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Abstract
High-performance graph query systems are a scalable way to mine information in Knowledge Graphs, especially when the 
queries benefit from a high-level expressive query language. This paper presents techniques to algorithmically compile que-
ries expressed in a high-level language (e.g., Datalog) into a directed acyclic graph query plan and details how these queries 
can be run on a Pregel graph vertex-centric compute system. Our solution, called PathQuery Pregel, creates plans for any 
conjunctive or disjunctive queries with aggregation and negation; we describe how the query execution extracts graph results 
optimally while avoiding many join operations where parallel map execution is permitted. We provide details of how we 
scaled this system out to execute large set of queries in parallel over the Google Knowledge Graph, a graph of 70B edges, 
or facts; we describe our production experience with PathQuery Pregel.

Keywords Distributed graph compute  · Pregel · Graph query · Bulk synchronous parallel computing · Graph database

1 Introduction

In recent years, large knowledge bases (a.k.a. Knowledge 
Graphs) have been built to store factual structured data, for 
example the Freebase Knowledge Graph [5] which seeded 
the Google Knowledge Graph [35] and others, social net-
works and economic graphs [26]. Such data sets are closer 
in structure to relational databases because although they 
generally have an ontological ordering of the data, a.k.a. 
schema, that describes the relationship between objects, they 
are, indeed, graphs. The most generic description of these 
graphs is as ’triples’: an adjacency list of edges, each edge a 
(subject, predicate, object) triple [2].

This paper describes PathQuery Pregel, a semantic search 
system for a graph knowledge base which can execute con-
currently a large number (thousands) of analytic queries 
(each with multi-million results); the queries are expressed 
using a high-level graph query language. The main contri-
butions of this work are (1) the automatic construction of 
imperative query plans which use a graph-native execution 
algebra that avoid huge unnecessary joins, (2) the ability 
to scale the system to a large number of analytic queries in 
parallel. The main benefit of executing these graph query 
plans in a graph-compute system is its inherent scalability 
in all dimensions: graph size, number of queries and query 
results size.

A recent survey [4] provides a classification of search 
systems on the orthogonal dimensions of data type (knowl-
edge/text) and query structure (structured/text); based on 
this, our application is a structured search over a knowledge 
base, a.k.a semantic search, a graph traversal constrained 
on the subject, predicate and object identities in the graph 
[35]. Another survey of big graph data management systems 
[24] identifies graph systems as graph databases and graph-
compute systems, on the same categorization system that 
defines OLTP (online transaction processing) versus OLAP 
(online application processing), respectively: the former 
are characterized by a large number of short online trans-
actions (INSERT, UPDATE, DELETE) and the latter are 
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low volume of transactions but with complex queries and 
algorithms that require aggregations.

Our application requires exhaustive responses to a generic 
set of high-level structured user queries [30]; it must pro-
duce large categorical results like OLAP systems and 
allow the flexibility of a graph database’s query language 
and the algorithmic flexibility of graph systems: we must 
answer thousands of queries like “for all actors, 
top N most recent movies” and “for all 
musicians, all albums and most popular 
songs” concurrently over the entire Google Knowledge 
Graph (KG hereafter), a data set of 70B edges in 2016 [16, 
30, 38].

We propose a method to create query plans for any graph-
shaped query (a directed acyclic graph of edges, not just a 
tree-shaped query); these plans support both aggregation 
and negation and scale to large number of analytic queries 
(1000+) in parallel. In our solution, queries can also be 
expressed using a high-level declarative query language; 
we exemplify with Datalog, but many query languages can 
be compiled to these plans. Our execution engine is Pregel, 
and we are using XLisp [36] parallel execution algebra to 
describe how we avoid the memory and fan-in skew rela-
tional engines create; we provide an example of the benefits 
of this algebra at the end of Sect. 3.2 using the triangle query 
as an example. For clarity and scope reasons, we limit this 
paper to describe how the compiler creates an imperative 
query plan; we defer declarative query planning, dynamic 
query planning, recursive query execution and indexing opti-
mization techniques for later publication.

The remainder of the paper is organized as follows: we 
will briefly discuss prior work in the next section. In Sect. 3 
we discuss the fundamental principles used to map an imper-
ative graph query onto a Pregel graph algorithm and we 
walk through solutions for traversal, aggregation and nega-
tion. In Sect. 3.3 we discuss the scalability and performance 
aspects of our Pregel implementation. Section 4 describes 
our results in deploying and running this system in practice, 
and in Sect. 5 we conclude with a summary and future work.

2  Related work

The vast majority of related work either works from terse 
graph query languages toward familiar, traditional relational 
databases query execution engines or, conversely, maps 
familiar but verbose SQL language toward newer graph or 
MapReduce systems [18]. Few methods fall, like ours, in 
the category of graph query engines over graph-compute 
platforms.

