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Abstract
Instance and variable selection involve identifying a subset of instances and variables such that the learning process will 
use only this subset with better performances and lower cost. Due to the huge amount of data available in many fields, data 
reduction is considered as an NP-hard problem. In this paper, we present a simultaneous instance and variable selection 
approach based on the Random Forest-RI ensemble methods in the aim to discard noisy and useless information from the 
original data set. We proposed a selection principle based on two concepts: the ensemble margin and the importance vari-
able measure of Random Forest-RI. Experiments were conducted on cytological images for the automatic segmentation 
and recognition of white blood cells WBC (nucleus and cytoplasm). Moreover, in order to explore the performance of our 
proposed approach, experiments were carried out on standardized datasets from UCI and ASU repository, and the obtained 
results of the instances and variable selection by the Random Forest classifier are very encouraging.

Keywords Instance and variable selection · Random Forest · Data reduction · Small target detection · Automatic 
segmentation · Pixel-based classification · White blood cells

1 Introduction

Nowadays, the huge amount of data available in many fields 
makes the search of an optimal subset from a large-size data-
set an NP-hard problem. The data reduction process aims to 
clean the original dataset by removing redundant, missing 
and useless instances and/or features. The classifier build 
using this dataset should be as good or nearly good as the 
one built from the whole dataset.

In the context of medical image segmentation, the aim 
is to build an algorithm that takes an image as its input and 
results out the segmentation of the region of interest (ROI). 
The small target detection problems held the attention of 
many researchers [19, 27, 31, 32, 61]. Generally, image seg-
mentation was applied by several techniques as threshold-
ing, edge-based segmentation, region-based segmentation 
or segmentation based on pixel-based classification. How-
ever, the segmentation based on pixel-based classification 

is time-consuming due to the high number of instances and 
variables (features) which represent each pixel characteris-
tics. It is quite clear that we do not need all the variables to 
classify all pixels in an image. Specifically, certain relevant 
features can be conveniently summarized by looking at the 
relative positioning color or texture of various ROI. How-
ever, in image classification, many other potential variables 
may be used, including color or spatial signatures, textural or 
contextual information. On the other hand, training samples 
are usually collected from fieldwork. The different collection 
strategies used, such as single pixel, seed, and super pixel, 
would influence classification results, especially for clas-
sifications when the regions of interest (ROIs) in a medical 
image are complex and heterogeneous.

Due to different capabilities in ROIs separability, the use 
of too many variables and noisy/redundant instances in a 
classification procedure may decrease classification accu-
racy and unnecessary increase in the computational cost. It 
is important to select only the instances and variables that 
are most useful for separating the different ROIs, especially 
in medical image processing. Thereby, selecting suitable 
instances and variables is a critical step for successfully 
implementing an image segmentation. Through several 
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studies, it has been proven that instance and variable selec-
tion can:

• Improve the performance prediction of the model (by 
removing noisy instances and variables with ‘negative’ 
influence for recognition)

• Provide faster and more cost-effective implementations 
in contexts where datasets have thousands or hundreds 
of thousands of instances and variables.

In this work, we are concerned by the problem of small 
target detection for the automatic recognition of white blood 
cells in cytological images, as well as the recognition of 
nucleus and cytoplasm which is a big help for hematolo-
gists to diagnose leukemia, AIDS, blood cancer and other 
diseases. The pixel-based classification with the ensemble 
method Random Forest [9] has proved a great capacity of 
recognition and segmentation of ROIs in several works [12, 
29, 30, 56, 62]. The biggest disadvantage of this image pro-
cessing scheme is the computational complexity due to the 
huge amount of data. As a solution, we propose an instance 
and variable selection approach called IVsel which improves 
the segmentation performances and reduces the computa-
tional cost.

The proposed IVsel algorithm uses the power of ensem-
ble methods to perform instance and variable selection based 
on two concepts: the ensemble margin and the importance of 
variables in Random Forest. These concepts allow us to rank 
the instances and variables in the learning set and evalu-
ate their relevance during the image segmentation process. 
When performance is important, as it often is, the choice of 
a fast algorithm that uses the available computing resources 
efficiently is essential. We shall, in fact, take the efficiency 
of the compared algorithms by measuring the mean of the 
amount of time they take. Instead of the evolutionary algo-
rithms, which record the best performances in this field, 
their major limits are an increasing computation cost in big 
datasets. By its principle, IVsel saves computing time while 
maintaining classification performances. Moreover, IVsel 
can be generalized, and experiments on the UCI [39] and 
ASU [64] machine learning repository datasets show effi-
ciency in not only segmentation process on clinical images 
but also in a simple classification task.

The rest of this article is organized in six sections. In the 
first one, we present a review of some existing methods of 
instance and variable selection algorithms. In second one, 
we introduce our instance and variable selection (IVsel) 
approach and the algorithms used for comparison. In the 
third section, we explain the different stages (feature extrac-
tion selection step and classification method) of white blood 
cells segmentation using our approach. In the fourth sec-
tion, we apply our method on several classification problems 
from UCI and ASU repositories using the random forests 

classifier. Finally, we present a conclusion that summarized 
the impact of our work and the tracks defining possible per-
spectives for future work.

2  Related work for instance and variable 
selection

The statistic literature contains a whole set of techniques to 
identify the “relevant” coordinates of a dataset. The instance 
selection methods are used to extract the most useful set 
of instances from a database that contains noisy instances. 
This is the same as variable selection methods that consist 
to reduce the number of variables, particularly when the 
variable space is important and computational performance 
issues are induced. These techniques are rightfully exten-
sively used for image processing as they are relatively easy 
to implement.

Usually, instance and variable selection can be performed 
one after the other. In Feature Selection, Instance Selection 
(FSIS), a variable selection algorithm is applied on the origi-
nal dataset followed by an instance selection algorithm on 
the dataset obtained from the first step, Instance Selection, 
Feature Selection (ISFS) is the opposite approach.

