
Vol.:(0123456789)1 3

Pattern Analysis and Applications (2020) 23:1235–1250 
https://doi.org/10.1007/s10044-019-00848-6

THEORETICAL ADVANCES

Distributed Learning Automata‑based S‑learning scheme 
for classification

Morten Goodwin2 · Anis Yazidi1  · Tore Møller Jonassen1

Received: 12 January 2019 / Accepted: 10 September 2019 / Published online: 12 October 2019 
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
This paper proposes a novel classifier based on the theory of Learning Automata (LA), reckoned to as PolyLA. The essence 
of our scheme is to search for a separator in the feature space by imposing an LA-based random walk in a grid system. To 
each node in the grid, we attach an LA whose actions are the choices of the edges forming a separator. The walk is self-
enclosing, and a new random walk is started whenever the walker returns to the starting node forming a closed classification 
path yielding a many-edged polygon. In our approach, the different LA attached to the different nodes search for a polygon 
that best encircles and separates each class. Based on the obtained polygons, we perform classification by labeling items 
encircled by a polygon as part of a class using a ray casting function. From a methodological perspective, PolyLA has 
appealing properties compared to SVM. In fact, unlike PolyLA, the SVM performance is dependent on the right choice of 
the kernel function (e.g., linear kernel, Gaussian kernel)—which is considered a “black art.” PolyLA, on the other hand, 
can find arbitrarily complex separator in the feature space. We provide sound theoretical results that prove the optimality of 
the scheme. Furthermore, experimental results show that our scheme is able to perfectly separate both simple and complex 
patterns outperforming existing classifiers, such as polynomial and linear SVM, without the need to map the problem to 
many dimensions or to introduce a “kernel trick.” We believe that the results are impressive, given the simplicity of PolyLA 
compared to other approaches such as SVM.

Keywords Classification · Learning Automata · Polygons · Distributed learning

1 Introduction

Supervised learning is one of the most central tasks in 
machine learning and pattern recognition. However, the lat-
ter task becomes intrinsically challenging whenever the data 
to be classified are not easily separable in the feature space. 
A myriad of classification algorithms have been proposed 
in the literature with a variety of behaviors and limitations 
[1–3]. Examples of these algorithms include neural net-
works, SVM and decision trees.

A broad class of classification algorithms such as SVM 
and perceptron relies upon defining a mathematical func-
tion with weights that can efficiently separate two or more 
classes of data. The weights are unknown and learned from 
the training data. These functions are either linear, polyno-
mial, or for more complex patterns, kernels equivalent to 
mapping the data to a many-dimensional space where the 
classes are separable by a hyperplane.

However, the main difficulty is to choose the nature of 
the function or kernel. Often, the “best” hyperplane, or line 
in two dimensions that separates classes does not follow the 
mathematical properties of a function. The “best” separator 
can for example be a polygon encircling certain data points, 
which is not a function and therefore cannot straightforward 
be outputted by SVM or similar classifiers. The accuracy of 
the SVM is dependent on the right choice of the kernel func-
tion which is not an easy task given the unlimited number 
of available kernels.

Figure 1 shows an example of labeled data where it is 
not possible to perfectly separate the data with one function 

The third author passed away on February 04, 2018, and the 
authors dedicate this manuscript to his memory.

 * Anis Yazidi 
 Anis.Yazidi@oslomet.no

1 Department of Computer Science, Oslo Metropolitan 
University, Oslo, Norway

2 Department of Information and Communication Technology, 
University of Agder, Kristiansand, Norway

http://orcid.org/0000-0001-7591-1659
http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-019-00848-6&domain=pdf


1236 Pattern Analysis and Applications (2020) 23:1235–1250

1 3

simply because any line separating the data perfectly will 
have multiple y-values of some of the x-values—which 
defies the definition of mathematical functions. SVM 
deals with this by projecting the data in high-dimensional 
space using the “kernel trick” where the data can be easily 
separable.

This paper introduces PolyLA, a novel classification 
scheme operating in two dimensions1 using LA and that 
does not involve a “kernel trick” whenever the data are not 
easily separable. As in [4], PolyLA deals with the classifica-
tion problem in a completely different manner from existing 
classifiers. Instead of relying upon mathematical functions 
for separating the classes, PolyLA surrounds the classes with 
polygons guided by reinforced random walk and ray casting. 
Some of the best known classification techniques, such as 
support vector machine (SVM) and perceptron-based classi-
fiers, rely upon constructing mathematical functions having 
weights that efficiently separate two or more classes of data 
in the feature space. In two-dimensional spaces, the sepa-
ration boundary might be nonlinear and thus the decision 
boundaries might be complex. SVM deals with this situa-
tion by either projecting the data on a higher-dimensional 
space or using a kernel trick, which provides a separator 
not limited to a linear or polynomial function. The adoption 
of a kernel is equivalent to transposing the data to many 
dimensions, but the accuracy depends on the right choice of 
the kernel functions as well as on several other parameters. 

The latter choice is usually performed through manual trial 
and error. The presented approach deals with classification 
problems in two-dimensional Euclidean feature space by 
building “separator” with many-sided polygons. The poly-
gons are extrapolated from reinforced random walks with 
a preference toward encapsulating all items from one class 
and excluding from the encapsulation any items from other 
classes. In this manner, emerging polygons encapsulates 
each class in such a way that they can be used as classifiers. 
The classification takes place by resorting to ray casting of 
unknown items so that to identify if an item is contained in 
the polygon. Each item is labeled depending on whether or 
not it is inside the polygon.

1.1  Outline

The paper is organized as follows. Section 2 introduces the 
problem that we attempt to solve. Section 3 gives a brief 
introduction to the theory of LA which is fundamental for 
our approach named PolyLA. Section 4 reviews relevant 
state-of-the-art in the area of classifiers as well as related 
LA-based classifiers. Section 5 continues with introducing 
our solution: PolyLA as a method for creating polygons for 
classification with two classes and corresponding results. 
Section 6 shows empirical results for PolyLA and compares 
it with comparable algorithms, namely SVM. Finally, in 
Sect. 7, we draw final conclusions and give insights into 
future work.

2  Problem formulation

Classification of unknown items based on labeled data is a 
supervised learning problem. In line with common practice, 
the problem is divided into two phases, namely (1) training 
and (2) classification:

1. Training phase: The aim of this phase is to create poly-
gons that encircle classes of items so that the polygons 
separate the training classes from each other.

2. Classification phase: In this phase, we use the polygons 
as a basis to determine which class a new unknown item 
to be classified belongs to. This is achieved by finding 
which polygon(s) it is part of.

Further, this paper presents two distinct variants of PolyLA:

• LA polygon classification for two-class classification 
problems.

• LA polygon classification for multi-class classification 
problems.

Fig. 1  Example of simple two-class classification scenario with the 
classes blue ( T

1
 ) and red ( T

2
 ) (color figure online)

1 It is easy to generalize the current model to multi-dimensional by 
considering pairs of dimensions. In this article, we limit ourselves to 
the two-dimensional case as a proof of concept. Experiments for the 
multi-dimensional case can be provided if the requested by the ref-
eree.



1237Pattern Analysis and Applications (2020) 23:1235–1250 

1 3

2.1  The training phase

This training phase can be formulated as a combinatorial 
optimization problem. The training data, T, consist of mul-
tiple classes. The data are mapped to a two-dimensional 
Euclidean space as follows. A grid-like bidirectional planar 
graph G(V, E) with vertices i ∈ V  and edges (i, j) ∈ E is cre-
ated where i, j ∈ V  . All vertices have x- and y-coordinates 
and corresponding edges so that an edge (i, j) represents the 
possibility to move from vertex i to j. The vertices in the 
graph are defined so that the first vertex, 1, always has lower 
x- and y-values than all the training data. Similarly, the last 
vertex, N, has x- and y-values larger than the training data. 
Hence, all the training data ti ∈ T  lie somewhere between 
vertices 1 and N, 1 < ti < N∀ti∈T.

2.1.1  Two‑class classification problem

An example is shown in Fig. 1. In this example, T consists 
of 19 items, 9 in the blue class T1 and 10 in the red class T2 . 
The grid G(V, E) is created so that all items are located in 
the grid.