Relational databases have been extensively studied in the 
past decades, and many still argue vigorously against graph 
databases or specialized graph engines [20]; such systems 

do not naturally scale for web-sized graph and, like SQL 
systems in general, require specialized tuning for the query 
profiles (index creation, etc). Specialized indices for RDF 
graphs [25] help reduce the size of the intermediate results 
that queries with a large number of joins produce. All these 
systems are extremely costly to scale out both in terms of 
hardware and development cost: web-size graphs need be 
partitioned over many computers to accommodate the stor-
age needed, many CPUs are needed to accommodate the 
compute load, and custom concurrency models are needed 
to solve this.

Indices and inverted indices of graph adjacency lists are 
another solution, like those used in traditional IR search sys-
tems [3, 12]. These systems are easy to scale out, and tra-
ditional relational database query evaluation algebra can be 
used to fetch the data from the database shards, then execute 
a query plan and provide an answer. Recent implementation 
is described in [1] and [34]. Such systems are more suit-
able to OLTP workloads rather than OLAP because the large 
communication pattern of the latter would stress the network 
and memory layer of the system with the amount of dupli-
cated data or the join sizes. The pre-existing graph-compute 
platform (Pregel) and its scalability and ease of use for graph 
applications biased our efforts toward a Pregel application.

Other authors have proposed graph algorithm mappings 
onto MapReduce systems [17, 33]. MapReduce systems 
have various shortcomings for graph processing since they 
fundamentally implement a divide and conquer algorithm 
while graph queries specify traversals. Graph traversals 
requires iterative loops over map steps which produce large 
joins (adjacency lists) fan-out followed by recombination 
and a join computation in the reduce step, then iterate. These 
systems not scale in memory because of enormous skew cre-
ated by large joins in the reduce phase. These data modeling 
problems can be resolved by de-normalizing the graph and 
converting it into a KV store, where the key is the identity 
of a node and the value is the N hop reachability set, which 
is the maximum depth of the query that can be answered.

Pregel [29] and other similar bulk synchronous parallel 
[37] systems [19, 28] provide a vertex-centric computation 
model that requires each node to compute its future state 
in an isolated manner and allows graph algorithms to be 
implemented on top of this model [23, 40, 41].

Others [31, 39] use Datalog as the high-level language 
and map traditional relational query evaluation engines 
over bulk synchronous parallel execution models, where 
the evaluation vertices use the graph as an index and “pull” 
adjacency lists into the evaluation; these solutions generate 
vast amounts of messages and fan-in skew when they pull 
large sets; solutions to mitigate this such as supervertices 
(subgraph as a vertex) and eager aggregation are proposed in 
[31]. While the query evaluation supports recursion, the use 
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of relational algebra adds skew and memory requirements 
which hinders scalability.

Recently, authors have attempted mapping graph tra-
versal pattern matching into native graph processing like 
Pregel. Quegel [43] describes how a tree query is manually 
mapped into a nested for loop of evaluation and it details 
how manual mapping is required; there is no automation in 
this solution, and no solution for aggregation and negation.

The solution we propose fits into this last category: native 
graph query plans on a graph processing system; our method 
generates query plans for any query with conjunction or dis-
junction that handles aggregation and negation. Moreover, our 
query plans are pure functional and independent; hence, any 
number of queries can run in parallel. We use Datalog as an 
example query language, but any declarative query language 
(e.g., [8]) can be compiled into a DAG query plan we propose.

3  Graph query processing & the Pregel 
Connection Machine

This section describes our techniques to algorithmically map 
a graph query plan onto a bulk synchronous parallel compute 
system such as Pregel. For clarity, we limit the scope to 

logic programming language, Prolog [9]. Any high-level lan-
guage would work as well and the query evaluator presented 
here is independent of the language used. Datalog is merely 
useful to convey the algebra used in the evaluation and well 
known in the community.

In Datalog, statements which end with a period are asser-
tions (writes); statements which end with a question mark 
are queries (reads). Our graph data is a collection of (subject, 
predicate, object) triples [2], so graph edge triples are tersely 
declared as

Here is an example set of edge statements that describe a 
subgraph of triples for a notable person:

And these edges describe, obviously, that Henry V is the 
King of England and in our imperfect historical account that 
is part of Britain; the identity of the vertex is }}id_1�� . This 
data is queried as follows:

discuss only the imperative query execution engine; hence, 
the order in which the query is executed is predetermined 
and the execution plan is static. We start by describing a 
simple graph path query plans, then how a tree path (a con-
junction) would work; Sect. 3.2 presents the aggregation 
and negation solution, which make our query plans directed 
acyclic graphs (DAGs); In Sect. 3.2.1 we discuss the graph-
shaped queries plans and their concurrency, aggregating 
output and disjunctions, to complete the mapping of the 
high-level query plans onto topologically sorted plans for 
synchronous execution on Pregel. We defer the discussion 
on query planning, dynamic execution as well as recursive 
queries for a future publication.

