
Vol.:(0123456789)1 3

Pattern Analysis and Applications (2020) 23:295–308
https://doi.org/10.1007/s10044-019-00779-2

THEORETICAL ADVANCES

ML‑SLSTSVM: a new structural least square twin support vector
machine for multi‑label learning

Meisam Azad‑Manjiri1 · Ali Amiri1 · Alireza Saleh Sedghpour2

Received: 5 August 2017 / Accepted: 7 January 2019 / Published online: 12 February 2019
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
Multi-label learning (MLL) is a special supervised learning task, where any single instance possibly belongs to several
classes simultaneously. Nowadays, MLL methods are increasingly required by modern applications, such as protein function
classification, speech recognition and textual data classification. In this paper, a structural least square twin support vector
machine (SLSTSVM) classifier for multi-label learning is presented. This proposed ML-SLSTSVM focuses on the cluster-
based structural information of the corresponding class in each optimization problem, which is vital for designing a good
classifier in different real-world problems. This method is extended to a nonlinear version by the kernel trick. Experimental
results demonstrate that proposed method is superior in generalization performance to other classifiers.

Keywords  Multi-label learning · Support vector machine · Twin SVM · Structural SVM · Lest square SVM

1  Introduction

Multi-label learning (MLL) is a form of supervised learn-
ing where the learning algorithm is required to learn from
a set of instances, and each instance can belong to multiple
classes and so after be able to predict a set of class labels
for a new instance [1]. In the past decade, such a learning
issue has received a lot of attention because of many real-
world applications, e.g., protein function classification [2,
3], speech recognition [4, 5], music categorization [6, 7]
and image annotation [8, 9]. Due to the complex nature of
this type of data, their learning is more difficult than two- or
multi-class data. MLL methods can generally be divided into
the following [10].

•	 Problem transformation methods: These methods trans-
form the MLL problem into one or more single-label
classification problems, which can be solved using exist-
ing single-label learning methods. An essential property
of problem transformation methods is that they are algo-

rithm independent. Binary relevance [10], label powerset
[11] and calibrated label ranking [12] are some of the
algorithms which use problem transformation methods
for MLL.

•	 Algorithm adaptation methods: These methods handle
directly the MLL problems by adapting popular learning
techniques to deal with multi-label data. Support vec-
tor machine [13–15], nearest neighbor [16], neural net-
work [17, 18] and decision tree [19, 20] are some of the
machine learning techniques which have been extended
for MLL. The proposed method is one of the algorithm
adaptation methods that extend SVM to learn multi-label
data.

Despite the works done in MLL, there is still a need to
develop more efficient methods in terms of precision and
other metrics in Sect. 5.2. Because the structural information
of data may contain useful prior domain knowledge for train-
ing a classifier, in this paper, we first present an improve-
ment on MLTSVM [15], called structural twin support
vector machine for multi-label learning (ML-STSVM). In
this method, we, respectively, embed the data structures of
classes into the optimization problems of MLTSVM based
on the same clustering technology of S-TWSVM [21]. Least
square SVM [22] solves linear system instead of QP prob-
lem. This property improves both the generalization capa-
bility and running speed. For this reason, we present least

 *	 Meisam Azad‑Manjiri
	 m.azadm@znu.ac.ir

1	 Department of Computer Engineering, University of Zanjan,
Zanjan, Iran

2	 Department of Computer Engineering, Iran University
of Science and Technology, Tehran, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-019-00779-2&domain=pdf

296	 Pattern Analysis and Applications (2020) 23:295–308

1 3

square version of ML-STSVM (using the proposed idea in
[22, 23]) called ML-SLSTSVM. In the algorithm, we modi-
fied the primal QPPs of TSVM in least square sense and
solved them with equality constraints instead of inequalities
of TSVM.

To thoroughly evaluate the performance of the proposed
approach, comparative studies over both synthetic and real-
world multi-label datasets have been conducted. Experimen-
tal results show that ML-SLSTSVM achieves superior per-
formance against several state-of-the-art multi-label learning
algorithms. Finally, the main contribution of ML-SLSTSVM
is defining a ranking-based SVM that extends the MLTSVM
method [15] with considering structural information of train-
ing samples to improve the generalization capability and
using the least square idea [22] to improve both generaliza-
tion capability and running speed.

This paper is organized as follows. In Sect. 2, the set-
ting of a MLL and related works are introduced. Some pre-
liminaries are given in Sect. 3. The proposed algorithm is
described in detail in Sect. 4. In Sect. 5, some simulation
results are discussed. Finally, the conclusions are drawn in
Sect. 6.

2 � Related works

Let X ∈ ℝ
d be an instance space of d-dimensional fea-

tures and  =
{
�1, �2,… , �L

}
 be a finite set of labels

or classes. Each instance x ∈ X has multiple class labels
Y in  . Given a set of training examples consisting of n
instances,D =

{(
X1, Y1

)
,… ,

(
Xn, Yn

)}
 , where each instance

is independent and identically distributed (i.i.d.) drawn
from an unknown distribution  . xi ∈ X and labels Yi ⊆ 
are known [11]. The goal of multi-label classification is to

learn categories’ properties from labeled examples and find
a multi-label classifier g ∶ X → 2 that maps an instance
x to its label such that specific performance criteria are
optimized. Here, 2 is the powerset of  , which is the set
of all subsets of  . To facilitate our discussion, we sum-
marize major symbols and notations used in this paper in
Table 1. Others are defined following their first appearance
as required.

There is another method to learn multi-label data called
label ranking. In the label ranking, the goal is to learn to
predict a total order, a ranking, of all possible labels for a
new training example. In other words, the task is to learn the
function f ∶ X ×  → ℝ that, for a new instance x, assign
a real number to each label y ∈  where more related label
with x has greater value of f. In the label ranking, it is neces-
sary to be considered a threshold that based on related labels
separated from unrelated ones. It should be noted that in this
paper, the proposed method builds a label ranking model to
learn multi-label data.

As mentioned in the Introduction, current MLL algo-
rithms have been developed with two strategies: the problem
transformation and algorithm adaptation. In the following,
we introduce some well-known works on both these strate-
gies and especially focus on SVM-based methods that used
for MLL problem.

The binary relevance approach (BR) [10] decomposes
multi-label learning task into several independent binary
classification problems, one for each label in the set of
labels. Finally, this method determines the labels for a new
instance by aggregating the predictions from all the clas-
sification problems. Since the BR method does not model
dependencies between labels, the predictive performance of
it is low.

Table 1   Symbols and notations
used in this paper

Symbol/notation Definition

X ∈ ℝ
d Instance space of d-dimensional features

 =
{
�1, �2,… , �

L

}
Finite set of labels

D =
{(

X1,Y1

)
,… ,

(
X
n
,Y

n

)}
Training dataset (consisting n training instances)

L = || Number of labels
n Number of instances
d Number of features
I
k

Index of instances that are associated with the kth label
I
k̄

Index of instances that are not associated with the kth label
c ∈ ℝ Penalty for the classification error
� ∈ ℝ Regularization parameter
� ∈ ℝ Parameter that regulates the relative importance of the

structural information
� ∈ ℝ Slack variable
e ∈ ℝ

arb Column vector of ones in real space of arbitrary dimension
K(., .) Kernel function

297Pattern Analysis and Applications (2020) 23:295–308	

1 3

To address this deficiency (to model labels dependency),
some new methods have improved. One of these methods is
the label powerset (LP) method [11]. In LP, each of the dif-
ferent combinations of labels in a dataset is considered to be
a single label. Thus, LP transforms a multi-label problem to
a multi-class problem with 2|L| different classes, where L is
the set of labels in original problem and 2L is the powerset of
all labels in L. The predictive performance of LP is greater
than BR, but the main drawback of it is high computational
complexity (the number of label combinations grows expo-
nentially with the number of labels).

Ranking by pairwise comparison (RPC) [24] is another
type of binary classification approach which uses prob-
lem transformation strategy. This method learns L(L − 1)/2
binary models, one for each pair of labels. To predict a new
instance by RPC, all the models are invoked and a ranking
is obtained by counting the votes received by each label.
This method has a good predictive performance, but the time
complexity of it is quadratic.

