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Abstract
Orthogonal moments have become a powerful tool for object representation and image analysis. Radial harmonic Fourier 
moments (RHFMs) are one of such image descriptors based on a set of orthogonal projection bases, which outperform 
other moments because of their computational efficiency. However, the conventional computational framework of RHFMs 
produces geometric error and numerical integration error, which will affect the accuracy of RHFMs, thus degrading the 
image reconstruction performance. To overcome this shortcoming, we propose a new computational framework of RHFMs, 
namely accurate quaternion radial harmonic Fourier moments (AQRHFMs), for color image processing, and also analyze 
the properties of AQRHFMs. Firstly, we propose a precise computation method of RHFMs to reduce the geometric and 
numerical errors. Secondly, by using the algebra of quaternions, we extend the accurate RHFMs to AQRHFMs in order 
to deal with the color images in a holistic manner. Experimental results show the proposed AQRHFMs achieve promising 
performance in image reconstruction and object recognition in both noise-free and noisy conditions.

Keywords Radial harmonic Fourier moments · Geometric error · Numerical error · Quaternion · Object recognition

1 Introduction

Description of objects invariant to geometric transforma-
tion such as translation, scale, and rotation is useful in pat-
tern recognition and other similar applications. A popular 
class of invariant features is based on the moment techniques 
including geometric moments, rotational moments, complex 
moments, and orthogonal moments [1, 2]. However, geo-
metric moments and their extensions in the form of com-
plex moments and rotational moments are not orthogonal. 
It has a certain degree of information redundancy and high 
sensitivity to noise. Consequently, reconstruction of images 

from these moments is quite difficult and computationally 
expensive.

To overcome this shortcoming, Khotanzad et  al. [3] 
proposed using orthogonal moments—Zernike moments 
(ZMs)—in object recognition task. Chong et al. [4] used 
a new set of translation and scale invariants of orthogonal 
Legendre moments to recognize English, Chinese, and Latin 
characters. Teh et al. [5] commented the description per-
formance and noise sensibility of various image moments. 
They found that the orthogonal moments have a superior 
performance over other types of moments. Other orthog-
onal moments, such as Krawtchouk moments (KMs) [6], 
pseudo-Zernike moments (PZMs) [5], Chebyshev–Fourier 
moments (CHFMs) [7], Bessel–Fourier moments (BFMs) 
[8], orthogonal Fourier–Mellin moments (OFMMs) [9], 
exponent-Fourier moments (EFMs) [10], polar harmonic 
transforms (PHTs) [11], and radial harmonic Fourier 
moments (RHFMs) [12, 13], were proposed, as well.

RHFMs are better rated and offer a better depiction of the 
image in comparison with other orthogonal moments, which 
make them more suitable for image analysis and object rec-
ognition [14–16]. However, the conventional computation 
of RHFMs produces geometric error and numerical integra-
tion error, which is a common problem with the orthogonal 

 * Shanshan Zhang 
 shanshan.zhang@njust.edu.cn

1 PCA Lab, Key Lab of Intelligent Perception and Systems 
for High-Dimensional Information of Ministry 
of Education, and Jiangsu Key Laboratory of Image 
and Video Understanding for Social Security, School 
of Computer Science and Engineering, Nanjing 
University of Science and Technology, Nanjing 210094, 
People’s Republic of China

2 National Ocean Technology Center, Tianjin 300112, 
People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-020-00877-6&domain=pdf


1552 Pattern Analysis and Applications (2020) 23:1551–1567

1 3

moments [17, 18]. The geometric error is caused when a 
square image is mapped into a unit circular disk, which can-
not exactly match the square domain. The numerical integra-
tion error is caused when the integration is approximated by 
zeroth-order summation. These errors are reflected through 
the image reconstruction error which is visible in the neigh-
borhood of the center of the circular disk and the presence of 
numerical instability even at low orders of transform. Since 
the traditional computation method of RHFMs has obvi-
ous shortcomings, Singh et al. [15] presented an accuracy 
and efficiency computational framework for RHFMs. In this 
work, higher accuracy of RHFMs is achieved by the Gauss-
ian quadrature technique [14] for numerical integration of 
kernel functions that reduces geometric and numerical inte-
gration errors. In addition, the speed is accelerated by the 
fast recursive algorithms for the radial and angular functions 
of RHFMs and their 8-way symmetry/anti-symmetry prop-
erties. Although this paper has improved the computational 
speed of RHFMs, the time complexity did not change essen-
tially. Moreover, it does not analyze the relationship between 
reconstruction performance and the number of used RHFMs. 
To improve the computation accuracy and reduce the time 
complexity, Wang et al. [16] proposed a fast and precise 
method to compute RHFMs based on FFT. In this method, 
a Cartesian coordinate image of size M × M is mapping into 
a polar coordinate image with a size of 4M × 4M. Although 
FFT can be used to speed up the computation of RHFMs, 
the computational complexity of the reconstruction process 
is still very high, which is O(16M2). To solve this problem, 
we will reconstruct RHFMs obtained by FFT in Cartesian 
coordinate system instead of polar coordinate system, in 
which the reconstruction complexity has been reduced by a 
factor of 16. In addition, the experimental results show that 
the proposed computing method for RHFMs not only greatly 
increases the speed, but also improves the reconstruction 
accuracy.