To deduct, the main purpose of the training phase is to 
find a polygon, s, that encircles and separates the training 
classes. Using the example from Fig. 1, the task is to find 
an s that encircles the first training data T1 , but not T2 —a 
polygon that separates well T1 from T2.

A polygon s is therefore a list of vertices and edges so 
that the first vertex in s is equal to the last vertex in s, and all 
vertices are connected together with corresponding edges. 
With two classes, there is only a need for one polygon to 
perfectly separate the data.

Whether a training element ti is inside a polygon s ∈ � is 
defined formally as:

Ideally, all items in class one (e.g., T1 ) should be within the 
polygon, while all items in the other classes should fall out-
side the polygon. Any item, ti from class T1 that is correctly 
within the polygon s will yield h(ti, s) = 1 , and, similarly, any 
item, tj not part of class T1 and is correctly outside of the pol-
ygon s will yield 1 − h(tj, s) = 1 . For all other items, h(., s) 
will give 0. Further, let f(s) be a function that combines 
h(ti, s) for all ti ∈ T  so that an ideal polygon that encapsu-
lates all items in T1 and no other items will yield an f (s) = 1 . 
An incorrect polygon, that in a flawed way encapsulates all 
other items than T2 and none in T1 , will yield an f (s) = 0.2

The overall aim of the training phase can therefore be 
stated as to find a polygon s ∗ for each class, consisting of 

(1)
h(ti, s) = 1 if ti is inside of s

h(ti, s) = 0 otherwise

vertices and edges, that minimizes f (s ∗) . Thus, formally, 
we aim to find an s ∗∈ � so that f (s ∗) ≤ f (s) ∈ � using an 
LA-based random walk on the grid as explained in Sect. 3.

2.1.2  Multi‑class classification problem

In the case of classification with more than two classes, one 
polygon is not sufficient to separate all classes. As an exam-
ple, let us suppose there are three classes: T1,T2 , and T3 . In 
simple term, we need a classifier that identifies an item as 
belonging to T1 , one to T2 , and one to T3 . This is done by 
finding one polygon that separates T1 from the rest, and so 
on.

The output from the training phase is therefore a list of 
classifiers rather than one single s ∗ . Following the same 
example with three classes, we have one classifier that 
decides whether an item is part of T1 , s ∗T1 , and one that 
decides whether an item is part of T2 , s ∗T2 . If it is neither 
part of T1 nor T2 , it naturally belongs to T3 . Hence, the num-
ber of classifier is one less than the number of classes.

For N classes, we get the following N − 1 classifiers:

2.2  The classification phase

The classification phase resorts to the polygons from the 
training phase. The classification task is to find which class 
a new item with unknown label, tk , belongs to.

Since the training phase produces one polygon, s ∗ , the 
problem is reduced to simply determining whether a new 
item is within or outside s ∗ . The problem can be stated as 
follows: given the polygon s ∗ and a new item with unknown 
label, tk , which class does tk belong to? Using the update 
function from Eq. 1, given two classes T1 and T2 and the 
polygon s ∗ , we can define the following decision rules:

2.2.1  Multi‑class classification problem

The classification phase uses the set of polygons, � ∗
���

 (see 
Eq. 2), from the training phase. The task is to classify an 
unlabeled item tk . The following decision rules are used in 
the case of multi-class classification:

(2)� ∗
���

= {s ∗T1 , s ∗T2 ,… , s ∗TN−1}

(3)
tk is of class T1 if h(tk, s ∗) = 1

tk is of class T2 if h(tk, s ∗) = 0

(4)

tk is of class T1 if h(tk, s ∗T1) = 1

tk is of class T2 if h(tk, s ∗T2) = 1

… .

tk is of class TN−1 if h(tk, s ∗TN−1) = 1

tk is of class TN otherwise

.

2 f(s) is formally defined in Sect. 5 and Eq. 14.



1238 Pattern Analysis and Applications (2020) 23:1235–1250

1 3

In simple terms, the above classification rules mean simply 
that if the item to be classified is part of the first polygon 
s ∗T1 , it should be classified as the label corresponding to the 
first polygon, T1 . Otherwise, if it is part of s ∗T2 , it should be 
classified as T2 , and so on. However, if the item is not part 
of any of the polygons of the TN−1 classes, it will be labeled 
as the class TN.

2.3  Multi‑dimensional classification

It is possible to extend PolyLA to support multiple fea-
tures by splitting a multi-feature classification problem 
into several two-dimensional sub-problems which are 
trained independently. The overall classification is a com-
bination of the results from all sub-problems through a 
majority voting scheme. More precisely, the overall class 
prediction is derived by taking the most common class 
prediction from all the sub-problems, as illustrated in 
Fig. 2 using the majority vote rule.

In this sense, PolyLA constructs solutions in all the 
planes that the data set consists of and handles each plane 
individually. The number of possible planes depends on 
the number of features in the data set. For example, a 
three-dimensional feature space with axes x, y and z has 
three planes xy, xz and yz (see Fig. 2). More generally, the 
number of planes for n dimensional feature space is sim-
ply equal to the number of dimension pairs and is given 

by: 
(
n

2

)
 . Inevitably, the number of planes explodes as the 

number of features increases. However, feature selection 
and reduction methods could be used to deal with this 
problem.

3  Learning Automata

The fundamental tool which we shall use in most of our 
research involves Learning Automata (LA). LA have been 
used in systems that have incomplete knowledge about the 
Environment in which they operate [5–11]. The learning 
mechanism attempts to learn from a stochastic Teacher 
which models the Environment. In his pioneering work, 
Tsetlin [12] attempted to use LA to model biological learn-
ing. In general, a random action is selected based on a prob-
ability vector, and these action probabilities are updated 
based on the observation of the Environment’s response, 
after which the procedure is repeated.

The term “Learning Automata” was first publicized 
and rendered popular in the survey paper by Narendra and 
Thathachar. The goal of LA is to “determine the optimal 
action out of a set of allowable actions” [5].

With regard to applications, the entire field of LA and sto-
chastic learning has had a myriad of applications [6–8, 10, 
11], which (apart from the many applications listed in these 
books) include solutions for problems in network and com-
munications [13–16], network call admission, traffic control, 
quality of service routing, [17–19], distributed scheduling 
[20], training hidden Markov models [21], neural network 
adaptation [22], intelligent vehicle control [23] and even 
fairly theoretical problems such as graph partitioning [24]. 
Besides these fairly generic applications, with a little insight, 
LA can be used to assist in solving (by, indeed, learning 
the associated parameters) the stochastic resonance problem 
[25], the stochastic sampling problem in computer graphics 
[26], the problem of determining roads in aerial images by 
using geometric-stochastic models [27] and various location 
problems [28]. Similar learning solutions can also be used 

Fig. 2  Overview of training and 
classification for PolyLA with 
several features

Training Classification

Ray tracing

Labeled data Polygons

Class 1: T1

Class 2: T2

xy-plane

xz-plane

yz-plane

Ray tracing

Ray tracing

Vote: T1

Vote: T1

Vote: T2

Classification:
T1



1239Pattern Analysis and Applications (2020) 23:1235–1250 

1 3

to analyze the stochastic properties of the random waypoint 
mobility model in wireless communication networks [29], 
to achieve spatial point pattern analysis codes for GISs [30], 
to digitally simulate wind field velocities [31], to interro-
gate the experimental measurements of global dynamics in 
magneto-mechanical oscillators [32], and to analyze spatial 
point patterns [33]. LA-based schemes have already been 
utilized to learn the best parameters for neural networks [22], 
optimizing QoS routing [19], and bus arbitration [14]—to 
mention a few other applications.

In the field of Automata Theory, an automaton [6–8, 10, 
11] is defined as a quintuple composed of a set of states, a 
set of outputs or actions, an input, a function that maps the 
current state and input to the next state, and a function that 
maps a current state (and input) into the current output.

Definition 1 A LA is def ined by a quintuple 
⟨A,B,Q,F(., .),G(.)⟩ , where:

1. A = {�1, �2,… , �r} is the set of outputs or actions that 
the LA must choose from, and �(t) is the action chosen 
by the automaton at any instant t.