Another strategy to classify multi-label data is the algo-
rithm adaptation. In the following, we review some works
that use it. In [18], an extension of backpropagation algo-
rithm called backpropagation for multi-label learning (BP-
MLL) is proposed. It uses multiple binary outputs as the
label variables and defines a novel error function that cap-
tures the characteristics of multi-label learning. In [20],
an extension of tree algorithm C4.5 is presented to handle
multi-label problems. It modifies the entropy to consider
instances associated with multiple labels. In [19], an algo-
rithm based on Bayesian approach is proposed for multi-
label textual data classification. It constructs a probabilistic
generative model to model multiple labels associated with
each document.

Multi-label k nearest neighbor (MLkNN) [16] is a k
nearest-neighbor method adapted for MLL. This method
classifies a new instance by voting from the labels found
in its neighbors. In [25], the authors have tried to extend
the ELM technique for multi-label learning by proposing a
thresholding method based on ELM. In [26], an extension
of AdaBoost algorithm called BoosTexter is presented for
MLL problem. It maintains a set of weights over both train-
ing examples and labels to handle multiple labels.

Some works on MLL are general-purpose and we can use
theme for learning different types of data [15, 16, 27, 28].
Some other works are specific-purpose and learn the spe-
cific type of data (e.g., image, sound and gene expression
data) [29–34]. There are many works in the literature that
are proposed for images classification. Since deep neural
networks and more specifically convolutional neural net-
works have shown promising results in image classifica-
tion, most of the MLL works have used them. Multi-label
classification for image annotation [8], pedestrian attribute
classification [30], facial attribute classification [31] and

social image understanding [29, 32] are examples of this
type of works.

Extreme multi-label learning (XML) is another problem
in the area of MLL, and it is important problem since the
boom of big data [35]. The objective in XML is to learn a
classifier that can automatically tag a data point with the
most relevant subset of labels from a large label set. Many
existing MLL methods are not suitable for XML, due to
the large label space (as large as in millions). Tree-based
methods [36, 37] and embedding-based methods [38, 39]
are two general types of methods in this area. It should be
noted that our proposed method is general-purpose and
does not claim to solve XML problems. In this paper, we
extend SVM to handle multi-label data. Therefore, in the
following we introduce some SVM-based methods for
MLL problems.

Many well-known approaches extend the traditional SVM
for MLL problem, e.g., RankSVM [13], RankCVM [14] and
MLTSVM [15]. RankSVM is proposed via extending multi-
class SVM and uses a novel ranking loss function as its
empirical loss. This method solves a quadratic programming
problem to rank the label set for new instances. A drawback
of RankSVM is high computational complexity due to a
large number of variables in its quadratic programming. To
address this drawback, the RankCVM was proposed. This
method combines RankSVM with CVM to construct a novel
SVM-type multi-label classifier which is described as the
same optimization form as binary CVM.

We cite [15] as the key reference for the proposed
method, since we freely use some of the terminologies and
the ideas presented in it. It proposes a novel twin support
vector machine to multi-label learning called MLTSVM.
This method which is an extension of twin SVM (TWSVM)
[40] determines multiple nonparallel hyperplanes to capture
the multi-label information embedded in data. MLTSVM
solves L quadratic programming problems (L is the number
of labels) to obtain L nonparallel proximal hyperplanes, and
each problem is similar to binary TWSVM. Note that the
optimization is done in a way that kth hyperplane is closer
to the instances with the label k, and is as far as possible
from the others.

3 � Preliminaries

Since the proposed method is based on SVM, in this section
we briefly introduce the SVM and some extension of it.

3.1 � Support vector machine

Support vector machine (SVM) was originally proposed
by Vapnik [41] for binary classification. SVM implements
the structural risk minimization (SRM), in contrast to other

298	 Pattern Analysis and Applications (2020) 23:295–308

1 3

machine learning approaches like conventional artificial neu-
ral network which aims at minimizing empirical risk (ERM).
(SRM minimizes the upper bound of generation, whereas
ERM minimizes the error on the training data.) Recently
SVMs have been extended to solve the multi-class and MLL
problems.

The main idea of the SVM classifier is to obtain a linear
decision boundary that maximizes a separation margin. In
other words, SVM tries to find a discriminant hyperplane
by solving an optimization problem to separate two classes
of patterns.

We consider the problem of classifying n points in the
d-dimensional real space Rd, represented by the n × d matrix
X, according to membership of each point Xi in the classes
+ 1 or −1 as specified by a given m × m diagonal matrix D
with ones or minus ones along its diagonal. For this prob-
lem, the SVM discriminant function is d(x) = w

�

x + b and
it obtained by minimizing the following objective function.

where � is the n-dimensional vector of slack variables, c
is a penalty parameter and e is a vector of ones of appro-
priate dimensions. Figure 1 shows the linear separation of
data points using SVM classifier. As you see in this figure,
the discriminant hyperplane lies in a space that is halfway
between the two sets of points and has maximum margin.

Training algorithm of SVM performs a linear classifi-
cation and builds a model that assigns new examples into
one class or the other. When data points are not linearly

(1)
min
w,b,�

1

2
‖w‖2 + ce

�

�

s.t ∶ D(Xw + eb) ≥ e − � � ≥ 0

separable, we can use nonlinear SVM, in which data points
are mapped to higher-dimensional feature space where the
examples become linearly separable. This mapping is com-
plex, and training time increases exponentially with the input
data dimension. To tackle with this drawback, we can use
the kernel trick [42]. Kernel trick provides a way to work in
a feature-rich space without explicitly mapping the points to
higher dimension. This trick is done by using an appropriate
kernel function, which describes the hyperplane in higher
dimensions. Therefore, the art of using nonlinear SVMs is
to choose the correct kernel function, which is well suited
for the underlying problem.

SVM has such advantages as good generalization capac-
ity, less limit in training set size and more robust to noise
[43], but there is a main challenge in the traditional SVM
and it is the high computational complexity of quadratic
programming problem (QPP) [43]. The computational com-
plexity of SVM is O

(
n3
)
 , where n denotes the count of train-

ing data. This drawback restricts the application of SVM to
large-scale problem domains.

3.2 � Twin support vector machine

The study in [40] proposed a novel binary classifier, twin
support vector machine (TWSVM), the speed of which is
approximately four times faster than SVM.

This method seeks two nonparallel hyperplanes such that
each hyperplane is close to the patterns of one class and
far away from the patterns of the other classes simultane-
ously. The TWSVM hyperplanes have the forms (2) and are
obtained by minimizing the objective functions (3) and (4).

where A and B are the data points belonging to classes + 1
and − 1, respectively, and � is vector of slack variables. Fig-
ure 2 shows how the linear TWSVM separates training data
points. When this method found the hyperplanes, a new data
instance is classified based on the distance between it and
the hyperplanes.

3.3 � Structural twin SVM

Using prior information of training data can help to design
more powerful classifiers, and the structural information of

(2)x
�

w1 + b1 = 0, x
�

w2 + b2 = 0

(3)
min
w1,b1,�

1

2

(
Aw1 + eb1

)�(
Aw1 + eb1

)
+ ce

�

�

s.t ∶ −(Bw1 + eb1) + � ≥ e, � ≥ 0

(4)
min
w2,b2,�

1

2

(
Bw2 + eb2

)�(
Bw2 + eb2

)
+ ce

�

�

s.t ∶ (Aw2 + eb2) + � ≥ e, � ≥ 0

′ + = −1

′ + = +1

′ + = 0

1

2

1
1

Fig. 1   Linear separation of data points using SVM classifier

299Pattern Analysis and Applications (2020) 23:295–308	

1 3

data points is one of them [44]. For this reason, some SVM-
based methods are presented that use covariance matrix of
data. STSVM or structural TWSVM is one of these methods,
which was introduced in 2013 by Zhiquan [21].

In this method which is an extension of TWSVM, the
derived decision hyperplanes tend to lie in the same direc-
tion with the data dispersion. The hyperplanes have the form
(5) and are obtained from solving the objective functions
(6) and (7).

where c1, …c6 are the pre-specified penalty factors, e+, e− are
vectors of ones of appropriate dimensions, � is the vector of
slack variables,�+ = �p1 +⋯ + �pm,�− = �n1 +⋯ + �nk ,
ΣPi and ΣNj are, respectively, the covariance matrices cor-
responding to the ith and jth clusters in the two classes, i = 1,
…, m, j = 1, …, k.