Besides the problem of computation accuracy and effi-
ciency, there is another problem that needs to be addressed. 
Although it has been extensively investigated in recent years, 
the theory of image moments mainly focuses on grayscale 
images. However, nowadays color images become more 
popular in many application fields as they provide richer 
information than grayscale images. Current research on 
color image moments is mostly based on the intensity or 
a single channel within the color space, while discarding 
the information and relationship between color components 
within a specific color space. Recently, quaternion-based 
image representation and application have become increas-
ingly important in the field of image processing, and some 
of the quaternion-based methods are already applied in sev-
eral domains related to image processing (e.g., quaternion 
wavelet transform [19], quaternion singular value decompo-
sition [20], quaternion Fourier transform [21], quaternion 

polar harmonic transform [22]). Quaternion-based image 
processing regards a color pixel as a vector, which reserves 
the relationship between different channels of a color image. 
Based on this theory, Guo et al. [23] extended traditional 
Fourier–Mellin moments into a quaternion form (i.e., quater-
nion Fourier–Mellin moments (QOFMMs)) and successfully 
applied it to color image registration using the constructed 
geometric invariant features. Subsequently, Chen et al. [24] 
introduced the quaternion Zernike moments (QZMs) by 
using the algebra of quaternions, built a complete feature-
invariant set, and achieved an outstanding result within color 
object recognition and color image registration. Guo et al. 
[25] proposed novel quaternion moment descriptors for color 
images in the Cartesian coordinates, which can reduce com-
putational complexity and improve numerical stability in the 
field of color image processing and object recognition. Shao 
et al. [26] proposed quaternion Bessel–Fourier moments 
(QBFMs) and analyzed the importance of the phase infor-
mation contained in quaternion orthogonal moments from 
the perspective of color image reconstruction. Chen et al. 
[27] summarized quaternion-type moments, including qua-
ternion rotational moments (QROTMs), QOFMMs, QZMs, 
and quaternion pseudo-Zernike moments (QPZMs), and 
evaluated their performance in the fields of color image 
reconstruction, face recognition, and image registration. 
Additionally, they discussed the selection of quaternions in 
the calculation process. They also defined geometric invari-
ant feature descriptors according to the derived rotation 
angle estimation algorithm and applied them in color object 
recognition. In recent years, some of the traditional non-
orthogonal and orthogonal moments have been developed 
into the form of quaternion moments, respectively, such as 
quaternion exponent moments (QEMs) [28, 29], quaternion 
radial harmonic Fourier moments (QRHFMs) [30, 31], qua-
ternion Bessel–Fourier moments (QBFMs) [32], quaternion 
Chebyshev–Fourier moments (QCHFMs) [2], quaternion 
Legendre–Fourier moments (QLFMs) [33], and quaternion 
polar harmonic Fourier moments (QPHFMs) [2].

Although researchers have proposed a variety of qua-
ternion orthogonal moments, most of them have shown 
poor performance in image reconstruction. In this 
paper, accurate quaternion orthogonal moments, namely 
accurate quaternion radial harmonic Fourier moments 
(AQRHFMs), are proposed. Firstly, we proposed an accu-
rate computational framework of RHFMs, which not only 
greatly increase the speed but also improve the recon-
struction accuracy. Secondly, we extended the accuracy 
and fast RHFMs to AQRHFMs by using the algebra of 
quaternions, which can deal with the color images in a 
holistic manner. Comparison experiments are conducted 
on the performance in image reconstruction and color 
object recognition of AQRHFMs and QZMs, QPZMs, 
QOFMMs, QCHFMs, QRHFMs, QPHFMs and QLFMs. 
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Experimental results show that the proposed AQRHFMs 
achieve the best image reconstruction performance and 
perform superbly in invariant object recognition in noise-
free and noisy conditions.

This paper is organized as follows. Section 2 intro-
duces the quaternion algebra and RHFMs. In Sect. 3, the 
definition of computational framework of AQPHFMs 
is discussed in detail. Section 4 presents the compara-
tive experiments of AQPHFMs with QZMs, QPZMs, 
QOFMMs, QRHFMs, QCHFMs, QPHFMs, and QLFMs 
in terms of image reconstruction and object recognition. 
Section 5 concludes.

2  Preliminaries

2.1  Quaternion algebra

The quaternion is a type of hyper-complex number. It 
is a generalization of complex number. We know that a 
complex number has two components: the real part and 
imaginary part. However, the quaternion has four parts 
including one real part and three imaginary parts. A qua-
ternion � can be interpreted as generalizations of complex 
numbers as follows:

where a is the real part of the quaternion � ; bi + cj + dk 
is the imaginary part of the quaternion q ; a , b , c , and d 
are real numbers; and i , j , and k are complex operators 
obeying the following rules:

The conjugate and the magnitude of the quaternion 
� are � = a − bi − cj − dk and ��� =

√
a2 + b2 + c2 + d2  , 

respectively.
A quaternion can be considered the combination of 

a scalar part and a vector part: � = s(�) + v(�) , where 
s(�) = a and v(�) = bi + cj + dk  . A quaternion with 
s(�) = 0 can be also referred to as a pure quaternion, 
and a quaternion with unit magnitude is called a unit 
quaternion.

In [21], Wang et al. proposed to encode the three chan-
nel components of an RGB image on the three imaginary 
parts of a pure quaternion. In other words, a pixel at image 
coordinate (m, n) in an RGB image can be represented as

where fR(m, n) , fG(m, n) , and fB(m, n) are the red, green, and 
blue components of the pixel, respectively.

(1)� = a + bi + cj + dk

(2)
i2 = j2 = k2 = ijk = −1

ji = −ij = k, kj = −jk = i, ik = −ki = j

(3)f (m, n) = fR(m, n)i + fG(m, n)j + fB(m, n)k

2.2  Radial harmonic Fourier moment

Let f (r, �) be the grayscale image in polar coordinate sys-
tem, the RHFMs Mp,q with order p(p ≥ 0) and repetition 
q(|q| ≥ 0) over a unit disk are defined as:

Here, the “order” and “repetition” are two important 
parameters to calculate any orthogonal moments and they 
are used to decide the number of moments we can obtain. 
Specifically,H∗

p,q
 denotes the complex conjugate of basis 

function Hp,q(r, �) and is obtained from the following 
formula:

where i =
√
−1 . The radial kernel functions are defined 

as

The orthogonality of basis function is given as

where 0 ≤ r ≤ 1 , 0 ≤ 𝜃 < 2𝜋 , and � is Kronecker delta, 2� 
is normalization factor. The tot al number of RHFMs for 
p = pmax and q = qmax , is 

(
1 + pmax

)(
1 + 2qmax

)
.