The imperative query execution engine produces query 
plans that (1) can execute any graph-shaped query, (2) scale 
to provide complete and exhaustive answers for very large 
graph data sets and (3) scale to execute a large set of queries 
in parallel on a Pregel compute system; this implements a 
high-performance graph query system for today’s Knowl-
edge graphs and social graphs.

A query language that describes such queries declara-
tively is Datalog: Throughout this paper we use Datalog [6] 
as the query language which itself is a restricted form of the 

query for all the royals x with a place of work y named 
}}England�� : variables allow us to describe trees and graphs 
of edges to be created or queried. Figure 1 graphically mod-
els the query using the Edge declarations as labeled circles, 
and the variables are the arrows connecting these.

The set of predicates defines the schema and, for a graph 
database, this is the set of labels on the edges. However, the 
choice of query language (Datalog, GRAQL, SPARQL) or 
schema (OWL, or Freebase) has no impact on our query 
planning algorithms or execution and are here merely to sup-
port our examples.

3.1  Query processing engine: graph traversals

The main difference between queries in a graph database and 
in a relational one is the fact that a graph traversal requires 
all relationships to be primary (fast) while a relational one 
considers relationships in a table as primary (fast lookup) 
and relationships between tables as secondary (slower joins). 
For example, “British royal family” will be a 
table that one would expect indexed in a relational data-
base but “blue-eyes British royal family” 
is an improbable index: let’s assume there was a table of 
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blue-eyed people and that has to be joined with the table of 
British royals; we would have to create indices of British 
(and Dutch and Belgian and other monarchies) blue-eyed to 
optimize the join size. In relational algebra, two sets of rows 
are collected from two tables (naively, “king” rows from the 
“occupation” table and “England” rows from the “place of 
birth” table which are joined.

messages, no continuation is needed and no more messages 
are issued, and (3) the system serializes all results and halts: 
we have found all results.

A compute system that describes a similar algebra is the 
Connection Machine [22] with its XLisp dialect [36] suit-
able for parallel computations. The Connection Machine is 
a massively parallel computer architecture which consists 

In a graph, the relationships are expected to be found 
in constant time for any given node: each vertex can only 
access its adjacency list. A query is a traversal from one 
vertex identity to another with the expectation that all adja-
cencies are “fast” or constant time. The best model for this 
data set is a graph, where the nodes are identities and the 
edges are relationships, aka a RDF subject–predicate–object 
triples [21]. As noted in [43], graph traversal is achieved by 
depth- or breadth-first “hopping” the graph from a set of 
nodes to another. For example, “spouses of blue-
eyes english royal family” are, starting from 
each node in R above, the nodes at the object end of the 
edges labeled “spouses”. Graph traversals do not require 
joins: we don’t need all spouses of all kings, we need all 
spouses of each king.

Using a functional language such as LISP [7], this is 
modeled as a mapcar operation over the set x : the subsets 
of y are independent for each value of x and we are not 
required to join them together: map the subjects using the 
predicate names into the list of objects; those objects are in 
turn the subjects of the next wave of edges in the traversal, 
and we map the subjects through a predicate edge label, etc. 
According to Valiant’s bulk synchronous model [37], these 
’map’ operations are easy to parallelize. This observation is 
a fundamental building stone for parallelism, scalability and 
vertex-centric execution on Pregel.

Pregel is a vertex-centric computation system aimed at 
parallel graph computing, where computation is planned in 
synchronous supersteps: in each superstep, each vertex exe-
cutes a used-defined compute based on incoming messages 
and the vertex value and adjacency and sends messages to 
other vertices. These messages are grouped by vertex and 
delivered in the next superstep, iteratively; the computa-
tion halts when there are no new messages issued. Pregel 
provides no global state and each vertex only knows the 
messages it receives and its current state. For our example, 
(1) all “royal”, “blue eyed” and “British” ver-
tices send messages to their “spouse_id” vertices with their 
identity and a query continuation; (2) when receiving those 

of an array of general purpose processors that perform the 
same operation on multiple data points simultaneously; each 
processor executes a pure functional � given a set of input 
arguments and sends the result of that computation to a set 
of processors in the network. The non-Von Neumann com-
puter architecture of the Connection Machine and XLisp 
defines a parallel graph computation algebra:

– each processor is a vertex and its edge adjacency list in 
our graph;

– the queries are the pure functional � operations that select 
how the incoming messages and/or the vertex adjacency 
are processed;

– the adjacency list helps route the results and the program 
to the next nodes. For our example, in the 1st step, each 
compute node decides whether it is labeled “royal”, “blue 
eyed” and “english” and has “spouse” connections. Those 
nodes that do use the triple ([royal id], place-of_work, 
[place_id]) send a remainder of the query (i.e., “match 
predicate ’name’ to object literal ’Britain”’) to each 
[place_id] with the accumulated data and the remainder 
of that query in that path; this design pattern is very simi-
lar to the Scheme call-with-current-continuation Scheme 
pattern [11] and Prolog Backtracking [14];

– at the end of the computation, each place_id knows its 
royal_id and the query and we can store the data in a 
distributed mode. More details about creating a set of 
results follow later in this section.

