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Abstract
In this paper, we consider the problem of tracking multiple quantiles of dynamically varying data stream distributions. The 
method is based on making incremental updates of the quantile estimates every time a new sample is received. The method 
is memory and computationally efficient since it only stores one value for each quantile estimate and only performs one 
operation per quantile estimate when a new sample is received from the data stream. The estimates are realistic in the sense 
that the monotone property of quantiles is satisfied in every iteration. Experiments show that the method efficiently tracks 
multiple quantiles and outperforms state-of-the-art methods.
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1  Introduction

In this paper, we consider the problem of estimating quan-
tiles when data arrive sequentially (data stream). The prob-
lem has been considered for many applications like portfolio 
risk measurement in the stock market [1, 12], fraud detection 
[28], signal processing and filtering [24], climate change 
monitoring [29], SLA violation monitoring [21, 22] and 
backbone network monitoring [7].

Real-life data streams typically have the following 
properties:

1.	 The distribution of data from the data stream changes 
with time. All sorts of changes may happen like a shift 
of the distribution, change in the expectation value or the 
variance or other changes of the shape of the distribution.

2.	 Data are received with a high intensity over a long 
period of time.

3.	 Following a data stream over time, one may expect outli-
ers and some times extreme outliers.

In this paper, we consider the problem of maintaining run-
ning estimates of multiple quantiles for data streams with 

the properties described above (quantile tracking). A natural 
requirement of the quantile estimates is that the monotone 
property of quantiles is satisfied, i.e. that the estimate of the, 
say, 70% quantile always is above the estimate of the, say, 
50% quantile.

Efficiently tracking quantiles for data streams with the 
properties described above (and as shown in Fig. 1) is a chal-
lenging task. The most natural is to maintain a sorted list of 
the data and estimate the quantiles from the sorted list. Such 
a quantile estimator is not viable for massive data streams 
as computation time and memory requirement increase with 
time. In addition, the quantile estimates will not adapt to 
the dynamic changes of the data stream. Another alterna-
tive could be to fit a time series model to the received data 
and compute quantiles of the forecast distribution, but such 
approaches are vulnerable to changes in the properties of 
the data stream, e.g. if the stream changes from a period 
with slow variations to a period with rapid variations. The 
method that will be presented in this paper is completely 
nonparametric and only relies on a single tuning parameter 
making it robust to changes in the properties of the data 
stream distribution.

Several algorithms have been proposed to deal with those 
challenges. Most of the proposed methods fall under the 
category of what can be called histogram or batch-based 
methods. The methods are based on efficiently maintaining 
a histogram estimate of the data stream distribution such that 
only a small storage footprint is required. See [3, 8, 10, 11, 
17] for representative examples and [18] for a recent survey.
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Another ally of methods is so-called incremental update 
methods. The methods are based on performing small 
updates of quantile estimates every time a new sample is 
received from the data stream. The methods only need to 
store one value for each quantile estimate and therefore 
are very memory efficient compared to histogram/batch 
methods. The literature on such quantile estimation meth-
ods is sparse. One of the first and prominent examples is 
the algorithm in [25] by Tierney which is based on the 
stochastic approximation theory. The method is developed 
for a static data stream and will not work for dynamically 
changing data streams. A few modifications of the Tierney 
method have been suggested that are able to track quantiles 

of dynamically varying data streams, see e.g. [4, 6]. For 
more recent methods, we can mention the Frugal methods 
[19] which run a discrete Markov chain and estimate quan-
tiles of discrete probability distribution. Recently, Hammer 
and Yazidi proposed the deterministic based multiplicative 
incremental quantile estimator (DUMIQE) [27] which is 
a version of the Frugal method that works on continuous 
sample spaces in addition to an improved version, based on 
deterministic updates. Other recent methods are the DQTRE 
and DQTRSE algorithms by Tiwari and Pandey [26]. A nice 
property of the DUMIQE, DQTRE, DQTRSE and the esti-
mator suggested in this paper is that the update size is auto-
matically adjusted dependent on the scale/range of the data. 

Fig. 1   The upper and lower 
panel shows quantile tracking 
for the algorithm suggested in 
this paper (MDUMIQE) and the 
DUMIQE algorithm, respec-
tively. The grey circles show 
the number of tweets posted by 
Norwegian Twitter users every 
minute from 21 July 2011 to 
24 July 2011. The black, blue 
and red curves show running 
estimates of the 20, 50 and 80% 
quantiles of the distribution of 
the number of tweets posted 
(colour figure online)
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This makes the estimators robust to substantial changes in 
the data stream. The DQTRE and DQTRSE aim to achieve 
this by estimating the range of the data using peak and valley 
detectors. However, a disadvantage with these algorithms is 
that several tuning parameters are required to estimate the 
range making the algorithms challenging to tune compared 
to the DUMIQE and the estimator suggested in this paper. 
Recently in [14, 16], Hammer, Yazidi and Rue presented an 
incremental estimator that used the values of the received 
samples directly separating it from all incremental estima-
tors previously presented in the literature. The estimator is in 
fact a generalized exponentially weighed average of previous 
observations received from the data stream and documents 
state-of-the-art performance [14, 16].