The image Mp,q can be reconstructed approximately by 
using RHFMs as follows:

3  Accurate quaternion radial harmonic 
Fourier moments

In this section, we will introduce a new computational 
framework of RHFMs in detail, namely accurate quaternion 
radial harmonic Fourier moments (AQRHFMs). Firstly, in 
order to promote the speed and accuracy of conventional 
RHFMs, we use FFT in Cartesian coordinate system to 
reconstruct the RHFMs obtained in the polar coordinate 
system, in which the geometric error and numerical integra-
tion error can be reduced effectively. Next, we will extend 

(4)Mp,q =
1

2� ∫
2�

0 ∫
1

0

f (r, �)H∗
p,q
(r, �)rdrd�

(5)Hp.q(r, �) = Rp(r) exp(iq�)

(6)Rp(r) =

⎧
⎪⎪⎨⎪⎪⎩

1

�√
r, p = 0

√
2∕r cos(�pr), p = even√
2∕r sin(�(p + 1)r), p = odd

(7)∫
2�

0 ∫
1

0

Hpq(r, �)H
∗
p�q�

(r, �)rdrd� = 2��pp��qq�

(8)f (r, �) =

pmax∑
p=0

qmax∑
q=−qmax

MpqRp(r) exp(iq�)
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the accurate RHFMs to AQRHFMs by using the algebra of 
quaternions, which deal with the color images in a holistic 
manner. Finally, we will derive and analyze the rotation and 
scaling invariant property of AQRHFMs.

3.1  Computation of accurate and fast RHFMs

In this subsection, we provide a precise computational 
framework by utilizing FFT in polar coordinates system 
inspired by the work [16], which reduces geometric error 
and numerical integration error. In addition, we will recon-
struct RHFMs obtained by FFT in Cartesian coordinate sys-
tem instead of polar coordinate system, in which the recon-
struction complexity has been reduced by 16 times.

The RHFMs are computed in a unit circle, and we seg-
ment the radius direction r(0 ≤ r ≤ 1) and angular direc-
tion 𝜃(0 ≤ 𝜃 < 2𝜋) of the unit circle into M parts equally. 

The RHFMs of fT
(
ru, �v

)
 can be written as:

Then we can obtain the discrete representation of the 
above formula

with

when p is even ( p = 2k(k = 1, 2, ...) ), Eq. (14) can be rewrit-
ten as follows:

Let GT

(
ru, �v

)
= fT

(
ru, �v

)√ ru

2
 , Eq. (16) can be rewrit-

ten as follows:

where Mp=2k,q includes two 2-D discrete Fourier trans-
form parts of the function GT

(
ru, �v

)
. Suppose F is the 2-D 

Fourier domain of the function GT

(
ru, �v

)
 by moving the 

(13)

MR
p,q

=
1

2� ∫
2�

0 ∫
1

0

fT (ru, �v)Rp

(
ru
)
exp(−�q�v)rudrud�v

=
1

2� ∫
2�

0 ∫
1

0

fT (ru, �v)Rp

(
ru
)
exp(−�q�v)ru

1

M
du

2�

M
dv

=
1

M2 ∫
2�

0 ∫
1

0

fT (ru, �v)Rp

(
ru
)
exp(−�q�v)rududv

(14)

MR
p,q

=
1

M2

M−1∑
u=0

M−1∑
v=0

fT
(
ru, �v

)
Rp

(
ru
)
exp(−�q�v)

=
1

M2

M−1∑
u=0

M−1∑
v=0

fT
(
ru, �v

)
Hp

(
ru
)
exp(−�q�v)

(15)Hp

�
ru
�
=

⎧
⎪⎪⎨⎪⎪⎩

√
ru, when n = 0

1

�

�
ru

2

�
exp

�
�(p + 1)�ru

�
− exp

�
−�(p + 1)�ru

��
, when p is odd

�
ru

2

�
exp

�
�p�ru

�
+ exp

�
−�p�ru

��
, when p is even

(16)

Mp=2k,q =
1

M2

M−1�
u=0

M−1�
v=0

fT
�
ru, �v

�√
2ru cos

�
p�ru

�
exp

�
−�q�v

�

=
1

M2

M−1�
u=0

M−1�
v=0

fT
�
ru, �v

�� ru

2

�
exp

�
�2k�ru

�

+ exp
�
−�2k�ru

��
exp

�
−�q�v

�

=
1

M2

M−1�
u=0

M−1�
v=0

fT
�
ru, �v

�� ru

2
exp

�
�
2�

M
(−k)u

�
exp

�
−�q

2�

M
qv
�

+
1

M2

M−1�
u=0

M−1�
v=0

fT
�
ru, �v

�� ru

2
exp

�
−�

2�

M
ku
�
exp

�
−�q

2�

M
qv
�

(17)

Mp=2k,q =
1

M2

M−1∑
u=0

M−1∑
v=0

GT

(
ru, �v

)
exp

(
−�

2�

M
(−k)u

)
exp

(
−�q

2�

M
qv
)

+
1

M2

M−1∑
u=0

M−1∑
v=0

GT

(
ru, �v

)
exp

(
−�

2�

M
ku
)
exp

(
−�q

2�

M
qv
)

Accordingly, the unit circle is segmented into M2 sub-
regions and the initial position of each sub-region is

The polar coordinates 
(
ru, �v

)
 can be transformed into the 

rectangular coordinates (x, y) as follows:

Then we can transform the rectangular coordinates (x, y) 
into the discrete coordinates (i, j) by the following formula:

where ⌈∙⌉ denotes the round down function. Using Eqs. 
(9) and (10), the polar coordinate image fT

(
ru, �v

)
 can be 

obtained by

(9)

{
ru =

u

M
, u = 0, 1,… ,M − 1

�v =
2�v

M
, v = 0, 1,… ,M − 1

(10)x = ru ×
N

2
× cos �v, y = ru ×

N

2
× sin �v

(11)

