
Vol.:(0123456789)1 3

Pattern Analysis and Applications (2020) 23:1493–1504
https://doi.org/10.1007/s10044-019-00841-z

INDUSTRIAL AND COMMERCIAL APPLICATION

PathQuery Pregel: high‑performance graph query with bulk
synchronous processing

Bogdan Arsintescu1 · Shardul Deo1 · Warren Harris1

Received: 24 June 2019 / Accepted: 22 July 2019 / Published online: 1 August 2019
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
High-performance graph query systems are a scalable way to mine information in Knowledge Graphs, especially when the
queries benefit from a high-level expressive query language. This paper presents techniques to algorithmically compile que-
ries expressed in a high-level language (e.g., Datalog) into a directed acyclic graph query plan and details how these queries
can be run on a Pregel graph vertex-centric compute system. Our solution, called PathQuery Pregel, creates plans for any
conjunctive or disjunctive queries with aggregation and negation; we describe how the query execution extracts graph results
optimally while avoiding many join operations where parallel map execution is permitted. We provide details of how we
scaled this system out to execute large set of queries in parallel over the Google Knowledge Graph, a graph of 70B edges,
or facts; we describe our production experience with PathQuery Pregel.

Keywords Distributed graph compute · Pregel · Graph query · Bulk synchronous parallel computing · Graph database

1 Introduction

In recent years, large knowledge bases (a.k.a. Knowledge
Graphs) have been built to store factual structured data, for
example the Freebase Knowledge Graph [5] which seeded
the Google Knowledge Graph [35] and others, social net-
works and economic graphs [26]. Such data sets are closer
in structure to relational databases because although they
generally have an ontological ordering of the data, a.k.a.
schema, that describes the relationship between objects, they
are, indeed, graphs. The most generic description of these
graphs is as ’triples’: an adjacency list of edges, each edge a
(subject, predicate, object) triple [2].

This paper describes PathQuery Pregel, a semantic search
system for a graph knowledge base which can execute con-
currently a large number (thousands) of analytic queries
(each with multi-million results); the queries are expressed
using a high-level graph query language. The main contri-
butions of this work are (1) the automatic construction of
imperative query plans which use a graph-native execution
algebra that avoid huge unnecessary joins, (2) the ability
to scale the system to a large number of analytic queries in
parallel. The main benefit of executing these graph query
plans in a graph-compute system is its inherent scalability
in all dimensions: graph size, number of queries and query
results size.

A recent survey [4] provides a classification of search
systems on the orthogonal dimensions of data type (knowl-
edge/text) and query structure (structured/text); based on
this, our application is a structured search over a knowledge
base, a.k.a semantic search, a graph traversal constrained
on the subject, predicate and object identities in the graph
[35]. Another survey of big graph data management systems
[24] identifies graph systems as graph databases and graph-
compute systems, on the same categorization system that
defines OLTP (online transaction processing) versus OLAP
(online application processing), respectively: the former
are characterized by a large number of short online trans-
actions (INSERT, UPDATE, DELETE) and the latter are

Warren Harris: Deceased.

Bogdan Arsintescu: Currently employed by LinkedIn; work
performed 100% while at Google.

 * Bogdan Arsintescu

 Shardul Deo
 sdeo@google.com

 Warren Harris
 warrenharris@google.com

1 Google Inc, 1600 Amphiteatre Pkwy, Mountain View,
CA 94043, USA

http://orcid.org/0000-0003-1063-0084
http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-019-00841-z&domain=pdf

1494 Pattern Analysis and Applications (2020) 23:1493–1504

1 3

low volume of transactions but with complex queries and
algorithms that require aggregations.

Our application requires exhaustive responses to a generic
set of high-level structured user queries [30]; it must pro-
duce large categorical results like OLAP systems and
allow the flexibility of a graph database’s query language
and the algorithmic flexibility of graph systems: we must
answer thousands of queries like “for all actors,
top N most recent movies” and “for all
musicians, all albums and most popular
songs” concurrently over the entire Google Knowledge
Graph (KG hereafter), a data set of 70B edges in 2016 [16,
30, 38].

We propose a method to create query plans for any graph-
shaped query (a directed acyclic graph of edges, not just a
tree-shaped query); these plans support both aggregation
and negation and scale to large number of analytic queries
(1000+) in parallel. In our solution, queries can also be
expressed using a high-level declarative query language;
we exemplify with Datalog, but many query languages can
be compiled to these plans. Our execution engine is Pregel,
and we are using XLisp [36] parallel execution algebra to
describe how we avoid the memory and fan-in skew rela-
tional engines create; we provide an example of the benefits
of this algebra at the end of Sect. 3.2 using the triangle query
as an example. For clarity and scope reasons, we limit this
paper to describe how the compiler creates an imperative
query plan; we defer declarative query planning, dynamic
query planning, recursive query execution and indexing opti-
mization techniques for later publication.

The remainder of the paper is organized as follows: we
will briefly discuss prior work in the next section. In Sect. 3
we discuss the fundamental principles used to map an imper-
ative graph query onto a Pregel graph algorithm and we
walk through solutions for traversal, aggregation and nega-
tion. In Sect. 3.3 we discuss the scalability and performance
aspects of our Pregel implementation. Section 4 describes
our results in deploying and running this system in practice,
and in Sect. 5 we conclude with a summary and future work.

2 Related work

The vast majority of related work either works from terse
graph query languages toward familiar, traditional relational
databases query execution engines or, conversely, maps
familiar but verbose SQL language toward newer graph or
MapReduce systems [18]. Few methods fall, like ours, in
the category of graph query engines over graph-compute
platforms.

Relational databases have been extensively studied in the
past decades, and many still argue vigorously against graph
databases or specialized graph engines [20]; such systems

do not naturally scale for web-sized graph and, like SQL
systems in general, require specialized tuning for the query
profiles (index creation, etc). Specialized indices for RDF
graphs [25] help reduce the size of the intermediate results
that queries with a large number of joins produce. All these
systems are extremely costly to scale out both in terms of
hardware and development cost: web-size graphs need be
partitioned over many computers to accommodate the stor-
age needed, many CPUs are needed to accommodate the
compute load, and custom concurrency models are needed
to solve this.

Indices and inverted indices of graph adjacency lists are
another solution, like those used in traditional IR search sys-
tems [3, 12]. These systems are easy to scale out, and tra-
ditional relational database query evaluation algebra can be
used to fetch the data from the database shards, then execute
a query plan and provide an answer. Recent implementation
is described in [1] and [34]. Such systems are more suit-
able to OLTP workloads rather than OLAP because the large
communication pattern of the latter would stress the network
and memory layer of the system with the amount of dupli-
cated data or the join sizes. The pre-existing graph-compute
platform (Pregel) and its scalability and ease of use for graph
applications biased our efforts toward a Pregel application.

