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Abstract
Computer-aided diagnosis of breast cancer is becoming increasingly a necessity given the exponential growth of performed 
mammograms. In particular, the breast mass diagnosis and classification arouse nowadays a great interest. Texture and shape 
are the most important criteria for the discrimination between benign and malignant masses. Various features have been 
proposed in the literature for the characterization of breast masses. The performance of each feature is related to its ability to 
discriminate masses from different classes. The feature space may include a large number of irrelevant ones which occupy a 
lot of storage space and decrease the classification accuracy. Therefore, a feature selection phase is usually needed to avoid 
these problems. The main objective of this paper is to select an optimal subset of features in order to improve masses clas-
sification performance. First, a study of various descriptors which are commonly used in the breast cancer field is conducted. 
Then, selection techniques are used in order to determine the most relevant features. A comparative study between selected 
features is performed in order to test their ability to discriminate between malignant and benign masses. The database used 
for experiments is composed of mammograms from the MiniMIAS database. Obtained results show that Gray-Level Run-
Length Matrix features provide the best result.

Keywords Breast cancer · Computer-aided diagnosis (CAD) · Characterization · Selection · Classification · Evaluation

1 Introduction

Breast cancer is the leading cause of cancer deaths among 
the female population [1]. The only way today to reduce it 
is its early detection using imaging techniques [2, 3]. Mam-
mography is one of the most effective tools for prevention 
and early detection of breast cancer [4–6]. It is a screening 
tool used to localize suspicious tissues in the breast such 
as microcalcifications and masses. It allows also the detec-
tion of architectural distortion and bilateral asymmetry [7]. 
A mass is defined as a space-occupying lesion seen in, at 
least, two different projections [8]. Mass density can be high, 
isodense, low or fat containing. Moreover, mass margin can 
be circumscribed, microlobulated, indistinct or spiculated. 
Mass shape can be round, oval, lobular or irregular [9]. In 
recent years, screening campaigns are being organized in 
several countries. These campaigns generate a huge stream 

of mammograms, and it is still difficult for expert radiolo-
gists to provide accurate and consistent analysis. Therefore, 
computer-aided diagnosis (CAD) systems are developed to 
help the radiologists in detecting lesions and in taking diag-
nosis decisions [9–14].

A generic CAD system by image analysis includes two 
main stages: feature extraction stage followed by a classifica-
tion stage. In the literature, various numbers of techniques 
are studied to describe breast abnormalities in digital mam-
mograms. A lot of research has been done on the textural and 
shape analysis on mammographic images [1, 9, 14–19]. In 
this paper, the main objective is to determine which features 
optimize the classification performance.

In the process of pattern recognition, the goal is to achieve 
the best classification rate using required features. The extrac-
tion of these features from regions of the image is one of the 
important phases in this process. Features are defined as the 
input variables which are used for classification. The quality 
of a feature is related to its ability to discriminate observa-
tions from different classes. The characterization task often 
generates a large number of features, and the obtained fea-
tures space may include a large number of irrelevant ones. 
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This will induce greater computational cost, occupy a lot of 
storage space and decrease the classification performance. 
Thus, a feature selection phase is needed to avoid these 
problems. In this study, we propose an automated computer 
scheme in order to select an optimal subset of features for 
masses classification in digital mammography. The obtained 
results can be used in other applications such as segmentation 
and content-based image retrieval.

The remaining part of this paper is organized as follows. 
The next section gives an overview of the proposed meth-
odology. Sections 3 to 5 describe the process of selecting 
features. Sections 6 and 7 present the combination of three 
classifiers and the different measures used to evaluate the 
classification performance. The experimental results are 
evaluated and discussed in Sect. 8. Finally, concluding 
remarks are given in the last section.

2  Methodology

Our approach in this study is composed of two main stages: 
characterization and classification. Each of these stages is 
explained in detail by the flowchart given in Fig. 1.

2.1  Feature extraction

Various features have been proposed in the literature for the 
characterization of masses. These features are organized 
into families according to their nature [16]. The majority 
of studies focus on one family and analyze its performance. 
In this work, we propose to study the performance of a set 
of feature families. Then, we make a comparison between 
these families in order to select the best feature set. Finally, 
the most discriminant features are selected from the obtained 
feature set. The process is described in Fig. 2. {FS1,  FS2, 
…,  FSi} denotes the set of feature families. For each feature 
family, we selected its most relevant features using a number 

of feature selection methods  (FSM1,  FSM2, …,  FSMj). After 
this step, we obtained for each FS the set {FSM1(FSi)}, 
{FSM2(FSi)}, …, {FSMj(FSi)} where  FSMj(FSi) denotes  FSi 
selected features using  FSMj. Obtained results were used as 
input to the next step which is the selection of the best FSM 
that selects the most relevant features for each FS. Finally, 
we selected the optimal subset of features from the obtained 
results.

Texture and shape are the major criteria for the discrimi-
nation between the benign and malignant masses. In this 
study, we have followed two main kinds of description tech-
niques. The first employs texture features extracted from 
ROIs. The second is based on computer-extracted shape 
features of masses, since morphology is one of the most 
important factors in breast cancer diagnosis.

2.1.1  Texture analysis

Texture analysis is performed in each ROI selected in the 
previous phase. The texture feature space can be divided into 
two subspaces: statistical and frequential features.

a) Statistical features: The statistical textural features that 
we have used in this study can be grouped into five sets 
based on what they are derived from: First-Order Statis-
tics (FOS), Gray-Level Co-occurrence Matrices (GLCM), 
Gray-Level Difference Matrices (GLDM), Gray-Level Run-
Length Matrices (GLRLM) and Tamura features.

a  b

Image ROIs Database 

Most Relevant Features 

Image ROI 

Feature Extraction 

Feature Selection 

Feature Dimension Reduction 

Performance Evaluation 

Classification using 
Most Relevant Features 

Decision (Benign/Malignant) 

Fig. 1  Flowchart of the proposed methodology performed in this 
study. a Characterization stage and b classification stage

{ FS1, FS2, ..., FSi } 

{FSM1(FS1)}, {FSM2(FS1)}, ..., {FSMj(FS1)} 
{FSM1(FS2)}, {FSM2(FS2)}, ..., {FSMj(FS2)}

... 
{FSM1(FSi)}, {FSM2(FSi)}, ..., {FSMj(FSi)} 

{arg max(FSM(FS1))}, {arg max(FSM(FS2))} 
, ..., {arg max(FSM(FSi))}

{arg max(FSM(FS))} 

where: 
FS: Feature Set,  
FSM: Feature Selection Method,  
FSMj(FSi): FSi selected features using FSMj, 
arg max(FSM(FSi)): Best FSi selected features,
arg max(FSM(FS)): Best selected features. 

FSM1, FSM2, ..., FSMj 

Select the best FSM for each FS

Select the best features 

Fig. 2  Feature selection steps
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First-Order Statistics features: FOS provides different 
statistical properties of the intensity histogram of an image 
[20]. They depend only on individual pixel values and not 
on the interaction of neighboring pixels values. In this study, 
six first-order textural features were calculated: Mean value 
of gray levels, Mean square value of gray levels, Standard 
Deviation, Variance, Skewness and Kurtosis.

Denoting by I(x,y) the image subregion pixel matrix, the 
formulae used for the metrics of the FOS features are as 
follows:

• Mean value of gray levels:
  

• Mean square value of gray levels:
  

• Standard Deviation:
  

• Variance:
  

• Skewness:
  

• Kurtosis:
  

Gray-Level Co-occurrence Matrix features: The second 
feature group is a robust statistical tool for extracting sec-
ond-order texture information from images [15, 21]. The 
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GLCM characterizes the spatial distribution of gray levels in 
the selected ROI. An element at location (i,j) of the GLCM 
represents the joint probability density of the occurrence of 
gray levels i and j in a specified orientation θ and specified 
distance d from each other (Fig. 3). Thus, for different θ and 
d values, different GLCMs are generated. Figure 4 shows 
how a GLCM with θ = 0° and d = 1 is generated. The number 
4 in the co-occurrence matrix indicates that there are four 
occurrences of a pixel with gray level 3 immediately to the 
right of pixel with gray level 6.

Nineteen features were derived from each GLCM. Spe-
cifically, the features studied are: Mean, Variance, Entropy, 
Contrast, Angular Second Moment (also called Energy), 
Dissimilarity, Correlation, Inverse Difference Moment 
(also called Homogeneity), Diagonal Moment, Sum Aver-
age, Sum Entropy, Sum Variance, Difference Entropy, Dif-
ference Mean, Difference Variance, Information Measure of 
Correlation 1, Information Measure of Correlation 2, Cluster 
Prominence and Cluster Shade.