�
i = −⌈y⌉ + N

2
+ 1

j = ⌈x⌉ + N

2

(12)

fT
(
ru, �v

)
= f

(
−
⌈
ru ×

N

2
× sin �v

⌉
+

N

2

+1,
⌈
ru ×

N

2
× cos �v

⌉
+

N

2

)
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zero-frequency component to the center of the array. The 
RHFMs Mp=2k,q can be obtained as follows:

The same procedure may be easily adopted to complete 
the relationship between F and Mp,q:

In image reconstruction processing, the image func-
tion f (r, �) is discrete and defined in a rectangular domain 
with the pixel locations identified in a rectangular domain 
with the pixel locations identified by the row and column 
arrangement. Let (j, k) be a pixel, the index j denotes the 
row position and k the column, with j, k = 0, 1,… ,N − 1 , 
where the resolution of the image is N × N pixels. We map 
the pixel location (j, k) into the coordinates within the unit 
disk using the following transformation

The coordinate 
(
xj, yk

)
 represents the center of the 

(j, k) pixel grid with the two opposite vertices defined by [
xj − Δx∕2, yj − Δy∕2

]
×
[
xj + Δx∕2, yj + Δy∕2

]
 , where Δx 

and Δy represent the horizontal and vertical separation 
between the centers of two pixels which are expressed as

Since the integration does not have an analytical solu-
tion for N × N image, its zeroth-order approximation, given 
below, is normally used

Suppose that moments of all orders p ≤ pmax and repeti-
tion q ≤ qmax are given, the image function is reconstructed 
are given as

(18)
Mp=2k,q = F

(
M

2
+ 1 + k,

M

2
+ 1 + q

)
+ F

(
M

2
+ 1 − k,

M

2
+ 1 + q

)

M0,q =
√
2F

�
M

2
+ 1,

M

2
+ 1 + q

�
, p = k = 0

(19)Mp=2k,q = F
(
M

2
+ 1 + k,

M

2
+ 1 + q

)
+ F

(
M

2
+ 1 − k,

M

2
+ 1 + q

)
, p = 2k, k = 1, 2,…

Mp=2k−1,q = �

(
F
(
M

2
+ 1 + k,

M

2
+ 1 + q

)
− F

(
M

2
+ 1 − k,

M

2
+ 1 + q

))
, p = 2k, k = 1, 2,…

(20)xj =
2j + 1 − N

N
, yk =

2k + 1 − N

N

(21)Δx = Δy =
2

N

(22)

Mp,q =
4

2�N2

N−1∑
j=0

N−1∑
k=0

f
(
xj, yk

)
H∗

p,q

(
xj, yk

)
, x2

j
+ y2

k
≤ 1

(23)

f̂
(
xj, yk

)
=

pmax∑
p=pmin

qmax∑
q=qmax

Mp,qHp,q(xj, yk), j, k = 0, 1, .…N − 1

Here, we conduct several experiments to compare the 
proposed computational method of RHFMs with algorithms 
[12, 16]. In the experiments, the standard grayscale image 
Lena with 128 × 128 is used as the test image. Table 1 shows 
the comparison about the reconstructed images (moment 
order pmax = qmax = 5, 10, 25, 40, 70, 100 ). We use the mean 
square reconstruction error (MSRE) [16] to evaluate the per-
formance of the reconstruction; a smaller MSRE indicates 
better reconstruction performance.

From Table 1, we know that the reconstruction perfor-
mance of the proposed method is much better than other two 
methods [12, 16]. In addition, our method has reduced the 
reconstruction time significantly compared with the method 
in [16].

3.2  Accurate quaternion radial harmonic Fourier 
moments

Traditional methods for color image processing usually 
divide the images into 3 components and carry out a fol-
low-up process separately for each component without tak-
ing relationships between each component into account. 
However, quaternion-related theory regards a color image 
as an integral vector, which reflects the association within 
components. Let us denote the red, green, blue components 
of a color pixel by fR(r, �) , fG(r, �) , and fB(r, �) , respec-
tively, then the pixel can be encoded as a pure quaternion 
f (r, �) = fR(r, �)i + fG(r, �)j + fB(r, �)k.

Accordingly, it is possible to define accuracy RHFMs in 
the quaternion field. By treating each color pixel as a whole, 
the resulting transforms can address the multi-dimension 
nature of color image. Let fT (r, �) be a RGB color image 
defined in polar coordinates, we define the right side of 
AQRHFMS of order p with repetition q as

where f (r, �) is the quaternion representation of a color pixel 
and � is a pure unit quaternion. In this paper, we choose 
� = (i + j + k)

�√
3 that is the gray line in the RGB space. 

Accordingly, the left side of AQRHFMS can be written as 
follows:

(24)MR
p,q

=
1

2� ∫
2�

0 ∫
1

0

fT (r, �)Rp(r) exp(−�q�)rdrd�
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The � = �i + �j + �k is used to deduce the calcula-
tion method of AQRHFMS. This idea is based on the 

(25)ML
p,q

=
1

2� ∫
2�

0 ∫
1

0

Rp(r) exp (−�q�)fT (r, �)rdrd�,
computation of the accurate RHFMs of the grayscale image 
in each channel. The detailed derivation is as follows:

Table 1  The comparison of reconstructed images

Moment 
order 5 10 20 35 60 80

Reconstructed
images

Reconstruction
error images

MSRE 0.0975 0.0589 0.0386 0.0578 0.4561 1.6369

Ren et al. 
[12]

Reconstruction 
time (s) 0.1759 0.02176 0.0375 0.08439 2.1746 3.7846

Reconstructed
images

Reconstruction
error images

MSRE 0.0963 0.0611 0.0374 0.0269 0.0209 0.0185

Wang et al. 
[16]

Reconstruction
time (s) 1.045325 2.1317 6.7891 20.0277 56.365094 100.1586

Reconstructed
images

Reconstruction
error images

MSRE 0.0946 0.0588 0.0322 0.0198 0.0116 0.0086

Proposed 
method

Reconstruction
time (s) 0.3805 0.4601 0.8895 2.4614 4.1101 7.3651
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with

where fR , fG , and fB represent the red, green, and blue 
components of the color image f (r, �) ; Mp,q(fR) , Mp,q(fB) , 
and Mp,q

(
fG
)
 are the corresponding RHFMs. Re(p) denotes 

the real part of the complex number p ; and Im(p) is the 
imaginary part. It can be seen that each component of the 
AQRHFMs can be represented as a combination of the real 
and imaginary parts of the accurate RHFMs of the single-
channel grayscale image.