The Connection Machine XLisp[36] algebra helps describe 
how Pregel operates: in each superstep each vertex executes 
a pure functional operation � over the set of vertices. XLisp 
defines the parallel map data type call Xap (a parallel map), 
which is the adjacency list of each vertex in a Pregel graph. 
For example, the small graph from the previous subsection 
can be represented as a Xap of node adjacency list V:

V = Xap{��id��
1
→ {name, title, place_of_work, spouses,…},

��id��
2
→ {name}}
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Each Pregel compute superstep is, using XLisp algebra, an 
“apply-to-all” �F() which applies, like mapcar in Lisp, to 
each element separately with its own incoming messages 
and produces a Xapping of messages for the next step; just 
like a Xap , all vertices are independent of all other vertices.

The Pregel system groups these messages by destination and 
uses them in the next superstep to apply an �F() to each 
vertex and continues while there are messages to deliver. 
The Pregel system as a whole is described by the following 
XLisp while loop:

For our query plans, each �F() operation is an Edge() select 
operation, i.e., one hop in the graph. Similarly, disjunction 
is a forest of �F() paths. This graph-compute system can so 
far answer any conjunction or disjunction (set of paths in the 
graph) but obviously no aggregation: each path computation 
is independent of all other and vertices know nothing about 
other vertices; if one would like to know the top royals by 
the number of marriages, we need aggregation; we describe 
our aggregation solution in Sect. 3.2.

The principles we keep throughout the implementation 
of this system are:

1. This is a pure functional query system without side 
effects: we do not rely on a global state and the graph is 
stateless; the vertices and the edges do not have state that 
spans a Pregel superstep: each � sees each vertex in the 
same state. This requires us to send all the information 
through messages (current results and remainder of the 

M = (Xap (� F(V Mi)))

(while M

(Xap Mi) = (group − by i M)

M = (Xap (� F(Mi))))

query); also, it permits us to implement graph-shaped 
queries (later in this paper) and recursive and declarative 
query evaluation (in a subsequent publication). With-
out a stateless adjacency graph, any query reaching the 
same node sees a mutated adjacency list. By contrast, 
the graph processing language solution proposed in [23] 
allows for a global state.

2. All the � functions we apply to the vertices are pure 
functional as well and do not create global state used 
in the algorithm: Pregel implements aggregators and 
allows for compute global state; we do not use those 
in the algorithm to allow for easy recovery and to keep 
our graph system stateless. A global state may prevent 
running multiple queries in parallel.

The diagram in Fig. 2 shows a conjunctive query that 
follows 3 paths starting from a shared subpath; the query 
requires 5 superstep (the maximum depth of the tree) to 
complete. In tree queries each result path is independent of 
all other paths, a set of leaf nodes end up receiving all results 
for the top path, another set receives the center, and another 
receives the bottom path results. All paths originating from 
one vertex are independent results to the query; we describe 
how they are all aggregated in Sect. 3.2.

3.2  Aggregation

The discerning historian is obviously not interested in all 
British royal marriages, but in the most prolific ones: how 
do we modify our system to get straight to Henry V? The 
database answer is aggregation: collect all the answers in 
one place, sort and select given an intrinsic criteria: “top 
10 blue eyed British royals by marriage 
count”. Note, we can select the ones with more than “3” 
marriages independent with a �F() operation (that is, “3” is 
an independent, extrinsic parameter) while “top 10” is an 
intrinsic parameter that requires the exhaustive list.

In a Pregel graph all messages must be delivered to the 
same vertex, but such vertex does not exist in the naive 
graph. Our solution is to create a new vertex identity that is 

Fig. 2  Conjunctive query tree

Fig. 1  Query plan diagram
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unique and transient: this vertex receives all the messages 
to be aggregated, executes the aggregation compute opera-
tion and sends messages to continue the computation; the 
vertex is then deleted. We call this an “aggregation vertex”; 
its identity must be unique to ensure that we only collect the 
set of messages necessary and sufficient for that aggrega-
tion: for our example, we can have one aggregation node for 
each royal to select the right subset; we do not want all the 
spouses for all the royals and then deal with the sorting job. 
This technique allows us to implement a rich—and extensi-
ble—library of aggregation functions (e.g., min, max, count, 
set, filters, top, sort...) as needed by our queries.