2. B = {�1, �2,… , �m} is the set of inputs to the automaton. 
�(t) is the input at any instant t. The set B can be finite or 
infinite. The most common LA input is B = {0, 1} , where 
� = 0 represents reward, and � = 1 represents penalty.

3. Q = {q1, q2,… , qs} is the set of finite states, where Q(t) 
denotes the state of the automaton at any instant t.

4. F(., .) ∶ Q × B ↦ Q is a mapping in terms of the state and 
input at the instant t, such that, q(t + 1) = F[q(t), �(t)] . It 
is called a transition function, i.e., a function that deter-
mines the state of the automaton at any subsequent time 
instant t + 1 . This mapping can either be deterministic 
or stochastic.

5. G(.): is a mapping G ∶ Q ↦ A , and is called the output 
function. G determines the action taken by the automa-
ton if it is in a given state as: �(t) = G[q(t)] . With no loss 
of generality, G is deterministic.

If the sets Q, B and A are all finite, the automaton is said be 
finite.

The Environment, E, typically, refers to the medium in 
which the automaton functions. The Environment possesses 
all the external factors that affect the actions of the automa-
ton. Mathematically, an Environment can be abstracted by a 
triple ⟨A,C,B⟩ . A, C and B are defined as follows:

1. A = {�1, �2,… , �r} is the set of actions.
2. B = {�1, �2,… , �m} is the output set of the Environment. 

Again, we consider the case when m = 2 , i.e., with � = 0 

representing a “Reward”, and � = 1 representing a “Pen-
alty”.

3. C = {c1, c2,… , cr} is a set of penalty probabilities, 
where element ci ∈ C corresponds to an input action �i.

The process of learning is based on a learning loop involv-
ing the two entities: the random environment (RE), and the 
LA, as described in Fig. 3. In the process of learning, the 
LA continuously interacts with the environment to process 
responses to its various actions (i.e., its choices). Finally, 
through sufficient interactions, the LA attempts to learn 
the optimal action offered by the RE. The actual process of 
learning is represented as a set of interactions between the 
RE and the LA.

The automaton is offered a set of actions, and it is con-
strained to choose one of them. When an action is chosen, 
the Environment gives out a response �(t) at a time “t”. The 
automaton is either penalized or rewarded with an unknown 
probability ci or 1 − ci , respectively. On the basis of the 
response �(t) , the state of the automaton �(t) is updated and 
a new action is chosen at (t + 1) . The penalty probability ci 
satisfies:

We now provide a few important definitions used in the field. 
P(t) is referred to as the action probability vector, where, 
P(t) = [p1(t), p2(t),… , pr(t)]

T , in which each element of the 
vector.

Given an action probability vector, P(t) at time t, the aver-
age penalty is:

ci = Pr[�(t) = 1|�(t) = �i] in(i = 1, 2,… ,R).

(5)

pi(t) = Pr[�(t) = �i], i = 1,… , r, such that

r∑
i=1

pi(t) = 1 ∀t.

Fig. 3  Feedback loop of LA



1240 Pattern Analysis and Applications (2020) 23:1235–1250

1 3

The average penalty for the “pure-chance” automaton is 
given by:

As t ↦ ∞ , if the average penalty M(t) < M0 , at least asymp-
totically, the automaton is generally considered to be better 
than the pure-chance automaton. E[M(t)] is given by:

A LA that performs better than by pure-chance is said to be 
expedient.

Definition 2 A LA is considered expedient if:

Definition 3 A LA is said to be absolutely expe-
d i en t  i f  E[M(t + 1)|P(t)] < M(t), imp ly ing  t ha t 
E[M(t + 1)] < E[M(t)].

Definition 4  A LA is  considered opt imal  i f 
lim t↦∞E[M(t)] = cl, where cl = min i{ci}.

It should be noted that no optimal LA exist. Marginally, 
sub-optimal performance, also termed above as �-optimal 
performance, is what LA researchers attempt to attain.

Definition 5 A LA is considered �-optimal if:

where 𝜖 > 0 , and can be arbitrarily small, by a suitable 
choice of some parameter of the LA.

3.1  Classification of Learning Automata

3.1.1  Deterministic Learning Automata

An automaton is termed as a deterministic automaton, if 
both the transition function F(., .) and the output function 

(6)

M(t) =E[�(t)|P(t)] = Pr[�(t) = 1|P(t)]

=

r∑
i=1

Pr[�(t) = 1|�(t) = �i] Pr[�(t) = �i]

=

r∑
i=1

cipi(t).

(7)M0 =
1

r

r∑
i=1

ci.

(8)E[M(t)] = E{E[�(t)|P(t)]} = E[�(t)].

lim t↦∞E[M(t)] < M0.

(9)lim n↦∞E[M(t)] < cl + 𝜖,

G(.) are deterministic. Thus, in a deterministic automaton, 
the subsequent state and action can be uniquely specified, 
provided the present state and input are given.

3.1.2  Stochastic Learning Automata

If, however, either the transition function F(., .), or the out-
put function G(.) is stochastic, the automaton is termed to 
be a stochastic automaton. In such an automaton, if the cur-
rent state and input are specified, the subsequent states and 
actions cannot be specified uniquely. In such a case, F(., .) 
only provides the probabilities of reaching the various states 
from a given state.

In the first LA designs, the transition and the output func-
tions were time invariant, and for this reason these LA were 
considered “Fixed Structure Stochastic Automata” (FSSA). 
Tsetlin Krylov, and Krinsky [12] presented notable examples 
of this type of automata.

Later, Vorontsova and Varshavskii introduced a class 
of stochastic automata known in the literature as Variable 
Structure Stochastic Automata (VSSA). In the definition of 
a VSSA, the LA are completely defined by a set of actions 
(one of which is the output of the automaton), a set of inputs 
(which is usually the response of the Environment) and a 
learning algorithm, T. The learning algorithm [8] operates 
on a vector (called the Action Probability vector).

Note that the algorithm T : [0,1]R × A × B → [0,1]R is an 
updating scheme where A = { �1 , �2 , ..., �R }, 2 ≤ R < ∞ , is the set 
of output actions of the automaton, and B is the set of responses 
from the Environment. Thus, the updating is such that

where P(t) is the action probability vector, �(t) is the action 
chosen at time t, and �(t) is the response it has obtained.

If the mapping T is chosen in such a manner that the 
Markov process has absorbing states, the algorithm is 
referred to as an absorbing algorithm. Many families of 
VSSA that posses absorbing barriers have been reported [8]. 
Ergodic VSSA have also been investigated [8, 34]. These 
VSSA converge in distribution, and thus, the asymptotic 
distribution of the action probability vector has a value that 
is independent of the corresponding initial vector. While 
ergodic VSSA are suitable for non-stationary environments, 
absorbing VSSA are preferred in stationary environments.

4  Related work

4.1  Distributed LA on a graph

Misra and Oommen pioneered of the concept of concept of 
LA on a graph using pursuit LA [13, 35, 36] for solving the 

P(t + 1) = T(P(t), �(t), �(t)),



1241Pattern Analysis and Applications (2020) 23:1235–1250 

1 3

stochastic shortest path problem. Li [37] used a type of S LA 
[38] to find the shortest path in a graph. Beigy and Meybodi 
[39] provided the first proof in the literature that shows the 
convergence of distributed LA on a graph for a reward inac-
tion LA. For applications of distributed LA on a graph in the 
field of computer communications, we refer the reader to the 
work of Torkestani and his collaborators [40–42].

4.2  LA for classification and function optimization

In order to put our work in the right perspective, we will 
briefly discuss different classification schemes relevant to 
this work from the field of LA theory.