Other authors have proposed graph algorithm mappings
onto MapReduce systems [17, 33]. MapReduce systems
have various shortcomings for graph processing since they
fundamentally implement a divide and conquer algorithm
while graph queries specify traversals. Graph traversals
requires iterative loops over map steps which produce large
joins (adjacency lists) fan-out followed by recombination
and a join computation in the reduce step, then iterate. These
systems not scale in memory because of enormous skew cre-
ated by large joins in the reduce phase. These data modeling
problems can be resolved by de-normalizing the graph and
converting it into a KV store, where the key is the identity
of a node and the value is the N hop reachability set, which
is the maximum depth of the query that can be answered.

Pregel [29] and other similar bulk synchronous parallel
[37] systems [19, 28] provide a vertex-centric computation
model that requires each node to compute its future state
in an isolated manner and allows graph algorithms to be
implemented on top of this model [23, 40, 41].

Others [31, 39] use Datalog as the high-level language
and map traditional relational query evaluation engines
over bulk synchronous parallel execution models, where
the evaluation vertices use the graph as an index and “pull”
adjacency lists into the evaluation; these solutions generate
vast amounts of messages and fan-in skew when they pull
large sets; solutions to mitigate this such as supervertices
(subgraph as a vertex) and eager aggregation are proposed in
[31]. While the query evaluation supports recursion, the use

1495Pattern Analysis and Applications (2020) 23:1493–1504

1 3

of relational algebra adds skew and memory requirements
which hinders scalability.

Recently, authors have attempted mapping graph tra-
versal pattern matching into native graph processing like
Pregel. Quegel [43] describes how a tree query is manually
mapped into a nested for loop of evaluation and it details
how manual mapping is required; there is no automation in
this solution, and no solution for aggregation and negation.

The solution we propose fits into this last category: native
graph query plans on a graph processing system; our method
generates query plans for any query with conjunction or dis-
junction that handles aggregation and negation. Moreover, our
query plans are pure functional and independent; hence, any
number of queries can run in parallel. We use Datalog as an
example query language, but any declarative query language
(e.g., [8]) can be compiled into a DAG query plan we propose.

3 Graph query processing & the Pregel
Connection Machine

This section describes our techniques to algorithmically map
a graph query plan onto a bulk synchronous parallel compute
system such as Pregel. For clarity, we limit the scope to

logic programming language, Prolog [9]. Any high-level lan-
guage would work as well and the query evaluator presented
here is independent of the language used. Datalog is merely
useful to convey the algebra used in the evaluation and well
known in the community.

In Datalog, statements which end with a period are asser-
tions (writes); statements which end with a question mark
are queries (reads). Our graph data is a collection of (subject,
predicate, object) triples [2], so graph edge triples are tersely
declared as

Here is an example set of edge statements that describe a
subgraph of triples for a notable person:

And these edges describe, obviously, that Henry V is the
King of England and in our imperfect historical account that
is part of Britain; the identity of the vertex is }}id_1�� . This
data is queried as follows:

discuss only the imperative query execution engine; hence,
the order in which the query is executed is predetermined
and the execution plan is static. We start by describing a
simple graph path query plans, then how a tree path (a con-
junction) would work; Sect. 3.2 presents the aggregation
and negation solution, which make our query plans directed
acyclic graphs (DAGs); In Sect. 3.2.1 we discuss the graph-
shaped queries plans and their concurrency, aggregating
output and disjunctions, to complete the mapping of the
high-level query plans onto topologically sorted plans for
synchronous execution on Pregel. We defer the discussion
on query planning, dynamic execution as well as recursive
queries for a future publication.

The imperative query execution engine produces query
plans that (1) can execute any graph-shaped query, (2) scale
to provide complete and exhaustive answers for very large
graph data sets and (3) scale to execute a large set of queries
in parallel on a Pregel compute system; this implements a
high-performance graph query system for today’s Knowl-
edge graphs and social graphs.

A query language that describes such queries declara-
tively is Datalog: Throughout this paper we use Datalog [6]
as the query language which itself is a restricted form of the

query for all the royals x with a place of work y named
}}England�� : variables allow us to describe trees and graphs
of edges to be created or queried. Figure 1 graphically mod-
els the query using the Edge declarations as labeled circles,
and the variables are the arrows connecting these.

The set of predicates defines the schema and, for a graph
database, this is the set of labels on the edges. However, the
choice of query language (Datalog, GRAQL, SPARQL) or
schema (OWL, or Freebase) has no impact on our query
planning algorithms or execution and are here merely to sup-
port our examples.

3.1 Query processing engine: graph traversals

The main difference between queries in a graph database and
in a relational one is the fact that a graph traversal requires
all relationships to be primary (fast) while a relational one
considers relationships in a table as primary (fast lookup)
and relationships between tables as secondary (slower joins).
For example, “British royal family” will be a
table that one would expect indexed in a relational data-
base but “blue-eyes British royal family”
is an improbable index: let’s assume there was a table of

1496 Pattern Analysis and Applications (2020) 23:1493–1504

1 3

blue-eyed people and that has to be joined with the table of
British royals; we would have to create indices of British
(and Dutch and Belgian and other monarchies) blue-eyed to
optimize the join size. In relational algebra, two sets of rows
are collected from two tables (naively, “king” rows from the
“occupation” table and “England” rows from the “place of
birth” table which are joined.

messages, no continuation is needed and no more messages
are issued, and (3) the system serializes all results and halts:
we have found all results.

A compute system that describes a similar algebra is the
Connection Machine [22] with its XLisp dialect [36] suit-
able for parallel computations. The Connection Machine is
a massively parallel computer architecture which consists

In a graph, the relationships are expected to be found
in constant time for any given node: each vertex can only
access its adjacency list. A query is a traversal from one
vertex identity to another with the expectation that all adja-
cencies are “fast” or constant time. The best model for this
data set is a graph, where the nodes are identities and the
edges are relationships, aka a RDF subject–predicate–object
triples [21]. As noted in [43], graph traversal is achieved by
depth- or breadth-first “hopping” the graph from a set of
nodes to another. For example, “spouses of blue-
eyes english royal family” are, starting from
each node in R above, the nodes at the object end of the
edges labeled “spouses”. Graph traversals do not require
joins: we don’t need all spouses of all kings, we need all
spouses of each king.

Using a functional language such as LISP [7], this is
modeled as a mapcar operation over the set x : the subsets
of y are independent for each value of x and we are not
required to join them together: map the subjects using the
predicate names into the list of objects; those objects are in
turn the subjects of the next wave of edges in the traversal,
and we map the subjects through a predicate edge label, etc.
According to Valiant’s bulk synchronous model [37], these
’map’ operations are easy to parallelize. This observation is
a fundamental building stone for parallelism, scalability and
vertex-centric execution on Pregel.