Given a dynamically changing data stream, two main 
problems are considered in the literature, namely to (1) 
dynamically update estimates of quantiles of all data 
received from the stream so far or (2) estimate quantiles of 
the current distribution of the data stream (tracking). Despite 
the importance of efficient tracking of statistical properties, 
the tracking problem (2) has been far less studied in the 
literature than problem (1). Incremental methods are well 
suited to address the tracking problem (2), while histogram 
and batch methods mainly have been used to address prob-
lem (1). Histogram and batch-based methods are not well 
suited for the tracking problem (2), and incremental methods 
typically are the only viable lightweight alternatives [5].

A disadvantage with the incremental methods referred to 
above is that they are constructed to track only a single quantile 
of the data stream. Of course, one could run such methods for 
several quantile probabilities, but for such methods, the quantile 
estimates usually will be unrealistic since the monotone prop-
erty of quantiles will be violated. The problem with monotone 
property violation will be reduced if the incremental update 
size is reduced, but this is not a viable alternative for dynami-
cally changing data streams. Using too small update steps, the 
incremental methods will not be able to track the dynamic 
changes of the data stream. In other words, a good quantile 
tracking algorithm must on one hand be able to efficiently track 
the quantiles of the data stream and at the same time satisfy the 
monotone property of quantiles in every iteration.

The only methods we have found in the literature that 
attempt to satisfy this is that of Cao et al. in [5] and by 
Hammer and Yazidi in [13]. The method by Cao et al. is 
based on first running an incremental update of each quantile 
estimate and secondly computing a monotonically increas-
ing approximation of the cumulative distribution of the 
data stream distribution. Finally, the quantile estimates are 
computed from the approximate cumulative distribution. A 
disadvantage of the method is that the data from the data 
stream will be used directly making it sensitive to outliers 
(recall property three of real-life data streams). The method 
by Hammer and Yazidi in [13] is an immature version of the 

algorithm presented in this paper. A disadvantage of both of 
these methods is that we do not have any guarantee that the 
resulting quantile estimates converge to the true quantiles.

In this paper, we suggest a novel incremental method to track 
multiple quantiles that handles all the challenges with real-life 
data streams as described above. The method adapts efficiently 
to dynamically changing data streams (property 1 of real-life 
data streams) and only needs one operation and to store one 
value per quantile estimate per iteration making it extremely 
computational and memory efficient (property 2). The method 
does not use the values of the data streams directly, but only 
if the values are above or below the current estimates. This 
makes the method robust to outliers (property 3). The method 
is constructed such that quantile estimates satisfy the monotone 
property of quantiles in every iteration. A theoretical proof will 
be given showing that the quantile estimates converge to the 
true quantiles. It is hard, or maybe even impossible, to prove 
such convergence for the alternative methods in [5, 13].

As a first demonstration of the suggested algorithm, we 
look at the problem of detecting and characterizing real-
world events based on tweets. A popular approach is to 
monitor the number of posted tweets [2], although also 
more advanced approaches have been explored [9, 15, 23]. 
Figure 1 shows an example to illustrate the use of quantile 
tracking on Twitter data.

The upper and lower panel shows quantile tracking for 
the algorithm suggested in this paper and the DUMIQE, 
respectively. The grey circles show the number of tweets 
posted by Norwegian Twitter users every minute in the time 
period before and after the Oslo bombing and Utøya mas-
sacre in Norway 22 July 2011. The terror attack was initi-
ated by a bomb going off in Oslo at July 22 3:25 p.m, and as 
expected, we see a rapid increase in the number of posted 
tweets after that time. The black, blue and red curves show 
the tracking of the 20, 50 and 80% quantiles of the distribu-
tion of the number of tweets posted using the method that 
will be presented in this paper. Comparing the two methods, 
we observe that the suggested algorithm better represents the 
simultaneous estimates of the three quantiles in each itera-
tion. The estimates are more smooth. The DUMIQE quantile 
estimates even violate the monotone property of quantiles in 
several iterations. This is further demonstrated in the paper, 
for example, in Fig. 2.

2 � Estimation of multiple quantiles

Let Xn denote a stochastic variable for the possible outcomes 
from a data stream at time n and let xn denote a random 
sample (realization) of Xn . We assume that Xn is distributed 
according to some distribution fn(x) that varies dynamically 
with time n. Further, let Qn(q) denote the quantile associated 
with probability q, i.e P(Xn ≤ Qn(q)) = FXn

(Qn(q)) = q.
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In this paper, we focus on simultaneously estimating the 
quantiles for K different probabilities q1, q2,… , qK at each 
time step (tracking) for a data stream where the distribution 
of the samples varies dynamically with time. We assume 
an increasing order of the target quantiles to be tracked, i.e. 
q1 < q2 < ⋯ < qK . The straightforward approach to estimate 
the quantiles would be to run K online quantiles estimators in 
parallel and in isolation, one for each probability. Using the 
deterministic based multiplicative incremental quantile estimator 
(DUMIQE) approach from [27], the update equations become

for k = 1, 2,… ,K.
The scheme is presented in detail in Algorithm 1. We see 

that the algorithm requires to only store a single value for 
each quantile estimate, namely the estimate itself. Further, 
we see that the algorithm is computationally efficient requir-
ing only a single update per quantile estimate per iteration. 
Finally, we see that the method is robust to outliers since the 
observations xn are not used directly, but only if it is above 
or below the current quantile estimate. 