In general terms, the distinguishing characteristic of LA-
based learning is that the search for the optimizing parameter 
vector is conducted in the space of probability distributions 
defined over the parameter space, rather than in the param-
eter space itself [43]. In machine learning, the most com-
mon method for building a classifier is to conduct a search 
over the parameter space using optimization techniques 
such as gradient descent, while the common and recurrent 
theme reported in the literature when building a classifier 
based on LA is to work in a probability space rather than a 
parameter space. The main advantage of working in a prob-
ability space is better resilience to noise. This resilience to 
noise was demonstrated in [43] where the true label of each 
data point in the training data is noisy in the sense that it is 
revealed by an Oracle according to a faulty model. It was 
demonstrated in some cases, LA performs better than other 
classical classification algorithms such as feedforward neural 
networks even with discretized parameter space, and thus a 
limited number of possible parameters which might reduce 
the accuracy of the scheme [43]. It is worth mentioning that 
Continuous Action LA (CALA), in contrast to classical LA, 
does not discretize the parameter space and rather operates 
on a continuous parameter space where the choices of the 
parameter are drawn from a time-varying sampling distribu-
tion that is adjusted based on ideas borrowed from the field 
of reinforcement learning [44].

In [44], another structure of LA algorithms used for clas-
sification is presented which possesses a multi-layer rep-
resentation similar to neural networks. The actions of the 
first level LA are real-value parameters of the hyperlanes. 
The second level of LA is Boolean decisions regarding 
which hyperlanes to be included to create convex sets using 
an AND operation. The final layer of LA performs an OR 
operation on the outputs of the second layer units. There-
fore, the discriminant is a Boolean expression consisting of 
linear inequalities [44]. Similar ideas were applied in order 
to learn the decisions trees classifiers using LA teams [45] 
where an individual LA can be used to learn the best split 
rule at a given node.

A closely related work to ours is due to Thathachar and 
Sastry [46] where the authors use a team of LA in order to 
find the optimal discriminant function in a feature space. 
The discriminant functions are parametrized, and an LA 
are attached to each parameter. The LA team is involved 
in a cooperative game with common payoff. The general 
theme is to classify the next pattern with the chosen discri-
minant function and to either reward or penalize the joint 
action of to the team depending on whether the classifica-
tion agrees with the true label or not. Later, Santharam 
et al. [47] proposed to use continuous LA in order to deal 
with the disadvantages of discretization, thus allowing 
an infinite number of actions. For an excellent review 
on the application of LA to the field of Pattern Recogni-
tion we refer the reader to [44] . In [48], Zahiri devised 
an LA-based classifier that operates using hypercubes in 
a recursive manner. We believe that the latter idea can 
be used to extend our current solution: PolyLA for han-
dling multi-dimensional classification problems. In [49], 
the authors have proposed LA optimization methods for 
multimodal functions. Through experimental settings, the 
performance of these algorithms was shown to outperform 
genetic algorithms.

Some improvements of the latter algorithm were intro-
duced in [50] to better remove and regenerate the hyper-
cubes and to better update the LA probabilities which 
yielded better accuracy.

In [51], the authors introduce a combination of the LA 
and genetic algorithms for real-valued function optimiza-
tion. The latter algorithm termed GLA bears similarity 
to the population-based incremental learning algorithm. 
The main task in Pattern Recognition is to output a class 
label from a feature vector given as input. In [52], LA was 
used where the actions of the LA are the possible classes. 
An LA gets rewarded or penalized in the training phase 
depending on the real class of the input. However, accord-
ing to Barto and Anandan: “an action is optimal only in 
the context of certain feature vectors” [52]. This problem 
is known as associative learning where the aim is to learn 
to associate different inputs to different actions.

Moreover, LA was also used to learn the parameters of 
neural networks as an alternative of the classical gradient 
descent methods [53].

4.3  Swarm intelligence for classification

Swarm intelligence denotes a set of nature-inspired para-
digms that have received a lot of attention in computer 
science due to its simplicity and adaptability [54]. Ant 
Colony Optimizaiton (ACO) figures among the most popu-
lar swarm intelligence algorithms due to its ability to solve 



1242 Pattern Analysis and Applications (2020) 23:1235–1250

1 3

many optimization problems. ACO involves artificial ants 
operating a reinforced random walk over a graph. The ants 
release pheromones in favorable paths which subsequent 
ant members follow creating a reinforcement learning-
based behavior. The colony of ants will thus concentrate 
its walk on the most favorable paths and in consequence 
iteratively optimize the solution [55].

Recently, work on ACO for classification where the ants 
perform walks to separate classes has been published [4, 
56–58].3 The approach, named PolyACO, relies upon ants 
walking in two and many dimensions to circumvent and 
separate classes from each other, and in this way construct-
ing decision boundaries not limited by linear or polyno-
mial functions. Our current work is inspired by PolyACO 
[4] which pioneered the idea of using the reinforced ran-
dom walk over a polygon for solving classification prob-
lem. There are two main differences between PolyACO, 
and between our approach PolyLA. First, PolyLA is less 
computationally intensive than PolyACO as the latter uses 
global updates while the former resorts to local updates. 
In fact, because of the evaporation effect of the trails, 
all the pheromones of all edges in the graph need to be 
updated at each iteration in PolyACO. In PolyLA, local 
updates are performed as only the LA probabilities of the 
edges of nodes along the chosen path are adjusted. Despite 
the simplicity of PolyLA, we shall show that it exhibits 
comparable performance to PolyACO in the experimental 
Sect. 6. The second difference lies in the fact that PolyLA 
uses negative feedback update by virtue of applying the 
theory of LA. The term negative feedback was reckoned 
by Di Caro and Dorigo in their seminal work [59] where 
they contrast LA and ACO approaches for distributed rout-
ing over a graph. In [59], Di Caro and Dorigo pointed out 
the difficulty of creating LA systems that perform well 
over graph problems due to stability problem. According 
to Di Caro and Dorigo [59], “ it would be interesting to 
investigate the use of negative reinforcements, even if it 
can potentially lead to stability problems, as observed by 
people working on older automata systems.” In simple 

words, negative feedback arises as each node involved in 
the chosen path performs local updates by reducing the 
choice probability of the non-walked edge while increas-
ing the choice probability of the edge lying along the 
nodes of the chosen path at the given iteration. ACO only 
uses positive feedback as the edge along the walked path 
is reinforced via pheromones. In this paper, we provide 
theoretical results that show that LA converge to an opti-
mal solution. The theoretical results are novel in the field 
of LA as this work is one of the few works that presents 
formal proofs for the convergence LA on a distributed 
graph while related LA works usually conjecture similar 
theorems [13, 35, 36].

4.4  Support vector machine

Classification problems usually involve finding classifica-
tion boundaries in feature spaces. Among the early and most 
popular classifiers figures the perception algorithm.

Perception works based on “error-driven learning” where 
it iteratively learns a linear separator model by adjusting the 
weights of the model whenever it misclassified an item from 
the training data.

However, the major limitation of perception algorithm is 
the fact that it only finds a linear decision boundary which 
works well for linearly separable data but fails to handle the 
case of nonlinearly separable data. In order to deal with the 
limitation of linear classifier, nonlinear SVM variants were 
proposed. SVM tries to circumvent over-fitting by choos-
ing the maximal margin hyperplane where the margin is the 
smallest distance between the decision boundary and any of 
the data points.

A powerful concept in SVM is the “kernel trick” equivalent 
to mapping the data to higher-dimensional feature space in 
which the data items can be separable. Despite the well recog-
nized performance of SVM in machine learning community, 
the task of choosing the right type of kernel, for example, 
linear, polynomial, Gaussian is considered as a black art!

Fig. 4  Overview of approach 
applied to a simple classifica-
tion problem Labeled data Polygon

Unknown items 
to be labeled

Class 1: T1
Class 2: T2

Training

LA Ray tracing

3 By some of the authors of this paper.



1243Pattern Analysis and Applications (2020) 23:1235–1250 

1 3

5  PolyLA

This section presents our approach for the two-class classifi-
cation by introducing PolyLA. For the training phase, it maps 
the classification problem to a combinatorial optimization 
problem over the set of all different polygons in a grid system 
and by formally specifying an appropriate cost function that 
encircles one class. Thus, PolyLA trains the classifier by defin-
ing a polygon s. Subsequently, it uses s with ray casting to find 
if an item is part of the s.

Figure 4 presents an overview of the approach in the case of 
a simple two-class classification problem. The data are sepa-
rated using a team of distributed LA yielding a polygon. Next, 
the polygon is used in the classification with ray casting. In this 
example, the first item to be labeled will be classified as a T1 
(“Class 1”) since it is shown to be inside the polygon, while 
the second item will be classified as T2 (“Class 2”) since it is 
outside the polygon.