Pregel is a vertex-centric computation system aimed at
parallel graph computing, where computation is planned in
synchronous supersteps: in each superstep, each vertex exe-
cutes a used-defined compute based on incoming messages
and the vertex value and adjacency and sends messages to
other vertices. These messages are grouped by vertex and
delivered in the next superstep, iteratively; the computa-
tion halts when there are no new messages issued. Pregel
provides no global state and each vertex only knows the
messages it receives and its current state. For our example,
(1) all “royal”, “blue eyed” and “British” ver-
tices send messages to their “spouse_id” vertices with their
identity and a query continuation; (2) when receiving those

of an array of general purpose processors that perform the
same operation on multiple data points simultaneously; each
processor executes a pure functional � given a set of input
arguments and sends the result of that computation to a set
of processors in the network. The non-Von Neumann com-
puter architecture of the Connection Machine and XLisp
defines a parallel graph computation algebra:

– each processor is a vertex and its edge adjacency list in
our graph;

– the queries are the pure functional � operations that select
how the incoming messages and/or the vertex adjacency
are processed;

– the adjacency list helps route the results and the program
to the next nodes. For our example, in the 1st step, each
compute node decides whether it is labeled “royal”, “blue
eyed” and “english” and has “spouse” connections. Those
nodes that do use the triple ([royal id], place-of_work,
[place_id]) send a remainder of the query (i.e., “match
predicate ’name’ to object literal ’Britain”’) to each
[place_id] with the accumulated data and the remainder
of that query in that path; this design pattern is very simi-
lar to the Scheme call-with-current-continuation Scheme
pattern [11] and Prolog Backtracking [14];

– at the end of the computation, each place_id knows its
royal_id and the query and we can store the data in a
distributed mode. More details about creating a set of
results follow later in this section.

The Connection Machine XLisp[36] algebra helps describe
how Pregel operates: in each superstep each vertex executes
a pure functional operation � over the set of vertices. XLisp
defines the parallel map data type call Xap (a parallel map),
which is the adjacency list of each vertex in a Pregel graph.
For example, the small graph from the previous subsection
can be represented as a Xap of node adjacency list V:

V = Xap{��id��
1
→ {name, title, place_of_work, spouses,…},

��id��
2
→ {name}}

1497Pattern Analysis and Applications (2020) 23:1493–1504

1 3

Each Pregel compute superstep is, using XLisp algebra, an
“apply-to-all” �F() which applies, like mapcar in Lisp, to
each element separately with its own incoming messages
and produces a Xapping of messages for the next step; just
like a Xap , all vertices are independent of all other vertices.

The Pregel system groups these messages by destination and
uses them in the next superstep to apply an �F() to each
vertex and continues while there are messages to deliver.
The Pregel system as a whole is described by the following
XLisp while loop:

For our query plans, each �F() operation is an Edge() select
operation, i.e., one hop in the graph. Similarly, disjunction
is a forest of �F() paths. This graph-compute system can so
far answer any conjunction or disjunction (set of paths in the
graph) but obviously no aggregation: each path computation
is independent of all other and vertices know nothing about
other vertices; if one would like to know the top royals by
the number of marriages, we need aggregation; we describe
our aggregation solution in Sect. 3.2.

The principles we keep throughout the implementation
of this system are:

1. This is a pure functional query system without side
effects: we do not rely on a global state and the graph is
stateless; the vertices and the edges do not have state that
spans a Pregel superstep: each � sees each vertex in the
same state. This requires us to send all the information
through messages (current results and remainder of the

M = (Xap (� F(V Mi)))

(while M

(Xap Mi) = (group − by i M)

M = (Xap (� F(Mi))))

query); also, it permits us to implement graph-shaped
queries (later in this paper) and recursive and declarative
query evaluation (in a subsequent publication). With-
out a stateless adjacency graph, any query reaching the
same node sees a mutated adjacency list. By contrast,
the graph processing language solution proposed in [23]
allows for a global state.

2. All the � functions we apply to the vertices are pure
functional as well and do not create global state used
in the algorithm: Pregel implements aggregators and
allows for compute global state; we do not use those
in the algorithm to allow for easy recovery and to keep
our graph system stateless. A global state may prevent
running multiple queries in parallel.

The diagram in Fig. 2 shows a conjunctive query that
follows 3 paths starting from a shared subpath; the query
requires 5 superstep (the maximum depth of the tree) to
complete. In tree queries each result path is independent of
all other paths, a set of leaf nodes end up receiving all results
for the top path, another set receives the center, and another
receives the bottom path results. All paths originating from
one vertex are independent results to the query; we describe
how they are all aggregated in Sect. 3.2.

3.2 Aggregation

The discerning historian is obviously not interested in all
British royal marriages, but in the most prolific ones: how
do we modify our system to get straight to Henry V? The
database answer is aggregation: collect all the answers in
one place, sort and select given an intrinsic criteria: “top
10 blue eyed British royals by marriage
count”. Note, we can select the ones with more than “3”
marriages independent with a �F() operation (that is, “3” is
an independent, extrinsic parameter) while “top 10” is an
intrinsic parameter that requires the exhaustive list.

In a Pregel graph all messages must be delivered to the
same vertex, but such vertex does not exist in the naive
graph. Our solution is to create a new vertex identity that is

Fig. 2 Conjunctive query tree

Fig. 1 Query plan diagram

1498 Pattern Analysis and Applications (2020) 23:1493–1504

1 3

unique and transient: this vertex receives all the messages
to be aggregated, executes the aggregation compute opera-
tion and sends messages to continue the computation; the
vertex is then deleted. We call this an “aggregation vertex”;
its identity must be unique to ensure that we only collect the
set of messages necessary and sufficient for that aggrega-
tion: for our example, we can have one aggregation node for
each royal to select the right subset; we do not want all the
spouses for all the royals and then deal with the sorting job.
This technique allows us to implement a rich—and extensi-
ble—library of aggregation functions (e.g., min, max, count,
set, filters, top, sort...) as needed by our queries.

Our reason to make the identity of the aggregation node
transient is to preserve our principle that the graph should be
stateless between Pregel supersteps: these compute vertices
exist merely for the purpose of computing the result of the �
and have no edges or side effects. The Pregel system affords
this technique: messages can be sent to any vertex identity;
if the identity does not exist (that is, an “orphan message”
is observed), the superstep barrier creates the missing ver-
tex identity at the barrier and delivers the messages after
the barrier. We delete all the aggregation vertices after each
operation; hence, the graph is stateless after each superstep.

