Fry Richardson in 1922, and practical use of NWP 
began in 1955 after the development of programmable com-
puters [1]. Neural networks-based weather forecasting has 
been evolved significantly in the last three decades. Before 
the year 2000, the model output statistics (MOS) was the 
most widely used approach to improve the numerical mod-
els’ ability to forecast by relating model outputs to obser-
vational data [12–14]. A mixed statistical or dynamic tech-
nique for the weather forecasting was introduced by [15] in 
1983. The work in [16] added a new perception to dynamic 
modelling in 1991. These approaches have limitations and 
challenges such as massive computational requirements, lack 
of design methodologies for selecting the model architecture 
and parameters, and time-consuming to prediction resulting 
less reliability as the difference between the current time and 
the forecast time increases [13, 16, 17].

Artificial neural network-based minimum temperature 
prediction system was introduced in 1991 using the back-
propagation algorithms [18, 19]. This concept considerably 
reduced the computational requirements of MOS directing 
an effective forecast [16]. A snowfall and rainfall forecasting 
model was introduced in 1995 from weather radar images 
with ANN [20]. The results show that the ANN is more 
effective than the traditional cross-correlation method, and 
the persistence prediction method is producing a substantial 
reduction in prediction error. In 1998, Oishi et al. devel-
oped a severe rainfall prediction method using AI [21]. The 
development method was unique as it is introduced infer-
ence (i.e. knowledge-based) rather than using numerical 
simulations. A multi-polynomial high order neural network 

Fig. 1   Overview of the research
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(M-PHONN)-based rainfall prediction model was developed 
by Hui Qi and Ming Zhang in 2001 [22]. This new model 
has features such as increasing the speed, accuracy, and the 
robustness of the rainfall estimate. Therefore, this model 
could be used to complement the already established auto-
estimator algorithms.

A multilayer perceptron network was trained with the 
backpropagation algorithm with momentum for temperature 
forecasting in 2002 [23]. The results were very encouraging 
and clearly demonstrated the potential for future weather 
forecasting applications. In the same year, a comparative was 
carried out analysing different neural network models for 
daily maximum and minimum temperature, and wind speed 
[24]. The results show that the radial basis function network 
(RBFN) produced the most accurate forecast compared to 
the Elman recurrent neural network (ELNN) and multi-
layered perceptron (MLP) networks. In 2005, a rough set 
of fuzzy neural network was introduced to forecast weather 
parameters; dew temperature, wind speed, temperature, and 
visibility [25]. This model has several fuzzy rules, and their 
initial weights were estimated with a deeper network for 
weather forecasting. Moreover, Hayati and Mohebi pro-
posed a successful model for temperature forecasting based 
on MLP.

A feature-based neural network model was introduced 
in 2008 to predict maximum temperature, minimum tem-
perature, and relative humidity [26]. Neural network fea-
tures are extracted over different periods as well as from the 
time-series weather parameter itself. In particular, feedfor-
ward ANN is utilised in this approach with backpropagation 
for supervised learning. The prediction results have a high 
degree of accuracy, and this modelling is recommended as 
an alternative to traditional meteorological approaches by 
[27–29]. In 2012, a backpropagation neural network (BPN) 
was implemented for temperature forecasting [27, 30]. This 
network has successfully identified the nonlinear structural 
relationship between various input weather parameters. Fur-
thermore, a new hybrid model was introduced in 2014 to 
forecast the temperature which is based on an ensemble of 
neural networks (ENN) [31], and the results suggested that 
including image data would improve the prediction results. 
In the same year, a deep neural network-based feature rep-
resentation for weather perdition model was developed for 
the temperature and dew point prediction [32].

In 2015, eight different novel regression tree struc-
tures were applied to short-term wind speed prediction 
[33]. The author also compared the best regression tree 
approach against other AI approaches such as support vec-
tor regression (SVR), MLP, extreme learning machines, 
and multi-linear regression approach. The best regression 
tree yields the best results for wind speed prediction. In 
the same year, a deep neural network was introduced for 
ultra-short-term wind forecasting with success [34]. Deep 

learning with LSTM layers has been introduced to pre-
cipitation nowcasting by Shi et al. [11]. The experimen-
tal results show that the LSTM network has the ability 
to capture spatiotemporal correlations and can be used to 
precipitation nowcasting. In the same year, a model was 
developed to predict the temperate in Nevada using a deep 
neural network with stacked denoising auto-encoders with 
higher accuracy of 97.97% compared to traditional neu-
ral networks (94.92%) [35]. In 2016, the multi-stacked 
deep learning LSTM approach was utilised to forecasting 
weather parameters temperature, humidity, and wind speed 
[36]. The author suggested that the model could be used to 
predict other weather parameters based on the effective-
ness and accuracy of the results.

Traditional machine learning methods were analysed for 
radiation forecasting in 2017 [37]. The author concluded 
that the SVR, regression trees, and forests have produced 
a promising outcome for radiation forecasting. In 2018, 
the backpropagation neural (BPN) network’s performance 
compared with linear regression and regression tree for 
temperature forecasting [38]. As a result, a significant bet-
ter temperature yields the BPN. In 2018, a short-term local 
rain and temperature forecasting model was developed 
using deep neural network [39]. The author concluded that 
the deep neural networks yield the highest accuracy for 
rain prediction among several machine learning methods. 
In the same year, the neural network approach is utilised 
to create models to predict sea surface temperature and 
soil moisture [40, 41].

The selected state-of-the-art deep learning approaches 
for weather forecasting and their contributions and dif-
ferences with the previous approaches are discussed in 
Table 1.

The above existing weather forecasting models are able to 
predict up to maximum three weather parameters. Besides, 
weather forecasting is an entirely nonlinear process, and each 
parameter often depends upon one more other parameters 
[13, 42, 43]. These larger numbers of interrelated parameters 
work together, aiming for an accurate weather forecast in a 
more reliable NWP such as met office and WRF models [4, 
44]. A maximum of up to four input weather parameters is 
considered in the existing AI-based forecasting models.

Based on the related work, it is evident that:

•	 There is no identified attempt to compare an AI-based 
weather prediction with a well-established and existing 
weather forecasting model such as WRF;

•	 There has been little or no attempt to compare traditional 
machine learning approaches with cutting-edge deep 
learning technologies for weather forecasting;

•	 Most of the existing approaches use less than four interre-
lated input parameters for neural network-based weather 
forecasting model;
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•	 A complete AI-based weather forecasting model with 
up to 10 input/output weather parameters is yet to be 
explored.