In order to use a team of distributed LA for encircling 
points into polygons, we resort to a cost function that meas-
ures the quality of PolyLA solution. In order to find whether a 
point is within a polygon, we use ray casting.

5.1  Distributed LA

At each epoch, a polygon is chosen randomly according to a 
distribution over a set of possible paths. The polygon repre-
sents a self-enclosing path where the source coincides with 
the destination. The observed performance (classification 
accuracy) is used to reinforce the polygon by increasing the 
probability of choosing it again. Since the paths yielding low 
performance receive weak reinforcement signals, they are 
chosen less frequently. Thus, the scheme can adaptively focus 
more resources on paths that yield high performance.

Given a grid modeled as a graph G = (V ,E) , where 
V = {1, ...,m} is the set of nodes in the graph, E is the set of 
directed links in the graph. We attach a LA to each node in the 

graph. The action of each LA attached to a node is the choice 
of the next hop (neighbor node). Let N(i) be the set of the 
neighbors of a node i.

The automaton’s state probability vector at the node i at time 
t is �̄�D

i
(t) = [𝜋D

i1
(t).�N(i)(j),𝜋

D
i2
(t).�N(i)(2),…𝜋D

im
(t).�N(i)(m)] . 

Where �N(i) is the indicator function which is such �N(i)(j) 
equals 1 if node j ∈ N(i) otherwise �N(i)(j) = 0 . This sim-
ple notation is just to emphasize that the only actions are the 
neighbors of the node i. Note also that �D

ii
(t) = 0 . The normal-

ized feedback function (or reward strength) is given by f(s(t)), 
where s(t) is the path taken at instant t. The function f(.) will 
be specified in the next section. Loosely speaking f(.) measures 
the fitness of the solution taking values from [0, 1] where 0 is 
the lowest possible reward while 1 is the highest reward.

The LA update equations at node S are given by:

Where u is the next hop chosen by the LA attached at the 
source S.

Note that, initially
�D
Sj
(0) =

1

∣N(S)∣
 , for j ∈ N(S).

Similarly, we can define the equation for the update along 
the path s(t) that starts at the source node S and ends at des-
tination node D = S.

With the updating formula (Eq. 10), we can show that the 
probability distribution formula converges to the distribution 
that satisfies the following property if the optimal polygon 
is unique.

Algorithm 1 summarizes the entire process in a high-level 
pseudocode algorithm of PolyACO. 

Algorithm 1 High-level pseudo code algorithm for PolyLA
1: construct environment(training data)
2: while Not all the LA converged along a self-enclosing path do
3: Next Nodej ← according to πD

Sj
4: while Node not at target D do
5: select next vertex(According to Probability V ector at previous vertex)
6: s(t) ← s(t) ∪ Last visited vertex by LA
7: end while
8: f(s(t)) ← Classification Performance of Path s(t)
9: for all successive pairs of vertices (i, j) in in path s(t) do
10: πD

ij (t+ 1) = πD
ij (t) + λf(s(t))(1− πD

ij (t))
11: end for
12: end while

(10)�D
Sj
(t + 1) = �D

Sj
(t) + �f (s(t))(�ju − �D

Sj
(t))

(11)�ju =

{
1 if j = u

0 else

(12)�D
Sj
=

{
1 if j = j∗

0 else



1244 Pattern Analysis and Applications (2020) 23:1235–1250

1 3

Example Suppose for example that from node S, node j1 is 
visited, subsequently node j2 then node j3 then node j4 , then 
node S again. Hence, all the probability distributions �̄�D

S
(t) , 

�̄�D
j1
(t) , �̄�D

j2
(t) , �̄�D

j3
(t) , �̄�D

j4
(t) are updated according the value of 

the path s(t) = (j1, j2, j3, j4, S).

Theorem 1 Let s∗ is path yielding the highest f(s). And let i∗ 
a node along s∗ . When the learning gain � is sufficiently 
small, �D

i∗j
 in the cross-correlation learning algorithm con-

verges to the scalar �D
ij

 which yields the highest accuracy, 
i.e., limt→∞ P|𝜋D

i∗j
− 𝜃D

i∗j
| > 𝜖 = 0 , where �D

i∗j
= 1 if both node 

i and j are along the optimal path otherwise, �D
i∗j

= 0 if i 
along the best path while j is not.

Proof We shall prove that the learning algorithm defined 
converges to the optimal solution defined by the edges of 
the optimal polygon.

In the stochastic network environment, according to the 
Kushner’s weak convergence method [60] and following the 
proof in Vazquez-Abad and Mason’s work [61] as well as 
the proof by Li et al. [37], we can derive from the cross-
correlation algorithm that as the learning gain � goes to zero, 
the following equation is satisfied:

� corresponds to an update rate.
ΔD

Sj
 corresponds to the average value of f(s(t)) where s(t) 

includes the nodes S and j: we describe it by Sj ∈ s(t) , mean-
ing edge Sj belongs to the path. More formally 
ΔD

Sj
= E(f (s(t)) ∣ �̄�D

i
(t), 1 ≤ i ≤ m, and Sj ∈ s(t)).

To show that the solution is globally stable, let us define 
MD

S
(t) =

∑
j �

D
Sj
(t)ΔD

Sj
.

From the cross-correlation learning algorithm [37], we 
can write:

Let s∗ the optimal path possessing the best performance. 
MD

S
(t + 1) −MD

S
(t) ≤ 0  s i n c e ,  i . e .  ,  s i n c e 

(ΔD
Sj
)2 − (

∑
j �

D
Sj
(t)ΔD

Sj
)2 equals the variance of ΔD

Sj
 . Let 

M(t) =
∑

i∗∈s∗ M
D
i∗
 . Then, M(t) is monotonically decreasing 

with each update of the vector �̄� for i along s ∗ . Let 

d�D
Sj
(t)

dt
= −��D

Sj
(t)(ΔD

Sj
(t) −

∑
u

ΔD
Su
(t)�D

Su
)

(13)

MD
S
(t + 1) −MD

S
(t) = −

�
j

�D
Sj
(t)

⎛⎜⎜⎝
ΔD

Sj

2
−

��
j

�D
Sj
(t)ΔD

Sj

�2⎞⎟⎟⎠

ΔM(t) =
∑

i∈s∗ M
D
i∗
(t + 1) −MD

i∗
(t)  .  W h e n  �D

i∗j
= �D

i∗j
 , 

ΔM(t) = 0 and reaches a stationary state.
Hence, when the learning gain is sufficiently small, the 

expected rewards keep increasing with time. The optimal 
solution may be not unique, but these optimal solutions will 
give the same value for the objective function.   ◻

5.2  Cost function

Equation 14 represents the cost function. The cost function 
takes into account the information about whether an item ti 
is inside or outside of a polygon s (see Sect. 2). This cost 
function measures how good a polygon s is at encircling 
and isolating one class in the training data and is defined as:

In layman’s terms; function 14 gives the percentage of items 
that are either correctly inside or correctly outside of the 
polygon. From the example in Fig. 1, the red polygon s cor-
rectly encircles all items of class T1 , while correctly avoids 
to encircle any other items from the other class T2 . Since s 
is a polygon that perfectly separates the two classes, it gives 
f (s) = 1.4

The problem reduces to optimizing f(s), given the training 
data T, subject to the search space �—which is equivalent to 
finding an s ∗∈ � so that f (s ∗) ≤ f (s) ∈ �.

5.3  Ray casting

Vertical ray casting is used to consider whether an item is 
within or outside a many-edged polygon [62]. Ray casting is 
a simple algorithm that determines where a virtual ray enters 
and exits a given solid.

In a two-dimensional XY-plane, a ray is sent with a 
y-coordinate and starting at 0 and is increased by one very 
time an edged is passed. When the ray hits the item to be 
labeled, whether it is inside or outside the polygon is deter-
mined by reading the bit. An even number means outside, 
while an odd number means inside. Formally, for node ti and 
a polygon s, we get h(ti, s) representing to what extent it is 
inside or outside of the polygon as follows, extending Eq. 1:

h(ti, s) gives 1 if ti is correctly inside of the polygon, 0 other-
wise. Note that the cost function f(s) in Eq. 14 handles both 
items correctly inside and correctly outside of polygons.