The Pregel system streams the messages; hence, messages
have no compound memory effect on the system. Large fan-
in is not a memory concern but only influences the duration
of the compute because the enumeration complexity is linear
with the message set size n.

A standard benchmark is the triangle query

and its DAG is shown in the diagram in Fig. 3 as a series
of 3 supersteps. With our algebra, the triangle query execu-
tion yields a Xap of results of cardinality T after three � F()
operations:

Notably, it is not a triangle and there is no join with our alge-
bra. In the last superstep, a test of equality is performed in
each individual path in constant size and time and the result
is part of the solution iff the root and the destination nodes
are identical. Note that the messages propagate only when
the mapping is successful: the number of messages testing
label C is equal to the size of A followed by B rather than
A ⋅ B ; in a vast majority of cases the graph schema allows

M = (Xap (� C(�B(�A()))))

us to rewrite the query such that we traverse the graph in
the direction of low-cardinality predicates, hence the upper
bound of this traversal is max(A,B) when one of the predi-
cates has cardinality equal to one.

Relational algebra requires joins and produces a single
result with T rows:

where B is the inverse edge of B . XLisp algebra describes
aggregation using �F() , an operation applied to all ele-
ments in a set. With the relational algebra, the join opera-
tions create potentially large fan-in at the ’join’ operations.
With the graph algebra the Xap fan-in is constant; the Xap
data structure afforded by Pregel allows us to avoid tradi-
tional joins and produce solutions independently (that is, in
a }}foreach�� parallel approach) instead of set of solutions
(that is, a }}forall�� approach).

3.2.1 Concurrency of aggregation

When all paths leading to an aggregation vertex are of equal
length (same number of edge traversals), then all messages
arrive at the aggregation node concurrently in the same
superstep; otherwise, they arrive at different supersteps and
must be held indefinitely, because the system is stateless,
and we do not know any global query state. A few solutions
are possible, among them: (1) introduce some global, static
state to lookup the wait time or (2) encode the wait time in
the continuation the messages contain or synchronize the
computation. The former option introduces global state and
makes some of these vertices survive multiple supersteps.

We prefer the second option for 3 reasons: (a) is more
native to XLisp algebra and Pregel and to the principles of a
synchronous system, (b) is pure functional and does not vio-
late our principles and (c) signal concurrency is well studied
in integrated circuit design algorithms [10].

Signal concurrency in VLSI [10] ensures that logical
processing units receive all stimuli within a synchronized
time window and produce a response which is buffered and
synchronized and then distributed at the next synchronous
barrier to the inputs of the following stage; this architecture
permitted the incredible scale of semiconductor growth in
the last 50 years predicted by Moore’s law [32]. Also, gen-
erating low level circuits from high-level description lan-
guages is a well studied problem [27] with proven solutions
to signal concurrency.

Our query compilation produces synchronous query
execution plans that ensure concurrency of the aggregation
nodes. Shorter concurrent paths in the graph are buffered to
match the length of longest path in the concurrency set, just
like VLSI paths are [42]; we insert wait_supersteps(m − n)

M = (�
⋂

(� C(), �
⋂

(�A(), �B())))

Fig. 3 Triangle query

1499Pattern Analysis and Applications (2020) 23:1493–1504

1 3

where m and n are the longest and shorter path length,
respectively.

Figure 4 shows a query tree where the 3 branches to be
aggregated at the rightmost red node are of different lengths:
the green nodes represent the regular vertex compute aligned
vertically by superstep. The aggregation node (in red above)
expects all messages concurrently in the same superstep: to
achieve concurrency they have to be delayed through the
missing (gray boundary) nodes in the diagram above; we
implement that as “buffer” operations where messages are
bounced to the source vertex for a number of steps before
being sent to the aggregation node. For example the mes-
sages are bounced thrice for the top path and twice for the
center path; all paths have same length, 4 supersteps, after
which all paths are aggregated.

Aggregation nodes may join different paths or all mes-
sages on one path. The former case is a general set intersect
or union problem and allows us to answer graph-shaped que-
ries (e.g., the query “actors with Oscar awards that are also
musicians with more than 3 albums”) and the latter (the red
node in the bottom path) is the simple value aggregation
(e.g., the query “musicians with an album count greater than
3”). The green nodes may represent a set of vertices corre-
sponding to � parallel operations while a red one is always
a single vertex in the graph corresponding to a � operation.

In the Pregel framework, this can be implemented in a
number of ways, we discuss three of them and their relative
merits:

1. When a wait_superstep continuation is encountered,
change the state of the vertex and store the outgoing
message for m − n − 1 supersteps before sending it,
counting down the supersteps. This technique adds
memory to the vertices and may bloat the global RAM
used, which may lead to operational issues. Also, it
violates our pure functional graph architecture in an
inconsequential way—the adjacency is the only relevant
immutable state.

2. Bounce the message to self for m − n − 1 time before
sending it to the destination. This is entirely consistent

to both Connection Machine and Pregel architecture; it
is similar to the first solution in behavior, preserve the
lifespan of the aggregation nodes to one superstep and
does not add RAM, because messages are streamed in
Pregel. In the image above it is equivalent to inserting
“dummy” nodes in the graph such that all the paths are
of equal length.

3. Change the Pregel SendMessage implementation and
add an integer argument for “how many supersteps in
the future” a message should be send, that is the default
is one:

such implementation is system optimal, the messages are
stored for m − n − 1 supersteps barrier before they are
sent to the aggregation vertex.

3.2.2 Negation

We implement negation, as other database systems do, as an
extension of aggregation: count the size of a set and expect a
null one to negate an expression. The Pregel query mapping
of a negation is an aggregation message sent with the query
continuation and the computation continues iff that is the
sole message received at the aggregation node: that is, we
expect a null set of messages to arrive on the bottom path.
Because we rely on the aggregate vertex to send continu-
ations, we need to send a sentinel message to execute the
“aggregation”; otherwise, the aggregation vertex is never
created and the computation can’t be executed; the intent
is “if you are the lone message arriving at the aggregation
vertex, compute this continuation”. In the diagram in Fig. 5,
the bottom, green path is the path to be negated, the top path
is the one taken by the sentinel message and the red aggrega-
tion node is the sentinel that monitors that no messages are
incoming through the negated path: that is, for the query “a
then not(b.c)” the answer is positive iff the aggregation node
receives only the sentinel message sent after A.