3 � Research aim and objectives

The work presented in this article aimed to develop a 
weather forecasting model to address the above-mentioned 
drawbacks using state-of-the-art deep models by establish-
ing the following objectives.

1.	 To propose an efficient neural network-based weather 
forecasting model by exploring temporal modelling 
approaches of LSTM and TCN, and compare its perfor-
mance with the existing approaches;

2.	 Use the proposed neural network model for short-term 
weather prediction and compare the results with WRF 
model prediction;

3.	 Fine-tune the proposed model for long-term weather 
forecasting;

4.	 Compare the model performances for long-term fore-
casting with the WRF model prediction.

Our approach is targeted to develop deep neural networks 
to solve the regression problem of weather forecasting. We 
propose two different regression models to assess proposed 
deep learning models, namely multi-input multi-output 
(MIMO) and multi-input single-output (MISO). In this 

article, we addressed the above objectives in detail in vari-
ous sections. Objective 1, an effective neural network-based 
weather forecasting model is proposed and compared its per-
formance with existing approaches in Sect. 7.1. Objective 
2, the proposed model is used to short-term weather fore-
casting and compared its performance with the WRF model 
predictions in Sect. 7.2. For Objective 3 and Objective 4, 
the proposed model is fine-tuned for long-term forecasting 
and compared the results with the WRF model predictions 
in Sect. 7.3.

4 � Weather research and forecasting (WRF) 
model

The WRF model was developed by Norwegian physicist Vil-
helm Bjerknes in the latter part of the 1990s as part of a col-
laborative partnership with many environmental and meteor-
ology organisations. The model involves solving of various 
thermodynamic equations so that numerical weather-based 
predictions can be made mainly through different vertical 
levels [45, 46]. The primary role of the WRF is to carry out 
analysis focusing on climate time scale via linking physics 
data between land, atmosphere and ocean. The WRF model 
is currently the world’s most-used atmospheric model since 
its initial public release in the year 2000 [5].

In order to investigate the model for real cases, it is nec-
essary to install and configure WPS (WRF pre-processing 
system), WRF ARW (advanced research WRF model), and 

Table 1   Existing deep learning approaches and their contributions

Deep learning approach for weather forecasting Contribution and difference with the previous approaches

Deep neural networks for ultra-short-term wind forecasting [34] Results show that carefully selection of deep neural networks outper-
forms shallow ones. The model accepts a single input parameter and 
predicts a single parameter, and the model is limited to very short-
term forecasting (less than an hour)

Weather forecasting using deep learning techniques [61] Recurrent neural network is used for prediction of the rainfall with 
adequate accuracy level. The model uses a single input single output 
and is used for short-term forecasting

Short-term local weather forecast using dense weather station by deep 
neural network [39]

Deep neural network is used to predict rain and temperature. The 
researches use four input parameters and predict one parameter at a 
given time. This model is able to predict data accurately up to an hour

Convolutional LSTM network: a machine learning approach for pre-
cipitation nowcasting [11]

Formulated precipitation nowcasting as a spatiotemporal sequence fore-
casting problem. The proposed model is a Single-input single-output 
and able to produce a state-of-the-art performance for up to 6 h

Forecasting the weather of Nevada: a deep learning approach [35] This model accepts four input parameters and predicts one output as 
temperature. Results indicated that stacked denoising auto-encoder 
deep learning model predicts accurate long-term temperature

Sequence to sequence weather forecasting with long short-term 
memory recurrent neural networks [36]

Multi-stacked LSTMs are used to map sequences of weather values of 
the same length. Use three input parameters and predict one parameter 
at a time

A deep learning methodology based on bidirectional gated recurrent 
unit for wind power prediction [62]

Contributed the bidirectional gated recurrent network for wind power 
forecasting. The model used wind direction and wind speed as inputs 
and predicted the results more accurately up to 6 h
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post-processing software. The WRF post-processing is not 
described in this article, as the main objective is to collect 
historical weather data for prediction and analyses. Inter-
ested researchers can refer to [47] for further details. The 
WRF ARW and the WPS share common routines, like WRF 
I/O API. Therefore, the successful compilation of the WPS 
depends upon the successful compilation of the WRF ARW 
model [4].

The WRF model needs to run in two different modes 
to extract time-series data. Firstly, historical weather data 
are collected and subsequently, predicted weather data is 
identified for evaluation purposes. For each instance, the 
model runs in a single domain mode and utilises different 
“namelist.wps” and “namelist.input” files to configure the 
WPS and WRF-ARW components [17]. GRIdded binary or 
general regularly distributed information in binary, often use 
as GRIB data, which is a concise data format commonly 
used in meteorology to store historical and forecast weather 
data [17, 48]. According to [49], Global Forecast System 
(GFS) GRIB data provides 0.25 degrees resolution and 
available to download every 3 h freely. Therefore, the GFS 
3-hourly data are selected for this project, with a horizontal 
resolution set to 10 km.

One of the primary challenges in the WRF is its require-
ment for massive computational power to solve the equations 
that describe the atmosphere. Furthermore, atmospheric pro-
cesses are associated with highly chaotic dynamical systems, 
which cause a limited model’s accuracy. As a consequence, 
the model forecast capabilities are less reliable as the differ-
ence between the current time and the forecast time increases 
[1, 50]. In addition, the WRF is a large and complex model 
with different versions and applications, which lead to the 
need for greater understanding of the model, its implemen-
tation and the different option associated with its execution 
[5]. The GFS 0.25 degrees dataset is the freely available 
highest resolution dataset for the WRF model. This allows 
the user to forecast weather data at a horizontal resolution 
about 27 km [48, 49]. This implies that the user can predict 
data with increased accuracy up to 27 km. The model cal-
culates the lesser resolution data based on results obtained. 
Thus, the model obtains better results for long-range forecast 
and not for a selected geographical region, such as a farm, 
school, places of interest, and so on [5, 17, 51].

Based on the above discussion, we propose a novel light-
weight weather prediction model that could run on a stan-
dalone PC for accurate weather prediction and could easily 
be deployed in a selected geographical region.

5 � Sequence modelling and prediction

The modelling task has been highlighted before defining a 
network structure which involves time-series weather data 
sequence x0,… , xT and wish to predict some correspond-
ing outputs y0,… , yT at each time. As presented in Table 2, 
there are 10 different weather parameters in data at a given 
time t, xt =

[

p1,… , p10
]

 . The aim is to predict the value yt 
at time t  , which is constrained to only previously observed 
inputs: x0,… , xt−1 . Therefore, the sequence modelling net-
work can be defined as a function F ∶ X

T+1
→ Y

T+1 that 
produces the mapping ŷ0,… , ŷT = F

(

x0,… , xT
)

 , if it satis-
fies the causal constraints, i.e. yt only depends on x0,… , xt 
and not on any future inputs xt+1,… , xT . The main idea of 
learning in the sequence modelling is to find a network F  
which minimises the loss ( �) between the actual outputs 
and the predictions, �

(

y0,… , yT ,F
(

x0,… , xT
))

 in which 
the sequences and predictions are drawn according to some 
distribution.