(14)f (s) =

∑
ti∈T1

h(ti, s) +
∑

tj∉T1
(1 − h(tj, s))

�T� .

(15)h(ti, s) =

{
1 if ti ∈ T1 and is inside of s.

0 otherwise

4 Note that s is one of the possible polygons with the shortest circum-
ference that is able to perfectly separate the data. The reason for this 
is explained in Sect. 5.5.



1245Pattern Analysis and Applications (2020) 23:1235–1250 

1 3

5.4  Remark about uniqueness of the path

An implicit assumption is that the optimal path is unique. 
However, in many cases, the optimal polygon is not unique 
and there might be multiple polygons yielding the same per-
formance. This will result in multiple equilibrium [61]. Our 
experimental results confirm the convergence to one of the 
equilibriums.

5.5  Training phase

The classifier is trained using a guided walk with the team of 
distributed LA optimizing for the score function f(s) in order 
to create a polygon. By virtue of the reinforcement learning 
mechanism, the actions of the team of LA will converge 
toward a polygon that is a good separator. This polygon is 
the key to the classification.

Note that the classifier, implicitly, performs optimization 
according to the score function f(s).

The classifier can therefore be considered as a many-
edged polygon with only vertical or horizontal edges.

The LA random walker is not allowed to walk on nodes 
that has previously been selected, except for the initial start-
ing node.

5.6  Bootstrapping the source node

A detail worth mentioning is the way by which we choose 
of the source node of the polygon. The performance of the 
scheme is dependent on the right choice of the source ver-
tex for the polygon. In order to deal with this disadvantage, 
we allow the scheme to re-adjust its choice of the source 
vertex. Whenever a polygon gives a better performance 
compared to previous iterations, we choose a random node 
among the nodes part of the best known polygon as the 
source node. Note that when probabilities have converged, 
our experience is that as long as the source node is part 
of the best polygon, the choice of source node is of little 
importance.

More advanced methods can be used and verified 
empirically. However, we found that the latter simple strat-
egy gave good performance.

6  Experiments

The experiments are carried out as traditional supervised 
learning approaches in two phases: training and classifica-
tion. The behavior of the algorithm can be best explained 
by examining how it behaves on the training data. Because 
of this, the figures depict a visualization of the polygon on 

the training data—yielding a good overview of the algo-
rithm behavior.

The data are generated by various functions intended 
to show the performance of PolyLA in various settings. In 
each experiment, 2000 data points are generated, of which 
half are randomly selected for training and the rest used for 
classification. Further, the data always contain two classes: 
the blue T1 class and the red T2 class.

The granularity of the grids is always chosen as 10 × 10 . 
A summary of the results is presented in Table 1.

6.1  Simple environments

We present a simple experimental settings as proof of con-
cept of PolyLA. This section empirically shows that the 

Fig. 5  Simple data set with 0% noise

Fig. 6  Gaussian distribution with overlap



1246 Pattern Analysis and Applications (2020) 23:1235–1250

1 3

approach works in a simple environment with two eas-
ily separable sets of data. The data are composed of two 
blocks of data: T1 and T2 . Figure 5 shows the LA conver-
gence after the training phase in this environment. The 
LA have built a rectangular polygon encircling all items 
in T1 , but none of the items in T2 . Since this is a polygon 
that perfectly separates the classes, it yields f (s) = 1 . The 
polygon solution in this example is quite straight forward. 
In this simple proof of concept, PolyLA gave an accuracy 
of 100%.

6.2  Gaussian

Figure 6 depicts the classification polygon found by the 
distributed LA for data generated from two different 
Gaussian distributions. This experiment is interesting 
because, in contrast to the proof of concept, due to the 
overlapping data no classifier will be able to give a perfect 
result and is therefore a good test for PolyLA.

For the classification, the PolyLA classifier gave a 
accuracy of 0.846, a recall of 0.836 and a precision of 
0.853. For comparison purposes, linear and polynomial 
SVM gave the same data accuracies of 0.837 and 0.842, 
respectively.

These high numbers indicate that PolyLA is able to per-
form in line with SVM even when data are overlapping—
without loss of precision or recall.

6.2.1  Semi‑circles

Figure 7 shows the scheme in a more complex scenario with 
semi-circles (or half moons) where there are no clear separa-
tion boundaries. It is an interesting experiment because there 
exists no linear or polynomial solution that can result in a 
perfect classifier without mapping to multiple dimensions or 
depending on a kernel trick.

Fig. 7  Half-moon

Fig. 8  Circular without noise

Fig. 9  Circular with 5% noise

Fig. 10  Gaussian blob distance 140



1247Pattern Analysis and Applications (2020) 23:1235–1250 

1 3

Despite the added complexity, the PolyLA approach 
works perfectly and surrounds the data from the blue class 
without including the red. In fact, in the classification phase 
it gives and accuracy, precision and recall of 1. For compari-
son purposes, linear and polynomial SVM gave accuracies 
of 0.912 and 0.997 on the same data.

6.2.2  Circles

Figure  8 illustrates the case of nonlinear classification 
boundary in the form of a circle.

Despite the added complexity, the PolyLA approach 
works perfectly by surrounding the data from the blue 
class without including the red. Again, the accuracy, pre-
cision and recall for PolyLA are 1, while for linear and 
polynomial SVM gives accuracies of 0.538 and 0.892, 
respectively. For SVM to come up to the performance of 
PolyLA, we need to rely on a RBF kernel.

In Fig. 9, we add some noise to the data of 5%. Noise 
means simply that some points of one class are overlap-
ping with the other class making impossible to separate 
between these overlapping points. Despite the added noise, 
the scheme performs well. We would expect an approxi-
mate 2.5% loss in accuracy because of the 5% noise. Our 
empirical results confirm this by giving an accuracy of 
0.973. For comparison purposes, SVM performance drops 
significantly by adding noise.

6.2.3  Gaussian blobs

Figures 10, 11, 12 and13 depict the case of data generated 
from Gaussian distributions with blob distance that are, 
respectively, 140, 120, 60 and 0.

These are interesting results because it explains the 
behavior of PolyLA when the data are overlapping more and 
more, and in turn becoming more and more difficult to sepa-
rate. In the most extreme, with a distance of 0 in Fig. 13, the 
data are overlapping and should be indistinguishable from 
complete random data.

In Fig. 10, the data are barely overlapping and PolyLA 
yields in the classification phase an accuracy of 0.946, a 
recall of 0.936 and precision of 0.956.

In Fig. 11, the data are slightly more overlapping. How-
ever, PolyLA has barely any drop in performance. It is still 
able to accurately separate the data and yields in the clas-
sification phase an accuracy of 0.943, a recall of 0.936 and 
precision of 0.938.

In Fig. 12, the data are overlapping a lot and PolyLA 
yields in the classification phase an accuracy of 0.747, 
a recall of 0.684 and precision of 0.78. It is noteworthy 
that, by examining the figure, it is apparent that a higher 
granularity of the grid would give a better algorithm 
performance.

Fig. 11  Gaussian blob distance 120

Fig. 12  Gaussian blob distance 60

Fig. 13  Gaussian blob distance 0—indistinguishable from random 
noise



1248 Pattern Analysis and Applications (2020) 23:1235–1250

1 3

In Fig. 13, the data are completely overlapping and the 
classes are indistinguishable from each other. Clearly, Pol-
yLA has a very different behavior here than in Figs. 12, 11 
and 10. In this scenario, there is no apparent pattern in the 
polygon. As with the data, the polygon appears random. Our 
empirical results confirm the results giving in the classifi-
cation phase an accuracy barely above random of 0.526, a 
recall of 0.528 and a precision of 0.486.

This indicates that PolyLA is able to accurately classify 
data, even when the data are overlapping and hard to distin-
guish. Only when the two classes are completely overlapping 
will PolyLA come to short.

6.2.4  Real‑life data sets

In the above experiments, we have focused on illustrating the 
performance of the PolyLA using figures that demonstrate 
its ability to perform separation. At this juncture, we shall 
use two real-life data sets: the Iris data set and the Wine data 
set. It is worth mentioning that originally PolylA does not 
handle directly the case of multi-dimensional classification 
arising in the case of Iris and Wine data sets. We deal with 
the multi-dimensional case according to the method detailed 
in Sect. 2.3.