Fig. 4 Concurrency of aggregation
Fig. 5 Concurrency of negation

1500 Pattern Analysis and Applications (2020) 23:1493–1504

1 3

3.2.3 Query planning output

As described so far, queries are DAGs in the Pregel imple-
mentation and each message carries the results on the path to
the current solution and the remaining path to be executed.
After the path is exhausted, all results for each path lie at the
leaf vertices, which is not ideal from the users point of view:
they expect the whole tree of results associated with each
root node to be aggregated together. For example, for each
blue-eyed British royal, provide a set of spouses.

Output is identical to aggregation: our query planner adds
an output aggregation node as a sink for each query, and all
results are aggregated and converted into a tree at that sink
vertex. These sink vertices are similar to any other aggre-
gation nodes and execute a “merge” operation from all the
received paths given the query logic and preserve all the
grouping of the paths as specified in the query tree.

The Pregel system serializes the results each vertex
chooses to store in the last superstep: the user overrides the
Vertex ∶∶ Write procedure as follows: query output aggrega-
tion above allows us to (1) create one aggregation node per
“root” vertex and query, (2) transform it into the desired
output format to accommodate a declarative query planner
or a graph transformation extension to Prolog and (3) group
the results as the users of the system expect in an key-value
store keyed primarily with the vertex id of the source and
secondarily with the query—or any other key we choose.

Our query planner compiles each query into a DAG that
has exactly one source and one sink, all paths between two
nodes are equal length, and each node is a Pregel vertex
compute event, either at regular vertex or an aggregation
(including negation/output) vertex. A diagram of such a
query is shown in Fig. 6: the green nodes are computation
at vertices, the red nodes are computation at aggregation or

output nodes, and the transparent ones are synchronization
nodes inserted for concurrency. Our imperative execution
engine traverses a Datalog statement left to right and top
to bottom and creates a DAG of computation, then inserts
padding to make all paths equal. In Fig. 6 the superstep
sequence is labeled S1 ...S9 for the query example.

A DAG is a necessary condition for the query plans: all
paths are explicit and there is no recursion in the execution
graph: that is, we know the exact length of each traversal
and we can synchronize the paths in the graph; also, we
can perform a traversal in topological order [13]. Because
we disallow cycles, there is no phylogenetic traversal or
transitive closure allowed: we can’t find “zoos with bears
in California”, where we have two recursions: “bears” is
a phylogenetic regnum that zoo inhabitants belong to and
California is a hierarchy of places contained in each other.
We can express an explicit disjunction for all paths between
people up to length 6 (or, generally N), but we cannot com-
pute Bacon numbers for all people [15]. The recursive query
plan required a different query plan strategy; we defer recur-
sive query planning for a later publication.

Note that any graph-shaped queries can be automatically
mapped to a Pregel query plan: any graph-shaped (concur-
rent paths) “equals” or “match” is a type of aggregation;
disjunctive queries are handled as separate queries that are
joined by a “union” operator: we convert a forest of que-
ries into a tree and each query plan is a DAG with a single
source and sink. Each result of a query is a graph of sets with
a single source vertex and a single sink: each ��() opera-
tion yields a Xap at a set of vertices, each ��() aggregation
operation is a single vertex, using the XLisp algebra [36].
The query plans compiled into one of these DAG graphs;
it can be executed by the generic Pregel compute algorithm
because each node starts with all paths and send messages
to subsequent nodes with (1) the nodes collected along the
path and (2) the remaining operations to be executed. When
the next destination is a “green” node, the message is sent
to a vertex ID (i.e., object) as the vertex adjacency list (i.e.,
predicates and objects) and the query (i.e., predicate filter)
requires. The aggregation node destinations are computed
on the fly based on the selective identity of the vertices on
the incoming path and the operation to be executed. That
guarantees that all messages arrive at the same vertex (e.g.,
for paths they started at the same root, traversed the same
aggregation nodes and require the same operation, they will
all be sent to the same aggregation node). After that, the
identity of the destination is in the messages themselves. In
summary, all paths know their continuation and the query
planner ensures the concurrency of each query: all results
end up at a unique aggregation node.

One of the great advantages of our approach is that we
have made no assumption on the � functions that executes
at each node: we can execute any pure function applied

Fig. 6 Synchronous query plan

1501Pattern Analysis and Applications (2020) 23:1493–1504

1 3

to a set of incoming messages and a vertex adjacency list
that produces a set of messages. That makes our compute
implementation extremely simple, the incoming messages
tell each vertex what to compute: all messages at a green
graph vertex are independent computations and all messages
at a red aggregation node are—by design—concurrent and
consistent in the operation to be executed. The semantic of
the computation is practically scalable to any library of func-
tions that satisfies these constraints.

3.3 Scalability

The key to the scalability of the system is the guarantee
that aggregation vertices are uniquely identified by (1) the
relevant nodes in the result path and (2) a key unique to the
entire query they execute. That is, each of them is unique
to its DAG query plan and that particular result; hence, the

system can independently execute any number of queries in
parallel without any contention of the results. Because each
query path is guaranteed to collect all nodes at a unique final
identity, the Pregel graph query system (1) can execute any
number of “computations” (aka queries) in parallel and (2)
each query can start at any superstep.

We can execute as many queries in parallel as the memory
of the system allows, because the Pregel system streams the
messages at each superstep boundary without adding mem-
ory or mutating the graph. The Pregel system scales linearly
with the number of compute nodes N and each compute
node holds |V|∕N of the vertices, where |V| is the cardinality
of the vertex set and |V| ≫ N . We allocate transient memory
for the aggregation nodes, but that memory is freed at the
boundary of the superstep. Because we have a large number
of queries that execute in parallel (over 1000 categorical
queries of different length in parallel in one instance) each

Fig. 7 Concurrency of aggrega-
tion

1502 Pattern Analysis and Applications (2020) 23:1493–1504

1 3

superstep spawns new aggregation nodes at a rate of r ⋅ |V|
where 0.25 ≤ r ≤ 10 . Figure 7 shows how the number of
vertices grows in each superstep for 5 different jobs and the
memory footprint of the system. The queries are divided
randomly between the jobs. One can note that the memory
growth is less than linear: while the number of vertices for
Job 3 and 4 grows 2000% in some supersteps, the memory
footprint grows by 70% and 50%, respectively: these vertices
have no data, no adjacency list, they are a transient computa-
tion node.

Valiant notes that skew is inevitable in bulk synchronous
systems [37]: some compute processes take longer than oth-
ers in a heterogeneous system because each vertex set com-
putes different queries. However, the Pregel system assigns
vertices into shards uniformly at random into a worker shard
(a process in the distributed system) and each vertex has its
own adjacency and computation load. As a result, the aver-
age compound computation skew of various worker shards
evens out. In our system, the graph we model is heteroge-
neous (the Knowledge Graph contain numerous ontology
domains), the queries are heterogeneous (we expect queries
about marriages, football, music and food, among others)
and the query set is large and we add and remove aggrega-
tion nodes with random identities based on these queries.
With respect to skew, all three factors above combine into a
balanced “homogeneous” compute system where the overall
computation evens out: the diversity of vertex loads com-
bines into an overall computation with negligible skew.