(5)f+(x) = W+x + b+ = 0, f−(x) = W−x + b− = 0

(6)

min
wk ,bk ,�j

1

2

∑
i∈Ik

‖‖‖
(
AW+ + e+b+

)‖‖‖
2

+ c1e
�

−
�

+
1

2
c2

(‖‖w+
‖‖2 + b2

+

)
+

1

2
c3
(
w

�

+
�+w+

)

s.t ∶ −(BW+ + e−b+) + � ≥ e−, � ≥ 0

(7)

min
wk ,bk ,�j

1

2

∑
i∈Ik

‖‖‖
(
BW− + e−b−

)‖‖‖
2

+ c4e
�

+
�

+
1

2
c5

(‖‖w−
‖‖2 + b2

−

)
+

1

2
c6
(
w

�

−
�−w−

)

s.t ∶ −(AW− + e+b−) + � ≥ e+, � ≥ 0

3.4 � Least square twin SVM

Least square twin support vector machines (LSTSVM) is
another extension of SVM that attempts to solve two modi-
fied primal problems of TSVM, instead of two dual prob-
lems usually solved [23]. This method requires just the solu-
tion of two systems of linear equations for both linear and
nonlinear cases, while TWSVM requires solving two quad-
ratic programming problems (QPPs). The training time of
LSTSVM is much faster than TWSVM, and this advantage
allows to easily classify large datasets. The LSTSVM model
can be formulated as:

3.5 � Multi‑label twin support vector machine

As mentioned in the previous section, in [15] it is presented
a SVM-based method called MLTSVM. This method
obtains as many proximal hyperplanes as there are labels
on the dataset. Each hyperplane has the form (10), where
wk and bk are the normal vector and the bias term of the kth
proximal hyperplane, respectively. These hyperplanes are
obtained by minimizing the objective function (11) where
Ck and �k are the pre-specified penalty factors, and � is the
vector of slack variables.

Using Lagrangian function and Karush–Kuhn–Tucker
(KKT) conditions and by introducing the Lagrangian mul-
tipliers α, the dual QPP of (11) can be represented as

After obtaining the solutions αj from the dual problem
(12), the kth proximal hyperplane (k = 1, …, K) can be con-
structed according to (13).

(8)
min
w1,b1

1

2

‖‖‖
(
Aw1 + eb1

)‖‖‖
2

+
c

2
�
�

�

s.t ∶ −(Bw1 + eb1) + � = e

(9)
min
w2,b2

1

2

‖‖‖
(
Bw2 + eb2

)‖‖‖
2

+
c

2
�
�

�

s.t ∶ (Aw2 + eb2) + � = e

(10)fk(x) ∶ w
�

k
xi + bk = 0, k ∈ {1, 2,… , L}

(11)

min
wk ,bk ,𝜉j

F =
1

2

∑
i∈Ik

‖‖‖
(
w�
k
xi + bk

)‖‖‖
2

+ ck

∑
j∈Ik̄

𝜉j +
1

2
𝜆k

(‖‖wk
‖‖2 + b2

k

)

s.t ∶ −(w
�

k
xj + bk) ≥ 1 − 𝜉j, 𝜉j ≥ 0∀j ∈ Ik̄

(12)
max
𝛼j

∑
j∈Ik̄

𝛼j −
1

2

∑
j1∈Ik̄

∑
j2∈Ik̄

𝛼j1𝛼j2z
�

j1

(∑
i∈Ik

ziz
�

i
+ 𝜆kI

)−1

zj2

s.t ∶ 0 ≤ 𝛼j ≤ ck, j ∈ Ik̄

1′ + 1 = 0

1

2

2′ + 2 = 0

Fig. 2   Separation of training data using linear TWSVM

300	 Pattern Analysis and Applications (2020) 23:295–308

1 3

4 � Proposed method

In this section, we first introduce a structural version of
MLTSVM [15], called structural twin SVM for multi-label
learning (ML-STSVM) and then propose the least square
version of it called structural least squared twin support
vector machine for multi-label learning (ML-SLSTSVM).
Similar to MLTSVM, let us use Ik and Ik̄ to denote two com-
plementary index sets, and if the instance xi is associated
with the kth label, then i ∈ Ik ; otherwise, i ∈ Ik̄.

4.1 � ML‑STSVM

4.1.1 � Linear ML‑STSVM

For the linear case, the ML-STSVM determines a nonparal-
lel hyperplane for each label

where L is the number of labels, the weight vector Wk ∈ ℝ
d

determines the hyperplane’s orientation and the bias bk ∈ ℝ
determines the hyperplane’s offset relative to the system
of coordinates. Here, each hyperplane fi is closer to the
instances with the label k and is as far as possible from the
others. These nonparallel hyperplanes can be obtained by
solving the following optimization problems for each k = 1,
2, …, L.

where ck , �k and �k are the pre-specified penalty fac-
tors, �j is the slack variable for each training data and
�k = �k1

+⋯ + �knk
,�ki

 is the covariance matrix corre-
sponding to the ith cluster in training data associated with
the kth label, i = 1, 2, …, nk.

The first term in the objective function is the sum of
squared distances from the hyperplane to points of kth
label. The second term is a ℓ2 regularization term that favors
sparse models (weighted by λ ∈ ℝ) [45], and the third term
embodies the structural information of each label.

The Lagrangian corresponding to the problem (15) is
given by

(13)
[
wk

bk

]
= −

(∑
i∈Ik

ziz
�

i
+ 𝜆kI

)−1(∑
j∈Ik̄

zj𝛼j

)

(14)fk(x) = W
�

k
x + bk = 0; k = 1,… ,L

(15)

min
wk ,bk ,𝜉j

F =
1

2

∑
i∈Ik

‖‖‖
(
w

�

k
xi + bk

)‖‖‖
2

+ ck

∑
j∈Ik̄

𝜉j

+
1

2
𝜆k

(‖‖wk
‖‖2 + b2

k

)
+

1

2
𝜂k
(
w

�

k
𝛴kwk

)

s.t ∶ −(w
�

k
xj + bk) ≥ 1 − 𝜉j, 𝜉j ≥ 0∀j ∈ Ik̄

where 𝛼 = 𝛼1,… , 𝛼|Ik̄| and 𝛽 = 𝛽1,… , 𝛽|Ik̄| are the Lagrange
multipliers. According to the KKT conditions
(Karush–Kuhn–Tucker), we know that there exist Lagrange
multipliers satisfying:

According to (19) and (23):

Obviously, combining (17) and (18) leads to:

If we define zi =
[
xi
1

]
 , sk =

[
�k 0

0 0

]
 and �k =

[
wk

bk

]
 , then

Eq. (24) can be rewritten as:

(16)

L =
1

2

∑
i∈Ik

‖‖‖
(
w

�

k
xi + bk

)‖‖‖
2

+ ck

∑
j∈Ik̄

𝜉j +
1

2
𝜆k

(‖‖wk
‖‖2 + b2

k

)

+
1

2
𝜂k
(
w

�

k
𝛴kwk

)
+
∑
j∈Ik̄

𝛼j
(
w

�

k
xj + bk + 1 − 𝜉j

)
−
∑
j∈Ik̄

𝛽j𝜉j

(17)

𝜕L

𝜕wk

= 0 ⇒

∑
i∈Ik

(
w

�

k
xi + bk

)
xi + 𝜆kwk + 𝜂k𝛴kwk +

∑
j∈Ik̄

xj𝛼j = 0

(18)
𝜕L

𝜕bk
= 0 ⇒

∑
i∈Ik

(
w

�

k
xi + bk

)
+ 𝜆kbk +

∑
j∈Ik̄

𝛼j = 0

(19)
𝜕L

𝜕𝜉j
= 0 ⇒ ck − 𝛼j − 𝛽j = 0;j ∈ Ik̄

(20)−
(
w

�

k
xj + bk

)
≥ 1 − 𝜉j;𝜉j ≥ 0 ∀j ∈ Ik̄

(21)
∑
j∈Ik̄

𝛼j
(
w

�

k
xj + bk + 1 − 𝜉j

)
= 0

(22)
∑
j∈Ik̄

𝛽j𝜉j = 0

(23)𝛼j ≥ 0, 𝛽j ≥ 0; ∀j ∈ Ik̄

0 ≤ �j ≤ ck

(24)