We also need to emphasize that PolyLA possesses similar 
performance to PolyACO by examining the results reported 
in [56]. In fact, PolyACO achieves 0.948 accuracy while 
PolyLA outperforms it by achieving 0.97 for the circular 
case with 5% noise. However, PolyACO achieves slightly 
higher performance for the Iris data set, namely 0.96 accu-
racy, while PolyLA achieves 0.82. When it comes to the 
Wine data set, the performance for PolyLA is 0.68 while 
PolyACO yields 0.69. Furthermore, in Table 1, we compare 
against three neural networks, one hidden layer neural net-
work (1NN), two hidden layers neural network (2NN) and 
three hidden layer neural network (3NN). Please note that 

2NN and 3NN are considered as deep learning algorithms. 
We observe from Table 1 that those neural networks outper-
form PolyLA, Linear SVM (LSVM) and Polynomial SVM 
(PSVM). Although PolyLA is able to find nonlinear classi-
fication boundaries that might be complex to find and con-
sequently outperform LSVM, it is less accurate compared 
to deep neural networks which excel in builduing nonlinear 
decision boundaries.

7  Conclusion

In this paper, we propose a novel classifier in two-dimen-
sional feature space based on the theory of Learning 
Automata. The essence of our scheme is to search for a sep-
arator in the feature space by imposing an LA-based random 
walk in a grid system. To each node in the gird, we attach 
an LA, whose actions are the choices of the edges form-
ing the separator. Indeed, PolyLA has appealing properties 
compared to SVM. While SVM performance is subject to 
the user choice of the kernel function, PolyLA can find arbi-
trarily complex separator in feature space without any user 
guidance. We provide theoretical results that demonstrate 
the convergence of PolyLA based on the theory of weak 
convergence [60]. Comprehensive experimental results 
illustrate the performance of our method and its superiority 
to SVM in most cases. PolyLA faces challenges when deal-
ing with multi-dimensional data as inevitably, the number 
of planes explodes as the number of features increases. It 
would be interesting to investigate mitigating this issue in 
future work.

Table 1  Summary of PolyLA 
performance

Compared with the accuracy of linear SVM (LSVM) polynomial SVM (PSVM) one hidden layer neural 
network (1NN), two hidden layers neural network (2NN), three hidden layer neural network (3NN)

Scenario Accuracy Precision Recall LSVM PSVM 1NN 2NN 3NN Figures

Proof of concept 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Figure 5
Gaussian distributions 0.85 0.84 0.85 0.84 0.82 0.84 0.05 0.84 Figure 6
Semi-circles 1.0 1.0 1.0 0.91 1.0 0.92 1.0 1.0 Figure 7
Circular 1.0 1.0 1.0 0.54 0.89 0.85 0.84 0.85 Figure 8
Circular 5% noise 0.97 0.97 0.97 0.54 0.89 0.56 0.56 0.56 Figure 9
Gaussian blob distance 140 0.95 0.94 0.96 0.51 0.73 1.0 1.0 1.0 Figure 10
Gaussian blob distance 120 0.943 0.936 0.938 0.486 0.734 0.95 0.94 0.95 Figure 11
Gaussian blob distance 60 0.747 0.684 0.780 0.497 0.689 0.84 0.83 0.77 Figure 12
Gaussian blob distance 0 0.52 0.53 0.49 0.49 0.56 0.56 0.56 0.56 Figure 13
Iris 0.82 0.61 0.74 1.0 1.0 0.97 0.97 0.97
Wine 0.68 0.32 0.58 0.69 0.66 1.0 10 1.0



1249Pattern Analysis and Applications (2020) 23:1235–1250 

1 3

References

 1. Caruana R, Niculescu-Mizil A (2006) An empirical comparison 
of supervised learning algorithms. In: Proceedings of the 23rd 
international conference on machine learning. ACM, pp 161–168

 2. Caruana R, Karampatziakis N, Yessenalina A (2008) An empirical 
evaluation of supervised learning in high dimensions. In: Proceed-
ings of the 25th international conference on machine learning. 
ACM, pp 96–103

 3. Madjarov G, Kocev D, Gjorgjevikj D, Džeroski S (2012) An 
extensive experimental comparison of methods for multi-label 
learning. Pattern Recognit 45(9):3084–3104

 4. Goodwin M, Tufteland T, Ødesneltvedt G, Yazidi A (2017) Pol-
yaco+: a multi-level polygon-based ant colony optimisation clas-
sifier. Swarm Intell 11(3–4):317–346

 5. Agache M, Oommen BJ (2002) Generalized pursuit learning 
schemes: new families of continuous and discretized learn-
ing automata. IEEE Trans Syst Man Cybern Part B Cybern 
32(6):738–749

 6. Lakshmivarahan S (1981) Learning algorithms theory and appli-
cations. Springer, Berlin

 7. Najim K, Poznyak AS (1994) Learning automata: theory and 
applications. Pergamon Press, Oxford

 8. Narendra KS, Thathachar MAL (1989) Learning automata: an 
introduction. Prentice-Hall, Inc, Upper Saddle River

 9. Obaidat MS, Papadimitriou GI, Pomportsis AS (2002) Learning 
automata: theory, paradigms, and applications. IEEE Trans Syst 
Man Cybern Part B Cybern 32(6):706–709

 10. Poznyak AS, Najim K (1997) Learning automata and stochastic 
optimization. Springer, Berlin

 11. Thathachar MAL, Sastry PS (2003) Networks of learning autom-
ata: techniques for online stochastic optimization. Kluwer Aca-
demic, Boston

 12. Tsetlin ML (1973) Automaton theory and the modeling of biologi-
cal systems. Academic Press, New York

 13. Misra S, Oommen BJ (2004) GPSPA: a new adaptive algorithm 
for maintaining shortest path routing trees in stochastic networks. 
Int J Commun Syst 17:963–984

 14. Obaidat MS, Papadimitriou GI, Pomportsis AS, Laskaridis HS 
(2002) Learning automata-based bus arbitration for shared-edium 
ATM switches. IEEE Trans Syst Man Cybern Part B 32:815–820

 15. Oommen BJ, Roberts TD (2000) Continuous learning automata 
solutions to the capacity assignment problem. IEEE Trans Comput 
49:608–620

 16. Papadimitriou GI, Pomportsis AS (2000) Learning-automata-
based TDMA protocols for broadcast communication systems 
with bursty traffic. IEEE Commun Lett 4:107–109

 17. Atlassis AF, Loukas NH, Vasilakos AV (2000) The use of learning 
algorithms in ATM networks call admission control problem: a 
methodology. Comput Netw 34:341–353

 18. Atlassis AF, Vasilakos AV (2002) The use of reinforcement 
learning algorithms in traffic control of high speed networks. 
In: Zimmermann H-J, Tselentis G, van Someren M, Dounias 
G (eds) Advances in computational intelligence and learning. 
International Series in Intelligent Technologies, vol 18. Springer, 
Dordrecht, pp 353–369

 19. Vasilakos AV, Saltouros MP, Atlassis AF, Pedrycz W (2003) Opti-
mizing QoS routing in hierarchical ATM networks using computa-
tional intelligence techniques. IEEE Trans Syst Man Cybern Part 
C 33:297–312

 20. Seredynski F (1998) Distributed scheduling using simple learning 
machines. Eur J Oper Res 107:401–413

 21. Kabudian J, Meybodi MR, Homayounpour MM (2004) Applying 
continuous action reinforcement learning automata (CARLA) to 
global training of hidden markov models. In: Proceedings of the 

international conference on information technology: coding and 
computing, ITCC’04. Nevada, Las Vegas, pp 638–642

 22. Meybodi MR, Beigy H (2002) New learning automata based algo-
rithms for adaptation of backpropagation algorithm pararmeters. 
Int J Neural Syst 12:45–67

 23. Unsal C, Kachroo P, Bay JS (1997) Simulation study of multiple 
intelligent vehicle control using stochastic learning automata. 
Trans Soc Comput Simul 14:193–210