Denoting by: Ng the number of gray levels in the image, 
p(i,j) the normalized co-occurrence matrix, px(i) and py(j) 
the row and column marginal probabilities, respectively, 
obtained by summing the columns or rows of p(i, j):

(7)px(i) =

Ng∑
j=1

p(i, j)

(8)py(j) =

Ng∑
i=1

p(i, j)

(9)px+y(k) =

Ng∑
i=1

Ng∑
j=1

p(i, j); k = i + j = 2, 3,… , 2Ng

(10)px−y(k) =

Ng∑
i=1

Ng∑
j=1

p(i, j); k = |i − j| = 0, 1,… ,Ng

Fig. 3  Four directions of adja-
cency for calculating the GLCM 
features

  

   

   

a

0 1 5 5 2 0 
3 6 3 0 7 6 
7 7 5 7 0 1 
3 2 6 3 1 7 
6 3 6 3 5 1 
4 7 5 3 5 4 

0 1 2 3 4 5 6 7 
0 0 2 0 0 0 0 0 1 
1 0 0 0 0 0 1 0 1 
2 1 0 0 0 0 0 1 0 
3 1 1 1 0 0 2 2 0 
4 0 0 0 0 0 0 0 1 
5 0 1 1 1 1 2 0 0 
6 0 0 0 4 0 0 0 0 
7 1 0 0 0 0 2 1 1 

b

Fig. 4  Construction principle of co-occurrence matrix. a Initial 
image, b co-occurrence matrix (θ = 0° and d = 1)
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The formulae used to calculate the GLCM features are 
as follows:

• Mean:
  

• Variance:
  

• Entropy:
  

• Contrast:
  

• Angular Second Moment (also called Energy):
  

• Dissimilarity:
  

• Correlation:
  

where μx, μy, σx and σy are the Mean values and Standard 
Deviations of px and py, respectively.
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• Inverse Difference Moment (also called Homogeneity):
  

• Diagonal Moment:
  

• Sum Average:
  

• Sum Entropy:
  

• Sum Variance:
  

• Difference Entropy:
  

• Difference Mean:
  

• Difference Variance:
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where HX and HY are the entropy of px and py, 
respectively.
  

and
  

• Information Measure of Correlation 2:
  

where
  

• Cluster Prominence:
  

• Cluster Shade:
  

Gray-Level Difference Matrix features: The GLDM fea-
tures are extracted from the gray-level difference matrices 
vector of an image [22]. The GLDM vector is the histogram 
of the absolute difference of pixel pairs separated by a given 
displacement vector δ = (∆x,∆y), where Iδ(x,y)= |I(x + ∆x) − 
I(y + ∆y)| and ∆x and ∆y are integers. An element of GLDM 
vector pδ(i) can be computed by counting the number of 
times that each value of Iδ(x,y) occurs. In practice, the dis-
placement vector δ = (∆x,∆y) is usually selected to have a 
phase of value as 0°, 45°, 90° or 135° to obtain the oriented 
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texture features. GLDM method is based on the generaliza-
tion of a density function of gray-level difference. In this 
study, five GLDM features were calculated: Mean, Contrast, 
Angular Second Moment, Entropy and Inverse Difference 
Moment.

Denoting by f(i/δ) the probability density associated with 
possible values of Iδ, f(i/δ)= P(Iδ(x,y)= i) and M the number 
of gray-level differences, the formulae used for the metrics 
of the GLDM features are as follows:

• Mean:

• Contrast:

• Angular Second Moment:

• Entropy:

• Inverse Difference Moment:

Gray-Level Run-Length Matrix features: GLRLM pro-
vides information related to the spatial distribution of gray-
level runs (i.e., pixel structures of same pixel value) within 
the image [22]. Each gray-level run can be characterized 
by its gray level, length and direction. Textural features 
extracted from GLRLM evaluate the distribution of small 
(short runs) or large (long runs) organized structures within 
ROIs. For each of the four directions θ (0°, 45°, 90° and 
135°), we can generate a GLRLM. Figure 5 shows an exam-
ple of constructing a GLRLM with θ = 135°.

Denoting by Ng the number of gray levels, Nr the maxi-
mum run length and p(i,j) the (i,j)th element of the run-
length matrix for a specific angle θ and a specific distance 
d (i.e., pθ,d(i,j)), each element of the run-length matrix rep-
resents the number of pixels of run length j and gray level 
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i. Gray-Level Run-Number Vector and Run-Length Run-
Number Vector are defined as follows:

• Gray-Level Run-Number Vector:

  This vector represents the sum distribution of the num-
ber of runs with gray level i.

• Run-Length Run-Number Vector:

  This vector represents the sum distribution of the num-
ber of runs with run length j.

• The total number of runs:

From each ROI, eleven GLRLM features are generated: 
Short Runs Emphasis (SRE), Long Runs Emphasis (LRE), 
Gray-Level Non-uniformity (GLN), Run-Length Non-uni-
formity (RLN), Run Percentage (RP), Low Gray-Level 
Run Emphasis (LGRE), High Gray-Level Run Emphasis 
(HGRE), Short Run Low Gray-Level Emphasis (SRLGE), 
Short Run High Gray-Level Emphasis (SRHGE), Long 
Run Low Gray-Level Emphasis (LRLGE) and Long Run 
High Gray-Level Emphasis (LRHGE).

The formulae used to calculate GLRLM features are 
as follows:

• Short Runs Emphasis:
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• Long Runs Emphasis:

• Gray-Level Non-uniformity:

• Run-Length Non-uniformity:

• Run Percentage:

where Npixels is the total number of pixels in the image.
• Low Gray-Level Run Emphasis:

• High Gray-Level Run Emphasis:

• Short Run Low Gray-Level Emphasis:

• Short Run High Gray-Level Emphasis:

• Long Run Low Gray-Level Emphasis:

• Long Run High Gray-Level Emphasis:
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Fig. 5  Construction principle of GLRLM. a Initial image, b GLRLM 
(θ = 135°)
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Tamura features: Tamura et al. [23, 24] defined six tex-
ture features (coarseness, contrast, direction, linearity, regu-
larity and roughness). The first three descriptors are based on 
concepts that correspond to human visual perception. They 
are effective and frequently used to characterize textures.

b) Frequential features: The second texture feature sub-
space is based on transformations. Texture is represented 
in a frequency domain other than the spatial domain of the 
image. Two different structural methods are considered: 
Gabor transform and two-dimensional wavelet transform.

Gabor filters: Gabor filter is widely adopted to extract 
texture features from the images [25, 26] and has been 
shown to be very efficient. Basically, Gabor filters are a 
group of wavelets, with each wavelet capturing energy at a 
specific frequency and a specific direction. After applying 
Gabor filters on the ROI with different orientations at differ-
ent scales, we obtain an array of magnitudes:

where m, n and G represent, respectively, the scale, orienta-
tion and filtered image.

These magnitudes represent the energy content at differ-
ent scales and orientations of the image. Texture features are 
found by calculating the mean and variation of the Gabor 
filtered image. The following mean µmn and Standard Devia-
tion σmn of the magnitude of the transformed coefficients are 
used to characterize the texture of the region.

Five scales and six orientations are used in common 
implementation, and the features vector f is created using 
μmn and σmn as the feature components.

Wavelets: Wavelets are very efficient for the characteriza-
tion of texture in images (especially mammographic images) 
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(61)f =
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which may have different types of texture and require suffi-
cient detail characterization. For this reason, it was chosen to 
be used in this study. The discrete wavelet transform (DWT) 
of an image is a transform based on the tree structure (suc-
cessive low-pass and high-pass filters) as shown in Fig. 6. 
DWT decomposes a signal into scales with different fre-
quency resolutions. The resulting decomposition is shown 
in Table 1. The image is divided into four bands: LL (left 
top), LH (right top), HL (left bottom) and HH (right bot-
tom). High frequencies provide global information, while 
low frequencies provide detailed information hidden in the 
original image.

Energy measures at different resolution levels are used to 
characterize the texture in the frequency domain.