∑
i∈Ik

[
xi
1

][
xi1

][wk

bk

]
+ 𝜆k

[
wk

bk

]
+ 𝜂k

[
𝛴k 0

0 0

][
wk

bk

]
+
∑
j∈Ik̄

[
xj
1

]
𝛼j = 0

(25)
∑
i∈Ik

ziz
�

i
𝜃k + 𝜆k𝜃k + 𝜂ksk𝜃k +

∑
j∈Ik̄

zj𝛼j = 0

(26)⇒

(∑
i∈Ik

ziz
�

i
+ 𝜆kI + 𝜂ksk

)
𝜃k = −

∑
j∈Ik̄

zj𝛼j

(27)

⇒ 𝜃k =

[
wk

bk

]
= −

(∑
i∈Ik

ziz
�

i
+ 𝜆kI + 𝜂ksk

)−1(∑
j∈Ik̄

zj𝛼j

)

301Pattern Analysis and Applications (2020) 23:295–308	

1 3

Substituting (27) and (19) into (16), we obtain the dual
formulation of (15):

We can rewrite this problem in the following unified
matrix form:

where 𝛼 = 𝛼1,… , 𝛼|Ik̄| and Q is defined by

In Eq. (31), XIk
= {Xi|i ∈ Ik} (instances associated with

the kth label) and XIk̄
= {Xi|i ∈ Ik̄} (the other instances).

After optimizing the dual problem (29) for each label
k = 1, …, L and obtaining � , we can substitute it in Eq. (27)
and construct the decision strategies (14).

Now, we can use these decision strategies to determine
the labels of test data. For this purpose, we must determine
a threshold Tk (k = 1, …, L) for each label and then assign
the label k to a new instance x if the distance between x and
fk(x) is less than or equal to Tk.

To determine thresholds Tk, we used the proposed idea
in [15]. For this, we set Tk = T for all k = 1 to L, where
T = min

(
1∕‖‖Wk

‖‖
)
 , k = 1, …, L.

4.1.2 � Nonlinear ML‑STSVM

In this subsection, we extend the linear ML-STSVM to the
nonlinear case by considering the following kernel gener-
ated surfaces:

where X denotes all the training instances, Uk is the weight
vector in the kernel space and K(., .) is a proper chosen ker-
nel. The primal QPPs of the nonlinear ML-STSVM corre-
sponding to the surface (33) is given in (35).

(28)

max
𝛼j

∑
j∈Ik̄

𝛼j −
1

2

∑
j1∈Ik̄

∑
j2∈Ik̄

𝛼j1𝛼j2z
�

j1

(∑
i∈Ik

ziz
�

i
+ 𝜆kI + 𝜂ksk

)−1

zj2

s.t ∶ 0 ≤ 𝛼j ≤ ck, j ∈ Ik̄

(29)
max
�

e�� −
1

2
��Q�

s.t ∶ 0 ≤ � ≤ cke

(30)Q = Gk

(
H

�

k
Hk + �kI + �ksk

)−1
G

�

k

(31)Gk =
[
XIk̄

e
]
,Hk =

[
XIk

e
]

(32)dk(x) = distance
(
x, fk(x)

)
=
(
W

�

k
x + bk

)
∕‖‖Wk

‖‖

(33)fk(x) = U
�

k
K(X, x) + bk = 0; k = 1,… ,L

where ��
k
= ��

k1
+⋯ + ��

knk
,��

ki
 is the covariance matrix

corresponding to the ith cluster in training data associated
with the kth label, i = 1, 2, …, nk by the kernel Ward’s link-
age clustering [21]. Similar to previous subsection, we can
use Lagrangian multipliers and derive the dual formulation
of the QPP (21) and the solution as follows.

where zi =
[
K(X, xi)

1

]
 and sk =

[
��

k
0

0 0

]
.

The unified matrix form of (35) can be written as (37).

where 𝛼 = 𝛼1,… , 𝛼|Ik̄| and Q is defined by

After optimizing the dual problem (36) for each label
k = 1, …, L and obtaining � , we can substitute it in (37) and
construct the decision strategies in (32). Similar to linear
case, we can use the hyperplanes to determine the labels
of test data based on the distance between them and the
hyperplanes.

4.2 � ML‑SLSTSVM

In this subsection, we introduce a least square version of
ML-STSVM called structural least squared twin support
vector machine for multi-label learning (ML-SLSTSVM).
Following the idea of PSVM [46], the decision functions of
ML-SLSTSVM are obtained extremely fast and simple by
solving the primal problem directly.

(34)

min
Uk ,bk ,𝜉j

1

2

∑
i∈Ik

‖‖‖‖
(
U

′

k
K
(
X, xi

)
+ bk

)‖‖‖‖
2

+ ck

∑
j∈Ik̄

𝜉j+

+
1

2
𝜆k

(‖‖Uk
‖‖2 + b2

k

)
+

1

2
𝜂k

(
U

�

k
𝛴𝛷

k
Uk

)

s.t ∶ −
(
�

�

k
K(�, xj) + bk

)
≥ 1 − 𝜉j, 𝜉j ≥ 0∀j ∈ Ik̄

(35)

max
𝛼j

∑
j∈Ik̄

𝛼j −
1

2

∑
j1∈Ik̄

∑
j2∈Ik̄

𝛼j1𝛼j2z
�

j1

(∑
i∈Ik

ziz
�

i
+ 𝜆kI + 𝜂ksk

)−1

zj2

s.t ∶ 0 ≤ 𝛼j ≤ ck, j ∈ Ik̄

(36)𝜃k =

[
Uk

bk

]
= −

(∑
i∈Ik

ziz
�

i
+ 𝜆kI + 𝜂ksk

)−1(∑
j∈Ik̄

zj�j

)

(37)
max
�

e
�

� −
1

2
��Q�

s.t ∶ 0 ≤ � ≤ cke

(38)Q = Gk

(
H

�

k
Hk + �kI + �ksk

)−1
G

�

k

(39)Gk =
[
K
(
X,XIk̄

)
e
]
,Hk =

[
K
(
X,XIk

)
e
]

302	 Pattern Analysis and Applications (2020) 23:295–308

1 3

4.2.1 � Linear ML‑SLSTSVM

Here we modify the primal problem (15) of linear ML-
STSVM in least square sense as (40), with the inequality
constraints replaced with equality constraints.

where the variables are similar to those defined for (15). On
substituting the equality constraint of (41) into the objec-
tive function of it, we can get the following unconstrained
optimization problem.

Setting the gradient of (41) with respect to wk and bk to
zero gives:

Combining (42) and (43) leads to:

Defining zi =
[
xi
1

]
 , sk =

[
�k 0

0 0

]
 and �k =

[
wk

bk

]
 , then

Eq. (44) can be rewritten as:

Finally, the solution of (40) can be obtained by (47)

(40)

min
wk ,bk ,𝜉j

F =
1

2

∑
i∈Ik

‖‖‖
(
w

�

k
xi + bk

)‖‖‖
2

+ ck

∑
j∈Ik̄

‖‖‖𝜉j
‖‖‖
2

+
1

2
𝜆k

(‖‖wk
‖‖2 + b2

k

)

+
1

2
𝜂k
(
w

�

k
𝛴kwk

)

s.t ∶ −
(
w

�

k
xj + bk

)
= 1 − 𝜉j ∀j ∈ Ik̄

(41)
L =

1

2

∑
i∈Ik

‖‖‖
(
w

�

k
xi + bk

)‖‖‖
2

+ ck

∑
j∈Ik̄

‖‖‖w
�

k
xj + bk + 1

‖‖‖
2

+
1

2
𝜆k

(‖‖wk
‖‖2 + b2

k

)
+

1

2
𝜂k
(
w

�

k
𝛴kwk

) (41)

(42)

𝜕L

𝜕wk

= 0 ⇒

∑
i∈Ik

(
w

�

k
xi + bk

)
xi + ck

∑
j∈Ik̄

(
w

�

k
xi + bk + 1

)
xj

+ 𝜆kwk + 𝜂k𝛴kwk = 0

(43)

𝜕L

𝜕bk
= 0 →

∑
i∈Ik

(
w

�

k
xi + bk

)
+ ck

∑
j∈Ik̄

(
w

�

k
xi + bk + 1

)
+ 𝜆kbk = 0

(44)

∑
i∈Ik

[
xi
1

][
xi 1

][wk

bk

]
+ ck

∑
j∈Ik̄

[
xj
1

][
xj 1

][wk

bk

]

+ ck

∑
j∈Ik̄

[
xj
1

]
+ 𝜆k

[
wk

bk

]
+ 𝜂k

[
𝛴k 0

0 0

][
wk

bk

]
= 0

(45)
∑
i∈Ik

ziz
�

i
𝜃k + ck

∑
j∈Ik̄

zjz
�

j
𝜃k + 𝜆k𝜃k + 𝜂ksk𝜃k = − ck

∑
j∈Ik̄

z
�

j

(46)⇒

(∑
i∈Ik

ziz
�

i
+ ck

∑
j∈Ik̄

zjz
�

j
+ 𝜆kI + 𝜂ksk

)
𝜃k = − ck

∑
j∈Ik̄

z
�

j

Equation (47) can be rewritten in the following unified
matrix form:

where Gk and Hk are:

We can obtain the decision strategies as (14) by solving
Eq. (48) and use them to determine the labels of test data.