Another possibility is the Feature and Instance Selection 
(FIS) algorithm where instance and variable selection are 
applied simultaneously. This approach is more interesting, 
because the selection algorithm considers all the data.

Tsai et al. [58] conduct a study to examine the perfor-
mance obtained when both tasks are executed individually or 
in certain orders with the genetic algorithm (GA), and they 
conclude that performing variable selection then instance 
selection (FSIS) provides better classification results than 
performing instance selection first (ISFS). They also noticed 
that the use of instance selection or variable selection indi-
vidually shown better result than the use of ISFS or FSIS in 
small-scall datasets. In [37], the authors perform an IFIS and 
a FSIS using the locality-sensitive hashing instance selection 
F algorithm and a Pearson R test.

Otherwise, the use of instance and variable selection is 
suitable for large datasets since this step greatly reduces the 
computational cost of training classifiers.

One of the most widely used techniques for variable and 
instance selection are evolutionary and coevolutionary algo-
rithm. Different examples can be found in the literature:

Ishibuchi et al. [26] perform an instance and feature selec-
tion with a genetic algorithm to improve the classification 
ability of k-NN and neural networks.

In [46], Ramirez-Cruz et al. present an hybrid algorithm 
called IFS-IBGAES, a combination of a genetic algorithm 
(GA) and evolution strategies (ES) to solve the problem of 
instance selection and variable weighting for instance-based 
methods. GA has the purpose of selecting instances, whereas 
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ES is used to weight variables, the proposed algorithm 
increases the predictive accuracy of the k-NN classifier. A 
modification of GA based on the biological evolution (GBA) 
is proposed by Chen et al. [11] to an instance and feature 
selection for traffic sign recognition.

In cooperative coevolution, two or more populations 
called species evolve separately in order to solve a specific 
problem. Derrac et al. [14] employ this model with the CHC 
(cross-generational elitist selection strategy, Heterogeneous 
recombination, cataclysmic mutation) evolutionary algo-
rithm to perform an instance and variable selection in k-
NN using three different populations. In Derrac et al. [15], 
they also use the cooperative coevolution model in instance 
selection, instance weighting, and variable weighting for the 
nearest neighbor classifiers and obtain good results in both 
papers. In Perez-Rodriguez et al. [45], a CHC evolutionary 
algorithm is used to perform a simultaneous instance and 
feature selection and weighting.

Ros et al. [47] propose the idea of integrating scaling 
methods with genetic algorithms to feature and instance 
selection. Garcia-Pedrajas et  al. [20] propose the scal-
able simultaneous instance and feature selection method 
(SSIFSM) which applies a selection algorithm to subsets of 
the whole training set and use a voting scheme to combine 
the results to speed up the selection process on each subset. 
In [21], they use a scalable memetic algorithm for simultane-
ous instance and feature selection.

Villuendas-Rey et al. [60] propose a deterministic method 
of variable and instance selection based on rough set theory 
and structuralizations of the logical combinatorial approach 
to pattern recognition to improve nearest neighbor classifi-
ers, and they obtained high data reduction and still maintain 
the original classifier error. Sakinah et al. [50] perform a 
variables and instances selection based on the cooperative 
particle swarm optimization technique on regression prob-
lems. In [13], authors select relevant features and retain 
important instances simultaneously by the construction of 
the new algorithm based on the combination of FortalFS and 
DemoIS selection algorithms. Zhang et al. [65] propose a 
unified criterion for feature and instance selection (UFI), to 
perform an instance and feature selection in an unsupervised 
framework. In [57], authors use a simple adaptation of the 
simulated annealing meta-heuristic to solve the feature and 
instance selection problems.

After reviewing the principal approaches, we found that 
evolutionary algorithm obtains the best performances but 
suffer from an increase in computation cost in big datasets. 
In this work, we present, IVsel, an approach based on the 
Random Forest ensemble method which overrides the evo-
lutionary issues. Its principle lies in ranking instances and 
variables based on the ensemble margin and the importance 
variable concepts.

3  Methods

In this paper, we present IVsel (instance and variable selec-
tion) algorithm, an approach based on the ensemble method: 
Random Forest-RI (RF-RI). We compare the performances 
of the three well-known evolutionary algorithms and the 
IVsel algorithm in terms of accuracy and execution time.

3.1  Instance and variable selection (IVsel) approach

Random forests [9] are among the most popular machine 
learning methods due to their applicability to a wide range 
of problems and their relatively good accuracy, robustness, 
and ease of use. This algorithm is based on the use of two 
randomization principles namely:

• The Bagging method introduced by Breiman [8]: Its prin-
ciple is to draw a large number of samples, independently 
of each other, and to build, applying to each of them the 
same basic rule, from which results a varied collection 
predictors. The predictor collection is then aggregated by 
simply averaging or majority voting.

• The random feature selection introduces randomness in 
the choice of partitioning rules at each node of the trees, 
so that each rule is no longer chosen from the complete 
set of variables M, but from a subset of these character-
istics. More specifically, select a number F of features 
(1 ≤ F ≤ M) [55] by random sampling without replace-
ment and choose the best possible rules using Gini index 
on these features.

Thus, the Random Forests is a variant of Bagging, where 
the difference comes in the construction of individual trees. 
The draw, at each node, of the F variables is done without 
replacement and uniformly among all M variables.

The number F is set at the beginning of the forest’s con-
struction and is therefore identical for all trees and for all the 
nodes of the same tree but the F variables involved in the 
nodes are generally different. The Random Forest process 
shown in Fig. 1 is summarized as follows:

Let Ntrees be the number of trees to build, for each N 
iterations: 

1. Select a new bootstrap sample from training set
2. Build an un-pruned tree on this bootstrap.
3. At each internal node, randomly select F attributes and 

determine the best split using Gini index.
4. Save tree constructed using the CART methodology.
5. Output overall prediction as the average response 

(regression) or majority vote (classification) from all 
individually trained trees.