To extract wavelet features, the type of wavelet mother 
function chosen is the Haar wavelet, and its mother function 
ψ(t) can be described as follows (Fig. 7):

2.1.2  Shape analysis

The shape features are also called the morphological or geo-
metric features. These kinds of features are based on the 
shapes of ROIs. Seven Hu’s invariant moments were adopted 
for shape features extraction due to their reportedly excel-
lent performance on shape analysis [16, 27]. These moments 
are computed based on the information provided by both 
the shape boundary and its interior region. Its values are 
invariant with respect to translation, scale and rotation of 
the shape. Given a function f(x,y), the (p,q)th moment is 
defined by:

(62)�(t) =

⎧⎪⎨⎪⎩

1 0 ≤ t ≤ 1

2

−1
1

2
≤ t ≤ 1

0 otherwise

Fig. 6  Two-level wavelet decomposition tree (h: low-pass decomposi-
tion filter, g: high-pass decomposition filter, ↓2 down-sampling oper-
ation, A1, A2: approximated coefficient, D1, D2: detailed coefficient)

Table 1  Wavelet transform 
representation of an image (two 
levels)

1,2: decomposition level; H, 
high-frequency band; L, low-
frequency band

LL2 LH2 LH1

HL2 HH2

HL1 HH1

Fig. 7  Haar wavelet
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For implementation in digital form, Eq. 63 becomes:

The central moments can then be defined in their discrete 
representation using the following formula:

where

x̄ and ȳ are the coordinates of the image gravity center. 
The moments are further normalized for the effects of 
change of scale using the following formula:

From the normalized central moments, a set of seven 
values Φi, 1 ≤ i ≤ 7, set out by Hu, may be computed by the 
following formulas:

(63)Mpq =

+∞

∫
−∞

+∞

∫
−∞

xpyqf (x, y)dxdy; p, q = 0, 1, 2,…

(64)Mpq =
∑
X

∑
Y

xpyqf (x, y)

(65)𝜇pq =
∑
X

∑
Y

(x − x̄)p(y − ȳ)q

(66)x̄ =
M10

M00

(67)ȳ =
M01

M00

(68)
�p,q =

�p,q

�

(
1+

p+q

2

)

0,0

(69)�1 = �20 + �02

(70)�2 =
(
�20 − �02

)2
+ 4�2

11

(71)�3 =
(
�30 − 3�12

)2
+
(
�03 − 3�21

)2

(72)�4 =
(
�30 + �12

)2
+
(
�03 + �21

)2

(73)

�5 =
(
3�30 − 3�12

)(
�30 + �12

)[(
�30 + �12

)2
− 3

(
�21 + �03

)2]

+
(
3�21 − �03

)
(�21 + �03) ×

[
3
(
�30 + �12

)2
−
(
�21 + �03

)2]

(74)
�

6
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�
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− �

02
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�
30
+ �

12

)2
−
(
�
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+ �
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)2]

+ 4�
11

(
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30
+ �

12

)(
�
21
+ �

03

)

(75)

�7 =
(
3�21 − �03

)(
�30 + �12

)[(
�30 + �12

)2
− 3

(
�21 + �03

)2]

+
(
3�12 − �30

)
(�21 + �03) ×

[
3
(
�30 + �12

)2
−
(
�21 + �03

)2]

Furthermore, fourteen significant descriptors are also 
developed in this section [28]:

• Area, defined as the number of pixels in the region.
• Perimeter, calculated as the distance around the boundary 

of the region.
• Compactness, calculated as:

where P and A represent the Perimeter and Area, 
respectively.

• Major Axis Length, defined as the length (in pixels) of 
the major axis of the ellipse that has the same normalized 
second central moments as the region.

• Minor Axis Length, defined as the length (in pixels) of 
the minor axis of the ellipse that has the same normalized 
second central moments as the region.

• Eccentricity, defined as the scalar that specifies the 
eccentricity of the ellipse that has the same second 
moments as the region. The eccentricity is the ratio of 
the distance between the foci of the ellipse and its Major 
Axis Length. The value is between 0 and 1. 0 and 1 are 
degenerate cases: An ellipse whose eccentricity is 0 is 
actually a circle, while an ellipse whose eccentricity is 1 
is a line segment.

• Orientation is defined as the angle (in degrees rang-
ing from − 90 to 90 degrees) between the x-axis and 
the major axis of the ellipse that has the same second 
moments as the region.

• Equivalent diameter specifies the diameter of a circle 
with the same area as the region. It is computed as:

• Convex polygon area specifies the proportion of the pix-
els in the convex hull (the smallest convex polygon that 
can contain the region).

• Solidity specifies the proportion of the pixels in the con-
vex hull that are also in the region. It is computed as 
the Area/ConvexArea where ConvexArea is a scalar that 
specifies the number of pixels in the convex hull.

• Euler Number specifies the number of objects in the 
region minus the number of holes in those objects.

• Extent specifies the ratio of pixels in the region to pixels 
in the total bounding box (the smallest rectangle contain-
ing the region). It is computed as the Area divided by the 
area of the bounding box.

• Mean Intensity, calculated as the mean of all the intensity 
values in the region.

• Aspect ratio, the aspect ratio of a region describes the 
proportional relationship between its width and its 
height. It is computed as:

(76)C =
P2

4 × � × A

(77)Eqdiam =

√
4 × A

�
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where (xmin, ymin) and (xmax, ymax) are the coordinates 
of the upper left corner and lower right corner of the 
bounding box.

3  Feature selection

At the stage of feature analysis, many features are generated 
for each ROI. The feature space is very large and complex 
due to the wide diversity of the normal tissues and the vari-
ety of the abnormalities. Only some of them are significant. 
With a large number of features, the computational cost will 
increase. Irrelevant and redundant features may affect the 
training process and consequently minimize the classifica-
tion accuracy. The main goal of feature selection is to reduce 
the dimensionality by eliminating irrelevant features and 
selecting the best discriminative ones. Many search meth-
ods are proposed for feature selection. These methods could 
be categorized into sequential or randomized feature selec-
tion. Sequential methods are simple and fast but they could 
not backtrack, which means that they are candidate to fall 
into local minima. The problem of local minima is solved in 
randomized feature selection methods, but with randomized 
methods it is difficult to choose proper parameters.

To avoid problems of local minima and choosing proper 
parameters, we have opted to use five feature selection 
methods. Then, using an evaluation criterion, we retain the 
method that gives the best results among them. The feature 
selection methods that we have used are: tabu search (TS), 
genetic algorithm (GA), ReliefF algorithm (RA), sequential 
forward selection (SFS) and sequential backward selection 
(SBS). We used all extracted features as input for selection 
methods individually.

3.1  Tabu search

The tabu search is a meta-heuristic approach that can be used 
to solve combinatorial optimization problem. TS is conceptu-
ally simple and elegant. It has recently received widespread 
attention [25]. It is a form of local neighborhood search. It 
differs from the local search techniques in the sense that tabu 
search allows moving to a new solution which makes the 
objective function worse in the hope that it will not trap in 
local optimal solutions. Each solution S ∈ Ω has an associ-
ated neighborhood N(S) ⊆ Ω where Ω is the set of feasible 
solutions. Each solution S’ ∈ N(S) is reached from S by an 
operation called a move to S’. Tabu search uses a short-term 
memory, called tabu list, to record and guide the process 
of the search. To avoid cycling, solutions that were recently 
explored are declared forbidden or tabu for a number of 

(78)Aspectratio =
xmax − xmin + 1

ymax − ymin + 1

iterations. In this study, the size of the tabu list is set to be 
equal to 2. This size is reasonable to ensure diversity. Some 
additional precautions can be taken to avoid missing good 
solutions. These strategies are known as aspiration criteria. 
Aspiration level is a commonly used aspiration criterion. It is 
employed to override a solution’s tabu state. It allows a tabu 
move when it results in a solution with an objective value bet-
ter than that of the current best-known solution. In addition 
to the tabu list, we can also use a long-term memories and 
other prior information about the solutions to improve the 
intensification and/or diversification of the search.
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3.2  Genetic algorithm

Genetic algorithm is based on randomness in its search pro-
cedure to escape falling in local minima. First, a population 
of solutions based on the chromosomes is created. Then, the 
solutions are evolved by applying genetic operators such as 
mutation and crossover to find best solution based on the 
predefined fitness function (Fig. 8). 

The initial population of GA is created using the follow-
ing formula:

where L and DF represent, respectively, the number of input 
features and the desired number of selected features. (In this 
work, DF = L/2.)

In GA, we use a fitness function based on the principle 
of max-relevance and min-redundancy (mRMR) [27]. The 
idea of mRMR is to select the set S with m features {xi} that 
satisfies the maximization problem:

(79)P = round((L − 1) × rand(DF, 200 × DF)) + 1

(80)max�i(D,R); �(D,R) = D − R

where D and R represent the max-relevance and min-redun-
dancy, respectively, and are computed by the following 
formula:

where I(xi,y) and I(xi,xj) represent the mutual information, 
which is the quantity that measures the mutual dependence 
of the two random variables and is computed using the fol-
lowing formula:

where H(.) is the entropy.

3.3  ReliefF algorithm

The key idea of the ReliefF algorithm is to estimate the qual-
ity of features according to how well their values distinguish 

(81)D =
1

|S|
∑
xi

I(xi, y)

(82)R =
1

|S|2
∑

xi,xj∈S

I(xi, xj)

(83)I(x, y) = H(x) + H(y) − H(x, y)

Define variables, fitness function, 
cost and select GA parameters 

Generate initial population 

Decode chromosomes 

Calculate fitness for each chromosome 

Selection 

Mating 

Mutation 

Convergence 
Check 

Yes 
No 

Done 

Fig. 8  Flowchart of the GA used in this study
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between instances that are near to each other [29, 32]. Reli-
efF assigns a grade of relevance to each feature, and those 
features valued over a user given threshold are selected.