(1)
�Qn+1(qk) ← (1 + 𝜆qk)�Qn(qk) if �Qn(qk) < xn
�Qn+1(qk) ← (1 − 𝜆(1 − qk))

�Qn(qk) if �Qn(qk) ≥ xn

We assume for now that �Qn(qk) > 0 ∀ k, n . Generali-
zation such that Q̂n(qk) can take any positive or negative 
value will be explained in remark 1 below. Unfortunately, 
using (1) results in unrealistic estimates as the mono-
tone property of quantiles, as given by the constraint 
Q̂n(q1) ≤ Q̂n(q2) ≤ ⋯ ≤ Q̂n(qK) , is most likely violated in 
some iterations. For the DUMIQE, this can be explained as 
follows (see [5] for an example of another method). Assume 
at time n that the monotone property is satisfied and that the 
sample xn admits a value between Q̂n(qk) and Q̂n(qk+1) , i.e

Then according to (1), the estimates are updated as follows

which means that the estimates are increased for the quan-
tiles with an estimate below xn and decreased for the esti-
mates above xn . Consequently, the monotone property may 
get violated. In the next section, we will present a novel 
update scheme that satisfies the monotone property of quan-
tiles while converging both theoretically and experimentally 
to the true quantiles.

2.1 � Multiple quantile DUMIQE

When updating Q̂n(qk) , we ensure that the value of � is 
such that Q̂n(qk) never cross the “neighbours” Q̂n(qk−1) and 
Q̂n(qk+1) . Assume at time n that the monotone property is 
satisfied and that the sample xn gets a value between Q̂n(qk) 
and Q̂n(qk+1) as given by (2). We now use a � (denoted 
�̃k below) such that the distance between Q̂n+1(qk) and 

(2)
�Qn(q1) ≤ ⋯ ≤ �Qn(qk) < xn < �Qn(qk+1) ≤ ⋯ ≤ �Qn(qK)

(3)

Q̂n+1(qj) ← (1 + �qj)Q̂n(qj) for j = 1, 2,… , k

Q̂n+1(qj) ← (1 − �(1 − qj))Q̂n(qj) for j = k + 1,… ,K

Fig. 2   Estimation processes 
using DUMIQE and MDUM-
IQE. The grey dots show 
samples from the data stream 
distribution, while the black and 
the grey curves show estimates 
of the 0.4 and the 0.6 quantiles 
of the data, respectively
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Q̂n+1(qk+1) is equal to some portion, � , of the distance from 
the previous iteration, i.e.

By solving (4) with respect to �̃k , we obtain

To avoid crossing, we must ensure that Q̂n(qk) stays above 
the estimate below, Q̂n(qk−1) as well. Thus, a sufficient cri-
terion to guarantee that Q̂n(qk) stays between Q̂n(qk−1) and 
Q̂n(qk+1) is to use the minimum of �̃k computed from Q̂n(qk) 
and Q̂n(qk+1) and computed from Q̂n(qk) and Q̂n(qk−1) . This 
gives the following

By using � = �̃k from (6) in (1) when updating the estimates 
Q̂n(qk), k = 1, 2,… ,K , the monotone property will be sat-
isfied for all the quantile estimates. Of course, the lowest 
quantile estimate Q̂n(q1) only needs to satisfy the monotone 
property against Q̂n(q2) , and therefore, H becomes

and similarly for the highest quantile estimate

Substituting �̃k in (6) for � in (1) and defining � = 1 − � , we 
obtain the following update rules

(4)

Q̂n+1(qk+1) − Q̂n+1(qk) = �
(

Q̂n(qk+1) − Q̂n(qk)
)

(

1 − �̃k(1 − qk+1)
)

Q̂n(qk+1) −
(

1 + �̃kqk

)

Q̂n(qk)

= �
(

Q̂n(qk+1) − Q̂n(qk)
)

(5)�̃k = (1 − �)
Q̂n(qk+1) − Q̂n(qk)

(1 − qk+1)Q̂n(qk+1) + qkQ̂n(qk)

(6)
�̃k = (1 − �)min

{

Q̂n(qk) − Q̂n(qk−1)

(1 − qk)Q̂n(qk) + qk−1Q̂n(qk−1)
,

Q̂n(qk+1) − Q̂n(qk)

(1 − qk+1)Q̂n(qk+1) + qkQ̂n(qk)

}

= (1 − �)H
(

Q̂n(qk);Q̂n(qk−1), Q̂n(qk+1)
)

(7)H
(

Q̂n(q1), Q̂n(q2)
)

=
Q̂n(q2) − Q̂n(q1)

(1 − q2)Q̂n(q2) + q1Q̂n(q1)

(8)

H
(

Q̂n(qK−1), Q̂n(qK)
)

=
Q̂n(qK) − Q̂n(qK−1)

(1 − qK)Q̂n(qK) + qK−1Q̂n(qK−1)

(9)
�Qn+1(qk) ←

(

1 + 𝛽H
(

�Qn(qk);
�Qn(qk−1),

�Qn(qk+1)
)

qk

)

�Qn(qk) if �Qn(qk) < xn

�Qn+1(qk) ←
(

1 − 𝛽H
(

�Qn(qk);
�Qn(qk−1),

�Qn(qk+1)
)

(1 − qk)
)

�Qn(qk) if �Qn(qk) ≥ xn

for k = 2,… ,K − 1 . For k = 1 and k = K , it results in

and

The parameter � ∈ [0, 1) controls the size of the update when 
a new sample arrives, and the H-functions ensure that the 
monotone property will be satisfied in every iteration. Please 
note that since the H− functions depend of k, the increment 
lengths vary with k.