Our reason to make the identity of the aggregation node 
transient is to preserve our principle that the graph should be 
stateless between Pregel supersteps: these compute vertices 
exist merely for the purpose of computing the result of the � 
and have no edges or side effects. The Pregel system affords 
this technique: messages can be sent to any vertex identity; 
if the identity does not exist (that is, an “orphan message” 
is observed), the superstep barrier creates the missing ver-
tex identity at the barrier and delivers the messages after 
the barrier. We delete all the aggregation vertices after each 
operation; hence, the graph is stateless after each superstep.

The Pregel system streams the messages; hence, messages 
have no compound memory effect on the system. Large fan-
in is not a memory concern but only influences the duration 
of the compute because the enumeration complexity is linear 
with the message set size n.

A standard benchmark is the triangle query

and its DAG is shown in the diagram in Fig. 3 as a series 
of 3 supersteps. With our algebra, the triangle query execu-
tion yields a Xap of results of cardinality T  after three � F() 
operations:

Notably, it is not a triangle and there is no join with our alge-
bra. In the last superstep, a test of equality is performed in 
each individual path in constant size and time and the result 
is part of the solution iff the root and the destination nodes 
are identical. Note that the messages propagate only when 
the mapping is successful: the number of messages testing 
label C is equal to the size of A followed by B rather than 
A ⋅ B ; in a vast majority of cases the graph schema allows 

M = (Xap (� C(�B(�A()))))

us to rewrite the query such that we traverse the graph in 
the direction of low-cardinality predicates, hence the upper 
bound of this traversal is max(A,B) when one of the predi-
cates has cardinality equal to one.

Relational algebra requires joins and produces a single 
result with T  rows:

where B is the inverse edge of B . XLisp algebra describes 
aggregation using �F() , an operation applied to all ele-
ments in a set. With the relational algebra, the join opera-
tions create potentially large fan-in at the ’join’ operations. 
With the graph algebra the Xap fan-in is constant; the Xap 
data structure afforded by Pregel allows us to avoid tradi-
tional joins and produce solutions independently (that is, in 
a }}foreach�� parallel approach) instead of set of solutions 
(that is, a }}forall�� approach).

3.2.1  Concurrency of aggregation

When all paths leading to an aggregation vertex are of equal 
length (same number of edge traversals), then all messages 
arrive at the aggregation node concurrently in the same 
superstep; otherwise, they arrive at different supersteps and 
must be held indefinitely, because the system is stateless, 
and we do not know any global query state. A few solutions 
are possible, among them: (1) introduce some global, static 
state to lookup the wait time or (2) encode the wait time in 
the continuation the messages contain or synchronize the 
computation. The former option introduces global state and 
makes some of these vertices survive multiple supersteps.

We prefer the second option for 3 reasons: (a) is more 
native to XLisp algebra and Pregel and to the principles of a 
synchronous system, (b) is pure functional and does not vio-
late our principles and (c) signal concurrency is well studied 
in integrated circuit design algorithms [10].

Signal concurrency in VLSI [10] ensures that logical 
processing units receive all stimuli within a synchronized 
time window and produce a response which is buffered and 
synchronized and then distributed at the next synchronous 
barrier to the inputs of the following stage; this architecture 
permitted the incredible scale of semiconductor growth in 
the last 50 years predicted by Moore’s law [32]. Also, gen-
erating low level circuits from high-level description lan-
guages is a well studied problem [27] with proven solutions 
to signal concurrency.

Our query compilation produces synchronous query 
execution plans that ensure concurrency of the aggregation 
nodes. Shorter concurrent paths in the graph are buffered to 
match the length of longest path in the concurrency set, just 
like VLSI paths are [42]; we insert wait_supersteps(m − n) 

M = (�
⋂

(� C(), �
⋂

(�A(), �B())))

Fig. 3  Triangle query
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where m and n are the longest and shorter path length, 
respectively.

Figure 4 shows a query tree where the 3 branches to be 
aggregated at the rightmost red node are of different lengths: 
the green nodes represent the regular vertex compute aligned 
vertically by superstep. The aggregation node (in red above) 
expects all messages concurrently in the same superstep: to 
achieve concurrency they have to be delayed through the 
missing (gray boundary) nodes in the diagram above; we 
implement that as “buffer” operations where messages are 
bounced to the source vertex for a number of steps before 
being sent to the aggregation node. For example the mes-
sages are bounced thrice for the top path and twice for the 
center path; all paths have same length, 4 supersteps, after 
which all paths are aggregated.

Aggregation nodes may join different paths or all mes-
sages on one path. The former case is a general set intersect 
or union problem and allows us to answer graph-shaped que-
ries (e.g., the query “actors with Oscar awards that are also 
musicians with more than 3 albums”) and the latter (the red 
node in the bottom path) is the simple value aggregation 
(e.g., the query “musicians with an album count greater than 
3”). The green nodes may represent a set of vertices corre-
sponding to � parallel operations while a red one is always 
a single vertex in the graph corresponding to a � operation.