3.4  Sequential forward selection and sequential 
backward selection

SFS and SBS are classified as sequential search. The main 
idea of these algorithms is to add or remove features to 
the vector of selected features, and the iteration continues 
until all features are checked. Adding or removing a feature 
is based on one of many criteria functions that could be 
used. Misclassification, distance, correlation and entropy 
are examples of criteria functions. The main disadvantage 
of these algorithms is that they have a tendency to become 
trapped in local minima. In SFS, we start with empty list of 
selected feature, and successively, we add one useful feature 
to the list until no useful feature remains in the extracted 

input list. SBS instead begins with all features and repeat-
edly removes a feature whose removal yields the maximal 
performance improvement.
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4  Feature dimension reduction

After selecting the most relevant features, the next step is to 
reduce the dimensionality of the feature set in order to mini-
mize the computational complexity. The dimension reduc-
tion is carried out using the principal component analysis 
(PCA) method [30]. PCA is a powerful tool for analyzing 
the dependencies between the variables and compressing the 
data by reducing the number of dimensions, without losing 
too much information.

5  Feature performance

This stage has two main purposes: choosing the input param-
eters (distance, direction, scale, etc.), giving the best results 
and comparing types of features. Features are evaluated 
according to their discriminatory power. Five measures 
derived from Rodrigues approach [24] can be used as crite-
ria for this purpose and described as follows:

5.1  The class classifier (CC) measure

The first measure is based on the detachment property. For 
a given class, the CC states whether or not a given class is 
detached from the other classes. To determine this measure, 
it is necessary to identify the regions occupied by elements 

of different classes. Every element of the class corresponds 
to a feature vector, and it is represented by a point in a mul-
tidimensional space. Therefore, the elements of a given class 
form a cloud of points included in a minimum bounding 
sphere (MBS). To determine the MBS of a class, we must 
identify its most central element (mce) and its radius. mce 
is the element closest to the center of the class’s MBS. It is 
the element si that minimizes Eq.  84.

where SC is the set of images of the class C in the test dataset 
S and d is a distance function for every element si ∈ SC.

Then, the radius of the class C can be found as follows:

Once the mcec and the radius of the given class C are 
identified, it is required to evaluate how much the other 
classes invade the MBS of each class C. This can be per-
formed by measuring the distance from the mcec to every 
element of the other classes. We consider that the elements 
whose distance from mcec is smaller or equal to the radius 
of the class C invade the MBS of class C. For a given class, 
the CC measure assumes 1 (fully detached) if the class is not 
invaded by other classes’ elements, or 0 otherwise.

5.2  The class variance (CV) measure

The second measure is based on the condensation property. 
It states how condensed is each class. It corresponds to the 
distance variance of the elements to the center of the class. 
Knowing the mcec and the radius of class C, we can calculate 
the CV measure. The average distance of the elements of the 
class C to the mcec is calculated as:

where n is the cardinality of class C and the variance of the 
class is given by:

From these two measures, we proposed three other 
measures.

5.3  The total class classifier (TCC) measure

It corresponds to the sum of CCs.

(84)
∑
sj∈sc

d(si, sj)

(85)max
sj∈sc

(d(mcec, sj))

(86)d̄ =

∑
sj∈sc

d
�
si, sj

�

n − 1
; sj ≠ n

(87)S2 =

∑
sj∈sc

(d
�
mcec, sj

�
− d̄

n − 1
; sj ∈ mcec
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where t is the number of classes in ROIs database.

5.4  The weighted average of class classifiers (WACC) 
measure

It corresponds to the weighted average of CCs.

where PCi is the number of elements in each class.

5.5  The weighted average of class variances (WACV) 
measure

It corresponds to the weighted average of CVs.

6  Classification

The main goal of this stage is to test the ability of most 
relevant features to discriminate between benign and malig-
nant masses. Once the features relating to masses have been 
extracted and selected, they can then be used as inputs to the 
classifier to classify the regions of interest into benign and 
malignant. In the literature, various classifiers are described 
to distinguish between normal and abnormal masses. Each 
classifier has its advantages and disadvantages. In this work, 
we used three classifiers: multilayer perceptron (MLP), 
support vector machines (SVMs) and K-nearest neighbors 
(K-NNs) which have performed well in mass classification 
[16]. Then, we make a combination of these classifiers in 
order to exploit the advantages of each one of them and 
to improve the accuracy and efficiency of the classification 
system.

6.1  Multilayer perceptron (MLP)

MLP is regarded as one prominent tool for training a system 
as a classifier [16]. It uses simple connection of the artificial 
neurons to imitate the neurons in human. It also has a huge 
capacity of parallel computing and powerful remembrance 
ability. MLP is organized in successive layers: an input layer, 
one or more hidden layers and output layer.

(88)TCC =

t∑
i=1

CCCi

(89)WACC =

t∑
i=1

CCCi
PCi

(90)WACV =

t∑
i=1

CVCi
PCi

6.2  Support vector machines (SVMs)

SVM is an example of supervised learning methods used for 
classification [28]. It is a binary classifier that for each given 
input data it predicts which of two possible classes comprise 
the input. It is based on the idea to look for the hyperplane 
that maximizes the margin between two classes.

6.3  K‑nearest neighbors (K‑NNs)

The K-NN classifier is well explored in the literature and 
has been proved to have good classification performance on 
a wide range of datasets [26]. The K-nearest neighbors of an 
unknown sample are selected from the training set in order 
to predict the class label as the most frequent one occurring 
in the K-neighbors. K is a parameter which can be adjusted, 
and it is usually an integer. It specifies the number of near-
est neighbors. In this work, K is equal to 3 and Euclidean 
distance is used as a distance metric.

In order to accumulate the classifiers advantages and 
to exploit the complementarity between the three classifi-
ers, we applied six fusion methods: Majority Vote (MV) 
which is based on voting algorithm and five other methods: 
Maximum (Max), Minimum (Min), Median (Med), Product 
(Prod) and Sum (S) which are based on posterior probability. 
Then, the best accuracy obtained after this combination is 
used as final result of classification.

MV technique is based on the principle of voting. The 
final decision is made by selecting the class with the greatest 
number of votes. MV is based on a majority rule expressed 
as follows:

where K is the number of classifiers (in our case K = 3); M is 
the number of classes (in our case M = 2); ej(x)= Ci (i ∈ {1, 
…, M}) indicates that the classifier j assigned class Ci to x.

To calculate the five other methods (Max, Min, Med, 
Prod and Sum), we make the following assumptions:

• The decision of the kth classifier is defined as dk,j∈{0,1}, 
k = 1, …, K; j = 1, …, M. If kth classifier chooses class ωj, 
then dk,j = 1, and 0, otherwise.

• X is the feature vector (derived from the input pattern) 
presented to the kth classifier.

• The outputs of the individual classifiers are Pk(ωj|X), i.e., 
the posterior probability belonging to class j given the 
feature vector X.

The final ensemble decision is the class j that receives the 
largest support μj(x). Specifically

(91)E(x) =

�
Ci if

∑
i

e(i) = max
ci∈{1,…,M}

∑
j

e(j) ≥ �K

else reject
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where μj(x) are computed as follows:

• Maximum rule:

• Minimum rule:

• Median rule:

• Sum rule:

• Product rule:

7  Classification performance evaluation

A number of different measures are commonly used to 
evaluate the classification performance. These measures are 
derived from the confusion matrix which describes actual 
and predicted classes as shown in Table 2.

• Rate of Positive Predictions:

• Rate of Negative Predictions:

(92)hfinal(x) = argmax
j

�j(x)

(93)�j(x) = max
k=1,…,K

{
dk,j(x)

}

(94)�j(x) = min
k=1,…,K

{
dk,j(x)

}

(95)�j(x) = med
k=1,…,K

{
dk,j(x)

}

(96)�j(x) =

K∑
k=1

dk,j(x)

(97)�j(x) =

K∏
k=1

dk,j(x)

(98)RPP =
TP + FP

TP + FN + FP + TN

(99)RNP =
TN + FN

TP + FN + FP + TN

• True Positive Rate (Sensitivity):

• False Negative Rate:

• False Positive Rate:

• True Negative Rate (Specificity):

• Positive Predictive Value:

• Negative Predictive Value:

• Accuracy:

• Mathews Correlation Coefficient:

• F-measure:

• G-measure:

A receiver operating characteristic (ROC) curve is also 
used for this stage. It is a plotting of true positive as a func-
tion of false positive. Higher ROC, approaching the perfec-
tion at the upper left hand corner, would indicate greater 
discrimination capacity (Fig. 9).

8  Experimental results

All experiments were implemented in MATLAB. The source 
of the mammograms used in this experiment is the MiniM-
IAS database [31] which is publicly available for research. 