4.2.2 � Nonlinear ML‑SLSTSVM

In this subsection, we propose nonlinear ML-SLSTSVM by
introducing kernel function K

(
x, x

�)
=
(
�(x).�

(
x
�)) and the

corresponding transformation: X = �(x) where X ∈ H and
H is the Hilbert space. In order to extend our algorithm to
nonlinear cases, we consider the kernel generated surfaces
(33), instead of planes.

Then the optimization problem of nonlinear ML-SLST-
SVM is constructed as follows:

Similar to linear case, we can obtain the unknown vari-
ables on the decision boundaries (33) (Uk and bk) by sub-
stituting the equality constraint of (50) into the objective
function of it and then differentiating obtained function with
respect to Uk and bk.

where Gk =
[
K
(
X,XIk̄

)
e
]
 , Hk =

[
K(X,XIk

) e
]
 and

sk =

[
��

k
0

0 0

]
.

After solving Eq. (51), we can obtain the normal vector
and the bias term of the kth proximal surface (33). Therefore,
we can construct a similar prediction strategy as the linear
case to predict the labels of unseen instances.

(47)

⇒ 𝜃k =

[
wk

bk

]
= − ck

(∑
i∈Ik

ziz
�

i
+ ck

∑
j∈Ik̄

zjz
�

j
+ 𝜆kI + 𝜂ksk

)−1(∑
j∈Ik̄

z
�

j

)

(48)
[
wk

bk

]
= − ck

(
H

�

k
Hk + ckG

�
k
Gk + �kI + �ksk

)−1
G

�

k
e

(49)Gk =
[
XIk̄

e
]
,Hk =

[
XIk

e
]

(50)

min
wk ,bk ,𝜉j

F =
1

2

∑
i∈Ik

‖‖‖‖
(
U

′

k
K
(
X, xi

)
+ bk

)‖‖‖‖
2

+ ck

∑
j∈Ik̄

‖‖‖𝜉j
‖‖‖
2

+
1

2
𝜆k

(‖‖Uk
‖‖2 + b2

k

)

+
1

2
𝜂k

(
U

�

k
𝛴𝛷

k
Uk

)

s.t ∶ −
(
U

�

k
K
(
X, xj

)
+ bk

)
= 1 − 𝜉j ∀j ∈ Ik̄

(51)
[
Uk

bk

]
= −ck

(
H

�

k
Hk + ckG

�

k
Gk + �kI + �ksk

)−1
G

�

k
e

303Pattern Analysis and Applications (2020) 23:295–308	

1 3

5 � Experiments and results

In this section at first, the used datasets are introduced, and
then, evaluation criteria for measuring the efficiency of
MLL algorithms are expressed. Next, the parameter setting
is described, and finally, the experimental results and param-
eter sensitivity analysis are given. All experiments have been
implemented in MATLAB R2010b on a personal computer
(PC) with an Intel (R) Core-i5 processor (2.3 GHz) and
4 GB random-access memory (RAM).

5.1 � Benchmark datasets

To evaluate the proposed ML-SLSTSVM algorithm, in
this section we have used several synthetic and real-world
datasets. All synthetic data are generated by Mldatagen
according to some predefined parameters such as the used
strategies (hyperspheres or hypercubes), number of relevant,
irrelevant and redundant features, number of instances and
number of labels. We add 5% noises to the labels of each
instance to make the learning tasks more challengeable.
Also, the real datasets Emotion, Birds, Yeast, Flags and
Medical are widely used for evaluating multi-label learning
methods. These datasets represent a wide range of domains
(include music, text, image and biology), sizes (from 194 to
2417), features (from 19 to 1449) and labels (from 19 to 45).

All real-world datasets (summarized in Table 3) were
downloaded from the MULAN multi-label dataset reposi-
tories [47].1 Note that all samples are normalized such that
the continuous features are located in the range [0,1] before
learning. Tables 2 and 3 show the used synthetic and real
datasets in more details.

5.2 � Evaluation criteria

There are different criteria to evaluate the performance of
multi-label data classifiers. For this reason, in this paper,
we used five standard criteria, which are explained in more
detail below. In all criteria, n, L, yi and ȳi denote, respec-
tively, the number of training data, the number of labels,
the set of labels relevant to the ith instance and the set of
labels that are irrelevant to it. In addition, the function fy(x)
is a real-valued function ( f ∶ X ×  → ℝ ) that returns the
confidence of being proper label of x and rankf (x, y) returns
the rank of y in  based on the descending order induced
from f.(x).

5.2.1 � Hamming loss

This criterion indicates the fraction of labels that are incor-
rectly predicted to the total number of labels.

5.2.2 � Ranking loss

This metric is used for ranking-based algorithms and meas-
ures the average fraction of label pairs that are reversely
ordered. For example, an irrelevant label is ranked higher
than a relevant label.

5.2.3 � Coverage

This measure evaluates how many steps are needed, on aver-
age, to move down the ranked label list so as to cover all the
true labels of an instance.

(52)Hloss =
1

n × L

n∑
i=1

l∑
j=1

(
hj
(
xi
)
≠ yj

)

(53)

Rloss =
1

n

n∑
i=1

(
1

||��||||�̄�||
|||
{(

y
�

y
��)|fy� ∈�

�

(
xi
)
≤ fy�� ∈�̄

�

(
xi
)}|||

)

(54)Coverage =
1

n

n∑
i=1

max
y∈�

�

rankf
(
xi, y

)
− 1

Table 2   Synthetic dataset statistics

Dataset #Sample Features #Label

Relevant Irrelevant Redundant

Hyperspheres
(HS1)

400 15 5 0 5

Hyperspheres
(HS2)

600 35 10 5 10

Hypercubes
(HC1)

400 15 5 0 5

Hypercubes
(HC2)

600 35 10 5 10

Table 3   Real dataset statistics

Dataset Domain #Sample #Feature #Label

Emotions Music 593 72 6
Birds Audio 645 260 19
Yeast Biology 2417 103 14
Flags Images 194 19 17
Medical Text 978 1449 45

1  http://mulan​.sourc​eforg​e.net/datas​ets-mlc.html.

http://mulan.sourceforge.net/datasets-mlc.html

304	 Pattern Analysis and Applications (2020) 23:295–308

1 3

5.2.4 � One error

The one error evaluates the fraction of examples whose the
label with the best rank computed by the classification algo-
rithm is not in the relevant label set.

5.2.5 � Average precision

Average precision evaluates the average fraction of relevant
labels ranked higher than a particular label y ∈ �

�
.

The smaller the values for all previous measures except
the average precision, the better the performance is.

5.3 � Parameters setting

It is clear that the performance of SVM-based classification
methods depends on the choices of parameters [48]. In these
simulations, cross-validation was used to find the best
parameters for each dataset. Due to the better performance
of the kernel version, in our experiments we only consider
t h e G a u s s i a n k e r n e l f u n c t i o n

K
(
xi, xj

)
= exp

(
−
‖‖‖xi − xj

‖‖‖
2

∕�2
)

 as it yields great generali-

zation performance. To reduce the parameter selection com-
plexity, we set Ci = C, �i = � and �i = � for all i = 1, 2, …,
L. The value of the parameters (C, � and λ) is selected from
the set (2−10, 2−9, …, 29, 210) by cross-validation and � is
fixed to be 1.