The WRF model with GFS-GRIB data can produce a 
large amount of historical weather data. Recurrent neural 
networks (RNN), LSTM, and TCN are extremely expres-
sive models which are appropriate in such a scenario. 
These networks have attracted considerable attention due 
to their superior performance based on ability to learn 
highly complex vector-to-vector mapping [52, 53]. The 
LSTM is a specialised form of RNN that is designed for 
sequence modelling [52, 54]. Highly dimensional hidden 
states H are the basic building blocks of RNN which are 
updated with nonlinear activation function F  . At a given 
time t  , the hidden state Ht is updated by Ht = F

(

Ht−1, xt
)

 . 
The structure of H works as the memory of the network.

The state of the hidden layer at a given time is con-
ditioned on its previous state. The RNN is extremely 

Table 2   Surface weather parameters (10 identified parameters used 
by our model)

Variable Description Measuring unit

TSK Skin temperature or surface temperature °K
PSFC Surface pressure Pa
U10 X component of wind at 10 m m/s
V10 Y component of wind at 10 m m/s
Q2 2-m specific humidity Kg/Kg
Rainc Convective rain (accumulated precipita-

tion)
mm

Rainnc Non-convective rain mm
Snow Snow water equivalent Kg/m2

TSLB Soil temperature °K
SMOIS Soil moisture m3/m3
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deep as they are maintained a vector activation through 
time at each timestep. This will result in high training 
time-consuming due to the exploding and the vanish-
ing gradient problems [6]. The development of LSTM 
and TCN architectures have been addressed the gradient 
vanishing issue with RNN [55]. Therefore, we use state-
of-art LSTM and TCN architecture to minimise the loss 
�(y0,… , yT ,F

(

x0,… , xT )
)

 for effective modelling and pre-
diction of time-series weather data.

5.1 � Proposed deep model with long short‑term 
memory (LSTM) layers

The proposed model is based on LSTM networks and uses 
temporal weather data to identify the patterns and produces 
weather predictions. As discussed in Sect. 5, we experiment 
with the state-of-the-art LSTM, which is a specialised form 
of RNN, and it is widely applied to handle temporal data. The 
key concepts of the LSTM have the ability to learn long-term 
dependencies by incorporating memory units. These memory 
units allow the network to learn, forget previously hidden 
states, and update hidden states [6, 9, 56]. Figure 2a shows 
the deep learning model consisting of stacked LSTM layers for 
weather forecasting using surface weather parameters. Table 2 
describes the surface weather parameters, which are used as 
the input parameters. The model provides outputs, which are 
the predicted weather parameters.

Figure 2b shows the LSTM memory architecture used in 
our model. More specifically, the proposed model has the 
input vector Xt =

[

p1, p2,… , p9, p10
]

 at a given time step t , 
which consists of 10 different 

(

p1 … p10
)

 weather parameters. 
In a given time t , the model updates the memory cells for 

long-term Ct−1 and short-term Ht−1 recall from the previous 
timestep t − 1 via:

The notations of Eq. (1) are: w∗—weight matrices, b∗
—biases, ⊙—element-wise vector product, It—input gate 
and Jt—input moderation gate contributing to memory, Ft

—forget gate, and Ot—output gate as a multiplier between 
memory gates. To allow the LSTM to make complex deci-
sions over a short period of time, there are two types of 
hidden states, namely Ct and Ht [6, 57]. The LSTM has the 
ability to selectively consider its current inputs or forgets its 
previous memory by switching the gates It and Ft . Similarly, 
the output gate Ot learns how much memory cell Ct needs 
to be transferred to the hidden state Ht . Compared to the 
RNN, these additional memory cells give the ability to learn 
enormously complex and long-term temporal dynamics with 
the LSTM.

In this work, we propose two types of deep models to 
solve the regression problem involving weather forecasting, 

It = tanh
(

wxiXt + whiHt−1 + bi
)

Jt = sigm
(

wxjXt + whiHt−1 + bj
)

Ft = sigm
(

wxf Xt + whfHt−1 + bf
)

Ot = tanh
(

wxoXt + whoHt−1 + bo
)

Ct = Ct−1 ⊙ Ft + It ⊙ Jt

(1)Ht = tanh
(

Ct

)

⊙ Ot

Fig. 2   a Proposed layered LSTM and b LSTM memory cell used for this research
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namely multi-input multi-output (MIMO) and multi-input 
single-output (MISO).

5.1.1 � MIMO‑LSTM

In the MIMO, all the weather parameters (i.e. 10 surface 
weather parameters in this study) are fed into the network, 
which is expected to predict the same number of parameters 
(i.e. 10 parameters in this study) as the output. Therefore, 
only one model is required for weather forecasting. Figure 3a 
depicts the basic arrangement of the MIMO.

5.1.2 � MISO‑LSTM

In MISO approach, all of the weather parameters (i.e. 10 
surface weather parameters in this study) are fed into the 
network, which is expected to predict a single parameter. 10 
different models are required as each of them is trained to 
predict a particular weather parameter. Figure 3b depicts the 
basic arrangement of the MIMO and the MISO.

5.2 � Proposed deep model with temporal 
convolutional network (TCN) layers

The main characteristic of the TCN is that the network can 
take a sequence of any length as inputs and map it to an 
output sequence of the same length, just similar to the RNN 
categories. These networks involve causal convolutions and 
initially developed to examine long-range patterns using a 
hierarchy of temporal convolutional filters [8, 58, 59]. TCN 
architecture is quite simple and is informed by recent generic 
convolutional architectures for sequential data. This archi-
tecture has no skip connections across layers, conditioning, 
context stacking or gated activations, and autoregressive 
prediction and a very long memory.

