
Vol.:(0123456789)1 3

Pattern Analysis and Applications (2020) 23:295–308 
https://doi.org/10.1007/s10044-019-00779-2

THEORETICAL ADVANCES

ML‑SLSTSVM: a new structural least square twin support vector 
machine for multi‑label learning

Meisam Azad‑Manjiri1 · Ali Amiri1 · Alireza Saleh Sedghpour2

Received: 5 August 2017 / Accepted: 7 January 2019 / Published online: 12 February 2019 
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
Multi-label learning (MLL) is a special supervised learning task, where any single instance possibly belongs to several 
classes simultaneously. Nowadays, MLL methods are increasingly required by modern applications, such as protein function 
classification, speech recognition and textual data classification. In this paper, a structural least square twin support vector 
machine (SLSTSVM) classifier for multi-label learning is presented. This proposed ML-SLSTSVM focuses on the cluster-
based structural information of the corresponding class in each optimization problem, which is vital for designing a good 
classifier in different real-world problems. This method is extended to a nonlinear version by the kernel trick. Experimental 
results demonstrate that proposed method is superior in generalization performance to other classifiers.

Keywords Multi-label learning · Support vector machine · Twin SVM · Structural SVM · Lest square SVM

1 Introduction

Multi-label learning (MLL) is a form of supervised learn-
ing where the learning algorithm is required to learn from 
a set of instances, and each instance can belong to multiple 
classes and so after be able to predict a set of class labels 
for a new instance [1]. In the past decade, such a learning 
issue has received a lot of attention because of many real-
world applications, e.g., protein function classification [2, 
3], speech recognition [4, 5], music categorization [6, 7] 
and image annotation [8, 9]. Due to the complex nature of 
this type of data, their learning is more difficult than two- or 
multi-class data. MLL methods can generally be divided into 
the following [10].

• Problem transformation methods: These methods trans-
form the MLL problem into one or more single-label 
classification problems, which can be solved using exist-
ing single-label learning methods. An essential property 
of problem transformation methods is that they are algo-

rithm independent. Binary relevance [10], label powerset 
[11] and calibrated label ranking [12] are some of the 
algorithms which use problem transformation methods 
for MLL.

• Algorithm adaptation methods: These methods handle 
directly the MLL problems by adapting popular learning 
techniques to deal with multi-label data. Support vec-
tor machine [13–15], nearest neighbor [16], neural net-
work [17, 18] and decision tree [19, 20] are some of the 
machine learning techniques which have been extended 
for MLL. The proposed method is one of the algorithm 
adaptation methods that extend SVM to learn multi-label 
data.

Despite the works done in MLL, there is still a need to 
develop more efficient methods in terms of precision and 
other metrics in Sect. 5.2. Because the structural information 
of data may contain useful prior domain knowledge for train-
ing a classifier, in this paper, we first present an improve-
ment on MLTSVM [15], called structural twin support 
vector machine for multi-label learning (ML-STSVM). In 
this method, we, respectively, embed the data structures of 
classes into the optimization problems of MLTSVM based 
on the same clustering technology of S-TWSVM [21]. Least 
square SVM [22] solves linear system instead of QP prob-
lem. This property improves both the generalization capa-
bility and running speed. For this reason, we present least 
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square version of ML-STSVM (using the proposed idea in 
[22, 23]) called ML-SLSTSVM. In the algorithm, we modi-
fied the primal QPPs of TSVM in least square sense and 
solved them with equality constraints instead of inequalities 
of TSVM.

To thoroughly evaluate the performance of the proposed 
approach, comparative studies over both synthetic and real-
world multi-label datasets have been conducted. Experimen-
tal results show that ML-SLSTSVM achieves superior per-
formance against several state-of-the-art multi-label learning 
algorithms. Finally, the main contribution of ML-SLSTSVM 
is defining a ranking-based SVM that extends the MLTSVM 
method [15] with considering structural information of train-
ing samples to improve the generalization capability and 
using the least square idea [22] to improve both generaliza-
tion capability and running speed.

This paper is organized as follows. In Sect. 2, the set-
ting of a MLL and related works are introduced. Some pre-
liminaries are given in Sect. 3. The proposed algorithm is 
described in detail in Sect. 4. In Sect. 5, some simulation 
results are discussed. Finally, the conclusions are drawn in 
Sect. 6.

2  Related works

Let X ∈ ℝ
d be an instance space of d-dimensional fea-

tures and  =
{
�1, �2,… , �L

}
 be a finite set of labels 

or classes. Each instance x ∈ X has multiple class labels 
Y in  . Given a set of training examples consisting of n 
instances,D =

{(
X1, Y1

)
,… ,

(
Xn, Yn

)}
 , where each instance 

is independent and identically distributed (i.i.d.) drawn 
from an unknown distribution  . xi ∈ X and labels Yi ⊆  
are known [11]. The goal of multi-label classification is to 

learn categories’ properties from labeled examples and find 
a multi-label classifier g ∶ X → 2 that maps an instance 
x to its label such that specific performance criteria are 
optimized. Here, 2 is the powerset of  , which is the set 
of all subsets of  . To facilitate our discussion, we sum-
marize major symbols and notations used in this paper in 
Table 1. Others are defined following their first appearance 
as required. 

There is another method to learn multi-label data called 
label ranking. In the label ranking, the goal is to learn to 
predict a total order, a ranking, of all possible labels for a 
new training example. In other words, the task is to learn the 
function f ∶ X ×  → ℝ that, for a new instance x, assign 
a real number to each label y ∈  where more related label 
with x has greater value of f. In the label ranking, it is neces-
sary to be considered a threshold that based on related labels 
separated from unrelated ones. It should be noted that in this 
paper, the proposed method builds a label ranking model to 
learn multi-label data.

As mentioned in the Introduction, current MLL algo-
rithms have been developed with two strategies: the problem 
transformation and algorithm adaptation. In the following, 
we introduce some well-known works on both these strate-
gies and especially focus on SVM-based methods that used 
for MLL problem.

The binary relevance approach (BR) [10] decomposes 
multi-label learning task into several independent binary 
classification problems, one for each label in the set of 
labels. Finally, this method determines the labels for a new 
instance by aggregating the predictions from all the clas-
sification problems. Since the BR method does not model 
dependencies between labels, the predictive performance of 
it is low.