In the Pregel framework, this can be implemented in a 
number of ways, we discuss three of them and their relative 
merits:

1. When a wait_superstep continuation is encountered, 
change the state of the vertex and store the outgoing 
message for m − n − 1 supersteps before sending it, 
counting down the supersteps. This technique adds 
memory to the vertices and may bloat the global RAM 
used, which may lead to operational issues. Also, it 
violates our pure functional graph architecture in an 
inconsequential way—the adjacency is the only relevant 
immutable state.

2. Bounce the message to self for m − n − 1 time before 
sending it to the destination. This is entirely consistent 

to both Connection Machine and Pregel architecture; it 
is similar to the first solution in behavior, preserve the 
lifespan of the aggregation nodes to one superstep and 
does not add RAM, because messages are streamed in 
Pregel. In the image above it is equivalent to inserting 
“dummy” nodes in the graph such that all the paths are 
of equal length.

3. Change the Pregel SendMessage implementation and 
add an integer argument for “how many supersteps in 
the future” a message should be send, that is the default 
is one: 

such implementation is system optimal, the messages are 
stored for m − n − 1 supersteps barrier before they are 
sent to the aggregation vertex.

3.2.2  Negation

We implement negation, as other database systems do, as an 
extension of aggregation: count the size of a set and expect a 
null one to negate an expression. The Pregel query mapping 
of a negation is an aggregation message sent with the query 
continuation and the computation continues iff that is the 
sole message received at the aggregation node: that is, we 
expect a null set of messages to arrive on the bottom path. 
Because we rely on the aggregate vertex to send continu-
ations, we need to send a sentinel message to execute the 
“aggregation”; otherwise, the aggregation vertex is never 
created and the computation can’t be executed; the intent 
is “if you are the lone message arriving at the aggregation 
vertex, compute this continuation”. In the diagram in Fig. 5, 
the bottom, green path is the path to be negated, the top path 
is the one taken by the sentinel message and the red aggrega-
tion node is the sentinel that monitors that no messages are 
incoming through the negated path: that is, for the query “a 
then not(b.c)” the answer is positive iff the aggregation node 
receives only the sentinel message sent after A.

Fig. 4  Concurrency of aggregation
Fig. 5  Concurrency of negation
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3.2.3  Query planning output

As described so far, queries are DAGs in the Pregel imple-
mentation and each message carries the results on the path to 
the current solution and the remaining path to be executed. 
After the path is exhausted, all results for each path lie at the 
leaf vertices, which is not ideal from the users point of view: 
they expect the whole tree of results associated with each 
root node to be aggregated together. For example, for each 
blue-eyed British royal, provide a set of spouses.

Output is identical to aggregation: our query planner adds 
an output aggregation node as a sink for each query, and all 
results are aggregated and converted into a tree at that sink 
vertex. These sink vertices are similar to any other aggre-
gation nodes and execute a “merge” operation from all the 
received paths given the query logic and preserve all the 
grouping of the paths as specified in the query tree.

The Pregel system serializes the results each vertex 
chooses to store in the last superstep: the user overrides the 
Vertex ∶∶ Write procedure as follows: query output aggrega-
tion above allows us to (1) create one aggregation node per 
“root” vertex and query, (2) transform it into the desired 
output format to accommodate a declarative query planner 
or a graph transformation extension to Prolog and (3) group 
the results as the users of the system expect in an key-value 
store keyed primarily with the vertex id of the source and 
secondarily with the query—or any other key we choose.

Our query planner compiles each query into a DAG that 
has exactly one source and one sink, all paths between two 
nodes are equal length, and each node is a Pregel vertex 
compute event, either at regular vertex or an aggregation 
(including negation/output) vertex. A diagram of such a 
query is shown in Fig. 6: the green nodes are computation 
at vertices, the red nodes are computation at aggregation or 

output nodes, and the transparent ones are synchronization 
nodes inserted for concurrency. Our imperative execution 
engine traverses a Datalog statement left to right and top 
to bottom and creates a DAG of computation, then inserts 
padding to make all paths equal. In Fig. 6 the superstep 
sequence is labeled S1 ...S9 for the query example.

A DAG is a necessary condition for the query plans: all 
paths are explicit and there is no recursion in the execution 
graph: that is, we know the exact length of each traversal 
and we can synchronize the paths in the graph; also, we 
can perform a traversal in topological order [13]. Because 
we disallow cycles, there is no phylogenetic traversal or 
transitive closure allowed: we can’t find “zoos with bears 
in California”, where we have two recursions: “bears” is 
a phylogenetic regnum that zoo inhabitants belong to and 
California is a hierarchy of places contained in each other. 
We can express an explicit disjunction for all paths between 
people up to length 6 (or, generally N), but we cannot com-
pute Bacon numbers for all people [15]. The recursive query 
plan required a different query plan strategy; we defer recur-
sive query planning for a later publication.