In the rest of the paper, we will refer to the method in 
Algorithm 2 as MDUMIQE which is an abbreviation for 
multiple DUMIQE. Please see Algorithm 2 for a detailed 
representation of the algorithm. The structure of the algo-

rithm is quite simple and intuitive. First in lines 3–9, the 
update size � is computed to ensure no monotone violations. 
In lines 10 to 14, the quantiles estimates are updated using 
the ordinary DUMIQE with the � computed in lines 3–9. 
Similar to the original DUMIQE, the MDUMIQE requires to 
only store a single value for each quantile estimate, namely 
the estimate itself. Further, only two operations are nec-
essary per quantile estimate in every iteration, namely to 
adjust the step size and update the quantile estimate. In other 
words, the MDUMIQE algorithm is extremely memory and 
computationally efficient. Finally, we observe that, similar to 
the DUMIQE, MDUMIQE does not use the observations xn 
directly and thus is very robust to outliers. Please see [15] for 
a further demonstration of the robustness of the DUMIQE 
and MDUMIQE. 

(10)

�Qn+1(q1) ←

(

1 + 𝛽H
(

�Qn(q1),
�Qn(q2)

)

q1

)

�Qn(q1) if �Qn(q1) < xn

�Qn+1(q1) ←

(

1 − 𝛽H
(

�Qn(q1),
�Qn(q2)

)

(1 − q1)

)

�Qn(q1) if �Qn(q1) ≥ xn

(11)

�Qn+1(qK ) ←

(

1 + 𝛽H
(

�Qn(qK−1),
�Qn(qK )

)

qK

)

�Qn(qK ) if �Qn(qK ) < xn

�Qn+1(qK ) ←

(

1 − 𝛽H
(

�Qn(qK−1),
�Qn(qK )

)

(1 − qK )

)

�Qn(qK ) if �Qn(qK ) ≥ xn
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Now we will present a theorem that catalogues the 
properties of the estimators Q̂n(qk), k = 1, 2,… ,K 
given in (9)–(11) for a stationary data stream, i.e. 
Xn = X ∼ f (x), n = 1, 2,… . We assume that all the esti-
mators �Qn(qk) > 0, k = 1, 2,… ,K  and the true quantiles 
Q(qk) > 0, k = 1, 2,… ,K . A sufficient condition to obtain 
Q(qk) > 0, k = 1, 2,… ,K is that the random variable X only 
takes positive values.

Theorem  1  Let  Q(qk) = FX
−1(qk), k = 1, 2,… ,K  be 

the true quantiles to be estimated and suppose that 
Q(qk) > 0, k = 1, 2,… ,K  . In addition, we suppose that 
�Q1(qk) > 0, k = 1, 2,… ,K  . Applying the updating rules 
(9)– (11), we obtain

The proof of the theorem can be found in “Appendix 1”. 
Although the quantile estimators Q̂n(qk), k = 1, 2,… ,K 
given in (9) to (11) are mainly designed to estimate quantiles 
for dynamic environments, it is an important requirement 
of the estimators that they converge to the true quantiles for 
static data streams as given by Theorem 1.

We end this section with a few remarks.

Remark 1  A potential challenge with multiplicative update 
schemes, as given by (1) and by (9)–(11), is that if we start 
with a quantile estimate above zero, �Q0(qk) > 0 , the esti-
mates will stay above zero. Similarly, if we start with a quan-
tile estimate below zero, it will stay below zero. A simple 
solution is to estimate the quantiles of a transformation of 
the data h(Xn) where h(⋅) is a monotonically increasing func-
tion and h(x) > 0∀x . A natural alternative is h(x) = exp(x).

lim
n�→∞,�→0

Q̂n(qk) = Q(qk), k = 1, 2,… ,K

Remark 2  We see that the updating rules (9)–(11) only 
update based on �Qn(qk) < xn or �Qn(qk) > xn and not the value 
of xn . This means that the algorithm is very robust against 
outliers, which is important for real-life data streams.

Remark 3  The strategy of adjusting the value � in order to 
avoid the monotone violation of quantiles, as described in 
Sect. 2.1, can also be used for the additive alternative to 
DUMIQE in (1) given by

In our experiments, MDUMIQE outperformed this addi-
tive alternative and the experimental results thus limit to 
MDUMIQE.