A color image can be reconstructed based on left- and 
right-side AQRHFMs coefficients, which can be represented 
as follows:

(26)

MR
p,q

=
1

2� ∫
2�

0 ∫
1

0

f (r, �)Rp(r) exp (−�q�)rdrd�

=
1

2� ∫
2�

0 ∫
1

0

[
fR(r, �)i + fG(r, �)j + fB(r, �)k

]
Rp(r) exp (−�q�)rdrd�

= i

[
1

2� ∫
2�

0 ∫
1

0

fR(r, �)Rp(r)(cos (q�) − � sin (q�))rdrd�

]

+ j

[
1

2� ∫
2�

0 ∫
1

0

fG(r, �)Rp(r)(cos (q�) − � sin (q�))rdrd�

]

+ k

[
1

2� ∫
2�

0 ∫
1

0

fB(r, �)Rp(r)(cos (q�) − � sin (q�))rdrd�

]

= i

[
1

2� ∫
2�

0

fR(r, �)Rp(r) cos(q�)rdrd� − �
1

2� ∫
2�

0 ∫
1

0 ∫
2�

0

fR(r, �)Rp(r) sin(q�)rdrd�

]

+ j

[
1

2� ∫
2�

0

fG(r, �)Rp(r) cos(q�)rdrd� − �
1

2� ∫
2�

0 ∫
1

0 ∫
2�

0

fG(r, �)Rp(r) sin(q�)rdrd�

]

+ k

[
1

2� ∫
2�

0

fB(r, �)Rp(r) cos(q�)rdrd� − �
1

2� ∫
2�

0 ∫
1

0 ∫
2�

0

fB(r, �)Rp(r) sin(q�)rdrd�

]

= [Re(Mp,q(fR)) + (�i + �j + �k)Im(Mp,q(fR))]i + [Re(Mp,q(fG)) + (�i + �j + �k)Im(Mp,q(fG))]j

+ [Re(Mp,q(fB)) + (�i + �j + �k)Im(Mp,q(fB))]k

= Ap,q + iBp,q + jCp,q + kDp,q

(27)

Ap,q = −�Im(Mp,q(fR)) − �Im(Mp,q(fG)) − �Im(Mp,q(fB))

Bp,q = Re(Mp,q(fR)) + �Im(Mp,q(fB)) − �Im(Mp,q(fG))

Cp,q = Re(Mp,q(fG)) + �Im(Mp,q(fR)) − �Im(Mp,q(fB))

Dp,q = Re(Mp,q(fB)) + �Im(Mp,q(fG)) − �Im(Mp,q(fR))

(28)f �(r, �) =

pmax∑
p=−pmax

qmax∑
q=−qmax

Rp(r) exp (�q�)M
L
p,q

(29)f �(r, �) =

pmax∑
p=−pmax

qmax∑
q=−qmax

MR
p,q
Rp(r) exp (�q�)

In this paper, the AQRHFMs refer to the right-side-type 
AQRHFMS, which is represented by MR

p,q
 and defined as 

Eq. (26), unless otherwise specified.

3.3  Geometric invariance of AQRHFMS

Here, we will derive and analyze the rotation and scaling 
invariant property of AQRHFMs.

(1) Rotation invariance

Let f̂ (r, 𝜃) = f (r, 𝜃 + 𝛼) denote the image f (r, �) rotated by 
the angle � . Accordingly, the right-side AQRHFMs of f̂ (r, 𝜃) 
are: 

where MR
p,q

 and M̂R
p,q

 are the AQRHFMs of f (r, �) and f̂ (r, 𝜃) , 
respectively.

(30)

M̂R
p,q

=
1

2𝜋 ∫
2𝜋

0 ∫
1

0

f̂ (r, 𝜃)Rp(r) exp (−𝜇q𝜃)rdrd𝜃

=
1

2𝜋 ∫
2𝜋

0 ∫
1

0

f̂ (r, 𝜃 + 𝛼)Rp(r) exp (−𝜇q𝜃)rdrd𝜃

=
1

2𝜋 ∫
2𝜋

0 ∫
1

0

f̂ (r, 𝜃)Rp(r) exp (−𝜇q𝜃)rdrd𝜃 × exp (𝜇q𝜃)

= MR
p,q

exp (𝜇q𝜃)
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Accordingly to Eq. (30), we know that a rotation of the 
color image by an angle � induces a phase shift e�q� of the 
MR

p,q
(f ) . Taking the norm on both sides of Eq. (31), we have

Therefore, the rotation invariant can be achieved by taking 
the norm of ARHFMs. In other words, the AQRHFMS modu-
lus coefficients |||MR

p,q
(f )

||| are invariant with respect to image 
rotation.

(2) Scaling invariance

(31)MR
p,q

=
1

2� ∫
2�

0 ∫
1

0

f
(
r, �

)
R∗
p
(r) exp

(
−�q�

)
rdrd�

Theoretically, AQRHFMS are not invariant to image scal-
ing, but scaling invariance can be obtained by normalizing 
the image into a unit circle. If an image f (r, �) with N × N 
pixels is mapped to a unit circle (xj, yk) ∈ [−1, 1] × [−1, 1] 
with xj =

2j−N+1

N
, yk =

N−1−2k

N
, (j, k = 0, 1, ...,N − 1) and a 

unit circle is made to cover the same contents of the image, 
the AQRHFMS are invariant to image scaling.