The TCNs use dilated convolutions that enable an expo-
nentially large receptive field, allowing very deep networks 
and very long effective history [60]. For instance, the dila-
tion convolution operation F for a 1-D sequence of a given 
weather parameter p1 , i.e. p =

(

p1
0
,… , p1

t

)

 and a filter 
f ∶ {0,… , k − 1} , on element s = p1

t̂
 (where t̂ = 0,… , t ) of 

the sequence is defined as:

(2)F(s) =
(

p ∗d f
)

(s) =

k−1
∑

i=0

f (i).ps−d.i

Fig. 3   The proposed MIMO and MISO deep architecture for weather forecasting

Fig. 4   Architectural elements in a TCN with causal convolution and different dilation factors. The input to the TCN is xt and output yt . The xt 
contains 10-dimensional weather parameter
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The notations of Eq. (2) are: d—dilation factor, k—filter 
size, and s − d.i accounts for the direction of the past. The 
TCN consists of stacked units of one dimensional convo-
lution with activation functions [7]. The architectural ele-
ments in a TCN with configurations dilations dilation factors 
d = 1, 2, and 4 are shown in Fig. 4. The main purpose of 
the dilation to introduce a fixed step between every adjacent 
filter taps, and larger dilations and larger filter sizes k enable 
effectively expanding the receptive filed [8, 59]. The incre-
ment of d exponentially increase the depth of the network 
in these convolutions and this guarantees that there is some 
filters that hits each input within the effective history [59].

5.2.1 � MIMO‑TCN and MISO‑TCN

Similar to LSTM in Sects. 5.1.1 and 5.1.2, we also use the 
TCN in our proposed MIMO and MISO models.

5.3 � Proposed model for weather forecasting

As discussed in Sects. 5.1 and 5.2, the LSTM and TCN deep 
learning approaches are proposed for weather forecasting. 
The MIMO and MISO are the two types of deep models to 
solve the regression problem. Therefore, proposed models 
for weather forecasting are MIMO-LSTM, MISO-LSTM, 
MIMO-TCN, and MISO-TCN. Deep learning models are 
discussed in [11, 34, 39, 61, 62] are single input single out-
put models. The MISO are experimented in [35, 36] and a 
MIMO is discussed in [63]. All these models can be accepted 
up to four input parameters at a given time. Increased num-
ber of input parameters will increase the forecasting accu-
racy of an NWP model by distinguishing interrelationships 
among parameters [17, 47]. Our proposed model uses ten 
input parameters which has not been explored in the past for 
neural network-based weather forecasting. Subsequently, the 
research discusses in this article is explored for both MIMO 
and MISO.

Moreover, [62] uses the bidirectional recurrent network 
with weather-related input parameters successfully to predict 
the wind power up to 6 h. Therefore, bidirectional LSTM 
experiments in long-term forecasting and compare with the 
proposed model. Most of the researches discussed in Table 1 
are attempted to forecasting a single or few parameters for a 
specific purpose rather developing a complete weather fore-
casting model. Our proposed model explores to complete 
AI-based fine-grained weather forecasting model.

We use Keras as a tool to implement both LSTM and 
TCN deep learning networks [56, 64–66].

6 � Methodology

This is an empirical-based study and is focused on analysing 
the quantitative temporal weather data. There are 10 surface 
weather parameters utilised in this research for weather pre-
diction. These weather parameters are identified by consid-
ering their usefulness in precision farming. Moreover, these 
surface parameters can be captured at a chosen location 
using various sensors using a local weather station.

6.1 � Surface weather parameters

The surface weather parameters are observed and reported in 
for monitoring and forecasting purposes [67]. In our previ-
ous study, we defined 10 surface weather parameters for the 
forecasting, which can be extruded from GRIB data using 
the WRF model [66]. Those 10 surface parameters, as shown 
in Table 2.

The surface parameters of wind direction and wind speed 
can be calculated from the WRF surface variables U10 and 
V10 [4]. Table 2 shows the surface weather parameters which 
are utilised in this research. The XLAT—reference latitude 
and XLONG—reference longitude parameters are used with 
each data point for the location identification.

6.2 � Data collection and preparation

As described in Sect. 4, the GRIB data is used to run the 
WRF model. A total of 12 weather parameters is extracted 
from the period of January 2018 to May 2018. This is used 
as the training dataset to train the proposed models. Simi-
larly, the parameters in June 2018 data are used to test the 
network. This is to test different trained deep models to 
identify the best model for forecasting. The parameters in 
July 2018 are considered as the validation dataset, which 
is used as the ground truth to compare perdition from the 
best model. The WRF model is being run in forecast mode 
using the same format GRIB data for the month of July 2018 

Table 3   Different LSTM layer configurations for MIMO-LSTM and 
MISO-LSTM

Configuration Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Config 1 128 512 512 256
Config 2 256 2048 2048 1024 256
Config 3 256 512 1024 512 256
Config 4 256 1024 1024 512
Config 5 64 256 512 128
Config 6 128 512 256
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to evaluate the overall prediction performance of the WRF 
model.

The training data set has been normalised to keep each 
value in between − 1 and 1, and the same maximum and 
minimum variable values are used to normalise the testing 
and the evaluation data set. We apply a sliding window of 
7 days temporal resolution on each dataset as input to the 
model and the temporal resolution of next 3 h data as the 
model’s output. By using this sliding window method, the 
size of our training dataset is ~ 6.5 GB with a sample size of 
675,924, and the testing dataset is ~ 1.19 GB with a sample 
size of 114,450.

6.3 � Model details

As shown in Table 3, six different configurations are con-
sidered for both MIMO-LSTM and MISO-LSTM models. 
Figure 2a depicts the general architecture of the proposed 
model. Each configuration has a different number of layers, 
and each layer consists of a different number of nodes. Each 
configuration is experimented with:

•	 Fixed learning rate (LR) and adaptive learning rate [68]. 
In the fixed learning rate, we set LR = 0.01. In the adap-
tive learning rate method, the LR (initial LR = 0.1) is 
reduced to half of the current LR in every 20 epochs to 
find the optimal model with best LR.

•	 Adam [69] and SGD [70] optimizers to minimise a given 
cost function [56, 64].

The MIMO-TCN and MISO-TCN approaches have exper-
imented with different configurations and controls, such as;

•	 Filter sizes: 32, 64, 128, 256, and 512
•	 Stacked TCN layers: 1, 2, 3, and 4 and
•	 With different activation functions such as ‘linear’ and 

‘tanh’

According to [8, 59, 71], the following controls are kept 
constant within these experiments as these do not impact on 
final results significantly in the regression model for time-
series data; kernel size: 2, dilations: 7, where dilation values 
are: 1, 2, 4, 8, 16, 32, 64, batch size-64, and dropout rate-0, 
learning rate-0.01.

6.4 � Evaluation metric

The proposed deep regression models are evaluated using 
the most common metrics of mean squared error (MSE), 
which is calculated as:

where ya is the actual expected output, yb is the model’s 
prediction, and n is number of samples.