1712 Pattern Analysis and Applications (2020) 23:1709–1726

1 3

The random forest algorithm has become a major data 
analysis tool used with success in various scientific areas. 
Indeed, it not only used for prediction, but also to assess how 
important a variable is by calculating how much out-of-bag 
performance you lose when you scramble the values of the 
variable. The profit of this measure has been demonstrated 
in a large number of studies [23, 28, 34, 40, 51, 63].

On the other hand, random forest also provide an interest-
ing function for evaluating the training instances based on 
the ensemble margin paradigm [52]. This technique selects 
the most informative instances based on their margins. Thus, 
more the margin is close to 1, the confidence in the predic-
tion is great; on the contrary, when the margin is low, confi-
dence in the classification for the instance in question is low.

Therefore, the proposed IVsel algorithm (Algorithm 1) 
use these two concepts of ensemble methods to perform a 
variable and instance selection, i.e., the ensemble margin 
[52] and the importance variable [9]. These concepts allow 
us to assign a ranking to instances and variables in the train-
ing set which assess their relevance to the learning process.

3.1.1  The ensemble margin

The ensemble algorithms use the ensemble margin concept 
to estimate the performances of the ensemble. The margin 
expresses the level of disagreement between the learners. An 
instance correctly classified by the ensemble reaches a high 
margin; otherwise, the margin value is very small. Gener-
ally, central instances have a high margin and carry general 

information on the cluster. On the other hand, instances near 
boundaries are more informative and have low margin [52]. 
In this work, we use the unsupervised ensemble margin as 
applied by [7, 22, 24, 36, 38, 48]. It is an alternative defini-
tion to the classical margin, it ranges from 0 to + 1 and is 
computed by Eq. 1. An interesting propriety of unsupervised 
margin is that it does not require the true class labels of 
instances which is more robust to class noise.

where nc1 represents the number of vote for the most voted 
class for instance x. nc2 represents the number of vote for the 
second most voted class for instance x. Ntrees represents the 
number of classifiers in the ensemble.

In our approach, we use the ensemble margin value as met-
rics to rank the instances of the training set. The instances caus-
ing the highest level of disagreement (with low margin value) 
are considered the most informative for class discrimination, 
whereas the central instances carry general information about 
the cluster. Therefore, for the instance reduction process, as 
applied in our earlier work, [48] is to select a high percentage 
of border instances �1 (informative instances, such as samples 
in class boundaries or those belonging to difficult classes) and 
a low percentage of central instances �2 (instances that have 
been classified by the majority of classifiers in the same class) 
in order to have a better representation of the dataset.

An illustration of the ensemble margin value of an artifi-
cial dataset is presented in Fig. 2. This dataset contains three 
clusters. The instances were colored based on their margin 
value in shades of red (class 1), green (class 2) and blue 
(class 3). White points (empty circles) represent the high 
margin instances and the dark points (filled circles) are the 
low margin instances. We notice that the darkest points (low 
margin) are those belonging to boundaries and the white 
points are the central instances.

(1)Margin(x) =
nc1 − nc2

Ntrees

Fig. 1  Flowchart of Random Forest (RF)

Fig. 2  Ensemble margin representation of an artificial dataset (color 
figure online)
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Figure 3 shows that if we decide to select only low margin 
instances, the cluster representing “class 3” will be entirely 
removed. On the other hand, retaining a high number of low 
margin instances allow good discrimination between classes. 
So, we conclude that the best combination is to maintain a 
high percentage of low margin instances and a small per-
centage set of high margins instances.

3.1.2  The importance variable measure

The importance variable is evaluated for each variable VI by 
removing the association between that variable and the target 
Y. To break the link between Xi and Y, Breiman [9] proposed 

to randomly permute the observations of the VI and measure 
how much the permutation decreases the accuracy of the 
model. This process is achieved by randomly permuting the 
values of the variable.

The formalism of this approach as presented in [9] is 
defined as follows:

Let consider an out-of-bag (OOB) set D
t

n
= Dn∕D

t
n
 

where Dn = {(X1, Y1), … , (Xn, Yn)} is a learning set of n, 
and Dt

n
, t = 1,… , Ntrees which contains the observations 

selected in the bootstrap subsets. D
tj

n
, t = 1,… , Ntrees is the 

permuted out-of-bag samples obtained by the permutation 
of the values of the jth variable in each out-of-bag subset. 

Fig. 3  Selected instances for different values of �
1
 and �

2
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The importance measure of the variable Xj is calculated by 
Eq. 2 as formalized in Breiman [9]:

with D
t

n
 out-of-bag of Dt

n
 , where Dt

n
 is the bootstrap sam-

ples of the training data Dn used for building the trees over 
Ntrees. D

tj

n
 the permuted out-of-bag samples on the jth vari-

able. htthe hypothesis of prediction the tth tree. R(ht)the pre-
diction error of ht.

To estimate the importance of a specific variable Xj of a 
tth tree as shown in Fig. 4:

• First, the prediction error on the out-of-bag samples D
t

n
 

is measured.
• Then, the values of the variable in the out-of-bag samples 

D
t

n
 are randomly permuted, keeping all other variables 

the same ( D
tj

n
).

(2)VI(Xj) =
1

Ntrees

Ntrees
∑

t=1

[R(ht,D
tj

n
) − R(ht,D

t

n
)]

• Finally, the prediction error difference between the per-
muted data D

tj

n
 and the original out-of-bag samples D

t

n
 is 

measured. The mean increase in error prediction across 
the tth trees is reported.

The proposed IVsel algorithm (Algorithm 1) proceeds in 
the following steps:

• At first, a random forest-RI equals to Ntrees is built, and 
during the evaluation phase, the variable importance 
measure is assessed.

• Second, the margin ensemble is calculated according to 
Eq. 1.

• Subsequently, variables are ranked in descending order 
of importance and instances are ranked by margin value, 
with the references: �1 low margin instances, and �2 as 
high margin.