3 � Experiments

In this section, we evaluate the performance of the estima-
tors presented in this paper. We compare against the only 
alternative multiple quantile tracking algorithm we are aware 
of, namely the method of Cao et al. [5]. It would be inter-
esting to evaluate the performance of different methods for 
real-life data, but this is challenging to do in a systematic 
way for dynamical data streams as the ground truth gener-
ally is missing. Before proceeding to systematic experiments 
based on synthetic data, we just recall Fig. 1 showing that 
MDUMIQE can be used to efficiently track quantiles of chal-
lenging real-life data streams.

We look at two different cases where we assume that the 
data are outcomes from a normal distribution or from a �2 
distribution. For the normal distribution case, we assume 
that the expectation of the distribution varies with time

which is the sinus function with period T. Further, we 
assume that the standard deviation of the distribution does 
not vary with time and is equal to one. For the �2 distribu-
tion case, we assume that the number of degrees of freedom 
varies with time as follows:

where b > a such that 𝜈n > 0 for all n. In the experiments 
below, we used a = 2 and b = 6.

Figure 2 shows a small section of the estimation processes 
using DUMIQE and MDUMIQUE. The grey dots show the 
samples from the data stream and are the same in both pan-
els. The data are generated from the normal distribution 

(12)
�Qn+1(qk) ←

�Qn(qk) + 𝜆qk if �Qn(qk) < xn
�Qn+1(qk) ←

�Qn(qk) − 𝜆(1 − qk) if �Qn(qk) ≥ xn

�n = a sin
(

2�

T
n
)

, n = 1, 2, 3,…

�n = a sin
(

2�

T
n
)

+ b, n = 1, 2, 3,…
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above with T = 75 . The grey and the black curves show 
estimates of the 0.4 and the 0.6 quantiles of the data, respec-
tively. We see that using DUMIQE, the monotone property 
is violated in several iterations, while MDUMIQE satisfies 
the monotone property and at the same time is able to track 
the quantiles efficiently.

We now turn to performing a thorough analysis of how 
well the proposed method in Sect. 2 estimates the quan-
tiles of data streams. We considered two different periods, 
namely T = 800 (rapid variation) and T = 8000 (slow varia-
tion), i.e. in total four different data streams. In addition, for 
each of the four data streams, we estimated quantiles around 
the median and in the tail of the distribution. We estimated 
three or nine quantiles representing cases where the distance 
between the quantiles is either large or small, respectively. 
Obviously, if the quantiles are close to each other, the mono-
tone property will be violated more frequently, making the 
estimation problem more difficult. In more detail, for the 
different cases we estimated the following quantiles:

•	 For the normal distr ibution and the quan-
tiles around the median, we estimated the quan-
ti les related to the following probabil i t ies 
qk = Φ(− 0.8 + 0.2(k − 1)), k = 1, 2,… , 9 .  For the 
case with three quantiles, we only used k = 1, 5 and 9. 
Φ(⋅) refers to the cumulative distribution function of the 
standard normal distribution. Recall that in dynamically 
changing data streams, as in these experiments, the value 
of a quantile related to a specific probability varies with 
time.

•	 For the normal distr ibution and the quan-
tiles in the tail of the distr ibution, we use 
qk = Φ(0.8 + 0.2(k − 1)), k = 1, 2,… , 9 . For the case 
with three quantiles, we only used k = 1, 5 and 9.

•	 For the �2  distr ibut ion and the quanti les 
around the median, we estimated the quan-
ti les related to the following probabil i t ies 
qk = F(4.2 + 0.3(k − 1);� = 6), k = 1, 2,… , 9 where 
F(⋅;�) refers to the cumulative distribution function of 
the �2 distribution with � degrees of freedom. For the 
case with three quantiles, we only used k = 1, 5 and 9.

•	 Finally, for the �2 distribution and the quan-
tiles in the tail of the distribution, we estimated 
the quantiles related to the following probabilities 
qk = F(12 + 0.4(k − 1);� = 6), k = 1, 2,… , 9 . For the 
case with three quantiles, we only used k = 1, 5 and 9.

The probabilities related to quantiles in the median and in 
tail of the distribution are centred around the probabilities 
0.5 and 0.95, respectively. When estimating nine quantiles, 
the choices above resulted in a monotone property viola-
tion at about every third iteration using a typical value of 
� = 0.05 in (1). Similarly when estimating three quantiles, 

we got a monotone property violation at about every elev-
enth iteration.

To measure estimation error, we use the average of the 
root-mean-square error (RMSE) for each quantile. In order 
to get a good overview of the performance of the algorithms, 
we measure the estimation error for a large set of different 
values of the tuning parameters � and �.

The results for the normal and �2 distribution cases when 
estimating three quantiles are shown in Figs. 3 and 4, respec-
tively. We proceed to discussing the normal distribution 
cases. For all the four cases, we observe that MDUMIQE 
outperforms DUMIQE for the optimal values of � and � 
which are chosen (results in the smallest RMSE). We also 
see that estimation performance of the MDUMIQE is less 
sensitive to the choice of � than DUMIQE on the choice of 
� . This is a crucial remark since for real-life applications we 
do not know the optimal values of � and � that yield the best 
results. Hence, not only are we able to satisfy the monotone 
property of quantiles, we also improve estimation precision 
compared to DUMIQE. For the �2 distribution cases, we see 
that MDUMIQE and DUMIQE perform about equally well 
except that DUMIQE performs better when T = 800 and 
when estimating quantiles in the tail of the distribution. The 
reason will be explained below.