Table 1  Symbols and notations 
used in this paper

Symbol/notation Definition

X ∈ ℝ
d Instance space of d-dimensional features

 =
{
�1, �2,… , �

L

}
Finite set of labels

D =
{(

X1,Y1

)
,… ,

(
X
n
,Y

n

)}
Training dataset (consisting n training instances)

L = || Number of labels
n Number of instances
d Number of features
I
k

Index of instances that are associated with the kth label
I
k̄

Index of instances that are not associated with the kth label
c ∈ ℝ Penalty for the classification error
� ∈ ℝ Regularization parameter
� ∈ ℝ Parameter that regulates the relative importance of the 

structural information
� ∈ ℝ Slack variable
e ∈ ℝ

arb Column vector of ones in real space of arbitrary dimension
K(., .) Kernel function
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To address this deficiency (to model labels dependency), 
some new methods have improved. One of these methods is 
the label powerset (LP) method [11]. In LP, each of the dif-
ferent combinations of labels in a dataset is considered to be 
a single label. Thus, LP transforms a multi-label problem to 
a multi-class problem with  2|L| different classes, where L is 
the set of labels in original problem and  2L is the powerset of 
all labels in L. The predictive performance of LP is greater 
than BR, but the main drawback of it is high computational 
complexity (the number of label combinations grows expo-
nentially with the number of labels).

Ranking by pairwise comparison (RPC) [24] is another 
type of binary classification approach which uses prob-
lem transformation strategy. This method learns L(L − 1)/2 
binary models, one for each pair of labels. To predict a new 
instance by RPC, all the models are invoked and a ranking 
is obtained by counting the votes received by each label. 
This method has a good predictive performance, but the time 
complexity of it is quadratic.

Another strategy to classify multi-label data is the algo-
rithm adaptation. In the following, we review some works 
that use it. In [18], an extension of backpropagation algo-
rithm called backpropagation for multi-label learning (BP-
MLL) is proposed. It uses multiple binary outputs as the 
label variables and defines a novel error function that cap-
tures the characteristics of multi-label learning. In [20], 
an extension of tree algorithm C4.5 is presented to handle 
multi-label problems. It modifies the entropy to consider 
instances associated with multiple labels. In [19], an algo-
rithm based on Bayesian approach is proposed for multi-
label textual data classification. It constructs a probabilistic 
generative model to model multiple labels associated with 
each document.

Multi-label k nearest neighbor (MLkNN) [16] is a k 
nearest-neighbor method adapted for MLL. This method 
classifies a new instance by voting from the labels found 
in its neighbors. In [25], the authors have tried to extend 
the ELM technique for multi-label learning by proposing a 
thresholding method based on ELM. In [26], an extension 
of AdaBoost algorithm called BoosTexter is presented for 
MLL problem. It maintains a set of weights over both train-
ing examples and labels to handle multiple labels.

Some works on MLL are general-purpose and we can use 
theme for learning different types of data [15, 16, 27, 28]. 
Some other works are specific-purpose and learn the spe-
cific type of data (e.g., image, sound and gene expression 
data) [29–34]. There are many works in the literature that 
are proposed for images classification. Since deep neural 
networks and more specifically convolutional neural net-
works have shown promising results in image classifica-
tion, most of the MLL works have used them. Multi-label 
classification for image annotation [8], pedestrian attribute 
classification [30], facial attribute classification [31] and 

social image understanding [29, 32] are examples of this 
type of works.

Extreme multi-label learning (XML) is another problem 
in the area of MLL, and it is important problem since the 
boom of big data [35]. The objective in XML is to learn a 
classifier that can automatically tag a data point with the 
most relevant subset of labels from a large label set. Many 
existing MLL methods are not suitable for XML, due to 
the large label space (as large as in millions). Tree-based 
methods [36, 37] and embedding-based methods [38, 39] 
are two general types of methods in this area. It should be 
noted that our proposed method is general-purpose and 
does not claim to solve XML problems. In this paper, we 
extend SVM to handle multi-label data. Therefore, in the 
following we introduce some SVM-based methods for 
MLL problems.

Many well-known approaches extend the traditional SVM 
for MLL problem, e.g., RankSVM [13], RankCVM [14] and 
MLTSVM [15]. RankSVM is proposed via extending multi-
class SVM and uses a novel ranking loss function as its 
empirical loss. This method solves a quadratic programming 
problem to rank the label set for new instances. A drawback 
of RankSVM is high computational complexity due to a 
large number of variables in its quadratic programming. To 
address this drawback, the RankCVM was proposed. This 
method combines RankSVM with CVM to construct a novel 
SVM-type multi-label classifier which is described as the 
same optimization form as binary CVM.

We cite [15] as the key reference for the proposed 
method, since we freely use some of the terminologies and 
the ideas presented in it. It proposes a novel twin support 
vector machine to multi-label learning called MLTSVM. 
This method which is an extension of twin SVM (TWSVM) 
[40] determines multiple nonparallel hyperplanes to capture 
the multi-label information embedded in data. MLTSVM 
solves L quadratic programming problems (L is the number 
of labels) to obtain L nonparallel proximal hyperplanes, and 
each problem is similar to binary TWSVM. Note that the 
optimization is done in a way that kth hyperplane is closer 
to the instances with the label k, and is as far as possible 
from the others.

3  Preliminaries

Since the proposed method is based on SVM, in this section 
we briefly introduce the SVM and some extension of it.

3.1  Support vector machine

Support vector machine (SVM) was originally proposed 
by Vapnik [41] for binary classification. SVM implements 
the structural risk minimization (SRM), in contrast to other 
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machine learning approaches like conventional artificial neu-
ral network which aims at minimizing empirical risk (ERM). 
(SRM minimizes the upper bound of generation, whereas 
ERM minimizes the error on the training data.) Recently 
SVMs have been extended to solve the multi-class and MLL 
problems.

The main idea of the SVM classifier is to obtain a linear 
decision boundary that maximizes a separation margin. In 
other words, SVM tries to find a discriminant hyperplane 
by solving an optimization problem to separate two classes 
of patterns.

We consider the problem of classifying n points in the 
d-dimensional real space Rd, represented by the n × d matrix 
X, according to membership of each point Xi in the classes 
+ 1 or −1 as specified by a given m × m diagonal matrix D 
with ones or minus ones along its diagonal. For this prob-
lem, the SVM discriminant function is d(x) = w

�

x + b and 
it obtained by minimizing the following objective function.

where � is the n-dimensional vector of slack variables, c 
is a penalty parameter and e is a vector of ones of appro-
priate dimensions. Figure 1 shows the linear separation of 
data points using SVM classifier. As you see in this figure, 
the discriminant hyperplane lies in a space that is halfway 
between the two sets of points and has maximum margin.

Training algorithm of SVM performs a linear classifi-
cation and builds a model that assigns new examples into 
one class or the other. When data points are not linearly 

(1)
min
w,b,�

1

2
‖w‖2 + ce

�

�

s.t ∶ D(Xw + eb) ≥ e − � � ≥ 0

separable, we can use nonlinear SVM, in which data points 
are mapped to higher-dimensional feature space where the 
examples become linearly separable. This mapping is com-
plex, and training time increases exponentially with the input 
data dimension. To tackle with this drawback, we can use 
the kernel trick [42]. Kernel trick provides a way to work in 
a feature-rich space without explicitly mapping the points to 
higher dimension. This trick is done by using an appropriate 
kernel function, which describes the hyperplane in higher 
dimensions. Therefore, the art of using nonlinear SVMs is 
to choose the correct kernel function, which is well suited 
for the underlying problem.