6.5 � Baseline approaches

Performances of the proposed LSTM and TCN models 
are compared with the following three types of baseline 
approaches. These approaches do not consider the temporal 
information rather count as another dimension in multivari-
ate weather data.

•	 Classic machine learning approaches

Standard regression (SR), support vector regression 
(SVR), and random forest (RF).

•	 Statistical machine learning approaches

Autoregressive integrated moving average (ARIMA), 
vector auto regression (VAR), and vector error correction 
model (VECM).

(3)MSE =
1

n

n
∑

i=1

(

ya − yb
)2

Table 4   Comparison of machine learning approaches for MISO

Lower MSE is better and is shown in bold

Parameter SR SVR ARIMA VAR VECM AFE RF LSTM TCN

TSK 0.002401549 0.002254852 0.002284599 0.002276563 0.002121585 0.002117985 0.002095814 0.002041361 0.001738656
PSFC 9.359E − 05 8.90012E − 05 9.2467E − 05 9.08745E − 05 8.8452E − 05 8.79532E − 05 8.76859E − 05 8.16E − 05 8.74041E − 05
U10 0.005820971 0.005620015 0.00568859 0.005689786 0.005425125 0.005325658 0.00486305 0.002748407 0.004384032
V10 0.009827752 0.008465238 0.00920003 0.008902459 0.008625459 0.008612125 0.007865233 0.003732091 0.007427616
Q2 0.00698015 0.006901244 0.006976667 0.006885608 0.006841126 0.006827854 0.006795488 0.006379222 0.006752483
Rainc 0.004125379 0.003956207 0.004072365 0.004006562 0.003756566 0.003654545 0.003465855 0.002799961 0.003260107
Rainnc 0.021597916 0.019257844 0.016020204 0.015784525 0.013299866 0.013198986 0.009548721 0.000502061 0.001895714
Snow 1.65547E − 06 9.87E − 07 1.18746E − 06 9.98926E − 07 5.98926E − 07 5.13656E − 07 3.72155E − 07 1.74E − 07 1.34E − 07
TSLB 0.000934762 0.000847989 0.000904632 0.000869562 0.000853657 0.000796566 0.000762486 0.000724035 0.000376134
SMOIS 0.000359895 0.000285655 0.000327851 0.000302515 0.000273252 0.000271652 0.000249451 0.00024636 9.98907E − 05
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•	 A dynamic ensemble method

Arbitrage of forecasting expert (AFE).
We use both linear and RBF (radial basis function) ker-

nels for SVR in our experiments and use the grid search 
algorithm technique to optimise both C and γ parameters. 

In linear kernel, the parameter C is selected among the 
range [0.01–10,000] with multiples of 10. In RGB kernel, 
the parameters C is selected as above but γ is selected 
among the range [0.0001, 0.001, 0.01, 0.1, 0.2, 0.5, 0.6, 
0.9]. For RF [71], we select number of trees as [100, 250, 
500]. For ARIMA model, we use the parameters p = 2, 

Fig. 5   MISO analysis of different approaches to predicting different 
weather parameters (SR standard regression, ARIMA autoregressive 
integrated moving average, VAR vector autoregression, SVR support 

vector regression, VECM vector error correction model, AFE arbi-
trage of forecasting experts, RF random forest, LSTM long short-term 
memory, TCN temporal convolutional network)
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d = 0, and q = 1 [72]. For VAR and VECM, the auto option 
is selected for weather forecasting [73, 74]. The given soft-
ware package is used for the AFE [75].

The baseline performances are compared with the 
proposed LSTM and TCN networks. These models are 
evaluated using the testing dataset to select the optimal 
model or a model with the least MSE, which can be used 
as a tool for future forecasting. The selected optimal is 
used to forecast the weather parameters for the validation 
dataset (model prediction), and the model predicted values 
are evaluated with respect to the ground truth. Similarly, 
the WRF model has been run in forecast mode using the 
same format GRIB data for the month of July 2018 (WRF 
Prediction). These WRF predicted values are evaluated 
with respect to the ground truth. Then, we compare the 
model prediction and WRF perdition to determine the pos-
sibility to use the proposed model for short-term weather 
forecasting (i.e. 3-h prediction). Then, the optimal model 
is re-tuned for long-term weather forecasting, such as 6, 
9, 12, 24, and 48 h. Similar to the short-term forecasting, 
we compare the model predictions and WRF predictions 
to determine up to what extent the proposed model can be 
used for weather forecasting.

7 � Results and discussion

There are three types of results, namely: (1) a comparison 
of various machine learning techniques, statistical forecast-
ing approaches, and a dynamic ensemble method with the 
proposed approach for weather forecasting, (2) performance 
of short-term weather forecasting, and (3) performance of 
long-term weather forecasting using the proposed model. 
More specifically, the short-term weather forecasting refers 

to 3-h weather prediction, and long-term weather forecasting 
refers to 6-h, 9-h, 12-h, 24-h, and 48-h weather predictions.

7.1 � Comparison of machine learning techniques 
for short‑term weather forecasting

As described in Sect. 6.5, we examine the classic machine 
learning approaches (i.e. SR, SVR, RF), statistical fore-
casting approaches (i.e. ARIMA, VAR, and VECM), and 
a dynamic ensemble method (i.e. AFE). Finally, we com-
pare these performances with the proposed deep models 
(i.e. MISO-LSTM, MISO-TCN, MIMO-LSTM, MIMO-
TCN) consisting of cutting-edge networks such as LSTM 
and TCN layers. As described in Sects. 5.1 and 5.2, these 
models are evaluated using two different regression types, 
namely MISO and MIMO.

We evaluate the MISO models to determine the MISO-
optimal with the least MSE for weather prediction. Table 4 
and Fig. 5 represent the comparison of machine learning 
approaches for MISO. As per Table 4 and Fig. 5, the MISO-
LSTM provides better performance with the least MSE for 
6 parameters out of 10. Thus, the LSTM combined model 
with 10 parameters (i.e. MISO-LSTM) has been selected as 
the MISO proposed model.

Similarly, we evaluate the MIMO models to determine 
the MIMO-optimal with the least MSE for weather predic-
tion. Table 5 and Fig. 6 represent the comparison of machine 
learning approaches for MISO. We do not consider the 
approaches ARIMA, VAR, VECM, and AFE in MIMO. 
Therefore, we compare SR, multi-output SVR [76], and RF 
with the proposed deep models MIMO-LSTM and MIMO-
TCN. The results are subsequently evaluated via the mean 
squared error. This is used to assess the best model (i.e. least 
MSE) after comparing the performance of all models.