The results for the normal and �2 distribution cases when 
estimating nine quantiles are shown in Figs. 5 and 6, respec-
tively. We start by discussing the normal distribution cases. 
We see that for T = 800 , the DUMIQE performs better than 
the MDUMIQE, especially when estimating in the tail of 
the distribution. On the other hand, for T = 8000 and esti-
mating the median, the MDUMIQE outperforms DUMIQE. 
The explanation for why DUMIQE performs better when 
T = 800 is that for such a rapidly changing data stream, large 
updates of the quantile estimates must be used to track the 
true quantiles. MDUMIQE is required to satisfy the mono-
tone property which sets a limitation on how far MDUMIQE 
can update the estimates in each iteration. More specifically, 
for MDUMIQE, the estimate Q̂n(qk) must always be between 
Q̂n(qk−1) and Q̂n(qk+1) , recall (6). Whenever the difference 
between Q̂n(qk−1) and Q̂n(qk+1) is small, we can only do small 
updates of Q̂n(qk) . For the �2 distribution, the two methods 
perform about equally well for T = 8000 and estimating the 
median, and for the other cases, DUMIQE performs better 
than MDUMIQE. An appealing property of the MDUMIQE 
approach (in addition to satisfying the monotone property) is 
that the estimation performance is less sensitive to the choice 
of � than DUMIQE is on the choice of � . Using � = 0.5 , we 
get satisfactory results in all the cases. Such a “universal” � 
does not exist for DUMIQE.

For comparison purposes, we tested the multiple quantile 
estimation method in [5] as well for the estimation tasks 
described above. This is the only viable method we have 
found in the literature for estimating multiple quantiles in 
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Fig. 3   Estimation error for data from the normal distribution when estimating three quantiles

Fig. 4   Estimation error for data from the �2 distribution when estimating three quantiles
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Fig. 5   Estimation error for data from the normal distribution when estimating nine quantiles

Fig. 6   Estimation error for data from the �2 distribution when estimating nine quantiles
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dynamically changing data streams. The method has two 
tuning parameters, a weight parameter similar to � and � 
for the methods in this paper, and a parameter that controls 
the width of intervals to estimate the distribution of the 
data stream around a quantile. To achieve the best possi-
ble results, we ran the method for a large set of values for 
the two parameters. The best estimation results (smallest 
RMSE) are shown in Tables 1 and 2 for the cases with three 
and nine quantiles, respectively. Comparing these results 
with the results in Figs. 3, 4, 5 and 6, we see that MDUM-
IQE clearly outperforms Cao et al. [5].

4 � Closing remarks

In this paper, we present a novel algorithm for keeping 
online estimates of multiple quantiles in a dynamically 
changing data stream (tracking). The algorithm is an exten-
sion of the efficient DUMIQE algorithm from [27], devel-
oped to avoid monotone violations of the quantile estimates. 
A theoretical proof is given that it ensures the convergence 
of each quantile estimate to its true quantile.

The experimental results in Sect. 3 show that the sug-
gested algorithm performs very well. For most of the experi-
ments, the method performs equally well or better than 
DUMIQE that does not satisfy the monotone property of 
quantiles. The suggested algorithm is well suited to track 
multiple quantiles for real-life data streams as it adapts effi-
ciently to dynamic changes in the data streams, is very com-
putationally and memory efficient and is robust to outliers.

Another advantage of the suggested algorithm is that 
the estimation performance is less sensitive to the choice 
of the tuning parameter compared to DUMIQE. Choosing 
a � = 0.5 performed well in all the experiments. This is a 
crucial property for real-life data streams since the distribu-
tion of data streams may vary slowly in some time periods 
and more rapidly in others (see Fig. 1 for an example). Using 
the DUMIQE, one must choose a tuning parameter that per-
forms well either where the data stream varies slowly or 

rapidly. Since the performance of the algorithm suggested 
in this paper is less sensitive to the choice of the tuning 
parameter, it will perform well both when the data stream 
varies slowly and rapidly. In Fig. 1, we see that the algorithm 
performs well both when the data stream varies slowly and 
rapidly. In addition, we saw that the algorithm outperformed 
the state-of-the-art method of Cao et al. [5] with a clear 
margin.

The suggested algorithm experiences some reduction in 
performance for rapidly changing data streams. For such 
data streams, large updates of the quantile estimates are nec-
essary to track the true quantiles efficiently and the require-
ment of satisfying the monotone property of quantiles sets 
a limit on how large increments that are possible, and thus 
reduces the performance of the algorithm. An interesting 
challenge for future research is to develop an incremental 
quantile estimation algorithm that performs better in rapidly 
changing dynamically changing data streams when many 
quantiles need to be estimated.

Appendix: Proof of Theorem 1

We will first present a theorem due to Norman [20] that will 
be used to prove Theorem 1. Norman [20] studied distance 
“diminishing models”. The convergence of Q̂n(qk) to Q(qk) 
is a consequence of this theorem.