Fig. 1  Rotated images for rotation invariance tests: a Car_R0: origi-
nal image, b Car_R1: rotation 35◦ , c Car_R2: rotation 60◦ , d Car_R3: 
rotation 90◦ , e Car_R4: rotation 135◦ , f Car_R5: rotation 160◦ , g Car_

R6: rotation 210◦ , h Car_R7: rotation 245◦ , i Car_R8: rotation 280◦ , 
and j Car_R9: rotation 315◦

Table 2  AQRHFMs invariants 
of the same color image under 
rotation

M
R

0,0
M

R

0,1
M

R

0,2
M

R

1,0
M

R

1,1
M

R

1,2
M

R

2,0
M

R

2,1
M

R

2,2
M

R

3,3

Car_R0 3.9204 15.6420 5.9281 6.7063 15.6610 4.8870 3.7169 4.0102 12.5904 11.3321
Car_R1 3.9103 15.6349 5.9149 6.6933 15.6432 4.8629 3.7082 3.9945 12.5815 11.3450
Car_R2 3.9408 15.6595 5.9025 6.6794 15.6814 4.8890 3.7138 3.9811 12.5840 11.3177
Car_R3 3.9097 15.6383 5.9185 6.6972 15.6652 4.8693 3.7110 3.9895 12.5753 11.3438
Car_R4 3.9201 15.6675 5.9246 6.6897 15.7146 4.8533 3.7371 4.0125 12.5746 11.3598
Car_R5 3.9074 15.6395 5.9102 6.6835 15.6750 4.8675 3.7052 3.9643 12.5620 11.3738
Car_R6 3.9275 15.6477 5.9112 6.7019 15.6718 4.8733 3.7017 4.0108 12.5740 11.3512
Car_R7 3.9068 15.6428 5.8819 6.6635 15.6691 4.8611 3.7220 3.9779 12.5523 11.3737
Car_R8 3.8957 15.6454 5.8976 6.6498 15.6678 4.8502 3.7287 3.9768 12.5751 11.3248
Car_R9 3.9207 15.6684 5.9251 6.6901 15.6844 4.8534 3.7363 4.0135 12.5841 11.3597
The stand-

ard devia-
tions

0.0120 0.0115 0.0136 0.0165 0.0175 0.0128 0.0119 0.0170 0.0106 0.0183
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Fig. 2  Scaled images for scale invariance tests: a 42 × 42 pixels, b 64 × 64 pixels, c 84 × 84 pixels, d 104 × 104 pixels, e 136 × 136 pixels, f 
166 × 166 pixels, g 180 × 180 pixels, and h 224 × 224 pixels, and i 256 × 256 pixels

Table 3  AQRHFMs invariants 
under image scaling M

R

0,0
M

R

0,1
M

R

0,2
M

R

1,0
M

R

1,1
M

R

1,2
M

R

2,0
M

R

2,1
M

R

2,2
M

R

3,3

42 × 42 5.1252 21.8835 7.8448 8.6982 21.6235 7.3958 4.1576 1.1368 7.8633 11.8747
64 × 64 5.1271 21.8677 7.7905 8.6514 21.6041 7.3638 4.1132 1.0998 7.8745 11.9020
84 × 84 5.1204 21.8723 7.7917 8.6497 21.5977 7.3557 4.1067 1.1004 7.8816 11.9160
104 × 104 5.1215 21.8499 7.8046 8.6634 21.5791 7.3637 4.1097 1.0949 7.8899 11.9132
136 × 136 5.1114 21.8631 7.7986 8.6565 21.5922 7.3608 4.1123 1.1052 7.8764 11.9274
166 × 166 5.1142 21.8586 7.8005 8.6608 21.5843 7.3599 4.1142 1.1039 7.8840 11.9238
180 × 180 5.1062 21.8606 7.7941 8.6548 21.5911 7.3481 4.1100 1.1032 7.8797 11.9295
224 × 224 5.1025 21.8637 7.7932 8.6544 21.5925 7.3590 4.1108 1.1009 7.8780 11.9287
256 × 256 5.1053 21.8620 7.7947 8.6530 21.5888 7.3579 4.1099 1.1005 7.8777 11.9284
The stand-

ard devia-
tions

0.0086 0.0088 0.0159 0.0140 0.0122 0.0125 0.0148 0.0116 0.0069 0.0170
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4  Experiments and analysis

4.1  Experiment on geometric invariance 
of AQRHFMs

(1) Experiment on rotation invariance

We first evaluate the performance of the AQRHFMS 
invariants under rotation transform. The original color 
image we used is selected from the COIL-100 database of 
Columbia University [34]. The original and rotated images 

are shown in Fig. 1, where Car_R0 is the original image 
and from Car_R1 to Car_R9 are the rotated versions of 
original ones. All these images are 128 × 128 pixels. The 
experimental results can be found in Table 2. Each col-
umn in Table 2 is the values of same moment invariant 
for different images; each row is the values of different 
moment invariants for the same image. The bottom row is 
the standard deviation of each column data to indicate the 
stability of the moment invariants.

As one can see from Table 2, the AQRHFMs invariants 
remain almost unchanged under different rotation changes 
and most of the standard deviations are less than 0.02. 
Therefore, the AQRHFMs invariants derived in this paper 
could be a useful tool in color object recognition tasks that 
require the rotation invariance.

(2) Experiment on scaling invariance

Some experiments to evaluate the performance of the 
AQRHFMs invariants under scale transform are also 
designed. The scale images and the corresponding experi-
mental results are shown in Fig. 2 and Table 3.