• Finally, we obtain a database with variables and relevant 
instances.

Fig. 4  Measure importance 
principle of Xj for a tth tree

Algorithm 1 IVsel Algorithm
1: Input: S = ((x1, y1), . . . , (xm, ym))).
2: Execute the RF-RI algorithm.
3: Mg(S) = Calculate margin value.
4: The Variable Importance : Ranking variables in decreasing order of importance.
5: The Ensemble Margin: Ranking instances in increasing order of margin value.
6: S1 ← α1% of low margin instances
7: S2 ← α2% of high margin instances
8: S′ ← S1 ∪ S2
9: S′ ← S′ with the most important variables.
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A deep look in the literature shows that the majority of 
approaches of instances and variables selection are time-con-
suming. Previous researches [26, 44, 58] show that evolu-
tionary models generally outperform classical instance and/ 
or feature selection algorithms in very complex problems 
reducing data in machine learning field without increasing 
classification error. In this paper, we select the three most 
accurate evolutionary algorithms, PBIL [2, 4], CHC [10] 
and IFS_CoCo [14, 15], to perform a comparison with the 
proposed reduction approach.

3.1.3  The population‑based incremental learning 
algorithm

The population-based incremental learning algorithm 
(PBIL) is an evolutionary algorithm which combines genetic 
algorithm and competitive learning [2, 4]. Contrary to stand-
ard genetic algorithms (GAs), PBIL (Algorithm 2) use a 
probability vector ( Vp = {p1, p2,… , pi} , where pn represents 
the probability of obtaining a value of 1 in the ith compo-
nent from which samples can be drawn to produce the next 
generation’s population.

Input A training set T , Number of variables n, Population size L, Number of generations G,
Learning rate λ

1: m ← |T |
2: P ←initialize probability vector. % (Each position = 0.5)
3: for j = 1 . . . G do
4: for i = 1 . . . L do
5: xi ← generate sample vector according to probabilities in P .
6: evaluationi ← evaluate(xi)
7: end for
8: max ← find vector corresponding to maximum evaluation % Find Best Sample
9: for i = 1 . . .m + n do
10: % Update Probability Vector
11: Pi ← Pi ∗ (1.0 − λ) + maxi ∗ (λ)
12: end for
13: end for

Initially, the values of Vp are set at 0.5. Then, at each gen-
eration, we generate M solutions based on the probabilities 
in the probability vector pl(x). The N best solutions (N ≤ M) 
are selected as the best solutions set and used to update the 
probability vector with: Pi ← Pi ∗ (1.0 − �) +maxi ∗ (�) , 
where � is the learning rate. After, a new population is gen-
erated from the updated probability vector. The process is 
repeated for a G number of generations.

Quickly, the values of Vp will be changed to favor either 
0.0 or 1.0 through the search’s progression. For example, a 
final probability vector of a good solution of the proposed 
problem would be 0.01, 0.98, 0.02, 0.99, etc [3, 25]. Notice 
that the population represented by a probability vector is not 
unique, which aids in maintaining diversity in search.

We assume that the training set is formed by m labeled 
instances of n variables. To perform instance and variable 
selection, each chromosome is coded as indicated by Eq. 3:

3.1.4  CHC adaptive search algorithm

The CHC algorithm is an evolutionary algorithm proposed 
by Eshelman [18] (cross-generational elitist selection strat-
egy, heterogeneous recombination, cataclysmic mutation). 
CHC generates the offspring by exchanging half of the bits 
that differ between parents separated by a threshold Ham-
ming distance (incest prevention). Then, the parent and the 
offspring are merged, and only the N best individuals are 

(3)C = a1a2 … amam+1 … am+n

selected for the new population. In case that a parent and 
an offspring have the same fitness value, the offspring is 
selected.

No mutation is applied during the recombination phase. 
Instead, when the population converges or the search stops 
making progress, the population is reinitialized by randomly 
changing 35% of the bits of the best solution.
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Input A training set T , number of generations G, a base learning algorithm
L, population size N

1: S ← initialize population
2: for j = 1...G do
3: Obtain new individuals using HUX crossover
4: Apply random mutation with probability
5: % Evaluation of individuals
6: for i = 1...N do
7: Train a classifier f = L(Si)
8: Evaluate error e of f
9: end for

10: Select best individuals for the next generation.
11: end for
12: Return best individual

Fig. 5  Proposed approach for automatic segmentation by pixel-based classification

CHC also employs a method of incest prevention. Only 
different individuals separated by a threshold Hamming dis-
tance are allowed to mate. No mutation is applied during 
the recombination phase. Instead, when the population con-
verges or the search stops making progress, the population 
is reinitialized by randomly changing 35% of the bits of the 
best solution.

3.1.5  Cooperative coevolution model

The IFS_CoCo algorithm can handle two or more popula-
tions simultaneously. Indeed, each population is responsible 
for solving a part of the original problem using a divide-
and-conquer strategy. Each spice evolve with its own evolu-
tionary algorithm without interaction between them which 
makes parallel implementation possible. Finally, the global 

solution is the combination of the solutions presented by 
representative individuals taken from each population.

The IFS CoCo model manage three populations, each one 
performs a specific selection task:

• IS population Performs an instance selection.
• FS population Performs a features selection.
• FIS population Performs a features and instances selec-

tion.

In IFS_CoCo, the CHC algorithm is applied to evolve the 
three populations. The individuals of the three populations 
use the same binary structure. In the IS and FS population, 
each chromosome of the phenotypes represents an instance 
and a feature, respectively. In IFS population, the first N 
chromosomes represent the instances and the M last ones 
represent the features.
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The final reduced dataset is obtained by majority vote 
between the best chromosomes of each population.

4  Application

To evaluate our proposal, we first performed in the auto-
matic detection of white blood cells (nucleus and cyto-
plasm) in cytological images. By next we launch experi-
ments on standardized datasets from the UCI [39] and ASU 
[64] repository to prove the universality of the proposed 
approach. The main objective is to execute this process in 
minimum computational time while saving the predictive 
power of segmentation or Classification.