As per Table 5 and Fig. 6, the MIMO-LSTM provides 
high accuracy output with least MSE for 6 parameters out 

Table 5   Comparison of 
machine learning approaches 
for MIMO

Lower MSE is better and is shown in bold

Parameter SR SVR RF LSTM TCN

TSK 0.003701561 0.003652545 0.003612458 0.003271054 0.003578392
PSFC 0.005358824 0.00325658 0.002720456 0.002112675 0.000279068
U10 0.008420962 0.006994518 0.006890641 0.005394089 0.00632667
V10 0.015627757 0.012985601 0.012056545 0.006311009 0.010195208
Q2 0.009980163 0.009979542 0.009929825 0.009881492 0.006578324
Rainc 0.006125415 0.005231452 0.005095621 0.002878811 0.004785024
Rainnc 0.021599896 0.016958456 0.016332367 0.003070845 0.015204848
Snow 1.65518E − 05 9.72462E − 06 7.27815E − 06 2.39E − 06 1.60078E − 06
TSLB 0.004349349 0.003756588 0.003665241 0.003427306 0.000485899
SMOIS 0.000979024 0.000782515 0.000771265 0.000648767 0.000756974
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of 10. Therefore, the MIMO-LSTM has been selected as the 
proposed model (i.e. MIMO-optimal).

In both MIMO and MISO, the LSTM and the TCN pro-
duce high performance with smaller errors compared to the 
classic machine learning approaches and statistical forecast-
ing approaches as presented in Figs. 5 and 6. The reason 
is that the selected parameters do not follow a linear path 
within selected sequential timeslots [77, 78] and there is a 
nonlinear interrelationship among parameters [6, 53, 79]. 
Besides, the sequential information is not encoded by the 

classic machine learning approaches and statistical forecast-
ing models. The LSTM and TCN encode both multivari-
ate and sequential information by taking them into another 
dimension in the input data [6, 59, 80].

Fig. 6   MIMO analysis of different approaches to predicting different weather parameters (SR standard regression, SVR support vector regression, 
RM random forest, LSTM long short-term memory, and TCN temporal convolutional network)
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7.2 � Proposed models for short‑term weather 
prediction

The least MSE for the MIMO is identified in the configura-
tion with three LSTM layers, with 128, 512, and 256 num-
ber of nodes, respectively (i.e. MIMO-optimal model). We 
use the SGD optimiser with a fixed learning rate of 0.01 to 
optimise the MSE regression loss function. The model is 
trained for 230 epochs. In MISO, all these 10 models have 
different configurations with a different number of LSTM 
layers and nodes, activation functions, and optimisers (i.e. 
MISO-optimal). Table 6 and Fig. 7 graphically represent 
the comparison of MSE in each variable for both MIMO-
optimal and MISO-optimal.

Table 6 shows the comparison of MSE in each variable 
for both MIMO and MISO. Figure 7 graphically represents 
these values to get an idea of whether to use the MIMO 
model or the MISO combined model to use as the best model 
for future predictions.

According to Fig. 7, there is no major gap between MSE 
values for each variable when compare the MIMO-optimal 
and MISO-optimal. These differences are less than 0.04 for 
each variable. These error figures are significantly smaller. 

Moreover, the MISO-optimal requires 10 different models 
for the prediction of 10 different weather parameters. There-
fore, we consider the MIMO-optimal (i.e. MIMO-LSTM) 
model as a tool for future forecasting since it is easier to han-
dle and less time and power consumption (only one model 
to run) than running 10 different models of MISO-optimal.

As described in Sect. 6.5, the validation dataset is uti-
lised to get weather prediction using the proposed model. 
Similarly, the WRF model is run in forecast mode using the 
July 2018 data to compare results. Both WRF and model 
predicted values are compared with respect to the ground 
truth and calculated the MSE. Table 7 and Fig. 8 represent 
the MSE comparison values for each variable.

When comparing Table 7 and Fig. 8, the proposed deep 
model (i.e. MIMO-LSTM) provides comparatively best 
results (bolded in the table) on eight occasions out of 10. 
The WRF model provides the best results for the snow and 
soil moisture (SMOIS) variables. On both occasions, these 
error figures are quite small. For example, MSE for the vari-
able snow is 0.0168574 kg/m2. This is quite a small and 
therefore, negligible. Similarly, the SMOIS has got a mini-
mal and negligible error value. Figure 8k shows an overall 
comparison of both models.

As there are 125,373 samples in the July 2018 evaluation 
data, the proposed deep model and the WRF model will 
produce a similar number of samples as the predicted data. 
It is difficult to visualise all of these predictions because of 
the large sample size and therefore, a random sample of the 
100 samples has been taken from the test set to compare with 
the respective ground truth. Figure 9 shows a comparison 
of the proposed deep model’s predictions verses the WRF 
model predictions. For each graph, the ground truth, WRF 
prediction, and the proposed deep model’s predictions are 
represented by each line with blue, green, and red colours, 
respectively.

Table 6   MSE comparison

Parameter MIMO-optimal MISO-optimal

TSK 3.27E − 03 2.04E − 03
PSFC 2.11E − 03 8.16E − 05
U10 5.39E − 03 2.75E − 03
V10 6.31E − 03 3.73E − 03
Q2 9.88E − 03 6.38E − 03
Rainc 2.87E − 03 2.79E − 03
Rainnc 3.07E − 03 5.02E − 04
Snow 2.39E − 06 1.74E − 07
TSLB 3.42E − 03 7.24E − 04
SMOIS 6.48E − 04 2.46E − 04

Fig. 7   Comparison of MIMO and MISO

Table 7   Comparison of the proposed deep model with the WRF fore-
casting model for 3-h prediction

Parameter Mean squared Error

WRF model Proposed model 
(MIMO-LSTM)

TSK 4.0209727 2.7882845
PSFC 227869.02 123881.22
U10 10.540705 5.327054
V10 12.0824 4.6248293
Q2 1.1117266e−6 7.716598e−7

Rainc 15.942339 0.11341145
Rainnc 18.627722 0.83847433
Snow 0.0 0.016857434
TSLB 8.140333 2.6088953
SMOIS 8.523197e−5 0.000024246839



356	 Pattern Analysis and Applications (2021) 24:343–366

1 3

As per Fig. 9, the red line-chart (deep model predic-
tion) follows closely to the blue line-chart (ground truth) 
compared to the green-chart (WRF prediction). The WRF 
prediction is widely diverted in the parameters Rainc and 
Rainnc compared to the actual values. The deep model pre-
diction is diverted in the parameter snow compared to the 
actual values. According to Fig. 7h, the highest snow predic-
tion is 0.24 kg/m2. This is quite a small figure and can be 
negligible. Overall, the deep learning model provides a bet-
ter short-term (up to 3 h) prediction compared to the WRF 
model.