SVM has such advantages as good generalization capac-
ity, less limit in training set size and more robust to noise 
[43], but there is a main challenge in the traditional SVM 
and it is the high computational complexity of quadratic 
programming problem (QPP) [43]. The computational com-
plexity of SVM is O

(
n3
)
 , where n denotes the count of train-

ing data. This drawback restricts the application of SVM to 
large-scale problem domains.

3.2  Twin support vector machine

The study in [40] proposed a novel binary classifier, twin 
support vector machine (TWSVM), the speed of which is 
approximately four times faster than SVM.

This method seeks two nonparallel hyperplanes such that 
each hyperplane is close to the patterns of one class and 
far away from the patterns of the other classes simultane-
ously. The TWSVM hyperplanes have the forms (2) and are 
obtained by minimizing the objective functions (3) and (4).

where A and B are the data points belonging to classes + 1 
and − 1, respectively, and � is vector of slack variables. Fig-
ure 2 shows how the linear TWSVM separates training data 
points. When this method found the hyperplanes, a new data 
instance is classified based on the distance between it and 
the hyperplanes.

3.3  Structural twin SVM

Using prior information of training data can help to design 
more powerful classifiers, and the structural information of 

(2)x
�

w1 + b1 = 0, x
�

w2 + b2 = 0

(3)
min
w1,b1,�

1

2

(
Aw1 + eb1

)�(
Aw1 + eb1

)
+ ce

�

�

s.t ∶ −(Bw1 + eb1) + � ≥ e, � ≥ 0

(4)
min
w2,b2,�

1

2

(
Bw2 + eb2

)�(
Bw2 + eb2

)
+ ce

�

�

s.t ∶ (Aw2 + eb2) + � ≥ e, � ≥ 0

′ + = −1

′ + = +1

′ + = 0

1

2

1
1

Fig. 1  Linear separation of data points using SVM classifier



299Pattern Analysis and Applications (2020) 23:295–308 

1 3

data points is one of them [44]. For this reason, some SVM-
based methods are presented that use covariance matrix of 
data. STSVM or structural TWSVM is one of these methods, 
which was introduced in 2013 by Zhiquan [21].

In this method which is an extension of TWSVM, the 
derived decision hyperplanes tend to lie in the same direc-
tion with the data dispersion. The hyperplanes have the form 
(5) and are obtained from solving the objective functions 
(6) and (7).

where c1, …c6 are the pre-specified penalty factors, e+, e− are 
vectors of ones of appropriate dimensions, � is the vector of 
slack variables,�+ = �p1 +⋯ + �pm,�− = �n1 +⋯ + �nk , 
ΣPi and ΣNj are, respectively, the covariance matrices cor-
responding to the ith and jth clusters in the two classes, i = 1, 
…, m, j = 1, …, k.

(5)f+(x) = W+x + b+ = 0, f−(x) = W−x + b− = 0

(6)

min
wk ,bk ,�j

1

2

∑
i∈Ik

‖‖‖
(
AW+ + e+b+

)‖‖‖
2

+ c1e
�

−
�

+
1

2
c2

(‖‖w+
‖‖2 + b2

+

)
+

1

2
c3
(
w

�

+
�+w+

)

s.t ∶ −(BW+ + e−b+) + � ≥ e−, � ≥ 0

(7)

min
wk ,bk ,�j

1

2

∑
i∈Ik

‖‖‖
(
BW− + e−b−

)‖‖‖
2

+ c4e
�

+
�

+
1

2
c5

(‖‖w−
‖‖2 + b2

−

)
+

1

2
c6
(
w

�

−
�−w−

)

s.t ∶ −(AW− + e+b−) + � ≥ e+, � ≥ 0

3.4  Least square twin SVM

Least square twin support vector machines (LSTSVM) is 
another extension of SVM that attempts to solve two modi-
fied primal problems of TSVM, instead of two dual prob-
lems usually solved [23]. This method requires just the solu-
tion of two systems of linear equations for both linear and 
nonlinear cases, while TWSVM requires solving two quad-
ratic programming problems (QPPs). The training time of 
LSTSVM is much faster than TWSVM, and this advantage 
allows to easily classify large datasets. The LSTSVM model 
can be formulated as:

3.5  Multi‑label twin support vector machine

As mentioned in the previous section, in [15] it is presented 
a SVM-based method called MLTSVM. This method 
obtains as many proximal hyperplanes as there are labels 
on the dataset. Each hyperplane has the form (10), where 
wk and bk are the normal vector and the bias term of the kth 
proximal hyperplane, respectively. These hyperplanes are 
obtained by minimizing the objective function (11) where 
Ck and �k are the pre-specified penalty factors, and � is the 
vector of slack variables.

Using Lagrangian function and Karush–Kuhn–Tucker 
(KKT) conditions and by introducing the Lagrangian mul-
tipliers α, the dual QPP of (11) can be represented as

After obtaining the solutions αj from the dual problem 
(12), the kth proximal hyperplane (k = 1, …, K) can be con-
structed according to (13).

(8)
min
w1,b1

1

2

‖‖‖
(
Aw1 + eb1

)‖‖‖
2

+
c

2
�
�

�

s.t ∶ −(Bw1 + eb1) + � = e

(9)
min
w2,b2

1

2

‖‖‖
(
Bw2 + eb2

)‖‖‖
2

+
c

2
�
�

�

s.t ∶ (Aw2 + eb2) + � = e

(10)fk(x) ∶ w
�

k
xi + bk = 0, k ∈ {1, 2,… , L}

(11)

min
wk ,bk ,𝜉j

F =
1

2

∑
i∈Ik

‖‖‖
(
w�
k
xi + bk

)‖‖‖
2

+ ck

∑
j∈Ik̄

𝜉j +
1

2
𝜆k

(‖‖wk
‖‖2 + b2

k

)

s.t ∶ −(w
�

k
xj + bk) ≥ 1 − 𝜉j, 𝜉j ≥ 0∀j ∈ Ik̄

(12)
max
𝛼j

∑
j∈Ik̄

𝛼j −
1

2

∑
j1∈Ik̄

∑
j2∈Ik̄

𝛼j1𝛼j2z
�

j1

(∑
i∈Ik

ziz
�

i
+ 𝜆kI

)−1

zj2

s.t ∶ 0 ≤ 𝛼j ≤ ck, j ∈ Ik̄

1′ + 1 = 0

1

2

2′ + 2 = 0

Fig. 2  Separation of training data using linear TWSVM
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4  Proposed method

In this section, we first introduce a structural version of 
MLTSVM [15], called structural twin SVM for multi-label 
learning (ML-STSVM) and then propose the least square 
version of it called structural least squared twin support 
vector machine for multi-label learning (ML-SLSTSVM). 
Similar to MLTSVM, let us use Ik and Ik̄ to denote two com-
plementary index sets, and if the instance xi is associated 
with the kth label, then i ∈ Ik ; otherwise, i ∈ Ik̄.