For this purpose of WBC segmentation, we use an intel-
ligent region-growing approach beginning with a point of 
interest and sorting the neighboring pixels to construct the 
region of interest. The process applied for pixel-based clas-
sification involves first the intervention of an expert hema-
tologist to identifying nucleus and cytoplasm in cytological 
images. We already proposed in [5, 48, 49, 54] a principle 
inspired by Reza et al. [1], where the expert intervenes for 
windowing the regions of interest of a minimum number 
of images from the database. The selection is made in four 
windows (nucleus, cytoplasm, plasma and red blood cell). 
Thereafter, a features extraction step is used, to represent 
each pixel in the image by a vector parameter.

Our contribution is the application of an instance (pixel) 
and variable selection (feature extraction) step to build a 
reliable pixel-based classification segmentation model that 
offers the best trade-off between computing time and seg-
mentation performance. The proposed approach follows 
three steps: characterization, learning and segmentation step.

• Step 1 The pixels of the images are characterized by 
a parameter vector of different color spaces (Table 1) 
obtained during the feature extraction phase.

• Step 2 In this phase, the IVsel algorithm reduces the 
original dataset by selecting only the most interesting 
pixels and variables. Thereafter, we construct a classifier 
using the reduced dataset and Random Forest algorithm 
that predicts the label of each pixel.

• Step 3 The ultimate erosion calculates the points of 
interest of each test image. Following, we applied the 
previously learned hypothesis to classify pixels near the 
point of interest and so we perform the region-growing 
approach. The segmentation process is shown in Fig. 5.

4.1  Features extraction

The color reference in the pixel-based classification is the 
RGB color space, because this is the format most used in 

the acquisition system. The RGB can provide good color 
discrimination under controlled illumination conditions. 
Various color spaces are proposed in the literature which 
can be useful to represent the color of each pixel, as studied 
in [16, 42]. This diversity opens a question related to the 
choice of the relevant color space in the pixel-based classi-
fication. According to the study of [17], a good choice may 
bring considerable improvements in certain applications of 
image processing. In the same application framework of 
white blood cells segmentation, Benazzouz et al. [6] have 
studied the importance of the feature selection technique in 
the choice of the color spaces to obtain a good pixel-based 
classification. However, since there are a wide variety of 
color spaces, it can be grouped into four main families [59]:

The primary spaces are based on the trichromatic theory. 
This family assumes that mixing appropriate amounts of R, 
G and B can produce any existing color. The normalized pri-
mary color can be obtained by dividing each primary color 
component value by the sum of the other three.

The luminance–chrominance spaces are characterized by 
the luminance component which represents an achromatic 
information two chrominance components which represent 
the chromatic information. The color spaces of this family 
are calculated from the primary components by linear or 
nonlinear transformation.

The perceptual spaces can present the subjective percep-
tual quantification of human color using intensity, hue, and 
saturation components.

The independent axis spaces provide the least correlated 
components as possible between color resulting, using dif-
ferent statistical methods like principal component analysis 
(PCA).

4.2  Points of interest detection

In this work, we target the identification of white blood cells 
in a cytological image which also contains red blood cells 
and plasma. In a previous work [48], we proposed a fast 
pixel classification treatment using ultimate erosion. This 
treatment proves that it can minimize computation time by 
starting the classification with pixels of the region of inter-
est [53]. Thereby, we reproduce in the proposed outline, the 
same mathematical morphology for points of interest detec-
tion as a preprocessing step for the pixel-based classification.

5  Experiments and results

This section aims to carry out experiments using a meth-
odology in order to investigate whether the proposed IVsel 
algorithm contributes to reduce the computational cost 
while improving the segmentation performances. The 
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three algorithms were evaluated under an i7-4820 CPU @ 
3.7 GHz, 56Go RAM, MATLAB R2013a environment.

We first begin by describing the cytological images data-
set used, then, a summary of the fixed parameters of each 
algorithm in the experiments. Thereafter, the experiments 
conducted and the obtained results to determine the best 
compromise of the parameters �1 , �2 border and central 

instances, respectively, and the best numbers of variables, 
to have the closest representation with a minimum dimen-
sion. Finally, we show the comparison between IVsel (with 
the best parameters) and the three evolutionary algorithms 
from the literature.

In order to better assess the obtained results for each 
algorithm, we complete these experiments with other tests 

Table 1  Different color spaces 
features

Family Color spaces Computational formula

Primary spaces RGB R(i, j)
G(i, j)
B(i, j)

Luminance–chrominance spaces LUV L = 116(
Y

Yn
)1∕3 − 16 If Y

Yn
> 0.008856

= 903.3(
Y

Yn
) If Y

Yn
≤ 0.008856

U = 13L(U� − U�
n
)

V = 13L(V � − V �
n
)

Lab L = 116(
Y

Yn
)1∕3 − 16 If Y

Yn
> 0.008856

= 903.3(
Y

Yn
) If Y

Yn
≤ 0.008856

a = 500 ∗ (f (X∕Xn) − f (Y∕Yn))

b = 200 ∗ (f (Y∕Yn) − f (Z∕Zn))

YUV K = 0.299 ∗ R + 0.587 ∗ G + 0.114 ∗ B

Y = (0.859 ∗ K) + 16

U = (0.496 ∗ (B − K)) + 128

V = (0.627 ∗ (R − K)) + 128

YIQ Y = 0.299R + 0.587G + 0.114B

I = 0.596 ∗ R − 0.274 ∗ G + 0.322 ∗ B

Q = 0.212 ∗ R − 0.523 ∗ G − 0.311 ∗ B

YCbCr Y = 0.299R + 0.587G + 0.114B

Cb = −0.169 ∗ R − 0.331 ∗ G + 0.500 ∗ B

Cr = 0.500 ∗ R − 0.419 ∗ G − 0.081 ∗ B

Perceptual spaces HSL H =
G−B

(Max−Min)
 If R = Max

= B−R

(Max−Min)
+ 2 If G = Max

= R−G

(Max−Min)
+ 4 If B = Max

S =
Max(R,G,B)−Min(R,G,B)