(100)TPR =
TP

TP + FN

(101)FNR =
FN

TP + FN

(102)FPR =
FP

TN + FP

(103)TNR =
TN

TN + FP

(104)PPV =
TP

TP + FP

(105)NPV =
TN

TN + FN

(106)AC =
TP + TN

TP + FP + TN + FN

(107)

MCC =
TP × TN − FP × FN√

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

(108)F =
2 × PPV × TPR

PPV + TPR

(109)G =
√
TNR × TPR

Table 2  Confusion matrix

TP predicts abnormal as abnormal; FP predicts abnormal as normal; 
TN predicts normal as normal, and FN predicts normal as abnormal

Actual Predicted

Positive Negative

Positive TP (true positive) FP (false positive)
Negative FN (false negative) TN (true negative)
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It contains left and right breast images for 161 patients. It 
is composed of 322 mammograms which includes 208 nor-
mal breasts, 63 ROIs with benign lesions and 51 ROIs with 
malignant (cancerous) lesions, and 80% set of abnormal 
images are used for training and 20% used for testing. Every 
X-ray film is 1024 × 1024 pixels in size, and each pixel is 
represented with an 8-bit word. The database includes a 

readme file, which details expert radiologist’s markings for 
each mammogram (MiniMIAS database reference number, 
character of background tissue, class of abnormality present, 
severity of abnormality, x,y image coordinates of center of 
abnormality and approximate radius (in pixels) of a circle 
enclosing the abnormality).

Figure 10 shows some cases representing three types of 
mammograms: normal (first line), benign (second line) and 
cancer (third line), downloaded from MiniMIAS database.

The first step in our experiments is to perform ROI selec-
tion. This involves separating the suspected areas they may 
contain abnormalities from the image. The ROIs are usually 
very small and limited to areas being determined as suspi-
cious regions of masses. The suspicious area is an area that 
is brighter than its surroundings, has a regular shape with 
varying size and has fuzzy boundaries. Figure 11 shows two 
examples of masses (benign and malignant).

The suspicious regions (benign or malignant) are marked 
by experienced radiologists who specified the center loca-
tion and an approximate radius of a circle enclosing each 

Fig. 9  ROC curve

Fig. 10  Some samples from MiniMIAS database (normal (first line), 
benign (second line) and cancer (third line))

Fig. 11  Two examples of masses. a Benign and b malignant

Fig. 12  Resulting binary image. a Selection of ROI specified by an 
expert radiologist, b ROI containing only one mass, c mass shape in 
binary format

Fig. 13  By multiplying the enhanced image (first raw) with the mask 
(second raw), we obtain the segmented mass shown in the third raw
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abnormality. We used this information and a graphic edit-
ing tool to locate and cut the smallest square that contains 
the marked suspicious region. Each ROI contains only one 
mass. After running this step, we obtain manually for each 
mammogram an approximate binary mask (zero for black 
and one for white). Figure 12c shows one of the outputs 
acquired from this operation by using Fig. 12a as input. In 
Fig. 12c, the white region indicates the mass and the black 
region indicates the background. The resulting binary image 
will be useful in shape description.

By multiplying the mask image with the origin image, we 
obtain the segmented mass as shown in Fig. 13.

Table 3  Features used in this study

Features

Statistical texture features First-Order Statistics (FOS) Six features: Mean value of gray levels, Mean square value of gray 
levels, Standard Deviation, Variance, Skewness and Kurtosis. 
Total number: 6 features

Gray-Level Co-occurrence Matrices (GLCM) Nineteen features: Mean, Variance, Entropy, Contrast, Angular 
Second Moment (also called Energy), Dissimilarity, Correlation, 
Inverse Difference Moment (also called Homogeneity), Diagonal 
Moment, Sum Average, Sum Entropy, Sum Variance, Difference 
Entropy, Difference Mean, Difference Variance, Information 
Measure of Correlation 1, Information Measure of Correlation 
2, Cluster Prominence and Cluster Shade. Eight values were 
obtained for each feature corresponding to the four directions 
(θ = 0°, 45°, 90° and 135°) and to the two distances (d = 1 and 2). 
Total number: 19 × 4 × 2 = 152 features

Gray-Level Difference Matrices (GLDM) Five features: Mean, Contrast, Angular Second Moment, Entropy 
and Inverse Difference Moment. Twenty values were computed 
for each feature corresponding to the four displacement vectors 
(δ = (0, d), (−d, d), (d, 0) and (−d, −d)) and to the five distances 
(d = 1, 2, 3, 4 and 5). Total number: 5 × 4 × 5 = 100 features

Gray-Level Run-Length Matrices (GLRLM) Eleven features: Short Runs Emphasis (SRE), Long Runs Emphasis 
(LRE), Gray-Level Non-uniformity (GLN), Run-Length Non-
uniformity (RLN), Run Percentage (RP), Low Gray-Level Run 
Emphasis (LGRE), High Gray-Level Run Emphasis (HGRE), 
Short Run Low Gray-Level Emphasis (SRLGE), Short Run High 
Gray-Level Emphasis (SRHGE), Long Run Low Gray-Level 
Emphasis (LRLGE) and Long Run High Gray-Level Emphasis 
(LRHGE). Two values were computed for each feature cor-
responding to the angles of 0° and 90° (horizontal and vertical 
directions). Total number: 11 × 2 = 22 features

Tamura features Three features: Coarseness, Contrast and Direction. Total number: 
3 features

Frequential texture features Gabor transform Five scales (1/2, 1/3, 1/4, 1/5 and 1/8) and six orientations (0, π/6, 
π/3, π/2, 2π/3 and 5π/6) are used. The features vector f is created 
using μmn and σmn as the feature components. Total number: 
5 × 6 × 2 = 60 features

Two-dimensional wavelet transform Eight wavelet coefficients and eight energy measures at different 
resolution levels. Total number: 8 + 8 = 16 features

Shape features Hu’s invariant moments Seven features: First Moment, Second Moment, Third Moment, 
Fourth Moment, Fifth Moment, Sixth Moment and Seventh 
Moment. Total number: 7 features

Other features Fourteen features: Area, Perimeter, Compactness, Aspect ratio, 
Major Axis Length, Minor Axis Length, Eccentricity, Orientation, 
Convex polygon area, Euler Number, Equivalent diameter, Solid-
ity, Extent and Mean Intensity. Total number: 14 features

Table 4  Examples of FOS features

Features ROI of Mdb001.pgm 
(Benign)

ROI of Mdb028.
pgm (Malignant)

Mean 133.36 184.72
Mean square 238.02 255
Standard Deviation 0 + 132.46i 0 + 184.02i
Variance − 17547 − 33865
Skewness 0−0.096059i 0−0.0015662i
Kurtosis 0.14268 0.00065438
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Textural and shape features are calculated and extracted 
from the cropped ROIs. The features used in this study are 
listed in Table 3. For each selected ROI, the total number 
of computed features is 6 + 152 + 100 + 22 + 3+60 + 16 + 7
+14 = 380.

Tables 4, 5, 6, 7, 8, 9, 10, 11 and 12 show the obtained 
texture and shape features of two examples of selected ROIs 
(ROI of “Mdb001.pgm” and ROI of  “Mdb028.pgm”).        

To extract Gabor transform features, five scales (1/2, 1/3, 
1/4, 1/5 and 1/8) and six orientations (0, π/6, π/3, π/2, 2π/3 

Table 5  Examples of GLCM 
features (d = 1 and θ = 0°)

Features ROI of Mdb001.pgm (Benign) ROI of Mdb028.
pgm (Malignant)

Mean 134.32 185.8
Variance 4445.8 580.64
Entropy 10.604 9.2733
Contrast 195.97 6.704
Angular Second Moment 0.001256 0.002924
Dissimilarity 2.6367 1.7896
Correlation 0.97796 0.99423
Inverse Difference Moment 0.43164 0.43003
Diagonal Moment 58.412 31.654
Sum Average 266.63 369.61
Sum Entropy 8.4392 7.1642
Sum Variance 17587 2315.9
Difference Entropy 2.5552 2.4776
Difference Mean 2.6367 1.7896
Difference Variance 189.01 3.5013
Information Measure of Correlation 1 − 0.57913 − 0.49988
Information Measure of Correlation 2 0.99991 0.99896
Cluster Prominence 6.8848e + 08 1.1895e + 07
Cluster Shade − 1795600 − 77908

Table 6  Examples of GLDM 
features

Features ROI of Mdb001.pgm (Benign) ROI of Mdb028.
pgm (Malignant)

Mean (0, d) 2.0043e + 07 1.5826e + 06
Contrast (0, d) 3.4291e + 09 2.7073e + 08
Angular Second Moment (0, d) 6.1028e + 12 3.8073e + 10
Entropy (0, d) − 4.7067e + 08 − 2.9282e + 07
Inverse Difference Moment (0, d) 63805 5192.5
Mean (−d, d) 2.0039e + 07 1.5817e + 06
Contrast (−d, d) 3.4291e + 09 2.7072e + 08
Angular Second Moment (−d, d) 6.0774e + 12 3.765e + 10
Entropy (−d, d) − 4.6941e + 08 − 2.9062e + 07
Inverse Difference Moment (−d, d) 60786 4460.3
Mean (d, 0) 2.009e + 07 1.5823e + 06
Contrast (d, 0) 3.437e + 09 2.7073e + 08
Angular Second Moment (d, 0) 6.1285e + 12 3.7919e + 10
Entropy (d, 0) − 4.7176e + 08 − 2.9194e + 07
Inverse Difference Moment (d, 0) 65286 4646.8
Mean (−d, −d) 2.0036e + 07 1.5823e + 06
Contrast (−d, −d) 3.429e + 09 2.7073e + 08
Angular Second Moment (−d, −d) 6.0559e + 12 3.7878e + 10
Entropy (−d, −d) − 4.6822e + 08 − 2.9174e + 07
Inverse Difference Moment (−d, −d) 56340 4724.9
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and 5π/6) are used. Figures 14 and 15 show, respectively, 
the obtained filter banc and two examples of filtered images.