4.1  ML‑STSVM

4.1.1  Linear ML‑STSVM

For the linear case, the ML-STSVM determines a nonparal-
lel hyperplane for each label

where L is the number of labels, the weight vector Wk ∈ ℝ
d 

determines the hyperplane’s orientation and the bias bk ∈ ℝ 
determines the hyperplane’s offset relative to the system 
of coordinates. Here, each hyperplane fi is closer to the 
instances with the label k and is as far as possible from the 
others. These nonparallel hyperplanes can be obtained by 
solving the following optimization problems for each k = 1, 
2, …, L.

where ck , �k and �k are the pre-specified penalty fac-
tors, �j is the slack variable for each training data and 
�k = �k1

+⋯ + �knk
,�ki

 is the covariance matrix corre-
sponding to the ith cluster in training data associated with 
the kth label, i = 1, 2, …, nk.

The first term in the objective function is the sum of 
squared distances from the hyperplane to points of kth 
label. The second term is a ℓ2 regularization term that favors 
sparse models (weighted by λ ∈ ℝ) [45], and the third term 
embodies the structural information of each label.

The Lagrangian corresponding to the problem (15) is 
given by

(13)
[
wk

bk

]
= −

(∑
i∈Ik

ziz
�

i
+ 𝜆kI

)−1(∑
j∈Ik̄

zj𝛼j

)

(14)fk(x) = W
�

k
x + bk = 0; k = 1,… ,L

(15)

min
wk ,bk ,𝜉j

F =
1

2

∑
i∈Ik

‖‖‖
(
w

�

k
xi + bk

)‖‖‖
2

+ ck

∑
j∈Ik̄

𝜉j

+
1

2
𝜆k

(‖‖wk
‖‖2 + b2

k

)
+

1

2
𝜂k
(
w

�

k
𝛴kwk

)

s.t ∶ −(w
�

k
xj + bk) ≥ 1 − 𝜉j, 𝜉j ≥ 0∀j ∈ Ik̄

where 𝛼 = 𝛼1,… , 𝛼|Ik̄| and 𝛽 = 𝛽1,… , 𝛽|Ik̄| are the Lagrange 
multipliers. According to the KKT conditions 
(Karush–Kuhn–Tucker), we know that there exist Lagrange 
multipliers satisfying:

According to (19) and (23):

Obviously, combining (17) and (18) leads to:

If we define zi =
[
xi
1

]
 , sk =

[
�k 0

0 0

]
 and �k =

[
wk

bk

]
 , then 

Eq. (24) can be rewritten as:

(16)

L =
1

2

∑
i∈Ik

‖‖‖
(
w

�

k
xi + bk

)‖‖‖
2

+ ck

∑
j∈Ik̄

𝜉j +
1

2
𝜆k

(‖‖wk
‖‖2 + b2

k

)

+
1

2
𝜂k
(
w

�

k
𝛴kwk

)
+
∑
j∈Ik̄

𝛼j
(
w

�

k
xj + bk + 1 − 𝜉j

)
−
∑
j∈Ik̄

𝛽j𝜉j

(17)

𝜕L

𝜕wk

= 0 ⇒

∑
i∈Ik

(
w

�

k
xi + bk

)
xi + 𝜆kwk + 𝜂k𝛴kwk +

∑
j∈Ik̄

xj𝛼j = 0

(18)
𝜕L

𝜕bk
= 0 ⇒

∑
i∈Ik

(
w

�

k
xi + bk

)
+ 𝜆kbk +

∑
j∈Ik̄

𝛼j = 0

(19)
𝜕L

𝜕𝜉j
= 0 ⇒ ck − 𝛼j − 𝛽j = 0;j ∈ Ik̄

(20)−
(
w

�

k
xj + bk

)
≥ 1 − 𝜉j;𝜉j ≥ 0 ∀j ∈ Ik̄

(21)
∑
j∈Ik̄

𝛼j
(
w

�

k
xj + bk + 1 − 𝜉j

)
= 0

(22)
∑
j∈Ik̄

𝛽j𝜉j = 0

(23)𝛼j ≥ 0, 𝛽j ≥ 0; ∀j ∈ Ik̄

0 ≤ �j ≤ ck

(24)

∑
i∈Ik

[
xi
1

][
xi1

][wk

bk

]
+ 𝜆k

[
wk

bk

]
+ 𝜂k

[
𝛴k 0

0 0

][
wk

bk

]
+
∑
j∈Ik̄

[
xj
1

]
𝛼j = 0

(25)
∑
i∈Ik

ziz
�

i
𝜃k + 𝜆k𝜃k + 𝜂ksk𝜃k +

∑
j∈Ik̄

zj𝛼j = 0

(26)⇒

(∑
i∈Ik

ziz
�

i
+ 𝜆kI + 𝜂ksk

)
𝜃k = −

∑
j∈Ik̄

zj𝛼j

(27)

⇒ 𝜃k =

[
wk

bk

]
= −

(∑
i∈Ik

ziz
�

i
+ 𝜆kI + 𝜂ksk

)−1(∑
j∈Ik̄

zj𝛼j

)
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Substituting (27) and (19) into (16), we obtain the dual 
formulation of (15):

We can rewrite this problem in the following unified 
matrix form:

where 𝛼 = 𝛼1,… , 𝛼|Ik̄| and Q is defined by

In Eq. (31), XIk
= {Xi|i ∈ Ik} (instances associated with 

the kth label) and XIk̄
= {Xi|i ∈ Ik̄} (the other instances).

After optimizing the dual problem (29) for each label 
k = 1, …, L and obtaining � , we can substitute it in Eq. (27) 
and construct the decision strategies (14).

Now, we can use these decision strategies to determine 
the labels of test data. For this purpose, we must determine 
a threshold Tk (k = 1, …, L) for each label and then assign 
the label k to a new instance x if the distance between x and 
fk(x) is less than or equal to Tk.

To determine thresholds Tk, we used the proposed idea 
in [15]. For this, we set Tk = T for all k = 1 to L, where 
T = min

(
1∕‖‖Wk

‖‖
)
 , k = 1, …, L.

4.1.2  Nonlinear ML‑STSVM

In this subsection, we extend the linear ML-STSVM to the 
nonlinear case by considering the following kernel gener-
ated surfaces:

where X denotes all the training instances, Uk is the weight 
vector in the kernel space and K(., .) is a proper chosen ker-
nel. The primal QPPs of the nonlinear ML-STSVM corre-
sponding to the surface (33) is given in (35).