Max(R,G,B)

L =
Max(R,G,B)+Min(R,G,B)

2

HSV H = G−B

(Max−Min)
 If R = Max

= B−R

(Max−Min)
+ 2 If G = Max

= R−G

(Max−Min)
+ 4 Si B = Max

S =
Max(R,G,B)−Min(R,G,B)

Max(R,G,B)

V = Max(R,G,B)

Independent axis spaces I1I2I3 I1 = (R + G + B)∕3

I2 = (G − B)∕2

I3 = (2G − R − B)∕4
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carried out on standardized datasets from the UCI [39] and 
ASU [64] repository, to confirm that IVsel proposed the best 
compromise toward reduction rate/performances and com-
putational cost.

5.1  Database

In our experiments, we use a database acquired in the Hae-
mobiology Service (CHU Tlemcen) with MGG staining 
(May Grunwald Giemsa) [6] by the LEICA environment 
(camera and microscope) which provides RGB color images 
( 768 × 1024 pixels).

In this work, we have chosen to partitioning the database 
into ten images for the learning dataset and 60 images for 
the test dataset, so that, we could evaluate our model in the 
presence of two major factors that influence the classifica-
tion performance, namely class imbalance which introduces 
a bias toward the majority class; and the sample representa-
tiveness issues of the training set that affects model’s per-
formance, by not presenting the relevant examples. For the 
training set, the regions of interest are labeled by an expert in 
the field, which contains four regions, namely nucleus, cyto-
plasm, red blood cells and plasma, as represented in Fig. 6.

5.2  Parameters

Table 2 lists related parameters used in the instance and vari-
able selection algorithms. A Random Forest with a num-
ber of trees fixed to 100 is built in the learning step. In the 
experimental tests, a five-cross-validation is applied with 

Fig. 6  (a) Nucleus, (b) cytoplasm, (c) red blood cells (d) plasma

Table 2  Pixel selection algorithm parameters

Methods Parameters

IVsel Number of trees (Ntrees) = 50
CHC Population = 50, Generation = 50
PBIL Population = 50, Genera-

tion = 50, Learning rate = 0.1
IFS_CoCo Population = 50, Generation=50

Table 3  Classes distribution for the different subsets

Parameters Before selection Selection data 1 Selection data 2 Selection data 3 Selection data 4

�1 (border), �2 (center) (100%, 100%) (60%, 40%) (70%, 30%) (80%, 20%) (90%, 10%)
Reduction rate (%) 0 59.41 68.83 78.25 87.67
Size data (pixels) 4,363,984 1,770,916 1,359,839 948,763 537,687
DistributionNucleus(%) 11.61 11.38 11.42 11.47 11.54
DistributionCytoplasm(%) 16.15 13.36 13.88 14.90 17.48
DistributionRed-cells(%) 49.31 50.92 50.51 49.81 48.02
DistributionBackground(%) 22.91 24.32 24.16 23.80 22.93

Fig. 7  Importance variable plot 
by IVsel
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100 iterations for the region-growing approach classifica-
tion, and this number depends on the size of cytoplasm in 
the image.

The classification performances are evaluated based on 
the accuracy and F-score measurements:

where TP is the number of true positive, FP is the number of 
false positive and FN is the number of false negative pixels. 
F-score define a compromise of accuracy and recall giving 
the performance of the system. This compromise is given in 
a simple way by the harmonic mean of precision and recall.

5.3  IVsel results

As shown in Sect. 3, the IVsel algorithm constructs an 
instance ranking based on the margin value, this technique 
selects the most informative instances based on their mar-
gins. Thereby, in order to have a good representation of the 
data, our algorithm selects some instances from two ranges 
in the margin value: the lowest margin (the most informa-
tive instances) and the medium and highest (instances which 
carry general information).

Accuracy =
TP

TP + FP

F-score = 2
Accuracy ⋅ Recall

Accuracy + Recall

=
2 TP

2 TP + FP + FN

In order to choose the best values of (�1, �2) for the 
dataset, we perform a series of experiments varying from 
{(90%, 10%), (80%, 20%), (70%, 30%), (60%, 40%)} . Table 3 
presents the reduction rate and the distribution of classes 
in the data for the different percentage of margin instances. 
The results show that the classes distribution is maintaining, 
when �2 decreases, while the reduction rate increases. In 
the light of these results, we choose (90%, 10%) as the best 
values for the parameters (�1, �2).

Moreover, the IVsel method used the importance vari-
able (VI) measure provided by random forests to identify 
the most important predictor variables. The VI degrees of 
a variable can be measured when the values of the con-
cerned variable are randomly permuted, and it reflects the 
average decrease in model accuracy on the OOB samples. 
Figure 7 illustrates the importance variable plot. The plot 
shows each variable on the x-axis, and their importance on 
the y-axis. They are ordered as most to least important. Typi-
cally, RF-RI measures the importance of all variables and 
the ability of each variable to classify the data appropriately. 
To decide how many important variables to choose, we look 
for a large break between variables. In Fig. 7, the ranking of 
variables clearly show five subsets of 1, 6, 9, 13, 15 variables 
with an VI > 10% that contributes to the good recognition 
of ROIs in WBD segmentation.