Theorem 2  Let x(t) be a stationary Markov process depend-
ent on a constant parameter � ∈ [0, 1] . Each x(t) ∈ I , where 
I is a subset of the real line. Let �x(t) = x(t + 1) − x(t) . The 
following are assumed to hold:

1.	 I is compact
2.	 E[�x(t)|x(t) = y] = �w(y) + O(�2)

3.	 Var[�x(t)|x(t) = y] = �2s(y) + O(�2)

4.	 E[�x(t)3|x(t) = y] = O(�3) where supy∈I
O(𝜃k)

𝜃k
< ∞ for 

k = 2, 3 and supy∈I
o(�2)

�2
→ 0 as � → 0

5.	 w(y) has a Lipschitz derivative in I

Table 1   RMSE estimation 
error using the method in Cao 
et al. [5] when estimating three 
quantiles

T = 800 , median T = 800 , tail T = 8000 , 
median

T = 8000 , tail

Normal distribution 0.835 1.00 0.223 0.570
�2 distribution 1.512 3.93 1.00 3.75

Table 2   RMSE estimation 
error using the method in Cao 
et al. [5] when estimating nine 
quantiles

T = 800 , median T = 800 , tail T = 8000 , 
median

T = 8000 , tail

Normal distribution 0.312 0.630 0.259 0.370
�2 distribution 0.79 2.40 0.445 1.611
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6.	 s(y) is Lipschitz I.

If Assumptions 1 to 6 above hold, w(y) has a unique root y∗ 
in I and dw

dy

|

|

|

|y=y∗
≤ 0 then

1.	 var[�x(t)|x(0) = x] = O(�) uniformly for all x ∈ I 
and t ≥ 0 . For any x ∈ I  , the differential equation 
dy(�)

d�
= w(y(t)) has a unique solution y(�) = y(�, x) with 

y(0) = x and E[�x(t)|x(0) = x] = y(t�) + O(�) uniformly 
for all x ∈ I and t ≥ 0.

2.	 x(t)−y(t�)
√

�
 has a normal distribution with zero mean and 

finite variance as � → 0 and t� → ∞.

Having presented Theorem 2, we are now ready to prove 
Theorem 1 by resorting to Theorem 2. This is the main result 
of this paper. We will prove the convergence of Q̂n(qk) for 
k = 2, 3,… ,K − 1 below. The proof for Q̂n(q1) and Q̂n(qK) 
can be done in the same manner and are not shown in this 
paper for the sake of brevity.

Proof  We now start by showing that the Markov process 
based on the updating rules (9)–(11) satisfies the assump-
tions 1 to 6 in Theorem 2.

We now let � = � , y = Q̂n(qk) and w
(

Q̂n(qk)
)

 be equal to 
“everything” in (13) except � . It is easy to see that assump-
tion 2 in Theorem 2 is satisfied. Next, we turn to assumption 
5 which requires that w

(

Q̂n(qk)
)

 has a Lipschitz derivative 
with respect to Q̂n(qk) . Unfortunately it is not obvious that 
this is satisfied since H has a discontinuous derivative with 
respect to Q̂n(qk) due to the min-function in (6). To show that 
both assumptions 2 and 5 are satisfied, we need to perform 
a subtle modification of (13) as follows. A typical example 
of H as a function of Q̂n(qk) is shown as the black curve in 
Fig. 7. We define a function H∗ that is equal to H except for 
an the interval [Q∗ − �,Q∗ + �] (see Fig. 7). In the interval 
[Q∗ − �,Q∗ + �] , H∗ is a function that is smaller then H (to 

(13)

E
(

𝛿�Qn(qk)
|

|

|

�Qn(qk)
)

= E
(

𝛿�Qn(qk)
|

|

|

�Qn(qk) ≥ X
)

P
(

�Qn(qk) ≥ X
)

+ E
(

𝛿�Qn(qk) |
�Qn(qk) < X

)

P
(

�Qn(qk) < X
)

= 𝛽H
(

�Qn(qk);
�Qn(qk−1),

�Qn(qk+1)
)

qk
�Qn(qk)

(

1 − FX

(

�Qn(qk)
))

− 𝛽H
(

�Qn(qk);
�Qn(qk−1),

�Qn(qk+1)
)

(1 − qk)
�Qn(qk)FX

(

�Qn(qk)
)

= 𝛽H
(

�Qn(qk);
�Qn(qk−1),

�Qn(qk+1)
)

�Qn(qk)
(

qk − FX

(

�Qn(qk)
))

satisfy the monotone property) and has a Lipschitz deriva-
tive. This requires that H∗ satisfy the following

i.e. that the function value and the derivative must be equal 
for H and H∗ in Q∗ − � and Q∗ + � . It is straightforward to 
satisfy these criteria, e.g. by fitting a polynomial. H∗ is illus-
trated as the grey curve in Fig. 7 (and is equal to H outside 
the interval). By reducing the value of � , H∗ will be more 
and more similar to H. In other words, there exists always 
a � such that

H∗
(

Q∗ − �;Q̂n(qk−1), Q̂n(qk+1)
)