Applying levels of decomposition produced a large num-
ber of wavelet coefficients. So it was decided to use only 
two-level decomposition to reduce complexity. Figure 16 

Table 7  Examples of GLRLM 
features

Features ROI of Mdb001.pgm (Benign) ROI of Mdb028.
pgm (Malignant)

Short Runs Emphasis 0.3059 0.43212
Long Runs Emphasis 256.94 25.689
Gray-Level Non-uniformity 1613.7 280.46
Run-Length Non-uniformity 1806.1 711.52
Run Percentage 0.11259 0.28934
Low Gray-Level Run Emphasis 0.050656 0.021487
High Gray-Level Run Emphasis 104.58 130.8
Short Run Low Gray-Level Emphasis 407.97 40.79
Short Run High Gray-Level Emphasis 546.03 771.33
Long Run Low Gray-Level Emphasis 407.97 40.79
Long Run High Gray-Level Emphasis 458640 45856

Table 8  Examples of Tamura features

Features ROI of Mdb001.pgm 
(Benign)

ROI of Mdb028.
pgm (Malignant)

Coarseness 54.2441 34.3909
Contrast 54.6442 19.7844
Direction 0.3352 0.8865

Table 9  Examples of Gabor features

Features ROI of Mdb001.pgm 
(Benign)

ROI of Mdb028.
pgm (Malignant)

μ00 0.87091 0.33105
σ00 2854800 3264.6
μ01 1.0883 0.49597
σ01 3408300 8025.7
μ02 1.5626 0.86589
σ02 3261200 21590

Table 10  Examples of wavelet features

Features ROI of Mdb001.pgm 
(Benign)

ROI of Mdb028.
pgm (Malignant)

Wavelets coefficients 58070 20668
230.75 94.563
751.56 67.018
105.26 38.718
45.152 16.632
81.859 35.554
35.696 18.86
64.009 28.533

Energy measures − 3.5587e + 10 − 4.4883e + 09
− 463990 − 18817
− 2538200 − 9103.5
− 45653 − 956.58
8742.7 759.4
− 16012 − 397.88
8568.2 622.67
1222 398.35

Table 11  Examples of Hu’s invariant moments

Features ROI of Mdb001.pgm 
(Benign)

ROI of Mdb028.
pgm (Malignant)

First Moment 7.1105 7.3297
Second Moment 22.412 28.899
Third Moment 25.16 37.159
Fourth Moment 27.902 34.361
Fifth Moment 54.713 70.852
Sixth Moment 40.634 48.911
Seventh Moment 54.706 74.143

Table 12  Examples of other shape features

Features ROI of Mdb001.pgm 
(Benign)

ROI of Mdb028.
pgm (Malignant)

Area 7 9482
Perimeter 10.243 495.39
Compactness 5.7735 119.22
Aspect ratio 2.43 103.44
Major Axis Length 0.90711 0.49717
Minor Axis Length 45 81.074
Eccentricity 9 10133
Orientation 1 − 4
Convex polygon area 2.9854 109.88
Euler Number 0.77778 0.93575
Equivalent diameter 0.4375 0.72492
Solidity 1.7143 1
Extent 0.83846 0.48554
Mean Intensity 1 0.90833
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shows an example of a two-level decomposition through the 
Haar wavelet transform.

With the aim of achieving optimum discrimination, a 
normalization procedure can be performed by assigning a 

weight to all features in order to measure their similarity 
on the same basis. The technique used was to project each 
feature onto a unit sphere. Features values are normalized 
between 0 and 1 according to the following formula:

where X is the initial feature value and Y is the feature value 
after normalization.

The next step is to select the most relevant features. To 
further explore our search space and to improve the optimal 
solution, we applied TS and GA ten times for feature selec-
tion, and each time the results are slightly changed from pre-
vious. Tables 13 and 14 show the selected features for each 
iteration. (Selected and rejected features are represented by 
1 and 0, respectively.)

Then, the obtained selected features (for both TS and GA) 
are ordered with respect to the number of occurrences of 
each feature in the 10 rounds and its score. The best solu-
tion corresponds to the highest score for both TS and GA. 
Tables 15 and 16 show the number of occurrences of each 
feature in the ten iterations.

The weight of each feature is calculated by applying 
ReliefF algorithm to the feature sets. Table 17 shows the 
obtained weights of HU’s invariant moments. Most relevant 
features correspond to the most high weights. In this case, 
{Momi, i = 1, …, 4} are the selected features from HU’s 
invariant moments.

Table 18 shows the selected features using SFS and SBS 
for GLRLM features. (Selected and rejected features are rep-
resented by 1 and 0, respectively.)

Our experiment involved a binary classification, in which 
the classifier should recognize, whether a given ROI con-
tains benign or malignant tissue. The goal of the experi-
ments is to test which descriptor is best for describing mam-
mographic images, i.e., to find out which combination of 

(110)Y = (X −Min)∕(Max −Min)

Fig. 14  Filter banc used in this study

Fig. 15  Two examples of filtered images (ROI of “Mdb069.pgm”)

Fig. 16  Two-level decomposi-
tion of mammogram (ROI of 
“Mdb069.pgm”) through the 
Haar wavelet transform
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Table 13  Results of TS feature 
selection (FOS features)

Feature/
Round (R)

Mean Mean square Standard 
Deviation

Variance Skewness Kurtosis Cost

R1 1 1 0 1 0 1 0.1562
R2 1 1 0 1 0 0 0.1558
R3 1 0 0 1 0 0 0.1540
R4 1 0 1 1 0 0 0.1545
R5 1 1 0 1 0 1 0.1562
R6 1 1 0 1 0 1 0.1562
R7 1 1 1 1 0 0 0.1563
R8 1 1 1 1 0 0 0.1563
R9 1 1 1 1 0 0 0.1563
R10 1 1 1 1 0 0 0.1563

Table 14  Results of GA feature 
selection (GLDM features)

Feature/
Round (R)

Mean (0, d) Cont (0, d) ASM (0, d) Ent (0, d) IDM (0, d) Cost

R1 1 0 1 1 0 − 0.4541
R2 1 0 1 1 0 − 0.4539
R3 1 0 1 1 0 − 0.4540
R4 1 0 1 1 0 − 0.4535
R5 0 1 1 1 0 − 0.4528
R6 1 0 1 1 0 − 0.4544
R7 1 0 1 1 0 − 0.4546
R8 0 0 1 1 0 − 0.4532
R9 1 0 1 1 0 − 0.4536
R10 1 0 1 1 0 − 0.4540

Table 15  Selected features 
and the number of times it is 
selected by TS

Feature Mean Variance Mean square Standard Deviation Kurtosis Skewness

Number of occurrences 10 10 8 5 3 0

Table 16  Selected features 
and the number of times it is 
selected by GA

Feature Mean
(0, d)

Cont
(0, d)

ASM
(0, d)

Ent
(0, d)

IDM
(0, d)

Mean
(−d, d)

Cont
(−d, d)

ASM
(−d, d)

Ent
(−d, d)

IDM
(−d, d)

Number of occurrences 10 10 10 10 8 1 1 0 0 0

Table 17  Weights of HU’s invariant moments using ReliefF algorithm

Feature First Moment Second Moment Third Moment Fourth Moment Fifth Moment Sixth Moment Seventh Moment

Weight − 0.0037 − 0.0068 − 0.0070 − 0.0078 − 0.0092 − 0.0101 − 0.0282

Table 18  Selected features 
using SFS and SBS (GLRLM 
features)

Feature LRE SRE GLN RLN RP LGRE HGRE SRLGLE SRHGLE LRLGLE LRHGLE

 Weight
 SFS 1 1 0 0 0 0 1 1 1 0 0
 SBS 0 0 0 0 1 1 1 0 1 1 1
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Table 19  Performance obtained 
for FOS features