Most Knowledge Graphs are not densely connected,
because the ontology of the knowledge domains is limited
and hence the adjacency list of each node is much smaller
than the number of vertices in the graph. (We do have
optimization solutions for high-degree vertices which are
described later in this section.) That is, the size of adja-
cency is a constant A for the vast majority of nodes in the
graph; hence, the number of messages sent by each node or
received by each regular or aggregation vertex is O(A) . The
number of messages sent in each superstep is O(|V| ⋅ A) and
in a random distribution of results and node identities each
worker compute node receives O(|V| ⋅ A∕N) for its |V|∕N
vertices of the graph messages per global query.

4 Production experience & results

Our PathQuery Pregel system has been live in production
for a few of years and running analytics query load over
the Google Knowledge Graph, a data set of 70B edges in
2016 [16, 38]. We have built and scaled-out the system over
a period of time, hence learned the optimization needed
throughout the ramp-up of the system. We have run a num-
ber of separate jobs that produced independent results for
different clients. In this section, we provide operational

details about the two most significant jobs because their
query profiles diversity informed our optimization work and
priorities and explain the origin of the solutions described
in Sect. 3.3.

The largest production job contained the largest categori-
cal (high volume analytical) query set: over 1000 complex
queries running in parallel. This job was running in under
one hour with a thrice daily frequency. We have run vari-
ous query profiles for various experiments with 200–2000
machines. The queries in this set had a depth (number of
supersteps) of 2-30, that is, the most complex query was
traversing 30 predicates in the graph. The query set was very
heterogeneous in this case and that led us to the observa-
tions on ontology domain locality, as described in Sect. 3.3:
cars and musician queries are largely independent, but
when a domain is dominating the graph then that has an
overall larger impact than others. For example, if the graph
contains N times more data in one domain than another,
then we would expect the message load for queries in that
domain to be N times higher. Even more, the number of
features is proportional to the domain coverage, more que-
ries with higher complexity would exist for a domain with
more data: the knowledge graphs are “open world” systems
(incomplete data) when they get closer to a “closed world”
(complete data) the user experience improves and drives
up the demand. In practice, this tends to make the message
load superlinear. This informed the strategy of grouping the
queries into staggered trains, common query subpath opti-
mization, etc.

All jobs above were run on shared resources in the
Google data centers, an environment where other ephemeral
jobs may compete for resources: due to the nature of the bulk
synchronous query execution in Pregel the jobs tend to run
longer and need stability, because a single machine failure
requires re-starting the superstep for that machine, but all
machines would wait for the superstep to complete. For this
reason, long supersteps were most vulnerable; as they lasted
longer, they were more susceptible to repeated failures and
were taking the longest to rerun. We have developed many
instrumentation techniques to be able to quantify and profile
the message load in each superstep and used that information
to optimize the health of our jobs over time.

Skew (excessive compute at one of the Pregel worker
machines) was generally solved with query rewriting; we
were able to resolve all large fan-out and fan-in with manual
rewrites. The optimization turned out to be schema-driven
rather than graph-shape driven, hence the rewrite was gener-
ally improving a whole class of queries, and the techniques
were easily generalizable over schema domains. We have
monitored all jobs over many months (tens or hundreds of
consecutive runs) and noticed little variation in the run-time
over the median, and the few large variations were gener-
ally resource limitations or machine failures. We have also

1503Pattern Analysis and Applications (2020) 23:1493–1504

1 3

monitored the message load per worker machine to ensure
that message load was largely constant and, given a ran-
domly distributed query load, the overall compute time had
negligible skew.

We are confident that this query execution engine scales
naturally over any web-sized Knowledge Graph with impera-
tive queries that avoid high-degree vertices at fan-in and
fan-out; horizontal scalability and staggering are techniques
to increase parallelism and scale throughput for larger query
sets. Dedicated resources could be used if needed to ensure
stability, but a shared-resource datacenter as the one we used
provided excellent stability even at normal job priority (that
is, our jobs were generally not preempted when running with
average priorities).

5 Conclusions

We have presented novel techniques to map a declarative
high-level query language into an imperative execution
engine in Pregel; we provided algorithmic solutions to map
any queries with aggregation, negation over conjunctive and
disjunctive queries into a concurrent compute system called
PathQuery Pregel and described how the results are com-
puted. Our solution provides a generic mapping of generic
queries to a Pregel compute without manual development
and supports a broad type of queries expressed in a of high-
level language, such as Datalog; the parallel map algebra
used avoids skew and allows multiple analytic queries
(1000+) in parallel.

Our results with production data show the scope of the
solution and the impact it provided to our operations; we
share our experience with Pregel and the innovative tech-
niques we derived from seminal work on the Connection
Machine and the VLSI synchronization methodologies
which helped us achieve concurrency. We describe how the
solution scales to any web-sized Knowledge Graph.

Future work requires assembling all the manual tech-
niques described for optimizing the imperative execution
into a query planning algorithm that supports Datalog que-
ries as declarative queries. Also, extensions to our mapping
algorithm to allow recursive queries and indexing that goes
beyond naive vertex indexing have been deferred for a later
publication for clarity.

Acknowledgements None of this would have happened without the
passion, knowledge and vision of our late friend and colleague Warren
Harris. We regret his passing immensely and we dedicate this summary
of our work to his memory. We are proud of what we have achieved
together and of what we learned from Warren.

References

 1. Aberger CR, Lamb A, Tu S, Nötzli A, Olukotun K, Ré C
(2017) Emptyheaded: a relational engine for graph process-
ing. ACM Trans Database Syst 42(4):20:1–20:44. https ://doi.
org/10.1145/31292 46

 2. Angles R, Gutiérrez C (2008) Survey of graph database models.
ACM Comput Surv 40(1):1:1–1:39. https ://doi.org/10.1145/13224
32.13224 33

 3. Baeza-Yates RA, Ribeiro-Neto BA (1999) Modern information
retrieval. ACM Press, Addison-Wesley, Boston

 4. Bast H, Buchhold B, Haussmann E (2016) Semantic search on text
and knowledge bases. Found Trends Inf Retr 10(2–3):119–271.
https ://doi.org/10.1561/15000 00032

 5. Bollacker KD, Evans C, Paritosh P, Sturge T, Taylor J (2008)
Freebase: a collaboratively created graph database for structuring
human knowledge. In: Wang JT (ed) Proceedings of the ACM
SIGMOD international conference on management of data, SIG-
MOD 2008, Vancouver, BC, Canada, June 10–12, 2008. ACM,
pp 1247–1250. https ://doi.org/10.1145/13766 16.13767 46