Note that any graph-shaped queries can be automatically 
mapped to a Pregel query plan: any graph-shaped (concur-
rent paths) “equals” or “match” is a type of aggregation; 
disjunctive queries are handled as separate queries that are 
joined by a “union” operator: we convert a forest of que-
ries into a tree and each query plan is a DAG with a single 
source and sink. Each result of a query is a graph of sets with 
a single source vertex and a single sink: each ��() opera-
tion yields a Xap at a set of vertices, each ��() aggregation 
operation is a single vertex, using the XLisp algebra [36]. 
The query plans compiled into one of these DAG graphs; 
it can be executed by the generic Pregel compute algorithm 
because each node starts with all paths and send messages 
to subsequent nodes with (1) the nodes collected along the 
path and (2) the remaining operations to be executed. When 
the next destination is a “green” node, the message is sent 
to a vertex ID (i.e., object) as the vertex adjacency list (i.e., 
predicates and objects) and the query (i.e., predicate filter) 
requires. The aggregation node destinations are computed 
on the fly based on the selective identity of the vertices on 
the incoming path and the operation to be executed. That 
guarantees that all messages arrive at the same vertex (e.g., 
for paths they started at the same root, traversed the same 
aggregation nodes and require the same operation, they will 
all be sent to the same aggregation node). After that, the 
identity of the destination is in the messages themselves. In 
summary, all paths know their continuation and the query 
planner ensures the concurrency of each query: all results 
end up at a unique aggregation node.

One of the great advantages of our approach is that we 
have made no assumption on the � functions that executes 
at each node: we can execute any pure function applied 

Fig. 6  Synchronous query plan
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to a set of incoming messages and a vertex adjacency list 
that produces a set of messages. That makes our compute 
implementation extremely simple, the incoming messages 
tell each vertex what to compute: all messages at a green 
graph vertex are independent computations and all messages 
at a red aggregation node are—by design—concurrent and 
consistent in the operation to be executed. The semantic of 
the computation is practically scalable to any library of func-
tions that satisfies these constraints.

3.3  Scalability

The key to the scalability of the system is the guarantee 
that aggregation vertices are uniquely identified by (1) the 
relevant nodes in the result path and (2) a key unique to the 
entire query they execute. That is, each of them is unique 
to its DAG query plan and that particular result; hence, the 

system can independently execute any number of queries in 
parallel without any contention of the results. Because each 
query path is guaranteed to collect all nodes at a unique final 
identity, the Pregel graph query system (1) can execute any 
number of “computations” (aka queries) in parallel and (2) 
each query can start at any superstep.

We can execute as many queries in parallel as the memory 
of the system allows, because the Pregel system streams the 
messages at each superstep boundary without adding mem-
ory or mutating the graph. The Pregel system scales linearly 
with the number of compute nodes N  and each compute 
node holds |V|∕N of the vertices, where |V| is the cardinality 
of the vertex set and |V| ≫ N . We allocate transient memory 
for the aggregation nodes, but that memory is freed at the 
boundary of the superstep. Because we have a large number 
of queries that execute in parallel (over 1000 categorical 
queries of different length in parallel in one instance) each 

Fig. 7  Concurrency of aggrega-
tion
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superstep spawns new aggregation nodes at a rate of r ⋅ |V| 
where 0.25 ≤ r ≤ 10 . Figure 7 shows how the number of 
vertices grows in each superstep for 5 different jobs and the 
memory footprint of the system. The queries are divided 
randomly between the jobs. One can note that the memory 
growth is less than linear: while the number of vertices for 
Job 3 and 4 grows 2000% in some supersteps, the memory 
footprint grows by 70% and 50%, respectively: these vertices 
have no data, no adjacency list, they are a transient computa-
tion node.

Valiant notes that skew is inevitable in bulk synchronous 
systems [37]: some compute processes take longer than oth-
ers in a heterogeneous system because each vertex set com-
putes different queries. However, the Pregel system assigns 
vertices into shards uniformly at random into a worker shard 
(a process in the distributed system) and each vertex has its 
own adjacency and computation load. As a result, the aver-
age compound computation skew of various worker shards 
evens out. In our system, the graph we model is heteroge-
neous (the Knowledge Graph contain numerous ontology 
domains), the queries are heterogeneous (we expect queries 
about marriages, football, music and food, among others) 
and the query set is large and we add and remove aggrega-
tion nodes with random identities based on these queries. 
With respect to skew, all three factors above combine into a 
balanced “homogeneous” compute system where the overall 
computation evens out: the diversity of vertex loads com-
bines into an overall computation with negligible skew.

Most Knowledge Graphs are not densely connected, 
because the ontology of the knowledge domains is limited 
and hence the adjacency list of each node is much smaller 
than the number of vertices in the graph. (We do have 
optimization solutions for high-degree vertices which are 
described later in this section.) That is, the size of adja-
cency is a constant A for the vast majority of nodes in the 
graph; hence, the number of messages sent by each node or 
received by each regular or aggregation vertex is O(A) . The 
number of messages sent in each superstep is O(|V| ⋅ A) and 
in a random distribution of results and node identities each 
worker compute node receives O(|V| ⋅ A∕N) for its |V|∕N 
vertices of the graph messages per global query.