7.3 � Proposed model for long‑term weather 
forecasting

As described in Sect. 7.2, the proposed model (i.e. MIMO-
LSTM) can be utilised for short-term weather forecasting, 
and it yields more accurate results compare to the well-
known WRF model. In this section, our study is focused 
on exploring long-term weather prediction using the same 
historical weather data with 10 surface weather parameters.

Fig. 8   Analysis of weather prediction of the WRF model and proposed deep learning LSTM model
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Fig. 9   Comparison of WRF prediction versus the MIMO-LSTM model prediction for 100 random data samples with respect to the ground truth 
(colour figure online)
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7.3.1 � Selection of an appropriate technique

As discussed in Sect. 7.1, the proposed model provides bet-
ter performance compared to other machine learning tech-
niques. Therefore, we use the same deep learning model 
with the LSTM layers for the long-term weather forecasting 
with the following variations. All these three variants use 
the same configuration and controls, which are comparable 
to the proposed MIMO-LSTM model.

(a)	 Load the MIMO-LSTM optimal model weights (3-h) 
and fine-tune models for the long-term forecasting 
(shortened form: LSTM LW)

(b)	 Train models for each time frame without loading the 
optimal model weights (shortened form: LSTM WL). 
That is train the model at the beginning of the training 
dataset and new labels.

(c)	 We have also experimented with Bidirectional LSTM 
(Bi-LSTM). Compared to the LSTM, the Bi-LSTM has 
used two layers; one layer performs the operations fol-
lowing the forward direction (time-series data) of the 
data sequence, and the other layer applies its operations 
on in the reverse direction of the data sequence [81].

The following Table 8 shows the comparison of these 
three variations for each timeslot. As shown in Table 8, 
the Bi-LSTM provides slightly better results compared to 
the LSTM LW except for the timeslot 3-h. The LSTM WL 
produces weaker results compared to the both LSTM LW. 
The reason is that the LSTM LW used its optimal weight, 
which is already configured to re-train and yield a predic-
tion. Moreover, this is re-tune the model which is matched 
to the new dataset [55]. The Bi-LSTM is also trained the 
model at the beginning similar to the LSTM WL. How-
ever, the Bi-LSTM provides more accurate results due 
to the ability to preserve the past and future values [81].

The only drawback of the Bi-LSTM is that time taken 
to training, testing, and predicting data [82]. This is less 
efficient compared to the LSTM LW. Moreover, as can 
be observed in Table 8, there is a slight gap in the overall 
figures of MSE in both LSTM LW and Bi-LSTM. There-
fore, we have selected the LSTM LW method for long-
term forecasting for an effective and efficient outcome.

7.3.2 � Long‑term weather forecasting

The proposed model (i.e. MIMO-LSTM) consists of 
three LSTM layers with other controls. As described in 
Sect. 7.3.1 the LSTM with loading the optimal weight 
method is used for the long-term weather prediction. 
Therefore, the optimal model is re-tuned (i.e. load optimal 
model weight and re-train models) for timeslots 3-h, 6-h, 
9-h, 12-h, 24-h, and 48-h. While re-tuning, the optimal 

Table 8   Comparison of LSTM LW, LSTM WL, and Bi-LSTM

Only included the results for 3, 9, 24, and 48 h. The other tables are 
included in the supplementary section

Parameter LSTM LW LSTM WL Bi-LSTM

(a) 3 h
 TSK N/A 0.003271054 0.002371392
 PSFC N/A 0.002112675 0.001007641
 U10 N/A 0.005394089 0.008889356
 V10 N/A 0.006311009 0.010825
 Q2 N/A 0.009881492 0.00885295
 Rainc N/A 0.002878811 0.004197211
 Rainnc N/A 0.003070845 0.025307791
 Snow N/A 2.39E − 06 1.06E − 06
 TSLB N/A 0.003427306 0.001056143
 SMOIS N/A 0.000648767 0.000677912
 Overall N/A 0.003699844 0.006318646

(b) 9 h
 TSK 0.004679656 0.003785324 0.002954833
 PSFC 0.00337704 0.005435103 0.002543765
 U10 0.016287696 0.01789222 0.015199178
 V10 0.022693845 0.032980144 0.026619522
 Q2 0.016228491 0.017330563 0.014454748
 Rainc 0.007961646 0.007261488 0.006792006
 Rainnc 0.08320849 0.087723635 0.0691833
 Snow 2.13871E − 06 1.39469E − 05 1.86E − 06
 TSLB 0.002113115 0.002125454 0.002216928
 SMOIS 0.001027248 0.001156121 0.00075886
 Overall 0.015757935 0.017570399 0.014072499

(c) 24 h
 TSK 0.003225559 0.003989982 0.003520491
 PSFC 0.012482793 0.010315491 0.007714262
 U10 0.026440082 0.026202237 0.024926782
 V10 0.03660787 0.042136274 0.036013693
 Q2 0.026067492 0.030222168 0.02755576
 Rainc 0.08263268 0.07865509 0.078575564
 Rainnc 0.15932418 0.16492906 0.158401
 Snow 4.65178E − 07 0.000137658 0.000442552
 TSLB 0.004401047 0.004503616 0.005910429
 SMOIS 0.001600785 0.001434334 0.001202147
 Overall 0.035278295 0.03625259 0.034456268

(d) 48 h
 TSK 0.004480547 0.005869389 0.003708232
 PSFC 0.018504778 0.013365718 0.016115312
 U10 0.045134 0.037737582 0.03475978
 V10 0.04253545 0.04715329 0.042574175
 Q2 0.050479617 0.04151997 0.038551033
 Rainc 0.061815947 0.068089165 0.059418406
 Rainnc 0.16204703 0.16313162 0.15197921
 Snow 3.72323E − 06 0.000231712 6.40E − 05
 TSLB 0.007845704 0.012153346 0.005880864
 SMOIS 0.00158867 0.001342647 0.001104945
 Overall 0.039443548 0.038059445 0.03541559
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models are found in different epochs such as 80, 10, 10, 
10, and 10 for timeslots 6, 9, 12, 24, and 48 h, respectively.

Similar to the short-term weather forecasting, the opti-
mal model for each timeslot is used to forecast the weather 
parameters for the July 2018 data (model prediction), and 
the model predicted values are evaluated with respect to 
the ground truth. The WRF model has been run in forecast 
mode using the same format GRIB data for the month of 
July 2018 (WRF prediction) based on the same conditions as 
model prediction (i.e. input 7 days data and predict weather 
parameters for timeslot 6, 9, 12, 24 and 48). The WRF pre-
dicted values are evaluated with respect to the ground truth. 
Finally, compare the model prediction and WRF prediction 

to determine what extent the deep learning model can be 
used for weather forecasting. Figure 10 shows a comparison 
of MSE values related to the proposed model and the WRF 
model for each time slot.