Selection method Benign class Malignant class Total

CC CV CC CV TCC WACC WACV

TS 0 0.1016 0.9853 0.1409 0.9853 0.4223 0.1184
GA 0 0.0746 0.9559 0.0898 0.9559 0.4097 0.0811
ReliefF 0 0.1109 0.9559 0.1487 0.9559 0.4097 0.1271
SFS 0 0.0181 0.0294 0 0.0294 0.0126 0.0104
SBS 0 0.1451 0.9559 0.2051 0.9559 0.4097 0.1708

Table 20  Performance obtained 
for GLCM features

Selection method d θ Benign class Malignant class Total

CC CV CC CV TCC WACC WACV

TS 1 0 0 0.1209 0.8824 0.2301 0.8824 0.3782 0.1677
45 0 0.1234 0.8529 0.2942 0.8529 0.3655 0.1966
90 0 0.1243 0.8824 0.2472 0.8824 0.3782 0.1770
135 0 0.1194 0.8529 0.2512 0.8529 0.3655 0.1759

2 0 0 0.1187 0.8676 0.2625 0.8676 0.3718 0.1803
45 0 0.1206 0.8529 0.2750 0.8529 0.3655 0.1867
90 0 0.1294 0.8529 0.2743 0.8529 0.3655 0.1915
135 0.0196 0.1231 0.8529 0.2708 0.8725 0.3768 0.1864

GA 1 0 0.0196 0.0836 0.9118 0.2323 0.9314 0.4020 0.1473
45 0.0196 0.0843 0.9412 0.2217 0.9608 0.4146 0.1432
90 0 0.0877 0.9118 0.2357 0.9118 0.3908 0.1511
135 0.0196 0.0887 0.9412 0.2217 0.9608 0.4146 0.1457

2 0 0.0196 0.0979 0.9265 0.2359 0.9461 0.4083 0.1571
45 0.0196 0.0959 0.9265 0.2154 0.9461 0.4083 0.1472
90 0 0.0951 0.9118 0.2378 0.9118 0.3908 0.1562
135 0.0196 0.0958 0.9265 0.2163 0.9461 0.4083 0.1474

ReliefF 1 0 0.0196 0.0970 0.8971 0.3402 0.9167 0.3957 0.2012
45 0.0196 0.1171 0.8824 0.3666 0.9020 0.3894 0.2240
90 0.0392 0.1235 0.8824 0.3372 0.9216 0.4006 0.2151
135 0.0196 0.1054 0.8824 0.3509 0.9020 0.3894 0.2106

2 0 0.0196 0.0999 0.8971 0.3463 0.9167 0.3957 0.2055
45 0.0196 0.1063 0.8824 0.3599 0.9020 0.3894 0.2149
90 0.0196 0.1168 0.8971 0.3190 0.9167 0.3957 0.2035
135 0.0196 0.1103 0.8824 0.3667 0.9020 0.3894 0.2202

SFS 1 0 0 0.1037 0.7794 0.1869 0.7794 0.3340 0.1394
45 0.0784 0.0339 0.9118 0.3674 0.9902 0.4356 0.1768
90 0 0.1138 0.8971 0.2578 0.8971 0.3845 0.1755
135 0 0.0755 0.4706 0.0427 0.4706 0.2017 0.0614

2 0 0.0784 0.0347 0.8971 0.3797 0.9755 0.4293 0.1826
45 0.0392 0.0891 0.9118 0.3053 0.9510 0.4132 0.1818
90 0.0392 0.1003 0.8529 0.3570 0.8922 0.3880 0.2103
135 0.0196 0.1280 0.6912 0.3625 0.7108 0.3074 0.2285

SBS 1 0 0 0.1185 0.8529 0.2732 0.8529 0.3655 0.1848
45 0.0392 0.1320 0.8382 0.3432 0.8775 0.3817 0.2225
90 0.0196 0.1249 0.8971 0.2700 0.9167 0.3957 0.1871
135 0.0196 0.1200 0.8676 0.2797 0.8873 0.3831 0.1884

2 0 0 0.1336 0.8824 0.3332 0.8824 0.3782 0.2191
45 0.0196 0.1305 0.8235 0.3059 0.8431 0.3641 0.2057
90 0 0.1281 0.9118 0.2535 0.9118 0.3908 0.1819
135 0 0.1313 0.8529 0.3043 0.8529 0.3655 0.2055
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Table 21  Performance obtained 
for GLDM features

Selection method d Benign Class Malignant Class Total

CC CV CC CV TCC WACC WACV

TS 1 0 0.0579 0.9559 0.9300 0.9559 0.4097 0.4317
2 0 0.0579 0.9559 0.9299 0.9559 0.4097 0.4316
3 0 0.0581 0.9559 0.9295 0.9559 0.4097 0.4316
4 0 0.0582 0.9559 0.9290 0.9559 0.4097 0.4314
5 0 0.0585 0.9559 0.9284 0.9559 0.4097 0.4313

GA 1 0 0.0521 0.9559 0.9471 0.9559 0.4097 0.4357
2 0 0.0521 0.9559 0.9471 0.9559 0.4097 0.4357
3 0 0.0523 0.9559 0.9467 0.9559 0.4097 0.4356
4 0 0.0527 0.9559 0.9451 0.9559 0.4097 0.4352
5 0 0.0530 0.9559 0.9443 0.9559 0.4097 0.4350

ReliefF 1 0 0.0520 0.9559 0.9471 0.9559 0.4097 0.4356
2 0 0.0512 0.9559 0.9486 0.9559 0.4097 0.4358
3 0 0.0515 0.9559 0.9482 0.9559 0.4097 0.4358
4 0 0.0507 0.9559 0.9491 0.9559 0.4097 0.4357
5 0 0.0510 0.9559 0.9485 0.9559 0.4097 0.4356

SFS 1 0 0.0641 0.9559 0.9090 0.9559 0.4097 0.4262
2 0 0.0265 0.9559 0.9896 0.9559 0.4097 0.4392
3 0 0.0265 0.9559 0.9896 0.9559 0.4097 0.4392
4 0 0.0265 0.9559 0.9894 0.9559 0.4097 0.4392
5 0 0.0643 0.9559 0.9090 0.9559 0.4097 0.4263

SBS 1 0 0.0632 0.9559 0.9117 0.9559 0.4097 0.4269
2 0 0.0635 0.9559 0.9106 0.9559 0.4097 0.4265
3 0 0.0627 0.9559 0.9132 0.9559 0.4097 0.4272
4 0 0.0624 0.9559 0.9142 0.9559 0.4097 0.4274
5 0 0.0628 0.9559 0.9124 0.9559 0.4097 0.4269

Table 22  Performance obtained 
for GLRLM features

Selection method Direction Benign Class Malignant Class Total

CC CV CC CV TCC WACC WACV

TS H 0.019 0.175 0.911 0.487 0.931 0.402 0.309
V 0.039 0.1662 0.955 0.338 0.995 0.432 0.239

GA H 0.019 0.158 0.955 0.417 0.975 0.420 0.269
V 0.039 0.088 0.985 0.324 1.024 0.444 0.189

ReliefF H 0.039 0.160 0.941 0.513 0.980 0.425 0.311
V 0.039 0.127 0.926 0.341 0.965 0.419 0.219

SFS H 0.019 0.167 0.897 0.525 0.916 0.395 0.321
V 0 0.205 0.897 0.335 0.897 0.384 0.260

SBS H 0.019 0.184 0.897 0.515 0.916 0.395 0.326
V 0.039 0.138 0.970 0.341 1.009 0.438 0.225

Table 23  Performance obtained 
for Tamura features

Selection method Benign class Malignant class Total

CC CV CC CV TCC WACC WACV

TS 0 0.1734 0.9163 0.4592 0.9323 0.3874 0.2621
GA 0 0.2204 0.9559 0.5219 0.9559 0.4097 0.3496
ReliefF 0.0392 0.0902 0.7353 0.4119 0.7745 0.3375 0.2281
SFS 0.0392 0.1929 0.4706 0.1837 0.5098 0.2241 0.1890
SBS 0.0196 0.2348 0.9412 0.4148 0.9608 0.4146 0.3119
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descriptors will give the best results. The effectiveness of 
the different feature sets is listed in Tables 19, 20, 21, 22, 
23, 24, 25, 26, 27, 28, 29, 30, 31, 32 and 33.              