4  Production experience & results

Our PathQuery Pregel system has been live in production 
for a few of years and running analytics query load over 
the Google Knowledge Graph, a data set of 70B edges in 
2016 [16, 38]. We have built and scaled-out the system over 
a period of time, hence learned the optimization needed 
throughout the ramp-up of the system. We have run a num-
ber of separate jobs that produced independent results for 
different clients. In this section, we provide operational 

details about the two most significant jobs because their 
query profiles diversity informed our optimization work and 
priorities and explain the origin of the solutions described 
in Sect. 3.3.

The largest production job contained the largest categori-
cal (high volume analytical) query set: over 1000 complex 
queries running in parallel. This job was running in under 
one hour with a thrice daily frequency. We have run vari-
ous query profiles for various experiments with 200–2000 
machines. The queries in this set had a depth (number of 
supersteps) of 2-30, that is, the most complex query was 
traversing 30 predicates in the graph. The query set was very 
heterogeneous in this case and that led us to the observa-
tions on ontology domain locality, as described in Sect. 3.3: 
cars and musician queries are largely independent, but 
when a domain is dominating the graph then that has an 
overall larger impact than others. For example, if the graph 
contains N times more data in one domain than another, 
then we would expect the message load for queries in that 
domain to be N times higher. Even more, the number of 
features is proportional to the domain coverage, more que-
ries with higher complexity would exist for a domain with 
more data: the knowledge graphs are “open world” systems 
(incomplete data) when they get closer to a “closed world” 
(complete data) the user experience improves and drives 
up the demand. In practice, this tends to make the message 
load superlinear. This informed the strategy of grouping the 
queries into staggered trains, common query subpath opti-
mization, etc.

All jobs above were run on shared resources in the 
Google data centers, an environment where other ephemeral 
jobs may compete for resources: due to the nature of the bulk 
synchronous query execution in Pregel the jobs tend to run 
longer and need stability, because a single machine failure 
requires re-starting the superstep for that machine, but all 
machines would wait for the superstep to complete. For this 
reason, long supersteps were most vulnerable; as they lasted 
longer, they were more susceptible to repeated failures and 
were taking the longest to rerun. We have developed many 
instrumentation techniques to be able to quantify and profile 
the message load in each superstep and used that information 
to optimize the health of our jobs over time.

Skew (excessive compute at one of the Pregel worker 
machines) was generally solved with query rewriting; we 
were able to resolve all large fan-out and fan-in with manual 
rewrites. The optimization turned out to be schema-driven 
rather than graph-shape driven, hence the rewrite was gener-
ally improving a whole class of queries, and the techniques 
were easily generalizable over schema domains. We have 
monitored all jobs over many months (tens or hundreds of 
consecutive runs) and noticed little variation in the run-time 
over the median, and the few large variations were gener-
ally resource limitations or machine failures. We have also 
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monitored the message load per worker machine to ensure 
that message load was largely constant and, given a ran-
domly distributed query load, the overall compute time had 
negligible skew.

We are confident that this query execution engine scales 
naturally over any web-sized Knowledge Graph with impera-
tive queries that avoid high-degree vertices at fan-in and 
fan-out; horizontal scalability and staggering are techniques 
to increase parallelism and scale throughput for larger query 
sets. Dedicated resources could be used if needed to ensure 
stability, but a shared-resource datacenter as the one we used 
provided excellent stability even at normal job priority (that 
is, our jobs were generally not preempted when running with 
average priorities).

5  Conclusions

We have presented novel techniques to map a declarative 
high-level query language into an imperative execution 
engine in Pregel; we provided algorithmic solutions to map 
any queries with aggregation, negation over conjunctive and 
disjunctive queries into a concurrent compute system called 
PathQuery Pregel and described how the results are com-
puted. Our solution provides a generic mapping of generic 
queries to a Pregel compute without manual development 
and supports a broad type of queries expressed in a of high-
level language, such as Datalog; the parallel map algebra 
used avoids skew and allows multiple analytic queries 
(1000+) in parallel.

Our results with production data show the scope of the 
solution and the impact it provided to our operations; we 
share our experience with Pregel and the innovative tech-
niques we derived from seminal work on the Connection 
Machine and the VLSI synchronization methodologies 
which helped us achieve concurrency. We describe how the 
solution scales to any web-sized Knowledge Graph.

Future work requires assembling all the manual tech-
niques described for optimizing the imperative execution 
into a query planning algorithm that supports Datalog que-
ries as declarative queries. Also, extensions to our mapping 
algorithm to allow recursive queries and indexing that goes 
beyond naive vertex indexing have been deferred for a later 
publication for clarity.
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