According to the results presented in Fig. 10, it is obvious 
that the WRF model produces better forecasting results for 
the very long-term compared to the deep learning model. 
The reason is that the WRF model is combined with many 
other climate models [4, 83, 84] and data is coming to the 
system globally [4, 49]. The deep learning model has pre-
dicted these outputs based on 5 months of training data. We 
could receive better results if we increase the size of the 
training dataset [56]. The Rainc and Rainnc parameters show 

Fig. 10   Compare proposed MIMO-LSTM model prediction with WRF prediction for long-term forecasting. The MSE values are calculated with 
respect to the ground truth in both WRF and LSTM models
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much better results in the deep learning model compared to 
the WRF model for long-term forecasting. The experiments 
of [39] already proved that the deep learning neural net-
works yield the highest accuracy for rain prediction.

Contrarily, the SMOIS and snow parameters show weak 
results in deep learning compared to the WRF model at all 
timeslots. Simply, these error patterns are rather low (maxi-
mum error: Snow—0.016 kg/m2, SMOIS—0.00035 m3/m3) 
and can be negligible. This could be resolved by increasing 
the size of the sample data. All other occasions, the deep 
learning model provide more accurate prediction compared 
to the WRF model up to some extent, than the WRF model 
produces better prediction compared to the deep learning 
model. Figure 11 shows the comparison of overall error val-
ues of the WRF model and proposed deep learning model.

As indicated in Fig. 11, the deep learning model produces 
better predictions compared to the WRF model prediction 
up to 12 h overall. Therefore, we can use deep learning with 
LSTM model up to 12 h of weather forecasting much accu-
rately compared to the well-recognised WRF model. The 
comparison of WRF prediction versus the LSTM model 
prediction for 50 random data samples with respect to the 
ground truth is shown in Fig. 12. For each graph, the ground 
truth, WRF prediction, and the proposed deep model’s pre-
dictions are represented by each line with blue, green, and 
red colours, respectively.

As per Fig. 12, the red line-chart (deep model predic-
tion) followed closely to the blue line-chart (ground truth) 
up to some extent and diverted when time increases in 
many parameters. The green line-chart (WRF model pre-
diction) also diverted from the blue line-chart when time 
increased, but this diversion is relatively small compared 
with the red line-chart. As shown in Fig. 12vi, vii, the 
rainc and rainnc values are accurate in the deep learn-
ing model compared to the WRF model for up to 48 h. 
As discussed earlier, the WRF model produces a better 

prediction for the Snow and SMOIS parameters. As shown 
in Fig. 12x, the difference is negligible for the parameter 
SMOIS. As shown in Fig. 12viii, the maximum snow val-
ues are shown in the 3 h line-chart. This value is equal to 
0.24 kg/m2, and this is a relatively negligible figure. Over-
all, the deep learning model delivers a better forecasting 
prediction compared to the WRF model for up to 12 h.

7.4 � Applicability of the new model

As described in Sect. 7.3, the proposed model can be used 
for weather prediction. Even, this model generates more 
accurate predictions compared to the well-recognised WRF 
model for up to 12 h. We use historical weather data to eval-
uate and validate these models. The only issue is we still use 
the WRF model to extract GRIB data to use as input for the 
new model (we use GFS GRIB data). On the other hand, it 
requires a minimum of 3 h of access GFS data after taking 
the atmospheric measurements. This includes the time taken 
to upload data to the website [4, 85]. In addition, the WRF 
model also taken the time to extract the GFS data depends 
on the computer system. Hence, the input data which are 
used in the new model are not the current atmospheric meas-
urement data (i.e. older more than 3 h). Therefore, it is not 
practicable to use WRF data with the new model, and it will 
be highly beneficial to consider the use of local weather sta-
tion data for weather forecasting.

8 � Conclusion and future work

In this article, we demonstrate that the proposed lightweight 
deep model can be utilised for weather forecasting up to 12 h 
for 10 surface weather parameters. The model outperformed 
the state-of-the-art WRF model for up to 12 h. The proposed 
model could run on a standalone computer, and it could easily 

Fig. 11   Comparison of overall 
MSE for each timeslot



361Pattern Analysis and Applications (2021) 24:343–366	

1 3

Fig. 12   Comparison of WRF 
prediction versus the LSTM 
model prediction for 50 random 
data samples with respect to 
the ground truth (colour figure 
online)
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be deployed in a selected geographical region for fine-grained 
short to medium-term weather prediction. Furthermore, the 
proposed model is able to overcome some challenges within 
the WRF model, such as the understanding of the model 
and its installation, as well as its execution and portability. 

In particular, the deep model is portable and can be easily 
installed into a Python environment for effective results [17, 
56]. This process is highly efficient compared to the WRF 
model.

Fig. 12   (continued)
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This research is carried out using ten different surface 
weather parameters, and an increased number of inputs 
would probably lead to enhanced results. For example, there 
are 36 different pressure levels defined in the WRF model 
[17]. Only the pressure at two meters is considered within 

this research. There is a possibility to increase the accuracy 
of the results if we introduce all 36 possible pressure levels 
to the proposed model. However, it will increase the model 
complexity requiring a large number of parameters to esti-
mate. Furthermore, January to May weather data is utilised 

Fig. 12   (continued)
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for training the deep model, and the increase in the size of 
training dataset could help towards improved results in a 
deep learning network [56, 86].

Besides, we used the MIMO approach within this research 
to predict weather data. Table 5 and Fig. 7 show that the 
MISO approach produces better MSE values compared to the 
MIMO. Therefore, there is a huge potential that the MIMO 
approach will increase the accuracy of the results; even this 
method is less efficient compared to the MIMO. Besides, the 
Bi-LSTM yields high accuracy long-term prediction com-
pared to the LSTM, as presented in Table 7. Therefore, we 
could get more accurate results if we use Bi-LSTM; even this 
method is not efficient due to high time-consumption.

These experiments show that we can apply the neural 
network approach for weather prediction. Based on the 
geographical appearance of location (such as the top of a 
mountain, land covered by several mountains, the slope of 
the land, etc.) the regional weather forecasting may not be 
accurate. As a solution, we could develop a lightweight (neu-
ral network-based) short-term weather forecasting system for 
the community of users utilising weather station data. These 
are our future experimentation.
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