The best performances obtained for the texture and shape 
features correspond to GLRLM features using GA and Hu’s 
invariant moments using SFS, respectively. The GLRLM 

Table 24  Performance obtained 
for Gabor features

Selection method Benign class Malignant class Total

CC CV CC CV TCC WACC WACV

TS 0 0.1324 0.9559 0.4799 0.9559 0.4097 0.2814
GA 0 0.1131 0.9265 0.6256 0.9265 0.3971 0.3327
ReliefF 0 0.0856 0.9265 0.8033 0.9265 0.3971 0.3932
SFS 0 0.0553 0.9706 0.9254 0.9706 0.4160 0.4282
SBS 0 0.1220 0.9265 0.5457 0.9265 0.3971 0.3036

Table 25  Performance obtained 
for wavelet features

Selection method Benign class Malignant class Total

CC CV CC CV TCC WACC WACV

TS 0.0196 0.1310 0.9412 0.5519 0.9608 0.4146 0.3114
GA 0.0392 0.0864 0.5294 0.4471 0.5686 0.2493 0.2410
ReliefF 0.0196 0.0786 0.9559 0.5854 0.9755 0.4209 0.2958
SFS 0.0784 0.0072 0 0.1865 0.0784 0.0448 0.0840
SBS 0 0.1407 0.9706 0.6530 0.9706 0.4160 0.3602

Table 26  Performance obtained 
for HU’s invariant moments 
features

Selection method Benign class Malignant class Total

CC CV CC CV TCC WACC WACV

TS 0 0.3836 0.8088 0.4074 0.8088 0.3466 0.3938
GA 0 0.4421 0.8382 0.4258 0.8382 0.3592 0.4351
ReliefF 0 0.3667 0.8088 0.4281 0.8088 0.3466 0.3930
SFS 0 0.3915 0.9559 0.3056 0.9559 0.4097 0.3547
SBS 0 0.3732 0.8088 0.3824 0.8088 0.3466 0.3771

Table 27  Performance obtained 
for other shape features

Selection method Benign class Malignant class Total

CC CV CC CV TCC WACC WACV

TS 0 0.2694 0.4118 0.2440 0.4118 0.1765 0.2585
GA 0 0.2353 0.7941 0.2008 0.7941 0.3403 0.2205
ReliefF 0 0.2235 0.2941 0.2273 0.2941 0.1261 0.2251
SFS 0 0.2174 0.9412 0.1933 0.9412 0.4034 0.2071
SBS 0 0.2116 0.2353 0.1997 0.2353 0.1008 0.2065

Table 28  Performance obtained 
for all statistical texture features

Selection method Benign class Malignant class Total

CC CV CC CV TCC WACC WACV

TS 0 0.1536 0.9559 0.6580 0.9559 0.4097 0.3698
GA 0 0.1009 0.9559 0.4942 0.9559 0.4097 0.2695
ReliefF 0 0.1281 0.9559 0.6731 0.9559 0.4097 0.3617
SFS 0 0.9118 0.1628 0.4123 0.9118 0.3908 0.2697
SBS 0 0.1437 0.9559 0.6154 0.9559 0.4097 0.3459
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performance is more than performance obtained for GLRLM 
and Hu’s invariant moments features as shown in Table 34.

Most relevant GLRLM and Hu’s invariant moments fea-
tures are GLNU, RLNU, LGRE, SRLGLE, LRLGLE and 
Second Moment.

These features are then passed through three combined 
classifiers which determine which category the region of 
interest falls into to benign or malignant. Fivefold cross-val-
idation is performed in the classification phase. We used this 
approach because the dataset has a relatively small number 
of samples. Finally, evaluation results are performed using 
measures presented in the previous section. The confusion 

matrix for selected features is presented in Tables 35, 36 
and 37.

Table 38 shows the obtained performance measures of 
selected features.

Table 39 depicts the classification precision and the area 
under ROC curve (AUC) of combined classifiers. The results 
show that the selected GLRLM features give best overall 
classification precision of 90.9%. Selected HU’s invariant 
moments provide the worst performance with 72.7%. Also, 
it is obvious that the classification of selected GLRLM fea-
tures and HU’s invariant moments gives worse accuracy 
with an accuracy of 77.2%.

Table 29  Performance obtained 
for all frequential texture 
features

Selection method Benign class Malignant class Total

CC CV CC CV TCC WACC WACV

TS 0.0196 0.1475 0.9706 0.5172 0.9902 0.4272 0.3060
GA 0 0.1040 0.9118 0.5876 0.9118 0.3908 0.3113
ReliefF 0 0.1123 0.8971 0.6235 0.8971 0.3845 0.3314
SFS 0.0784 0.0072 0 0.1865 0.0784 0.0448 0.0840
SBS 0 0.1250 0.9412 0.6016 0.9412 0.4034 0.3293

Table 30  Performance obtained 
for all texture features

Selection method Benign class Malignant class Total

CC CV CC CV TCC WACC WACV

TS 0 0.1576 0.9265 0.5499 0.9265 0.3971 0.3258
GA 0 0.1087 0.9265 0.5562 0.9265 0.3971 0.3005
ReliefF 0 0.1077 0.9118 0.6140 0.9118 0.3908 0.3247
SFS 0.0392 0.0608 0.9559 0.6260 0.9951 0.4321 0.3030
SBS 0 0.1456 0.9412 0.5996 0.9412 0.4034 0.3402

Table 31  Performance obtained 
for all shape features

Selection method Benign class Malignant class Total

CC CV CC CV TCC WACC WACV

TS 0 0.3527 0.4118 0.3266 0.4118 0.1765 0.3415
GA 0 0.3061 0.8971 0.2588 0.8971 0.3845 0.2858
ReliefF 0 0.3502 0.9118 0.3504 0.9118 0.3908 0.3503
SFS 0 0.4097 0.8235 0.4274 0.8235 0.3529 0.4173
SBS 0 0.3501 0.7500 0.3382 0.7500 0.3214 0.3450

Table 32  Performance obtained 
for all features

Selection method Benign class Malignant class Total

CC CV CC CV TCC WACC WACV

TS 0 0.2407 0.9412 0.5932 0.9412 0.4034 0.3918
GA 0 0.1586 0.9559 0.5255 0.9559 0.4097 0.3158
ReliefF 0 0.1119 0.9559 0.7472 0.9559 0.4097 0.3842
SFS 0 0.0570 0.9559 0.8099 0.9559 0.4097 0.3797
SBS 0 0.2030 0.9706 0.5849 0.9706 0.4160 0.3667
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9  Conclusion

Digital mammography is the most common method for early 
breast cancer detection. Automated analysis of these images 
is very important, since manual analysis of these images is 
costly and inconsistent. In this paper, we made an analysis 
using nine different techniques for feature extraction. The 
proposed methodology is composed of two main stages that 
work in pipeline mode. The first stage consists of charac-
terization and selection of the most relevant features. The 
second stage consists of classification of breast masses into 
benign and malignant. According to the provided examina-
tion, we can conclude that the best feature performance was 
achieved in the case of GLRLM descriptor. The obtained 
results can be used in other applications such as segmenta-
tion and content-based image retrieval.

Table 33  Best features 
performance

Features Input parameters TCC WACC WACV

Rank Value Rank Value

GLRLM (using GA) Vertical 1 1.024 1 0.444 0.189
All Texture Features (using SFS) 2 0.995 3 0.432 0.303
GLCM (using SFS) d = 1, θ = 45° 3 0.990 2 0.435 0.176
All texture frequential features (using TS) 4 0.990 4 0.427 0.306
FOS (using TS) None 5 0.985 5 0.422 0.118
Wavelets (using ReliefF) None 6 0.975 6 0.420 0.295
All Features (using SBS) 7 0.970 7 0.416 0.366
Gabor filters (using SFS) None 8 0.970 8 0.416 0.428
Tamura (using SBS) None 9 0.960 9 0.414 0.311
All texture statistical features (using GA) 10 0.955 10 0.409 0.269
Hu’s invariant moments (using SFS) None 11 0.955 11 0.409 0.354
GLDM (using SFS) d = 1 12 0.955 12 0.409 0.426
Shape (using SFS) None 13 0.941 13 0.403 0.207
All shape features (using ReliefF) 14 0.911 14 0.390 0.350

Table 34  Performance obtained 
for GLRLM and HU’s invariant 
moments features

Selection method Benign class Malignant class Total

CC CV CC CV TCC WACC WACV

TS 0.019 0.290 0.970 0.365 0.990 0.427 0.322
GA 0.039 0.234 0.955 0.342 0.995 0.432 0.281
ReliefF 0.019 0.274 0.970 0.367 0.990 0.427 0.314
SFS 0 0.406 0.941 0.404 0.941 0.403 0.405
SBS 0.019 0.275 0.955 0.368 0.975 0.420 0.315

Table 35  Confusion matrix for 
selected GLRLM features using 
GA

Actual Predicted

Positive Negative

Positive 19 0
Negative 2 1

Table 36  Confusion matrix 
for selected HU’s invariant 
moments using SFS

Actual Predicted

Positive Negative

Positive 14 1
Negative 5 2

Table 37  Confusion matrix for 
selected GLRLM and HU’s 
invariant moments features

Actual Predicted

Positive Negative

Positive 15 0
Negative 5 2
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