= H
(

Q∗ − �;Q̂n(qk−1), Q̂n(qk+1)
)

dH∗

dQ̂n(qk)

(

Q∗ − �;Q̂n(qk−1), Q̂n(qk+1)
)

=
dH

dQ̂n(qk)

(

Q∗ − �;Q̂n(qk−1), Q̂n(qk+1)
)

H∗
(

Q∗ + �;Q̂n(qk−1), Q̂n(qk+1)
)

= H
(

Q∗ + �;Q̂n(qk−1), Q̂n(qk+1)
)

dH∗

dQ̂n(qk)

(

Q∗ + �;Q̂n(qk−1), Q̂n(qk+1)
)

=
dH

dQ̂n(qk)

(

Q∗ + �;Q̂n(qk−1), Q̂n(qk+1)
)

Fig. 7   The black and the grey curves show the functions H and H∗ , 
respectively



236	 Pattern Analysis and Applications (2020) 23:225–237

1 3

which means that we can write

Substituting (14) into (13) we obtain

Since H∗ has a Lipschitz derivative, we see that with

both assumptions 2 and 5 are satisfied.
Next we turn to assumption 3.

We see that assumption 3 is satisfied with s
(

Q̂n(qk)
)

 equal 
to everything in (16) except �2 . Since H is Lipschitz (has a 
bounded derivative), s

(

Q̂n(qk)
)

 is Lipschitz and assumption 
6 is also satisfied. Assumption 4 can now be proved in the 
same manner.

We will use the results of Norman to prove the conver-
gence. It is easy to see that w

(

Q̂n(qk)
)

 in (15) admits two 
roots Q̂n(qk) = FX

−1(qk) = Q(qk) and Q̂n(qk) = 0 . By intro-
ducing an arbitrarily small lower bound Qmin > 0 on estimate 
Q̂n(qk) , we can avoid the Q̂n(qk) = 0 . This is easily 

|

|

|

|

H
(

�Qn(qk);
�Qn(qk−1),

�Qn(qk+1)
)

− H∗
(

�Qn(qk);
�Qn(qk−1),

�Qn(qk+1)
)

|

|

|

|

< 𝛽 ∀ �Qn(qk) ∈
[

�Qn(qk−1),
�Qn(qk+1)

]

(14)
H
(

Q̂n(qk);Q̂n(qk−1), Q̂n(qk+1)
)

= H∗
(

Q̂n(qk);Q̂n(qk−1), Q̂n(qk+1)
)

+ O(�)

�H∗
(

Q̂n(qk);Q̂n(qk−1), Q̂n(qk+1)
)

Q̂n(qk)
(

qk − FX

(

Q̂n(qk)
))

+ �Q̂n(qk)
(

qk − FX

(

Q̂n(qk)
))

O(�)

= �H∗
(

Q̂n(qk);Q̂n(qk−1), Q̂n(qk+1)
)

Q̂n(qk)
(

qk − FX

(

Q̂n(qk)
))

+ O(�2)

(15)
w
(

Q̂n(qk)
)

= H∗
(

Q̂n(qk);Q̂n(qk−1), Q̂n(qk+1)
)

Q̂n(qk)
(

qk − FX

(

Q̂n(qk)
))

E
(

𝛿�Qn(qk)
2 |
|

|

�Qn(qk)
)

= E
(

𝛿�Qn(qk)
2 |
|

|

�Qn(qk) ≥ X
)

P
(

�Qn(qk) ≥ X
)

+ E
(

𝛿�Qn(qk)
2 |
|

|

�Qn(qk) < X
)

P
(

�Qn(qk) < X
)

= 𝛽2
(

H
(

�Qn(qk);
�Qn(qk−1),

�Qn(qk+1)
)

qk
�Qn(qk)

)2(

1 − FX

(

�Qn(qk)
))

− 𝛽2
(

H
(

�Qn(qk);
�Qn(qk−1),

�Qn(qk+1)
)

(1 − qk)
�Qn(qk)

)2

FX

(

�Qn(qk)
)

(16)

Var

(

�Q̂n(qk)
|

|

|

Q̂n(qk)
)

= E
(

�Q̂n(qk)
2 |
|

|

Q̂n(qk)
)

− E
(

�Q̂n(qk)
|

|

|

Q̂n(qk)
)2

= �2
(

H
(

Q̂n(qk);Q̂n(qk−1), Q̂n(qk+1)
)

qkQ̂n(qk)
)2(

1 − FX

(

Q̂n(qk)
))

− �2
(

H
(

Q̂n(qk);Q̂n(qk−1), Q̂n(qk+1)
)

(1 − qk)Q̂n(qk)
)2

FX

(

Q̂n(qk)
)

+ �2
(

H
(

Q̂n(qk);Q̂n(qk−1), Q̂n(qk+1)
)

Q̂n(qk)
(

qk − FX

(

Q̂n(qk)
)))2

implemented by modifying the update rules and adding Qmin 
to the right term of Eqs. (9)–(11). Therefore, the unique root 
becomes Q̂n(qk) = FX

−1(qk) = Q(qk).
We now differentiate to get

We substitute the unique root Q(qk) for Q̂n(qk) and get

This gives

and

Consequently

□
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