 6. Ceri S, Gottlob G, Tanca L (1989) What you always wanted to
know about datalog (and never dared to ask). IEEE Trans Knowl
Data Eng 1(1):146–166. https ://doi.org/10.1109/69.43410

 7. Chassel RJ. The mapcar function. https ://www.gnu.org/softw are/
emacs /manua l/html_node/eintr /mapca r.html

 8. Chavarría-Miranda DG, Castellana VG, Morari A, Haglin D, Feo
J (2016) Graql: a query language for high-performance attributed
graph databases. In: 2016 IEEE international parallel and distrib-
uted processing symposium workshops, IPDPS workshops 2016,
Chicago, IL, USA, May 23–27, 2016. IEEE Computer Society, pp
1453–1462. https ://doi.org/10.1109/IPDPS W.2016.216

 9. Colmerauer A, Roussel P (1993) The birth of prolog. In: Lee JAN,
Sammet JE (eds) History of programming languages conference
(HOPL-II), Preprints, Cambridge, Massachusetts, USA, April
20–23, 1993. ACM, pp 37–52. https ://doi.org/10.1145/15476
6.15536 2

 10. Contributors W (2015) Synchronous circuit—Wikipedia, the free
encyclopedia. https ://en.wikip edia.org/w/index .php?title =Synch
ronou s_circu it&oldid =69662 6873. Online; Accessed 15 Feb 2018

 11. Contributors W (2017) Call-with-current-continuation—Wiki-
pedia, the free encyclopedia. https ://en.wikip edia.org/w/index
.php?title =Call-with-curre nt-conti nuati on&oldid =81100 8297.
Online; Accessed 16 Feb 2018

 12. Contributors W (2017) Inverted index—Wikipedia, the free ency-
clopedia. https ://en.wikip edia.org/wiki/Inver ted_index

 13. Contributors W (2017) Topological sorting—Wikipedia, the free
encyclopedia. https ://en.wikip edia.org/w/index .php?title =Topol
ogica l_sorti ng&oldid =80589 3309. Online; Accessed 15 Feb 2018

 14. Contributors W (2018) Backtracking—Wikipedia, the free ency-
clopedia. https ://en.wikip edia.org/w/index .php?title =Backt racki
ng&oldid =82458 7461. Online; Accessed 16 Feb 2018

 15. Contributors W (2018) Kevin Bacon—Wikipedia, the free ency-
clopedia. https ://en.wikip edia.org/w/index .php?title =Kevin
_Bacon &oldid =82378 2926. Online; Accessed 16 Feb 2018

 16. Contributors W (2018) Knowledge Graph—Wikipedia, the free
encyclopedia. https ://en.wikip edia.org/w/index .php?title =Knowl
edge_Graph &oldid =82244 9387. Online; Accessed 15 Feb 2018

 17. Cuzzocrea A, Cosulschi M, Virgilio RD (2016) An effective and
efficient mapreduce algorithm for computing bfs-based travers-
als of large-scale RDF graphs. Algorithms 9(1):7. https ://doi.
org/10.3390/a9010 007

 18. Dean J, Ghemawat S (2004) Mapreduce: simplified data process-
ing on large clusters. In: Brewer EA, Chen P (eds) 6th Symposium
on operating system design and implementation (OSDI 2004),
San Francisco, California, USA, December 6–8, 2004. USENIX

https://doi.org/10.1145/3129246
https://doi.org/10.1145/3129246
https://doi.org/10.1145/1322432.1322433
https://doi.org/10.1145/1322432.1322433
https://doi.org/10.1561/1500000032
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1109/69.43410
https://www.gnu.org/software/emacs/manual/html_node/eintr/mapcar.html
https://www.gnu.org/software/emacs/manual/html_node/eintr/mapcar.html
https://doi.org/10.1109/IPDPSW.2016.216
https://doi.org/10.1145/154766.155362
https://doi.org/10.1145/154766.155362
https://en.wikipedia.org/w/index.php?title=Synchronous_circuit&oldid=696626873
https://en.wikipedia.org/w/index.php?title=Synchronous_circuit&oldid=696626873
https://en.wikipedia.org/w/index.php?title=Call-with-current-continuation&oldid=811008297
https://en.wikipedia.org/w/index.php?title=Call-with-current-continuation&oldid=811008297
https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/w/index.php?title=Topological_sorting&oldid=805893309
https://en.wikipedia.org/w/index.php?title=Topological_sorting&oldid=805893309
https://en.wikipedia.org/w/index.php?title=Backtracking&oldid=824587461
https://en.wikipedia.org/w/index.php?title=Backtracking&oldid=824587461
https://en.wikipedia.org/w/index.php?title=Kevin_Bacon&oldid=823782926
https://en.wikipedia.org/w/index.php?title=Kevin_Bacon&oldid=823782926
https://en.wikipedia.org/w/index.php?title=Knowledge_Graph&oldid=822449387
https://en.wikipedia.org/w/index.php?title=Knowledge_Graph&oldid=822449387
https://doi.org/10.3390/a9010007
https://doi.org/10.3390/a9010007

1504 Pattern Analysis and Applications (2020) 23:1493–1504

1 3

Association, pp 137–150. http://www.useni x.org/event s/osdi0 4/
tech/dean.html

 19. Facebook: Apache giraph. http://girap h.apach e.org/
 20. Fan J, Raj AGS, Patel JM (2015) The case against specialized

graph analytics engines. In: CIDR 2015, seventh biennial confer-
ence on innovative data systems research, Asilomar, CA, USA,
January 4–7, 2015, online proceedings. www.cidrd b.org. http://
cidrd b.org/cidr2 015/Paper s/CIDR1 5_Paper 20.pdf

 21. Group RW Rdf. https ://www.w3.org/RDF/
 22. Hillis WD (1989) The connection machine. MIT Press, Cambridge
 23. Hong S, Salihoglu S, Widom J, Olukotun K (2014) Simplifying

scalable graph processing with a domain-specific language. In:
Kaeli DR, Moseley T (eds) 12th Annual IEEE/ACM international
symposium on code generation and optimization, CGO 2014,
Orlando, FL, USA, February 15–19, 2014. ACM, p 208. https ://
doi.org/10.1145/25441 37.25441 62

 24. Junghanns M, Petermann A, Neumann M, Rahm E (2017) Man-
agement and analysis of big graph data: current systems and
open challenges. In: Zomaya AY, Sakr S (eds) Handbook of Big
Data technologies. Springer, New York, pp 457–505. https ://doi.
org/10.1007/978-3-319-49340 -4_14