(28)

max
𝛼j

∑
j∈Ik̄

𝛼j −
1

2

∑
j1∈Ik̄

∑
j2∈Ik̄

𝛼j1𝛼j2z
�

j1

(∑
i∈Ik

ziz
�

i
+ 𝜆kI + 𝜂ksk

)−1

zj2

s.t ∶ 0 ≤ 𝛼j ≤ ck, j ∈ Ik̄

(29)
max
�

e�� −
1

2
��Q�

s.t ∶ 0 ≤ � ≤ cke

(30)Q = Gk

(
H

�

k
Hk + �kI + �ksk

)−1
G

�

k

(31)Gk =
[
XIk̄

e
]
,Hk =

[
XIk

e
]

(32)dk(x) = distance
(
x, fk(x)

)
=
(
W

�

k
x + bk

)
∕‖‖Wk

‖‖

(33)fk(x) = U
�

k
K(X, x) + bk = 0; k = 1,… ,L

where ��
k
= ��

k1
+⋯ + ��

knk
,��

ki
 is the covariance matrix 

corresponding to the ith cluster in training data associated 
with the kth label, i = 1, 2, …, nk by the kernel Ward’s link-
age clustering [21]. Similar to previous subsection, we can 
use Lagrangian multipliers and derive the dual formulation 
of the QPP (21) and the solution as follows.

where zi =
[
K(X, xi)

1

]
 and sk =

[
��

k
0

0 0

]
.

The unified matrix form of (35) can be written as (37).

where 𝛼 = 𝛼1,… , 𝛼|Ik̄| and Q is defined by

After optimizing the dual problem (36) for each label 
k = 1, …, L and obtaining � , we can substitute it in (37) and 
construct the decision strategies in (32). Similar to linear 
case, we can use the hyperplanes to determine the labels 
of test data based on the distance between them and the 
hyperplanes.

4.2  ML‑SLSTSVM

In this subsection, we introduce a least square version of 
ML-STSVM called structural least squared twin support 
vector machine for multi-label learning (ML-SLSTSVM). 
Following the idea of PSVM [46], the decision functions of 
ML-SLSTSVM are obtained extremely fast and simple by 
solving the primal problem directly.

(34)

min
Uk ,bk ,𝜉j

1

2

∑
i∈Ik

‖‖‖‖
(
U

′

k
K
(
X, xi

)
+ bk

)‖‖‖‖
2

+ ck

∑
j∈Ik̄

𝜉j+

+
1

2
𝜆k

(‖‖Uk
‖‖2 + b2

k

)
+

1

2
𝜂k

(
U

�

k
𝛴𝛷

k
Uk

)

s.t ∶ −
(
�

�

k
K(�, xj) + bk

)
≥ 1 − 𝜉j, 𝜉j ≥ 0∀j ∈ Ik̄

(35)

max
𝛼j

∑
j∈Ik̄

𝛼j −
1

2

∑
j1∈Ik̄

∑
j2∈Ik̄

𝛼j1𝛼j2z
�

j1

(∑
i∈Ik

ziz
�

i
+ 𝜆kI + 𝜂ksk

)−1

zj2

s.t ∶ 0 ≤ 𝛼j ≤ ck, j ∈ Ik̄

(36)𝜃k =

[
Uk

bk

]
= −

(∑
i∈Ik

ziz
�

i
+ 𝜆kI + 𝜂ksk

)−1(∑
j∈Ik̄

zj�j

)

(37)
max
�

e
�

� −
1

2
��Q�

s.t ∶ 0 ≤ � ≤ cke

(38)Q = Gk

(
H

�

k
Hk + �kI + �ksk

)−1
G

�

k

(39)Gk =
[
K
(
X,XIk̄

)
e
]
,Hk =

[
K
(
X,XIk

)
e
]
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4.2.1  Linear ML‑SLSTSVM

Here we modify the primal problem (15) of linear ML-
STSVM in least square sense as (40), with the inequality 
constraints replaced with equality constraints.

where the variables are similar to those defined for (15). On 
substituting the equality constraint of (41) into the objec-
tive function of it, we can get the following unconstrained 
optimization problem.

Setting the gradient of (41) with respect to wk and bk to 
zero gives:

Combining (42) and (43) leads to:

Defining zi =
[
xi
1

]
 , sk =

[
�k 0

0 0

]
 and �k =

[
wk

bk

]
 , then 

Eq. (44) can be rewritten as:

Finally, the solution of (40) can be obtained by (47)

(40)

min
wk ,bk ,𝜉j

F =
1

2

∑
i∈Ik

‖‖‖
(
w

�

k
xi + bk

)‖‖‖
2

+ ck

∑
j∈Ik̄

‖‖‖𝜉j
‖‖‖
2

+
1

2
𝜆k

(‖‖wk
‖‖2 + b2

k

)

+
1

2
𝜂k
(
w

�

k
𝛴kwk

)

s.t ∶ −
(
w

�

k
xj + bk

)
= 1 − 𝜉j ∀j ∈ Ik̄

(41)
L =

1

2

∑
i∈Ik

‖‖‖
(
w

�

k
xi + bk

)‖‖‖
2

+ ck

∑
j∈Ik̄

‖‖‖w
�

k
xj + bk + 1

‖‖‖
2

+
1

2
𝜆k

(‖‖wk
‖‖2 + b2

k

)
+

1

2
𝜂k
(
w

�

k
𝛴kwk

) (41)

(42)

𝜕L

𝜕wk

= 0 ⇒

∑
i∈Ik

(
w

�

k
xi + bk

)
xi + ck

∑
j∈Ik̄

(
w

�

k
xi + bk + 1

)
xj

+ 𝜆kwk + 𝜂k𝛴kwk = 0

(43)

𝜕L

𝜕bk
= 0 →

∑
i∈Ik

(
w

�

k
xi + bk

)
+ ck

∑
j∈Ik̄

(
w

�

k
xi + bk + 1

)
+ 𝜆kbk = 0

(44)

∑
i∈Ik

[
xi
1

][
xi 1

][wk

bk

]
+ ck

∑
j∈Ik̄

[
xj
1

][
xj 1

][wk

bk

]

+ ck

∑
j∈Ik̄

[
xj
1

]
+ 𝜆k

[
wk

bk

]
+ 𝜂k

[
𝛴k 0

0 0

][
wk

bk

]
= 0

(45)
∑
i∈Ik

ziz
�

i
𝜃k + ck

∑
j∈Ik̄

zjz
�

j
𝜃k + 𝜆k𝜃k + 𝜂ksk𝜃k = − ck

∑
j∈Ik̄

z
�

j

(46)⇒

(∑
i∈Ik

ziz
�

i
+ ck

∑
j∈Ik̄

zjz
�

j
+ 𝜆kI + 𝜂ksk

)
𝜃k = − ck

∑
j∈Ik̄

z
�

j

Equation (47) can be rewritten in the following unified 
matrix form:

where Gk and Hk are:

We can obtain the decision strategies as (14) by solving 
Eq. (48) and use them to determine the labels of test data.

4.2.2  Nonlinear ML‑SLSTSVM

In this subsection, we propose nonlinear ML-SLSTSVM by 
introducing kernel function K

(
x, x

�)
=
(
�(x).�

(
x
�)) and the 

corresponding transformation: X = �(x) where X ∈ H and 
H is the Hilbert space. In order to extend our algorithm to 
nonlinear cases, we consider the kernel generated surfaces 
(33), instead of planes.