Fig. 3  Comparison of com-
putation time of AQRHFM, 
QOFMM, QZM, QPZM, 
QRHFM, and QPHT with num-
ber of moments from 3 to 300

Table 4  Limited conditions of the number of moments used in image 
reconstruction

Moments Limited conditions used in 
image reconstruction

QZMs p − |q| = even, |q| ≤ p ≤ K

QPZMs |q| ≤ p ≤ K

QOFMMs p + |q| ≤ K

QCHFMs p + |q| ≤ K

QRHFMs p + |q| ≤ K

QPHFMs p + |q| ≤ K

AQRHFMs p + |q| ≤ K

Fig. 4  Color images used in the experiment on image reconstruction: a Lena, b Barbara, c Mandrill, and d Peppers
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4.2  Computation time

The computation time of AQRHFMs is compared with 
those of QZMs [24], QPZMs [27], QOFMMs [23], 
QCHFMs [2], QRHFMs [30], and QPHFMs [2] in this 
subsection. Ten color images with 128 × 128 pixels are 
used in this experiment. In the experiment, programs are 
run on a computer with a 3.40-GHz processor and 16 GB 
RAM running the Microsoft Windows 10 Ultimate oper-
ating system. The experiment is conducted using MAT-
LAB version 8.6. The average computation time of the 
10 images with the number of moments from 3 to 300 is 
summarized in Fig. 3. It can be seen that the computation 
time of AQRHFMs is much less than those of QZMs and 
QPZMs, and is approximately equal to those of QRHFMs, 
and QPHFMs.

4.3  Image reconstruction

Image reconstruction performance can be used to test 
the image representation capability of image moments. 
Therefore, comparisons of image reconstruction perfor-
mance between AQRHFMs and QZMs [24], QPZMs [27], 
QOFMMs [23], QCHFMs [2], QRHFMs [30], and QPHFMs 
[2] are presented in this subsection. As shown in Eq. (26), 
the image can be reconstructed approximately by using finite 
AQRHFMs. Let K be a constant. The number of moments 
used in image reconstruction can be limited, as shown in 
Table 4.

The conditions are selected, so the moments capturing the 
lowest-frequency information are used for image reconstruc-
tion. Moreover, the reconstruction time has obviously been 
reduced based on the above conditions. K is set to K = pmax 
to ensure an ideal reconstruction performance while saving 

Fig. 5  Reconstructed images for Lena with 128 × 128 pixels (max moment order pmax = 2, 4,… , 22 . a QZMs, b QPZMs, c QOFMMs, d 
QCHFMs, e QRHFMs, f QPHFMs, and g our proposed AQRHFMs
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time in the reconstruction process [11]. In this paper, the 
reconstruction performance is evaluated by MSRE [16].

Experiment 1 Four standard color images with 128 × 128 
pixels are used in this experiment, as shown in Fig. 4, 
referred to as “Lena,” “Barbara,” “Mandrill,” and “Peppers.” 
Figure 5 shows the comparison of reconstructed images for 
Lena, in which the maximum moment order pmax is 2, 3,…, 
and 22, respectively. Figure 6 shows the comparisons of 
MSREs for 4 standard color images in Fig. 4. As can be 
seen from Figs. 5 and 6, the reconstruction performance of 
AQRHFMs is much better than those of QZMs [24], QPZMs 
[27], QOFMMs [23], QCHFMs [2], QRHFMs [30], and 
QPHFMs [2]. We can also observe that when the number 
of moments used in the reconstruction process increases 
from 0, the reconstruction performance of all 7 moments 
gets better. When the number of moments exceeds a certain 
value, the reconstruction performance of QZMs, QPZMs, 
QOFMMs, QCHFMs, and QRHFMs degrades, whereas the 
reconstruction performance of QPHFMs and our proposed 

AQRHFMs keeps getting better. The reason for these trends 
is the numerical instability problem of QZMs, QPZMs, 
QOFMMs, QCHFMs, and QRHFMs. Table 5 displays the 
reconstructed images using higher orders of AQRHFMs 
and QPHFMs, respectively. Columns 2, 4, and 6 of Table 5 
depict the images reconstructed using QPHFMs, whereas 
columns 3, 5, and 7 display the images reconstructed with 
the proposed AQRHFMs. It is seen from Table 5 that the 
computation of QPHFMs results in some spurious pixel val-
ues in the neighborhood of the centre of the unit disk and 
also along its circumference when the number of moments 
exceeds a certain value, which degrades the quality of the 
reconstructed image. The degradation increases with the 
increase in the order of QPHFMs. This shows that the com-
putation of QPHFMs is highly unstable because of the geo-
metric error and numerical integration error. The quality of 
the reconstructed images of AQRHFMs shown in columns 
3, 5, and 7 is far better than that of QPHFMs, which can 

Fig. 6  Comparison of MSRE of QZMs, QPZMs, QOFMMs, QCHFMs, QRHFMs, QPHFMs, and AQRHFMs for color images with 128 × 128 
pixels: a Lena, b Barbara, c Mandrill, and d Peppers
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demonstrate the superior performance of AQRHFMs in 
color image reconstruction.   

Experiment 2 Noise may seriously affect the quality of 
the reconstructed image [2, 35]. To test the reconstruction 
performance of AQRHFMs in the presence of noise, Gauss-
ian noise of mean 0 and variance 0.01 is added in the 4 
images. The comparisons of MSREs are shown in Fig. 7. 
It can be seen that the trend of the MSRE in the presence 
of Gaussian noise is similar to Fig. 7. All our experimental 
results show the reconstruction performance of AQRHFMs 
is better than those of QZMs [24], QPZMs [27], QOFMMs 
[23], QCHFMs [2], QRHFMs [30], and QPHFMs [2] (i.e., 
the superior feature representation capability of AQRHFMs 
over the other 6 moments).

4.4  Color object recognition

This subsection compares AQRHFMs with QZMs [24], 
QPZMs [27], QOFMMs [23], QCHFMs [2], QRHFMs 
[30], QPHFMs [2], and QLFMs [33] in terms of color image 
object recognition. In the experiments, 9, 25, and 36 low-
order moments are selected to carry out object recognition. 
The multiclass support vector machine (SVM) classifier is 
used to recognize the experimental images.

Experiment 1 In this experiment, 100 color images from 
the COIL-100 dataset [34] are used as the experimental 
image set. The size of the each image is 128 × 128 pixels. 
Some of them are shown in Fig. 8.