 25. Kim K, Moon B, Kim H (2014) Rg-index: An RDF graph
index for efficient SPARQL query processing. Expert Syst Appl
41(10):4596–4607. https ://doi.org/10.1016/j.eswa.2014.01.027

 26. LinkedIn (2018) Linkedin economic graph. https ://econo micgr
aph.linke din.com/

 27. Lipsett R, Schaefer CF, Ussery C (1989) VHDL: hardware
description and design. Kluwer, Dordrecht

 28. Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C, Hellerstein
JM (2012) Distributed graphlab: a framework for machine learn-
ing in the cloud. PVLDB 5(8):716–727

 29. Malewicz G, Austern MH, Bik AJC, Dehnert JC, Horn I, Leiser
N, Czajkowski G (2010) Pregel: a system for large-scale graph
processing. In: Elmagarmid AK, Agrawal D (eds) Proceedings
of the ACM SIGMOD international conference on management
of data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6–10,
2010. ACM, pp 135–146. https ://doi.org/10.1145/18071 67.18071
84

 30. Marcus G (2012) The web gets smarter. https ://www.newyo rker.
com/cultu re/cultu re-desk/the-web-gets-smart er. Online; Accessed
15 Feb 2018

 31. Moustafa WE, Papavasileiou V, Yocum K, Deutsch A (2016)
Datalography: scaling datalog graph analytics on graph pro-
cessing systems. In: Joshi J, Karypis G, Liu L, Hu X, Ak R, Xia
Y, Xu W, Sato A, Rachuri S, Ungar LH, Yu PS, Govindaraju
R, Suzumura T (eds) 2016 IEEE international conference on Big
Data, BigData 2016, Washington DC, USA, December 5–8, 2016.
IEEE, pp 56–65. https ://doi.org/10.1109/BigDa ta.2016.78405 89

 32. Reference O Moore’s law. http://www.oxfor drefe rence .com/
view/10.1093/oi/autho rity.20110 80310 02082 56

 33. Rohloff K, Schantz RE (2010) High-performance, massively
scalable distributed systems using the mapreduce software frame-
work: the SHARD triple-store. In: Tilevich E, Eugster P (eds)
SPLASH workshop on programming support innovations for
emerging distributed applications (PSI EtA-ΨTheta 2010), Octo-
ber 17, 2010, Reno/Tahoe, Nevada, USA. ACM, p 4. https ://doi.
org/10.1145/19407 47.19407 51

 34. Seo J, Park J, Shin J, Lam MS (2013) Distributed socialite: a
datalog-based language for large-scale graph analysis. PVLDB
6(14):1906–1917

 35. Singhal A. Introducing the knowledge graph: things, not strings.
https ://googl eblog .blogs pot.com/2012/05/intro ducin g-knowl edge-
graph -thing s-not.html

 36. Steele LS Jr, Hillis WD (1986) Connection machine LISP: fine-
grained parallel symbolic processing. In: LISP and functional
programming, pp 279–297

 37. Valiant LG (1990) A bridging model for parallel computation.
Commun ACM 33(8):103–111. https ://doi.org/10.1145/79173
.79181

 38. Vincent J (2018) Apple boasts about sales; google boasts about
how good its AI is . https ://www.theve rge.com/2016/10/4/13122
406/googl e-phone -event -stats . Online; Accessed 15 Feb 2018

 39. Wang J, Balazinska M, Halperin D (2015) Asynchronous and
fault-tolerant recursive datalog evaluation in shared-nothing
engines. PVLDB 8(12):1542–1553

 40. Yan D, Cheng J, Lu Y, Ng W (2015) Effective techniques for mes-
sage reduction and load balancing in distributed graph computa-
tion. In: Gangemi A, Leonardi S, Panconesi A (eds) Proceedings
of the 24th international conference on World Wide Web, WWW
2015, Florence, Italy, May 18–22, 2015. ACM, pp 1307–1317.
https ://doi.org/10.1145/27362 77.27410 96

 41. Yan D, Cheng J, Xing K, Lu Y, Ng W, Bu Y (2014) Pregel algo-
rithms for graph connectivity problems with performance guar-
antees. PVLDB 7(14):1821–1832

 42. Yan Z, Liu M (1996) The RTL binding and mapping approach
of VHDL high-level synthesis system HLS/BIT. J. Comput Sci
Technol 11(6):562–569. https ://doi.org/10.1007/BF029 51619

 43. Zhang Q, Yan D, Cheng J (2016) Quegel: a general-purpose sys-
tem for querying big graphs. In: Özcan F, Koutrika G, Madden S
(eds) Proceedings of the 2016 international conference on man-
agement of data, SIGMOD conference 2016, San Francisco, CA,
USA, June 26–July 01, 2016. ACM, pp 2189–2192. https ://doi.
org/10.1145/28829 03.28993 98

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://www.usenix.org/events/osdi04/tech/dean.html
http://www.usenix.org/events/osdi04/tech/dean.html
http://giraph.apache.org/
http://www.cidrdb.org
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper20.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper20.pdf
https://www.w3.org/RDF/
https://doi.org/10.1145/2544137.2544162
https://doi.org/10.1145/2544137.2544162
https://doi.org/10.1007/978-3-319-49340-4_14
https://doi.org/10.1007/978-3-319-49340-4_14
https://doi.org/10.1016/j.eswa.2014.01.027
https://economicgraph.linkedin.com/
https://economicgraph.linkedin.com/
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
https://www.newyorker.com/culture/culture-desk/the-web-gets-smarter
https://www.newyorker.com/culture/culture-desk/the-web-gets-smarter
https://doi.org/10.1109/BigData.2016.7840589
http://www.oxfordreference.com/view/10.1093/oi/authority.20110803100208256
http://www.oxfordreference.com/view/10.1093/oi/authority.20110803100208256
https://doi.org/10.1145/1940747.1940751
https://doi.org/10.1145/1940747.1940751
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181
https://www.theverge.com/2016/10/4/13122406/google-phone-event-stats
https://www.theverge.com/2016/10/4/13122406/google-phone-event-stats
https://doi.org/10.1145/2736277.2741096
https://doi.org/10.1007/BF02951619
https://doi.org/10.1145/2882903.2899398
https://doi.org/10.1145/2882903.2899398

	PathQuery Pregel: high-performance graph query with bulk synchronous processing
	Abstract
	1 Introduction
	2 Related work
	3 Graph query processing & the Pregel Connection Machine
	3.1 Query processing engine: graph traversals
	3.2 Aggregation
	3.2.1 Concurrency of aggregation
	3.2.2 Negation
	3.2.3 Query planning output

	3.3 Scalability

	4 Production experience & results
	5 Conclusions
	Acknowledgements
	References