Then the optimization problem of nonlinear ML-SLST-
SVM is constructed as follows:

Similar to linear case, we can obtain the unknown vari-
ables on the decision boundaries (33) (Uk and bk) by sub-
stituting the equality constraint of (50) into the objective 
function of it and then differentiating obtained function with 
respect to Uk and bk.

where  Gk =
[
K
(
X,XIk̄

)
e
]
 ,  Hk =

[
K(X,XIk

) e
]
 and 

sk =

[
��

k
0

0 0

]
.

After solving Eq. (51), we can obtain the normal vector 
and the bias term of the kth proximal surface (33). Therefore, 
we can construct a similar prediction strategy as the linear 
case to predict the labels of unseen instances.

(47)

⇒ 𝜃k =

[
wk

bk

]
= − ck

(∑
i∈Ik

ziz
�

i
+ ck

∑
j∈Ik̄

zjz
�

j
+ 𝜆kI + 𝜂ksk

)−1(∑
j∈Ik̄

z
�

j

)

(48)
[
wk

bk

]
= − ck

(
H

�

k
Hk + ckG

�
k
Gk + �kI + �ksk

)−1
G

�

k
e

(49)Gk =
[
XIk̄

e
]
,Hk =

[
XIk

e
]

(50)

min
wk ,bk ,𝜉j

F =
1

2

∑
i∈Ik

‖‖‖‖
(
U

′

k
K
(
X, xi

)
+ bk

)‖‖‖‖
2

+ ck

∑
j∈Ik̄

‖‖‖𝜉j
‖‖‖
2

+
1

2
𝜆k

(‖‖Uk
‖‖2 + b2

k

)

+
1

2
𝜂k

(
U

�

k
𝛴𝛷

k
Uk

)

s.t ∶ −
(
U

�

k
K
(
X, xj

)
+ bk

)
= 1 − 𝜉j ∀j ∈ Ik̄

(51)
[
Uk

bk

]
= −ck

(
H

�

k
Hk + ckG

�

k
Gk + �kI + �ksk

)−1
G

�

k
e
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5  Experiments and results

In this section at first, the used datasets are introduced, and 
then, evaluation criteria for measuring the efficiency of 
MLL algorithms are expressed. Next, the parameter setting 
is described, and finally, the experimental results and param-
eter sensitivity analysis are given. All experiments have been 
implemented in MATLAB R2010b on a personal computer 
(PC) with an Intel (R) Core-i5 processor (2.3 GHz) and 
4 GB random-access memory (RAM).

5.1  Benchmark datasets

To evaluate the proposed ML-SLSTSVM algorithm, in 
this section we have used several synthetic and real-world 
datasets. All synthetic data are generated by Mldatagen 
according to some predefined parameters such as the used 
strategies (hyperspheres or hypercubes), number of relevant, 
irrelevant and redundant features, number of instances and 
number of labels. We add 5% noises to the labels of each 
instance to make the learning tasks more challengeable. 
Also, the real datasets Emotion, Birds, Yeast, Flags and 
Medical are widely used for evaluating multi-label learning 
methods. These datasets represent a wide range of domains 
(include music, text, image and biology), sizes (from 194 to 
2417), features (from 19 to 1449) and labels (from 19 to 45).

All real-world datasets (summarized in Table 3) were 
downloaded from the MULAN multi-label dataset reposi-
tories [47].1 Note that all samples are normalized such that 
the continuous features are located in the range [0,1] before 
learning. Tables 2 and 3 show the used synthetic and real 
datasets in more details.

5.2  Evaluation criteria

There are different criteria to evaluate the performance of 
multi-label data classifiers. For this reason, in this paper, 
we used five standard criteria, which are explained in more 
detail below. In all criteria, n, L, yi and ȳi denote, respec-
tively, the number of training data, the number of labels, 
the set of labels relevant to the ith instance and the set of 
labels that are irrelevant to it. In addition, the function fy(x) 
is a real-valued function ( f ∶ X ×  → ℝ ) that returns the 
confidence of being proper label of x and rankf (x, y) returns 
the rank of y in  based on the descending order induced 
from f.(x).

5.2.1  Hamming loss

This criterion indicates the fraction of labels that are incor-
rectly predicted to the total number of labels.

5.2.2  Ranking loss

This metric is used for ranking-based algorithms and meas-
ures the average fraction of label pairs that are reversely 
ordered. For example, an irrelevant label is ranked higher 
than a relevant label.

5.2.3  Coverage

This measure evaluates how many steps are needed, on aver-
age, to move down the ranked label list so as to cover all the 
true labels of an instance.

(52)Hloss =
1

n × L

n∑
i=1

l∑
j=1

(
hj
(
xi
)
≠ yj

)

(53)

Rloss =
1

n

n∑
i=1

(
1

||��||||�̄�||
|||
{(

y
�

y
��)|fy� ∈�

�

(
xi
)
≤ fy�� ∈�̄

�

(
xi
)}|||

)

(54)Coverage =
1

n

n∑
i=1

max
y∈�

�

rankf
(
xi, y

)
− 1

Table 2  Synthetic dataset statistics

Dataset #Sample Features #Label

Relevant Irrelevant Redundant

Hyperspheres 
(HS1)

400 15 5 0 5

Hyperspheres 
(HS2)

600 35 10 5 10

Hypercubes 
(HC1)

400 15 5 0 5

Hypercubes 
(HC2)

600 35 10 5 10

Table 3  Real dataset statistics

Dataset Domain #Sample #Feature #Label

Emotions Music 593 72 6
Birds Audio 645 260 19
Yeast Biology 2417 103 14
Flags Images 194 19 17
Medical Text 978 1449 45

1 http://mulan .sourc eforg e.net/datas ets-mlc.html.

http://mulan.sourceforge.net/datasets-mlc.html
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5.2.4  One error

The one error evaluates the fraction of examples whose the 
label with the best rank computed by the classification algo-
rithm is not in the relevant label set.

5.2.5  Average precision

Average precision evaluates the average fraction of relevant 
labels ranked higher than a particular label y ∈ �

�
.

The smaller the values for all previous measures except 
the average precision, the better the performance is.

5.3  Parameters setting

It is clear that the performance of SVM-based classification 
methods depends on the choices of parameters [48]. In these 
simulations, cross-validation was used to find the best 
parameters for each dataset. Due to the better performance 
of the kernel version, in our experiments we only consider 
t h e  G a u s s i a n  k e r n e l  f u n c t i o n 

K
(
xi, xj

)
= exp

(
−
‖‖‖xi − xj

‖‖‖
2

∕�2
)

 as it yields great generali-

zation performance. To reduce the parameter selection com-
plexity, we set Ci = C, �i = � and �i = � for all i = 1, 2, …, 
L. The value of the parameters (C, � and λ) is selected from 
the set  (2−10,  2−9, …,  29,  210) by cross-validation and � is 
fixed to be 1.