To select the best subset of variables, we study the impact 
of these five subsets on the accuracy of WBC segmentation 
process. Table 4 resumes each color spaces selected for each 
subset, their importance degree and accuracy segmentation 
of nucleus and cytoplasm. We can clearly see that with a 

Table 4  Segmentation accuracy 
of WBC by the different subset 
variables

Subset of 
variables

Color spaces Importance 
degree (%)

Nucleus Acc (%) Cyto-
plasm 
Acc (%)

1 CR = 100 96.53 94.23
6 CR, a,R, Cb,U,G > 60 99.10 94.99
9 CR, a,R, Cb,U,G,B,L, I2 > 40 99.08 93.30
13 CR, a,R, Cb,U,G,B,L, I2,Y ,Y ,L, I1 > 20 99.01 94.75
15 CR, a,R, Cb,U,G,B,L, I2,Y ,Y ,L, I1,U,L > 10 99.05 94.68

Table 5  Performances, running 
times (min) and reduction rates 
for each algorithm

Regions Methods Benchmark IVsel CHC PBIL IFS_CoCo

Cytoplasm Accuracy 94.70 94.99 94.79 95.41 94.33
F-score 0.4297 0.4518 0.4449 0.4640 0.4567

NuCleus Accuracy 99.08 99.10 99.10 99.10 97.49
F-score 0.8388 0.84 0.8376 0.8413 0.7292

RuNNiNg time Selection 0 7245 313,245 183,657 14,235
Learning 97,204 7235 28,831 18,039 10,245

ReduCtioN Rate Instance 0 87.67 55.04 54.98 22.52
Variable 0 78.57 53.57 59.25 70.22
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100% VI degree, Cr which belongs to the YCbCr color space 
achieved on its own a good segmentation of nucleus and 
cytoplasm. However, the best performance is reached by 
the second subset formed by variables with an importance 
degree greater than 60%. This subset contains only six vari-
ables: CR, a,R, Cb,U and G.

The IVsel method, by its different results for instance and 
variable selection, prove its efficiency to deal with high-
dimensional image dataset by reducing 87.67% of redundant 
instances with respect of the original distribution dataset, 
and by indicating the most accurate variable set with six 
color spaces for the WBC segmentation, which represents a 
reduction of 78.57%.

Fig. 8  Results of automatic 
segmentation by the Random 
Forest classifiers with and 
without instance and variable 
selection



1722 Pattern Analysis and Applications (2020) 23:1709–1726

1 3

5.4  Comparison analysis

In this section, we perform a comparison between the pro-
posed approach IVsel and the evolutionary algorithms: 
PBIL, CHC and IFS_CoCo. Table 5 presents the perfor-
mances, running times and reduction rates for each algo-
rithm and the benchmark, which are the results achieved 
without any selection.

When comparing the three approaches, we notice that 
neither algorithm consistently outperformed the others in 
classification accuracy and F-score. However, all of them 
improve the results of the original datasets. This can be 
explained by the fact that the reduction process eliminates 
noisy instances.

On the other hand, we notice that IVsel also obtains a 
higher reduction rate. CHC and PBIL reached a reduction 
rate lower than 60% in either instance or variable dimension. 
Likewise, IFS_CoCo reach a small reduction rate (22.52%) 
on instance but an interesting one with 70.22% in feature, 
while IVsel performs an instance reduction of 87.67% and 
a variable reduction of 78.57% which result in a higher gain 
of time in the learning step, performed by RF-RI classi-
fier, with respect to PBIL and CHC (7235 min for IVsel vs 
18,039, 28,831 and 10,245 for PBIL, CHC and IFS_CoCo, 
respectively).

Moreover, Table 5 shows that like expected evolutionary 
algorithm is the slowest ones with IFS_CoCo faster than 
PBIL and CHC. By contrast, the execution time of the selec-
tion process of IVsel is considerably lower than the three 
evolutionary algorithms. Indeed, IVsel is more than 10 times 
faster than IFS_CoCo, 20 times faster than PBIL and more 
than 40 times faster than CHC.

In addition, Table 5 shows that the computational time 
of CHC, PBIL and IFS CoCo in learning phase exceeds the 
execution time of using the entire dataset. Thus, the increase 

in performance results in an increase in the cost of calcula-
tion. We can therefore conclude that when it comes to large 
databases, our approach is the most appropriate, since IVsel 
obtains comparable results to the ones obtained by the best 
algorithms of the state of the art with lower cost.

The computational complexity analysis can explain these 
results, where the computational complexity of CHC and 
PBIL is O(M2) with M the number of instances, while the 
complexity of IFS_CoCo algorithm is O(M2) for each popu-
lation. This means that the algorithms run in a quadratic 
polynomial time. So, since the population size grows, the 
problem size also grows and therefore needs a much larger 
computing resource. However, the complexity of the random 
forest used in the construction of IVsel is O(LMlog(M)) , 
where M is the number of instances and L is the number of 
trees in the forest. On the other hand, a random forest is a 
bagging of trees which allows a parallel implementation. 
Regarding these pieces of information, we can say that IVsel 

Fig. 9  Selected variables by each algorithm

Table 6  Datasets description

datasets #iNstaNCes #VaRiables #Classes

BaseHock 1993 4862 2
Brieman 5000 40 3
CNAE-9 1080 856 9
Ionosphere 351 34 2
Madelon 2598 500 2
Musk 476 166 2
PCMAC 1943 3289 2
pendigits 7494 16 9
Pima 768 9 2
Relathe 1427 4322 2
Segmentation 2310 19 7
wdbc 569 30 2
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Table 7  Performances, running 
times (s) and reduction rates for 
each algorithm on standardized 
datasets

dataset methods aCCuRaCy% VaR ReduCtioN 
Rate%

iNs ReduCtioN 
Rate%

RuNNiNg time (s)

BaseHock pbil 94.30 51.08 46.61 34,944.14
ChC 93.89 50.15 43.50 638.66
iFs_CoCo 88.15 25.05 22.88 179.33
iVsel 96.85 50.03 57.30 1118.12

Brieman pbil 85.75 58.54 43.50 1608.46
ChC 80.33 60.98 45.06 20.08
iFs_CoCo 78.49 26.83 22.70 21.63
iVsel 86.98 53.66 50.84 27.05

CNAE-9 pbil 81.22 49.24 44.35 3981.64
ChC 73.75 50.18 44.44 132.95
iFs_CoCo 59.96 26.49 20.56 31.38
iVsel 88.68 50.18 54.81 158.67