5.4 � Experimental results

In order to evaluate the proposed ML-SLSTSVM, we
investigate its efficiency using the above criteria on the
presented datasets. In our experiments, we focus on com-
parison between our ML-SLSTSVM and several state-of-
the-art multi-label learning methods including calibrated
label ranking (CLR) [11], MLkNN [16], RankSVM [13]
and MLTSVM [15]. Since we have used the same datasets
and algorithms as in [15] to evaluate the performance of our
proposed approach, we used the results reported on it.

(55)
Oerror = (1∕n)

n∑
i=1

H
(
xi
)

H
(
xi
)
=

{
0 if argmax fy

(
xi
)
∈ �

�

1 otherwise

(56)

A.percision =

1

n

n�
i=1

⎛⎜⎜⎝
1
������

�
y∈�

�

���
��

y
�

∈ �
�

��rankf
�
xi, y

��
≤ rankf

�
xi, y

�����
rankf

�
xi, y

�
⎞⎟⎟⎠

Table 4 shows the mean and the deviation of tenfold
cross-validation learning results of each classifier on the
synthetic and real datasets, where the best result on each
dataset is shown in boldface. To compare these methods sta-
tistically, we choose nonlinear ML-SLSTSVM as a baseline,
and compare whether our method is statistically better than
one of the remaining four methods.

We performed statistical significance tests using a Wil-
coxon rank-sum test [49] with α = 0.05 to ensure the sta-
tistical significance of the results comparison in terms of
evaluation metrics. The result of the test is presented at the
end of each comparison. If the differences in the results are
statistically significant, a “≪” symbol is shown in the tables.
In these tables, the symbols ↑ and ↓ after the title of each
evaluation metric define the expected behavior of it, with ↓
meaning that the lowest values are the best ones and ↑ mean-
ing that the highest values are the best ones.

The results show that ML-SLSTSVM outperforms the
other approaches in all five metrics. We can also see that
the performance of proposed algorithm is statistically sig-
nificantly better than other compared algorithms in terms
of all evaluation metrics. For example, on the Flags data-
set, our method achieves 2.8%, 4.3%, 7.7%, 2.4% and 6.3%
relative improvement in terms of the five evaluation criteria
over MLTSVM that obtains the second-best results on this
dataset.

Table 5 presents the average CPU time of our method and
other compared methods. We used the Wilcoxon signed-rank
test to ensure the statistical significance of the results com-
parison in terms of CPU time. In this test, α was set to 0.05.
The results of the test are presented at the bottom of Table 5.
From the table, we can see that in terms of computational
cost, the nonlinear ML-SLSTSVM method takes slightly
more time than the MLkNN and MLTSVM methods; how-
ever, the difference is not significant.

5.5 � Sensitivity analysis

In the ML-SLSTSVM model, there are a few parameters.
The first parameter is the C, which is used as a penalty for
the classification error and it controls the trade-off between
allowing training errors and forcing rigid margins. The sec-
ond parameter is the η, which is the parameter that regulates
the relative importance of the structural information within
the clusters. Finally, the third is the λ, which is the regulari-
zation parameter.

In order to examine the sensitivity of these parameters
in classification accuracy of ML-SLSTSVM, we conducted
a set of experiments by varying one parameter and fixing
the other two to the values elected by cross-validation. The
results on ranking loss and average precision are illustrated
in Fig. 3. (The x-axis of all charts represents the log2 of
parameters value.) ML-SLSTSVM had similar situations on

305Pattern Analysis and Applications (2020) 23:295–308	

1 3

Table 4   Predictive performance of each comparing algorithm (mean + SD) on the real-world and synthetic datasets

Dataset CLR MLkNN RankSVM MLTSVM (linear) ML-SLSTSVM (linear) ML-
SLSTSVM
(nonlinear)

Hamming loss ↓
 Emotion .257 ± .039 .209 ± .028 .228 ± .036 .206 ± .025 .195 ± .027 .178 ± .021
 Flags .271 ± .063 .286 ± .062 .281 ± .072 .266 ± .059 .269 ± .056 .256 ± .051
 Birds .071 ± .013 .057 ± .011 .064 ± .023 .049 ± .018 .065 ± .026 .055 ± .015
 Yeast .224 ± .012 .209 ± .017 .219 ± .027 .201 ± .015 .205 ± .014 .187 ± .016
 Medical .162 ± .041 .170 ± .052 .107 ± .017 .116 ± .015 .112 ± .013 .105 ± .013
 HS1 .281 ± .037 .254 ± .028 .272 ± .034 .250 ± .029 .273 ± .026 .224 ± .022
 HS2 .195 ± .020 .192 ± .010 .191 ± .012 .181 ± .014 .216 ± .013 .174 ± .019
 HC1 .081 ± .020 .053 ± .018 .062 ± .015 .055 ± .016 .050 ± .015 .044 ± .014
 HC2 .131 ± .192 .122 ± .127 .153 ± .021 .117 ± .018 .080 ± .012 .071 ± .014
 W-test ≪ ≪ ≪ ≪ ≪

Average precision ↑
 Emotion .772 ± .035 .762 ± .049 .773 ± .042 .781 ± .029 .809 ± .033 .824 ± .028
 Flags .827 ± .073 .821 ± .067 .786 ± .083 .831 ± .081 .819 ± .077 .842 ± .070
 Birds .533 ± .081 .503 ± .070 .494 ± .091 .541 ± .105 .606 ± .099 .631 ± .087
 Yeast .743 ± .016 .758 ± .017 .737 ± .039 .764 ± .019 .761 ± .022 .774 ± .017
 Medical .802 ± .048 .795 ± .053 .894 ± .041 .812 ± .045 .900 ± .017 .910 ± .014
 HS1 .675 ± .037 .668 ± .038 .672 ± .040 .712 ± .046 .652 ± .039 .705 ± .041
 HS2 .517 ± .046 .489 ± .051 .506 ± .038 .514 ± .041 .643 ± .035 .656 ± .031
 HC1 .955 ± .019 .957 ± .014 .948 ± .019 .960 ± .017 .955 ± .016 .966 ± .014
 HC2 .743 ± .040 .755 ± .049 .716 ± .056 .761 ± .041 .827 ± .076 .849 ± .040
 W-test ≪ ≪ ≪ ≪ ≪

Coverage ↓
 Emotion 1.820 ± .205 1.805 ± .198 1.977 ± .257 1.794 ± .317 1.723 ± .302 1.665 ± .260
 Flags 3.609 ± .468 3.758 ± .506 3.861 ± .614 3.729 ± .508 3.867 ± .590 3.733 ± .503
 Birds 3.313 ± .710 3.024 ± .705 4.172 ± 1.05 3.218 ± .688 2.526 ± .709 2.336 ± .668
 Yeast 6.757 ± .238 6.268 ± .313 7.129 ± .452 6.312 ± .357 6.262 ± .390 6.138 ± .317
 Medical 1.932 ± .401 2.592 ± .480 2.012 ± .552 1.980 ± .461 1.380 ± .128 1.352 ± .119
 HS1 1.633 ± .179 1.943 ± .190 1.429 ± .181 1.682 ± .175 1.557 ± .188 1.319 ± .163
 HS2 4.241 ± .346 4.136 ± .377 4.736 ± .363 4.211 ± .360 4.746 ± .378 2.384 ± .290
 HC1 .575 ± .149 .442 ± .140 .611 ± .154 .545 ± .141 .509 ± .138 .470 ± .134
 HC2 2.612 ± .302 2.631 ± .298 2.854 ± .271 2.62 ± .280 2.307 ± .282 2.094 ± .250
 W-test ≪ ≪ ≪ ≪ ≪

Ranking loss ↓
 Emotion .178 ± .030 .173 ± .041 .158 ± .041 .163 ± .029 .151 ± .038 .139 ± .032
 Flags .236 ± .062 .214 ± .060 .226 ± .078 .206 ± .072 .212 ± .075 .201 ± .062
 Birds .137 ± .034 .141 ± .032 .122 ± .053 .125 ± .045 .153 ± .044 .129 ± .036
 Yeast .180 ± .013 .179 ± .016 .169 ± .019 .175 ± .009 .175 ± .014 .160 ± .010
 Medical .029 ± .001 .040 ± .002 .0195 ± .003 .0190 ± .002 .018 ± .001 .017 ± .002
 HS1 .313 ± .046 .352 ± .030 .310 ± .046 .307 ± .040 .309 ± .041 .249 ± .038
 HS2 .354 ± .044 .359 ± .030 .359 ± .038 .344 ± .041 .262 ± .030 .223 ± .038
 HC1 .057 ± .029 .051 ± .015 .056 ± .019 .055 ± .024 .055 ± .018 .046 ± .016
 HC2 .173 ± .015 .169 ± .023 .168 ± .026 .153 ± .020 .123 ± .012 .120 ± .017
 W-test ≪ ≪ ≪ ≪ ≪

One error ↓
 Emotion .327 ± .068 .289 ± .101 .332 ± .078 .304 ± .065 .264 ± .081 .241 ± .073
 Flags .220 ± .145 .227 ± .136 .297 ± .142 .219 ± .179 .186 ± .162 .179 ± .155
 Birds .739 ± .053 .763 ± .069 .767 ± .097 .718 ± .074 .691 ± .083 .684 ± .069

306	 Pattern Analysis and Applications (2020) 23:295–308

1 3

Hamming loss, one error and coverage. Due to the limitation
of space, the results have not been presented here.