5.4  Experimental results

In order to evaluate the proposed ML-SLSTSVM, we 
investigate its efficiency using the above criteria on the 
presented datasets. In our experiments, we focus on com-
parison between our ML-SLSTSVM and several state-of-
the-art multi-label learning methods including calibrated 
label ranking (CLR) [11], MLkNN [16], RankSVM [13] 
and MLTSVM [15]. Since we have used the same datasets 
and algorithms as in [15] to evaluate the performance of our 
proposed approach, we used the results reported on it.

(55)
Oerror = (1∕n)

n∑
i=1

H
(
xi
)

H
(
xi
)
=

{
0 if argmax fy

(
xi
)
∈ �

�

1 otherwise

(56)

A.percision =

1

n

n�
i=1

⎛⎜⎜⎝
1
������

�
y∈�

�

���
��

y
�

∈ �
�

��rankf
�
xi, y

��
≤ rankf

�
xi, y

�����
rankf

�
xi, y

�
⎞⎟⎟⎠

Table 4 shows the mean and the deviation of tenfold 
cross-validation learning results of each classifier on the 
synthetic and real datasets, where the best result on each 
dataset is shown in boldface. To compare these methods sta-
tistically, we choose nonlinear ML-SLSTSVM as a baseline, 
and compare whether our method is statistically better than 
one of the remaining four methods.

We performed statistical significance tests using a Wil-
coxon rank-sum test [49] with α = 0.05 to ensure the sta-
tistical significance of the results comparison in terms of 
evaluation metrics. The result of the test is presented at the 
end of each comparison. If the differences in the results are 
statistically significant, a “≪” symbol is shown in the tables. 
In these tables, the symbols ↑ and ↓ after the title of each 
evaluation metric define the expected behavior of it, with ↓ 
meaning that the lowest values are the best ones and ↑ mean-
ing that the highest values are the best ones.

The results show that ML-SLSTSVM outperforms the 
other approaches in all five metrics. We can also see that 
the performance of proposed algorithm is statistically sig-
nificantly better than other compared algorithms in terms 
of all evaluation metrics. For example, on the Flags data-
set, our method achieves 2.8%, 4.3%, 7.7%, 2.4% and 6.3% 
relative improvement in terms of the five evaluation criteria 
over MLTSVM that obtains the second-best results on this 
dataset.

Table 5 presents the average CPU time of our method and 
other compared methods. We used the Wilcoxon signed-rank 
test to ensure the statistical significance of the results com-
parison in terms of CPU time. In this test, α was set to 0.05. 
The results of the test are presented at the bottom of Table 5. 
From the table, we can see that in terms of computational 
cost, the nonlinear ML-SLSTSVM method takes slightly 
more time than the MLkNN and MLTSVM methods; how-
ever, the difference is not significant. 

5.5  Sensitivity analysis

In the ML-SLSTSVM model, there are a few parameters. 
The first parameter is the C, which is used as a penalty for 
the classification error and it controls the trade-off between 
allowing training errors and forcing rigid margins. The sec-
ond parameter is the η, which is the parameter that regulates 
the relative importance of the structural information within 
the clusters. Finally, the third is the λ, which is the regulari-
zation parameter.

In order to examine the sensitivity of these parameters 
in classification accuracy of ML-SLSTSVM, we conducted 
a set of experiments by varying one parameter and fixing 
the other two to the values elected by cross-validation. The 
results on ranking loss and average precision are illustrated 
in Fig. 3. (The x-axis of all charts represents the log2 of 
parameters value.) ML-SLSTSVM had similar situations on 
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Table 4  Predictive performance of each comparing algorithm (mean + SD) on the real-world and synthetic datasets

Dataset CLR MLkNN RankSVM MLTSVM (linear) ML-SLSTSVM (linear) ML-
SLSTSVM 
(nonlinear)

Hamming loss ↓
 Emotion .257 ± .039 .209 ± .028 .228 ± .036 .206 ± .025 .195 ± .027 .178 ± .021
 Flags .271 ± .063 .286 ± .062 .281 ± .072 .266 ± .059 .269 ± .056 .256 ± .051
 Birds .071 ± .013 .057 ± .011 .064 ± .023 .049 ± .018 .065 ± .026 .055 ± .015
 Yeast .224 ± .012 .209 ± .017 .219 ± .027 .201 ± .015 .205 ± .014 .187 ± .016
 Medical .162 ± .041 .170 ± .052 .107 ± .017 .116 ± .015 .112 ± .013 .105 ± .013
 HS1 .281 ± .037 .254 ± .028 .272 ± .034 .250 ± .029 .273 ± .026 .224 ± .022
 HS2 .195 ± .020 .192 ± .010 .191 ± .012 .181 ± .014 .216 ± .013 .174 ± .019
 HC1 .081 ± .020 .053 ± .018 .062 ± .015 .055 ± .016 .050 ± .015 .044 ± .014
 HC2 .131 ± .192 .122 ± .127 .153 ± .021 .117 ± .018 .080 ± .012 .071 ± .014
 W-test ≪ ≪ ≪ ≪ ≪

Average precision ↑
 Emotion .772 ± .035 .762 ± .049 .773 ± .042 .781 ± .029 .809 ± .033 .824 ± .028
 Flags .827 ± .073 .821 ± .067 .786 ± .083 .831 ± .081 .819 ± .077 .842 ± .070
 Birds .533 ± .081 .503 ± .070 .494 ± .091 .541 ± .105 .606 ± .099 .631 ± .087
 Yeast .743 ± .016 .758 ± .017 .737 ± .039 .764 ± .019 .761 ± .022 .774 ± .017
 Medical .802 ± .048 .795 ± .053 .894 ± .041 .812 ± .045 .900 ± .017 .910 ± .014
 HS1 .675 ± .037 .668 ± .038 .672 ± .040 .712 ± .046 .652 ± .039 .705 ± .041
 HS2 .517 ± .046 .489 ± .051 .506 ± .038 .514 ± .041 .643 ± .035 .656 ± .031
 HC1 .955 ± .019 .957 ± .014 .948 ± .019 .960 ± .017 .955 ± .016 .966 ± .014
 HC2 .743 ± .040 .755 ± .049 .716 ± .056 .761 ± .041 .827 ± .076 .849 ± .040
 W-test ≪ ≪ ≪ ≪ ≪