Ionosphere pbil 92.02 51.43 46.72 31.02
ChC 92.53 65.71 37.89 4.41
iFs_CoCo 90.89 37.14 21.65 3.02
iVsel 97.00 54.29 56.98 3.03

Madelon pbil 70.71 50.90 45.73 1724.60
ChC 63.57 52.10 44.69 83.59
iFs_CoCo 55.99 23.75 22.83 29.03
iVsel 68.26 50.30 42.57 133.31

Musk pbil 86.77 50.30 46.01 135.97
ChC 79.39 52.10 45.80 21.27
iFs_CoCo 73.27 26.35 21.64 1.89
iVsel 86.66 50.90 52.73 13.10

PCMAC pbil 91.01 50.73 46.99 26,854.33
ChC 88.98 51.16 45.75 533.51
iFs_CoCo 82.03 24.32 24.65 560.02
iVsel 91.07 50.03 53.58 461.25

pendigits pbil 87.44 82.35 47.16 337.93
ChC 86.85 70.59 45.37 11.63
iFs_CoCo 78.30 35.29 22.75 3.29
iVsel 93.36 58.82 53.86 18.40

Pima pbil 76.05 44.44 45.18 44.10
ChC 75.06 66.67 45.44 5.05
iFs_CoCo 70.16 55.56 23.18 8.42
iVsel 77.83 66.67 51.69 4.18

Relathe pbil 87.71 49.34 46.18 15,900.39
ChC 86.31 50.20 45.55 495.30
iFs_CoCo 80.46 25.10 22.56 662.83
iVsel 88.32 50.03 53.33 527.27

Segmentation pbil 96.69 40.00 45.76 74.42
ChC 95.70 55.00 46.32 4.00
iFs_CoCo 88.86 30.00 22.60 0.93
iVsel 96.81 55.00 58.35 4.13

wdbc pbil 96.34 48.39 47.98 27.07
ChC 93.90 58.06 43.41 2.18
iFs_CoCo 92.31 29.03 22.67 4.30
iVsel 97.58 54.84 58.00 1.54
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performs as well as the other state-of-the-art approaches 
with lower computational cost.

To discuss the performance and quality of the segmen-
tation approaches, we randomly select three images from 
the test database (Fig. 8). A qualitative comparison shows 
a successful and same recognition of the nucleus from the 
cytoplasm before and after selection which is basically the 
same of the expert annotation. These results allow us to 
confirm the superiority of our approach compared to other 
approaches of growing-region approach by pixel-based 
classification. The use of the IVsel approach reduces the 
learning set, which saves computing time while maintaining 
segmentation performance.

On the other hand, the variables selected by each algo-
rithm are substantially different. Figure 9, resumes the space 
color selected by each algorithm. To find out which spaces 
are most relevant for better segmentation, several studies 
[33, 35, 41, 43] have demonstrated the utility of primary 
spaces in color image segmentation applications, as has been 
well-confirmed by IVsel and CHC. Notably, the space G 
which brings a better discrimination of the regions, unlike 
PBIL and IFS_CoCo which eliminated the primary spaces. 
IVsel with six variables demonstrates that even without the 
perceptual and independent spaces, the results are competi-
tive and almost identical to those of PBIL, CHC and IFS_
CoCo which use these characteristics.

5.5  Experiments on UCI datasets

In order to prove the universality of the presented method, 
we launch experiments on twelve databases from the UCI 
[39] and ASU [64] repository. The used datasets are char-
acterized by a variant number of variables and instances 
ranging from small to large. The details of these datasets 
are shown in Table 6.

For each dataset, a ten-cross-validation is carried out for 
evaluation. The same related parameters used in instance and 
variable selection algorithms for the pixel-based classifica-
tion are conducted for the classification of UCI and ASU 
datasets. For the values of (�1, �2) i.e., low and high margin 
instances, we fixed them at (60%, 40%).

The obtained results are very interesting, and their differ-
ences depend on the databases. For example, in Table 7, the 
performance of IVsel on Breast, CNAE9, Ionosphere and 
pendigits are quite remarkable. Furthermore, IVsel gives a 
slight improvement or equivalent accuracy on the remaining 
datasets. This can be explained by a lower reduction rate of 
variables and instances compared to those of the evolution-
ary algorithm PBIL, CHC and IFS_CoCo. Moreover, we 
notice in the running time column (Table 7), IVsel records 
slightly less running time than the three other approaches, 
especially in comparison with PBIL which present a compa-
rable reduction rates to IVsel but a much longer time.

These experiments can confirm the effectiveness of IVsel 
and prove that its principal based on the two ensemble con-
cepts: the ensemble margin and the importance variable 
which provide a good compromise between performance 
and running time.

6  Conclusion and perspectives

The main problem when dealing with huge datasets, which 
is currently the case in image analysis, is the high compu-
tational cost. We consider the use of reduction techniques 
in both instances and variables dimensions to overcome 
this problem. In this work, we propose an instance variable 
selection approach based on the random forest ensemble 
method named IVsel. Its principle is ranking the instances 
and variables in a learning process based on the ensemble 
margin and the importance variable measure of Random 
Forest algorithm.

To evaluate our proposed approach, the pixel-based clas-
sification of white blood cells WBC (nucleus and cytoplasm) 
in cytological images was performed. Results of IVsel show 
that our method reaches the same results obtained by evo-
lutionary algorithm CHC, PBIL and IFS_CoCo with higher 
reduction rate and lower execution time. These results were 
also verified on the standardized datasets from UCI and 
ASU.

The perspectives are innumerable whether in the funda-
mental side of our automatic segmentation approach or in 
the reduction process. Now, we are working on the identi-
fication of relevant features, in the case of images that need 
color, spatial and texture characterization such as mammo-
graphic images or ultrasound images of placenta. As future 
work, we consider to adapt IVsel for real-time segmentation 
of medical videos.
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