According to the first row in Fig. 3, parameter C is the
most sensitive parameter among all three parameters in our
study; hence, selecting a suitable value of C can signifi-
cantly improve the performance of the algorithm. As shown
in Fig. 3, with increasing the value of C, performance (both
ranking loss and average precision) first improved and then
worsened. The best value for this parameter is 26 for Flags
dataset and close to 2−1 for the other datasets.

As depicted in the second row in Fig. 3, large values for
the parameter λ reduces the performance, i.e., ranking loss
and average precision. More precisely, increasing the value
of λ leads to a slight increase in the performance at first
which then diminishes as the λ becomes larger. The decline
is considerably higher in Birds dataset in comparison with
others. The best value for λ is 24 for Flags and it is close to
2−2 for the other datasets. This means that the regularization
term (minimization of hyperplane parameters w and b) is
important to obtain the best classifier for Flags dataset and
is relatively ineffective for the others.

Finally, as shown in the third row of Fig. 3, the different
values of parameter η don’t have significant effect on ML-
SLSTSVM, except in Birds and Flags datasets in which the
average precision can increase up to 7% by a proper selection
of the parameter. This means that the structural information

of the both datasets contains useful prior domain knowledge
for training the classifier. In addition, since the ranking loss
values are small, changing the value of η does not have much
effect on it and the ranking loss chart is fairly smooth (except
Flags dataset). The best value for the parameter η is close to
2−6 for Emotion, Birds and Yeast datasets and 22 and 25 for
Medical and Flags datasets, respectively.

6 � Conclusion

For the MLL problem, a new algorithm, termed as ML-
SLSTSVM, is proposed in this paper. This algorithm is a
ranking-based SVM that extends the MLTSVM method [15]
with considering structural information of training samples
and using least square idea. ML-SLSTSVM seeks a proximal
hyperplane for each label where the kth hyperplane is closer
to the instances with the label k, and is as far as possible
from the others. We only need to solve systems of linear
equations for both linear and nonlinear cases rather than to
solve systems of QPPs in the MLTSVM. Experiments on
nine synthetic and real-world multi-label datasets show that
in term of evaluation metrics mentioned in subsection 5.2,
ML-SLSTSVM outperforms some well-established multi-
label learning algorithms.

Table 4   (continued)

Dataset CLR MLkNN RankSVM MLTSVM (linear) ML-SLSTSVM (linear) ML-
SLSTSVM
(nonlinear)

 Yeast .249 ± .029 .243 ± .015 .266 ± .029 .238 ± .024 .233 ± .320 .222 ± .021
 Medical .192 ± .023 .250 ± .031 .138 ± .028 .160 ± .014 .152 ± .019 .140 ± .012
 HS1 .445 ± .061 .437 ± .067 .465 ± .053 .428 ± .058 .534 ± .068 .503 ± .060
 HS2 .596 ± .066 .612 ± .070 .608 ± .064 .590 ± .052 .392 ± .059 .379 ± .061
 HC1 .017 ± .031 .013 ± .022 .021 ± .029 .014 ± .020 .020 ± .024 .008 ± .020
 HC2 .297 ± .042 .314 ± .039 .307 ± .059 .295 ± .045 .126 ± .040 .117 ± .031
 W-test ≪ ≪ ≪ ≪ ≪

Table 5   Average CPU time
(mean + SD)

Dataset CLR MLkNN RankSVM MLTSVM ML-SLSTSVM (linear) ML-
SLSTSVM
(nonlinear)

Emotion 2.192 ± .187 .930 ± .069 2.429 ± .230 .893 ± .073 .083 ± .008 .629 ± .030
Flags .132 ± .094 .059 ± .007 .349 ± .045 .078 ± .012 .044 ± .006 .087 ± .013
Birds 1.076 ± .368 1.772 ± .095 2.836 ± .353 1.445 ± .162 .303 ± .026 2.501 ± .188
Yeast 61.09 ± 3.82 19.126 ± .75 108.19 ± 9.2 20.64 ± 1.28 1.785 ± .031 37.123 ± 4.21
Medical 68 ± 9.29 25 ± 3.67 143 ± 12.2 27 ± 4.91 9.123 ± 1.20 30 ± 5.4
W-test == == ≪ == ==

307Pattern Analysis and Applications (2020) 23:295–308	

1 3

References

	 1.	 Sorower MS (2010) A literature survey on algorithms for multi-
label learning, vol 18. Oregon State University, Corvallis

	 2.	 Wu J-S, Huang S-J, Zhou Z-H (2014) Genome-wide protein func-
tion prediction through multi-instance multi-label learning. IEEE/
ACM Trans Comput Biol Bioinform 11(5):891–902

	 3.	 Wang X, Zhang W, Zhang Q, Li G-Z (2015) MultiP-SChlo: multi-
label protein subchloroplast localization prediction with Chou’s
pseudo amino acid composition and a novel multi-label classifier.
Bioinformatics 31(16):2639–2645

	 4.	 Singh-Miller N, Collins M (2009) Learning label embeddings for
nearest-neighbor multi-class classification with an application to
speech recognition. In: Advances in neural information processing
systems 22 (NIPS 2009), pp 1678–1686

	 5.	 Xu G, Lee H, Koo M-W, Seo J (2017) Convolutional neural
network using a threshold predictor for multi-label speech act

classification. In: 2017 IEEE international conference on big data
and smart computing (BigComp), 2017, pp 126–130

	 6.	 Wu B, Zhong E, Horner A, Yang Q (2014) Music emotion recog-
nition by multi-label multi-layer multi-instance multi-view learn-
ing. In: Proceedings of the 22nd ACM international conference
on multimedia, 2014, pp 117–126

	 7.	 Trohidis K, Tsoumakas G, Kalliris G, Vlahavas IP (2008) Multi-
label classification of music into emotions. ISMIR 8:325–330

	 8.	 Liu Y, Wen K, Gao Q, Gao X, Nie F (2018) SVM based multi-
label learning with missing labels for image annotation, vol 78.
Elsevier Ltd., Amsterdam

	 9.	 Wu J, Yu Y, Huang C, Yu K (2015) Deep multiple instance learn-
ing for image classification and auto-annotation. In: Proceedings
of the IEEE conference on computer vision and pattern recogni-
tion, 2015, pp 3460–3469

	10.	 Tsoumakas G, Katakis I (2007) Multi-label classification: an over-
view. Int J Data Warehous Min 3(3):1–13

Ranking loss Average precision

C

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

- 1 0 - 8 - 6 - 4 - 2 0 2 4 6 8 1 0
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

- 1 0 - 8 - 6 - 4 - 2 0 2 4 6 8 1 0

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

- 1 0 - 8 - 6 - 4 - 2 0 2 4 6 8 1 0
0.4

0.5

0.6

0.7

0.8

0.9

- 1 0 - 8 - 6 - 4 - 2 0 2 4 6 8 1 0

0

0.05

0.1

0.15

0.2

0.25

0.3

- 1 0 - 8 - 6 - 4 - 2 0 2 4 6 8 1 0

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

- 1 0 - 8 - 6 - 4 - 2 0 2 4 6 8 1 0

Fig. 3   Effect of parameters including C, λ and η on the performance of ML-SLSTSVM on the real datasets