Coverage ↓
 Emotion 1.820 ± .205 1.805 ± .198 1.977 ± .257 1.794 ± .317 1.723 ± .302 1.665 ± .260
 Flags 3.609 ± .468 3.758 ± .506 3.861 ± .614 3.729 ± .508 3.867 ± .590 3.733 ± .503
 Birds 3.313 ± .710 3.024 ± .705 4.172 ± 1.05 3.218 ± .688 2.526 ± .709 2.336 ± .668
 Yeast 6.757 ± .238 6.268 ± .313 7.129 ± .452 6.312 ± .357 6.262 ± .390 6.138 ± .317
 Medical 1.932 ± .401 2.592 ± .480 2.012 ± .552 1.980 ± .461 1.380 ± .128 1.352 ± .119
 HS1 1.633 ± .179 1.943 ± .190 1.429 ± .181 1.682 ± .175 1.557 ± .188 1.319 ± .163
 HS2 4.241 ± .346 4.136 ± .377 4.736 ± .363 4.211 ± .360 4.746 ± .378 2.384 ± .290
 HC1 .575 ± .149 .442 ± .140 .611 ± .154 .545 ± .141 .509 ± .138 .470 ± .134
 HC2 2.612 ± .302 2.631 ± .298 2.854 ± .271 2.62 ± .280 2.307 ± .282 2.094 ± .250
 W-test ≪ ≪ ≪ ≪ ≪

Ranking loss ↓
 Emotion .178 ± .030 .173 ± .041 .158 ± .041 .163 ± .029 .151 ± .038 .139 ± .032
 Flags .236 ± .062 .214 ± .060 .226 ± .078 .206 ± .072 .212 ± .075 .201 ± .062
 Birds .137 ± .034 .141 ± .032 .122 ± .053 .125 ± .045 .153 ± .044 .129 ± .036
 Yeast .180 ± .013 .179 ± .016 .169 ± .019 .175 ± .009 .175 ± .014 .160 ± .010
 Medical .029 ± .001 .040 ± .002 .0195 ± .003 .0190 ± .002 .018 ± .001 .017 ± .002
 HS1 .313 ± .046 .352 ± .030 .310 ± .046 .307 ± .040 .309 ± .041 .249 ± .038
 HS2 .354 ± .044 .359 ± .030 .359 ± .038 .344 ± .041 .262 ± .030 .223 ± .038
 HC1 .057 ± .029 .051 ± .015 .056 ± .019 .055 ± .024 .055 ± .018 .046 ± .016
 HC2 .173 ± .015 .169 ± .023 .168 ± .026 .153 ± .020 .123 ± .012 .120 ± .017
 W-test ≪ ≪ ≪ ≪ ≪

One error ↓
 Emotion .327 ± .068 .289 ± .101 .332 ± .078 .304 ± .065 .264 ± .081 .241 ± .073
 Flags .220 ± .145 .227 ± .136 .297 ± .142 .219 ± .179 .186 ± .162 .179 ± .155
 Birds .739 ± .053 .763 ± .069 .767 ± .097 .718 ± .074 .691 ± .083 .684 ± .069
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Hamming loss, one error and coverage. Due to the limitation 
of space, the results have not been presented here.

According to the first row in Fig. 3, parameter C is the 
most sensitive parameter among all three parameters in our 
study; hence, selecting a suitable value of C can signifi-
cantly improve the performance of the algorithm. As shown 
in Fig. 3, with increasing the value of C, performance (both 
ranking loss and average precision) first improved and then 
worsened. The best value for this parameter is  26 for Flags 
dataset and close to  2−1 for the other datasets.

As depicted in the second row in Fig. 3, large values for 
the parameter λ reduces the performance, i.e., ranking loss 
and average precision. More precisely, increasing the value 
of λ leads to a slight increase in the performance at first 
which then diminishes as the λ becomes larger. The decline 
is considerably higher in Birds dataset in comparison with 
others. The best value for λ is  24 for Flags and it is close to 
 2−2 for the other datasets. This means that the regularization 
term (minimization of hyperplane parameters w and b) is 
important to obtain the best classifier for Flags dataset and 
is relatively ineffective for the others.

Finally, as shown in the third row of Fig. 3, the different 
values of parameter η don’t have significant effect on ML-
SLSTSVM, except in Birds and Flags datasets in which the 
average precision can increase up to 7% by a proper selection 
of the parameter. This means that the structural information 

of the both datasets contains useful prior domain knowledge 
for training the classifier. In addition, since the ranking loss 
values are small, changing the value of η does not have much 
effect on it and the ranking loss chart is fairly smooth (except 
Flags dataset). The best value for the parameter η is close to 
 2−6 for Emotion, Birds and Yeast datasets and  22 and  25 for 
Medical and Flags datasets, respectively.

6  Conclusion

For the MLL problem, a new algorithm, termed as ML-
SLSTSVM, is proposed in this paper. This algorithm is a 
ranking-based SVM that extends the MLTSVM method [15] 
with considering structural information of training samples 
and using least square idea. ML-SLSTSVM seeks a proximal 
hyperplane for each label where the kth hyperplane is closer 
to the instances with the label k, and is as far as possible 
from the others. We only need to solve systems of linear 
equations for both linear and nonlinear cases rather than to 
solve systems of QPPs in the MLTSVM. Experiments on 
nine synthetic and real-world multi-label datasets show that 
in term of evaluation metrics mentioned in subsection 5.2, 
ML-SLSTSVM outperforms some well-established multi-
label learning algorithms.

Table 4  (continued)

Dataset CLR MLkNN RankSVM MLTSVM (linear) ML-SLSTSVM (linear) ML-
SLSTSVM 
(nonlinear)

 Yeast .249 ± .029 .243 ± .015 .266 ± .029 .238 ± .024 .233 ± .320 .222 ± .021
 Medical .192 ± .023 .250 ± .031 .138 ± .028 .160 ± .014 .152 ± .019 .140 ± .012
 HS1 .445 ± .061 .437 ± .067 .465 ± .053 .428 ± .058 .534 ± .068 .503 ± .060
 HS2 .596 ± .066 .612 ± .070 .608 ± .064 .590 ± .052 .392 ± .059 .379 ± .061
 HC1 .017 ± .031 .013 ± .022 .021 ± .029 .014 ± .020 .020 ± .024 .008 ± .020
 HC2 .297 ± .042 .314 ± .039 .307 ± .059 .295 ± .045 .126 ± .040 .117 ± .031
 W-test ≪ ≪ ≪ ≪ ≪

Table 5  Average CPU time 
(mean + SD)

Dataset CLR MLkNN RankSVM MLTSVM ML-SLSTSVM (linear) ML-
SLSTSVM 
(nonlinear)

Emotion 2.192 ± .187 .930 ± .069 2.429 ± .230 .893 ± .073 .083 ± .008 .629 ± .030
Flags .132 ± .094 .059 ± .007 .349 ± .045 .078 ± .012 .044 ± .006 .087 ± .013
Birds 1.076 ± .368 1.772 ± .095 2.836 ± .353 1.445 ± .162 .303 ± .026 2.501 ± .188
Yeast 61.09 ± 3.82 19.126 ± .75 108.19 ± 9.2 20.64 ± 1.28 1.785 ± .031 37.123 ± 4.21
Medical 68 ± 9.29 25 ± 3.67 143 ± 12.2 27 ± 4.91 9.123 ± 1.20 30 ± 5.4
W-test == == ≪ == ==
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