 24. Oommen BJ, de St Croix EV (1995) Graph partitioning using 
learning automata. IEEE Trans Comput 45:195–208

 25. Collins JJ, Chow CC, Imhoff TT (1995) Aperiodic stochastic reso-
nance in excitable systems. Phys Rev E 52:R3321–R3324

 26. Cook RL (1986) Stochastic sampling in computer graphics. ACM 
Trans Graph 5:51–72

 27. Barzohar M, Cooper DB (1996) Automatic finding of main roads 
in aerial images by using geometric-stochastic models and estima-
tion. IEEE Trans Pattern Anal Mach Intell 7:707–722

 28. Brandeau ML, Chiu SS (1989) An overview of representative 
problems in location research. Manag Sci 35:645–674

 29. Bettstetter C, Hartenstein H, Prez-Costa X (2004) Stochastic 
properties of the random waypoint mobility model. J Wirel Netw 
10:555–567

 30. Rowlingson BS, Diggle PJ (1991) SPLANCS: spatial point pat-
tern analysis code in S-plus. University of Lancaster, North West 
Regional Research Laboratory

 31. Paola M (1998) Digital simulation of wind field velocity. J Wind 
Eng Ind Aerodyn 74–76:91–109

 32. Cusumano JP, Kimble BW (1995) A stochastic interrogation 
method for experimental measurements of global dynamics and 
basin evolution: application to a two-well oscillator. Nonlinear 
Dyn 8:213–235

 33. Baddeley A, Turner R (2005) Spatstat: an R package for analyzing 
spatial point patterns. J Stat Softw 12:1–42

 34. Oommen BJ, Agache M (2001) Continuous and discretized pursuit 
learning schemes: various algorithms and their comparison. IEEE 
Trans Syst Man Cybern Part B Cybern 31:277–287

 35. Misra S, Oommen BJ (2005) Dynamic algorithms for the shortest 
path routing problem: learning automata-based solutions. IEEE 
Trans Syst Man Cybern Part B Cybern 35(6):1179–1192

 36. Misra S, Oommen BJ (2006) An efficient dynamic algorithm for 
maintaining all-pairs shortest paths in stochastic networks. IEEE 
Trans Comput 55(6):686–702

 37. Li H, Mason L, Rabbat M (2009) Distributed adaptive diverse 
routing for voice-over-ip in service overlay networks. IEEE Trans 
Netw Serv Manag 6(3):175–189

 38. Mason L (1973) An optimal learning algorithm for s-model envi-
ronments. IEEE Trans Autom Control 18(5):493–496

 39. Beigy H, Meybodi MR (2006) Utilizing distributed learning 
automata to solve stochastic shortest path problems. Int J Uncer-
tain Fuzziness Knowl Based Syst 14(05):591–615

 40. Torkestani JA, Meybodi MR (2010) An intelligent backbone for-
mation algorithm for wireless ad hoc networks based on distrib-
uted learning automata. Comput Netw 54(5):826–843

 41. Torkestani JA, Meybodi MR (2012) Finding minimum weight 
connected dominating set in stochastic graph based on learning 
automata. Inf Sci 200:57–77

 42. Torkestani JA, Meybodi MR (2012) A learning automata-based 
heuristic algorithm for solving the minimum spanning tree prob-
lem in stochastic graphs. J Supercomput 59(2):1035–1054

 43. Thathachar MAL, Sastry PS (2002) Varieties of learning autom-
ata: an overview. IEEE Trans Syst Man Cybern Part B Cybern 
32(6):711–722

 44. Sastry P, Thathachar M (1999) Learning automata algorithms for 
pattern classification. Sadhana 24(4):261–292



1250 Pattern Analysis and Applications (2020) 23:1235–1250

1 3

 45. Shah S, Sastry PS (1999) New algorithms for learning and pruning 
oblique decision trees. IEEE Trans Syst Man Cybern Part C (Appl 
Rev) 29(4):494–505

 46. Thathachar MAL, Sastry PS (1987) Learning optimal discriminant 
functions through a cooperative game of automata. IEEE Trans 
Syst Man Cybern 17(1):73–85

 47. Santharam G, Sastry P, Thathachar M (1994) Continuous action 
set learning automata for stochastic optimization. J Frankl Inst 
331(5):607–628

 48. Zahiri S (2008) Learning automata based classifier. Pattern Rec-
ognit Lett 29(1):40–48

 49. Zeng X, Liu Z (2005) A learning automata based algorithm 
for optimization of continuous complex functions. Inf Sci 
174(3):165–175

 50. Afshar S, Mosleh M, Kheyrandish M (2013) Presenting a new 
multiclass classifier based on learning automata. Neurocomputing 
104:97–104

 51. Howell M, Gordon T, Brandao F (2002) Genetic learning 
automata for function optimization. IEEE Trans Syst Man Cyber 
32(6):804–815

 52. Barto AG, Anandan P (1985) Pattern-recognizing stochastic learn-
ing automata. IEEE Trans Syst Man Cybern 3:360–375

 53. Meybodi MR, Beigy H (2002) New learning automata based algo-
rithms for adaptation of backpropagation algorithm parameters. 
Int J Neural Syst 12(01):45–67

 54. Cochran JJ, Cox LA, Keskinocak P, Kharoufeh JP, Smith JC, Stüt-
zle T, López‐Ibáñez M, Dorigo M (2011) A concise overview of 
applications of ant colony optimization. In: Cochran JJ, Cox LA, 

Keskinocak P, Kharoufeh JP, Smith JC (eds) Wiley encyclope-
dia of operations research and management science. https ://doi.
org/10.1002/97804 70400 531.eorms 0001

 55. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. 
IEEE Comput Intell Mag 1(4):28–39

 56. Goodwin M, Yazidi A (2016) Ant colony optimisation-based 
classification using two-dimensional polygons. In: International 
conference on swarm intelligence. Springer, pp 53–64

 57. Tufteland T, Ødesneltvedt G, Goodwin M (2016) Optimizing 
polyaco training with GPU-based parallelization. In: International 
conference on swarm intelligence. Springer, pp 233–240

 58. Goodwin M, Tufteland T, Ødesneltvedt G, Yazidi A (2016) Poly-
aco+: a many-dimensional polygon-based ant colony optimization 
classifier for multiple classes. Journal Article (under review)

 59. Di Caro G, Dorigo M (1998) Antnet: distributed stigmergetic con-
trol for communications networks. J Artif. Intell. Res. 9:317–365

 60. Kushner HJ, Clark DS (2012) Stochastic approximation meth-
ods for constrained and unconstrained systems, vol 26. Springer, 
Berlin

 61. Vázquez-Abad FJ, Mason LG (1996) Adaptive decentralized con-
trol under non-uniqueness of the optimal control. Discrete Event 
Dyn Syst 6(4):323–359

 62. Roth SD (1982) Ray casting for modeling solids. Comput Graph 
Image Process 18(2):109–144

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1002/9780470400531.eorms0001
https://doi.org/10.1002/9780470400531.eorms0001

	Distributed Learning Automata-based S-learning scheme for classification
	Abstract
	1 Introduction
	1.1 Outline

	2 Problem formulation
	2.1 The training phase
	2.1.1 Two-class classification problem
	2.1.2 Multi-class classification problem

	2.2 The classification phase
	2.2.1 Multi-class classification problem

	2.3 Multi-dimensional classification

	3 Learning Automata
	3.1 Classification of Learning Automata
	3.1.1 Deterministic Learning Automata
	3.1.2 Stochastic Learning Automata


	4 Related work
	4.1 Distributed LA on a graph
	4.2 LA for classification and function optimization
	4.3 Swarm intelligence for classification
	4.4 Support vector machine

	5 PolyLA
	5.1 Distributed LA
	5.2 Cost function
	5.3 Ray casting
	5.4 Remark about uniqueness of the path
	5.5 Training phase
	5.6 Bootstrapping the source node

	6 Experiments
	6.1 Simple environments
	6.2 Gaussian
	6.2.1 Semi-circles
	6.2.2 Circles
	6.2.3 Gaussian blobs
	6.2.4 Real-life data sets


	7 Conclusion
	References