First, each image in the experimental image set is scaled 
with factors ranging from 0.5 to 2 with 0.1 increments, which 

makes 16 experimental images in total. Then, 8 images 
are randomly selected as training images, with the other 8 
images as test images. Therefore, there are 800 images in the 
training set and another 800 images in the testing set. Then, 
the test images are blended with Gaussian noise of mean 
0 and variance �2 = 0.00, 0.10, 0.15, 0.20, 0.30 . The correct 
classification percentages (CCPs) [26, 36] of AQRHFMs 
are compared with those of QZMs [24], QPZMs [27], 
QOFMMs [23], QCHFMs [2], QRHFMs [30], QPHFMs 
[2] and QLFMs [33]. The nearest neighbor classifier based 
on Euclidean distance is used to measure the CCP, which 
is defined by

Table 6 shows the results of the classification. It can be 
seen from Table 6 that AQRHFMs has the best recognition 
accuracy, which indicates AQRHFMS has the best robust-
ness against image noise. We can also observe that the more 
moments used in the recognition process, the more accurate 
recognition results one can expect. In addition, we can see 
that when the testing images are not blended with noise, the 
CCPs of all the moments are almost 100%. This is because 
all the moments satisfy scaling invariance.

Experiment 2 Face recognition is considered one of the 
most difficult research topics in the field of pattern recogni-
tion. In this experiment, the face images of 20 individuals 
with 180 × 200 pixels are used from the color face database 
faces 94 [37] of the University of Essex as our experimental 
image database. In the database, there are 20 images of each 

CCP =
Number of correctly classified images

Total number of used images in testing set
× 100%

Table 5  Reconstructed images using AQRHFMS and QPHFMs with high orders pmax and repetitions qmax

QPHFMs AQRHFMs QPHFMs AQRHFMs QPHFMs AQRHFMs

= =40

= =60

= =80

= =100

maxp maxq

maxp maxq

maxp maxq

maxp maxq
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individual, and the first 10 from them are used. Then all 
the images are converted to the size of 180 × 180 pixels for 
the experiment. Figure 9 shows the face images of a single 
individual.

In the experiment, rotation angles of 0◦ , 15◦ , 30◦ , and 
45◦ are applied to each face image; therefore, we obtained 

40 face images for each individual. Twenty face images of 
a single individual are randomly chosen as the training set, 
whereas the other 20 images are left as the testing set. Then, 
the test images are added with Gaussian noise of mean 0 and 
variance �2 = 0.00, 0.10, 0.15, 0.20, 0.30 to make 400 images 

Fig. 7  Comparison of MSREs of QZMs, QPZMs, QOFMMs, QCHFMs, QRHFMs, QPHFMs and AQRHFMs for color images with 128 × 128 
pixels with Gaussian noise of mean 0 and variance 0.01: a Lena, b Barbara, c Mandrill, and d Peppers

Fig. 8  Some of the experimental images from the COIL-100 dataset



1565Pattern Analysis and Applications (2020) 23:1551–1567 

1 3

in the training set and another 400 images in the testing set 
in total. Table 7 shows the results of the classification.

It can be seen from Table 7 that AQRHFMs have the 
best recognition accuracy than QZMs, QPZMs, QOFMMs, 
QCHFMs, QRHFMs, QPHFMs, and QLFM. The results 
are in good agreement with Experiment 1, which further 
explains that AQRHFMs have the best performance on 
invariant object recognition in noisy conditions. We can 
also see that the CCPs of all the moments are 100% when 
the variance of Gaussian noise is 0, which is because all 
the moments satisfy rotation invariance. From the above 2 
experiments, we can conclude that AQRHFMs are robust to 

image noise attack and have superb geometric invariance, 
which can be used as a novel image descriptor for color 
image invariant recognition.

5  Conclusion

In this paper, we propose a novel computation framework 
of radial harmonic Fourier moments, namely accurate qua-
ternion radial harmonic Fourier moments (AQRHFMs). 
Firstly, we propose an accurate computational framework of 
RHFMs, which not only greatly increase the speed but also 

Table 6  Comparison of CCPs 
(%) under different variances of 
Gaussian noise with different 
number of moments

Number of 
moments

�2 QZMs QPZMs QOFMMs QCHFMs QPHFMs QLFMs AQRHFMs

9 0.00 91.13 90.00 100.0 100.0 100.0 100.0 100.0
0.10 32.62 27.88 33.75 28.78 30.00 30.25 36.38
0.15 17.25 14.12 20.62 19.33 24.12 24.37 26.37
0.20 12.50 10.25 13.25 13.89 18.50 19.13 20.37
0.30 5.25 7.50 8.38 8.22 13.63 13.13 13.88

25 0.00 98.62 92.87 100.0 100.0 100.0 100.0 100.0
0.10 51.50 36.50 53.00 53.89 50.25 51.38 55.63
0.15 31.62 18.88 34.50 28.67 32.37 31.87 35.13
0.20 25.37 14.37 26.75 20.33 26.50 26.25 28.38
0.30 15.38 10.25 18.75 16.67 19.50 18.88 20.13

36 0.00 99.62 96.38 100.0 100.0 100.0 100.0 100.0
0.10 57.50 49.38 57.63 55.00 54.25 53.63 61.62
0.15 37.13 27.88 38.73 30.78 39.37 39.12 41.38
0.20 27.25 18.25 30.75 21.33 31.87 32.12 34.13
0.30 18.25 13.38 19.13 17.56 21.75 22.38 23.87

Fig. 9  One individual in the faces 94 face database
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improve the reconstruction accuracy. Secondly, we extend 
the accurate and fast RHFMs to AQRHFMs by using the 
algebra of quaternions, which can deal with the color images 
in a holistic manner. Much comparative experimental analy-
sis on the performance of AQRHFMs and QZMs, QPZMs, 
QOFMMs, QCHFMs, QRHFM, QPHFMs, and QLFMs is 
conducted. Experimental results show that AQRHFMs per-
forms superbly in image reconstruction and invariant object 
recognition in noise-free and noisy conditions.

In future work, the performance of AQRHFMs in other 
color image processing domains, such as color image water-
marking, color image segmentation, color image retrieval, 
and so on, will be tested. Another interesting topic would 
be putting forward more effective and accurate algorithms.
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