308	 Pattern Analysis and Applications (2020) 23:295–308

1 3

	11.	 Zhang M-L, Zhou Z-H (2014) A review on multi-label learning
algorithms. IEEE Trans Knowl Data Eng 26(8):1819–1837

	12.	 Fürnkranz J, Hüllermeier E, Loza Mencía E, Brinker K (2008)
Multilabel classification via calibrated label ranking. Mach Learn
73(2):133–153

	13.	 Elisseeff A, Weston J (2001) A kernel method for multi-labelled
classification. In: Advances in neural information processing sys-
tems 14 (NIPS 2001), pp 681–687

	14.	 Xu J (2013) Fast multi-label core vector machine. Pattern Recog-
nit 46(3):885–898

	15.	 Chen WJ, Shao YH, Li CN, Deng NY (2016) MLTSVM: a novel
twin support vector machine to multi-label learning. Pattern Rec-
ognit 52:61–74

	16.	 Zhang ML, Zhou ZH (2007) ML-KNN: a lazy learning approach
to multi-label learning. Pattern Recognit 40(7):2038–2048

	17.	 Zhang M-L (2009) Ml-rbf: RBF neural networks for multi-label
learning. Neural Process Lett 29(2):61–74

	18.	 Zhang M-L, Zhou Z-H (2006) Multilabel neural networks with
applications to functional genomics and text categorization. IEEE
Trans Knowl Data Eng 18(10):1338–1351

	19.	 Clare A, King RD (2001) Knowledge discovery in multi-label
phenotype data. In: European conference on principles of data
mining and knowledge discovery, 2001, pp 42–53

	20.	 Vens C, Struyf J, Schietgat L, Džeroski S, Blockeel H (2008)
Decision trees for hierarchical multi-label classification. Mach
Learn 73(2):185–214

	21.	 Qi Z, Tian Y, Shi Y (2013) Structural twin support vector machine
for classification. Knowl Based Syst 43:74–81

	22.	 Suykens JAK, Vandewalle J (1999) Least squares support vector
machine classifiers. Neural Process Lett 9(3):293–300

	23.	 Arun Kumar M, Gopal M (2009) Least squares twin support
vector machines for pattern classification. Expert Syst Appl
36(4):7535–7543

	24.	 Hüllermeier E, Fürnkranz J, Cheng W, Brinker K (2008)
Label ranking by learning pairwise preferences. Artif Intell
172(16–17):1897–1916

	25.	 Sun X et al (2016) ELM-ML: study on multi-label classification
using extreme learning machine. In: Proceedings of ELM-2015,
vol 2. Springer, 2016, pp 107–116

	26.	 Schapire RE, Singer Y (2000) BoosTexter: a boosting-based sys-
tem for text categorization. Mach Learn 39(2–3):135–168

	27.	 Wang Y et al (2017) A multi-label learning method for efficient
affective detection. In: 2017 IEEE EMBS international conference
on biomedical and health informatics, pp 61–64

	28.	 Reyes O, Morell C, Ventura S (2018) Effective active learning
strategy for multi-label learning. Neurocomputing 273:494–508

	29.	 Li Z, Tang J, Mei T (2018) Deep collaborative embedding for
social image understanding. IEEE Trans Pattern Anal Mach Intell.
https​://doi.org/10.1109/TPAMI​.2018.28527​50

	30.	 Zhu J, Liao S, Lei Z, Li SZ (2017) Multi-label convolutional neu-
ral network based pedestrian attribute classification. Image Vis
Comput 58:224–229

	31.	 Zhuang N, Yan Y, Chen S, Wang H, Shen C (2018) Multi-label
learning based deep transfer neural network for facial attribute
classification. Pattern Recognit 80:225–240

	32.	 Li Z, Tang J (2017) Weakly supervised deep matrix factoriza-
tion for social image understanding. IEEE Trans Image Process
26(1):276–288

	33.	 Cakir E, Heittola T, Huttunen H, Virtanen T (2015) Multi-label
vs. combined single-label sound event detection with deep neural
networks. In: 2015 23rd European signal processing conference
(EUSIPCO), 2015, pp 2551–2555

	34.	 Barutcuoglu Z, Schapire RE, Troyanskaya OG (2006) Hierar-
chical multi-label prediction of gene function. Bioinformatics
22(7):830–836

	35.	 Zhang W, Yan J, Wang X, Zha H (2018) Deep extreme multi-
label learning. In: Proceedings of the 2018 ACM on international
conference on multimedia retrieval. ACM, pp 100–107

	36.	 Prabhu Y, Varma M (2014) Fastxml: a fast, accurate and stable
tree-classifier for extreme multi-label learning. In: Proceedings of
the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2014, pp 263–272

	37.	 Weston J, Makadia A, Yee H (2013) Label partitioning for sub-
linear ranking. In: International conference on machine learning,
2013, pp 181–189

	38.	 Xu C, Tao D, Xu C (2016) Robust extreme multi-label learn-
ing. In: Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, 2016, pp
1275–1284

	39.	 Bhatia K, Jain H, Kar P, Varma M, Jain P (2015) Sparse local
embeddings for extreme multi-label classification. In: Advances
in neural information processing systems 28 (NIPS 2015), pp
730–738

	40.	 Jayadeva, Khemchandani R, Chandra S (2007) Twin support vec-
tor machines for pattern classification. IEEE Trans Pattern Anal
Mach Intell 29(5):905–910

	41.	 Vapnik VN (1999) An overview of statistical learning theory.
IEEE Trans Neural Netw 10(5):988–999

	42.	 Hofmann T, Schölkopf B, Smola AJ (2008) Kernel methods in
machine learning. Ann Stat 36(3):1171–1220

	43.	 Auria L, Moro R (2008) Support vector machines (SVM) as a
technique for solvency analysis. DIW Berlin discussion paper no.
811. Available at SSRN: https​://ssrn.com/abstr​act=14249​49 or
https​://doi.org/10.2139/ssrn.14249​49

	44.	 Xue H, Chen S, Yang Q (2011) Structural regularized support
vector machine: a framework for structural large margin classifier.
IEEE Trans Neural Netw 22(4):573–587

	45.	 Shao Y-H, Zhang C-H, Wang X-B, Deng N-Y (2011) Improve-
ments on twin support vector machines. IEEE Trans Neural Netw
22(6):962–968

	46.	 Fung G, Mangasarian OL (2001) Proximal support vector machine
classifiers. In: Proceeding of ACM SIGKDD international con-
ference on knowledge discovery and data mining—KDD’01, pp
77–86

	47.	 Tsoumakas G, Spyromitros-Xioufis E, Vilcek J, Vlahavas I (2011)
Mulan: a java library for multi-label learning. J Mach Learn Res
12(Jul):2411–2414

	48.	 Nasiri JA, Charkari NM, Jalili S (2015) Least squares twin multi-
class classification support vector machine. Pattern Recognit
48(3):984–992

	49.	 Wilcoxon F (1945) Individual comparisons by ranking methods.
Biometrics Bull 1(6):80–83

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/TPAMI.2018.2852750
https://ssrn.com/abstract=1424949
https://doi.org/10.2139/ssrn.1424949

	ML-SLSTSVM: a new structural least square twin support vector machine for multi-label learning
	Abstract
	1 Introduction
	2 Related works
	3 Preliminaries
	3.1 Support vector machine
	3.2 Twin support vector machine
	3.3 Structural twin SVM
	3.4 Least square twin SVM
	3.5 Multi-label twin support vector machine

	4 Proposed method
	4.1 ML-STSVM
	4.1.1 Linear ML-STSVM
	4.1.2 Nonlinear ML-STSVM

	4.2 ML-SLSTSVM
	4.2.1 Linear ML-SLSTSVM
	4.2.2 Nonlinear ML-SLSTSVM

	5 Experiments and results
	5.1 Benchmark datasets
	5.2 Evaluation criteria
	5.2.1 Hamming loss
	5.2.2 Ranking loss
	5.2.3 Coverage
	5.2.4 One error
	5.2.5 Average precision

	5.3 Parameters setting
	5.4 Experimental results
	5.5 Sensitivity analysis

	6 Conclusion
	References

