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Abstract
Dimensionality reduction techniques based on manifold learning are becoming very popular for computer vision tasks like 
image recognition and image classification. Generally, most of these techniques involve optimizing a cost function in L2-norm 
and thus they are susceptible to outliers. However, recently, due to capability of handling outliers, L1-norm optimization is 
drawing the attention of researchers. The work documented here is the first attempt towards the same goal where orthogonal 
neighbourhood preserving projection (ONPP) technique is performed using optimization in terms of L1-norm to handle data 
having outliers. In particular, the relationship between ONPP and PCA is established theoretically in the light of L2-norm 
and then ONPP is optimized using an already proposed mechanism of PCA-L1. Extensive experiments are performed on 
synthetic as well as real data for applications like classification and recognition. It has been observed that when larger number 
of training data is available L1-ONPP outperforms its counterpart L2-ONPP.

Keywords  L1-norm · L2-norm · Outliers · Dimensionality reduction

1 � INTRODUCTION

Being very high-dimensional data, images produce many 
challenges while handling them in tasks like machine 
learning, computer vision. Though image appears to be 
high-dimensional data, it is proved that it lies in compara-
tively very low-dimensional linear or nonlinear manifold 
[7, 10]. Thus, dimensionality reduction techniques are 
very much applicable in these fields and much research 
is being done. The fundamental philosophy is to seek a 
nonlinear or linear transformation to map the data from 
high-dimensional data space to a lower-dimensional sub-
space which makes the same class of data more compact 
for applications like recognition and classification, in addi-
tion to that also reduces computational burden. Such mani-
fold learning-based dimensionality reduction techniques 
have drawn considerable interests in recent years. Some 
of the examples are principal component analysis (PCA) 

[21], linear discriminant analysis (LDA) [17], locality-
preserving projection (LPP) [6, 20] and neighbourhood 
preserving embedding (NPE) [7, 11], and some of their 
2D variants are discussed in [14, 23, 24]. Techniques such 
as PCA and LDA preserve global geometry of data in the 
lower-dimensional space also, whereas techniques such as 
LPP and NPE tend to preserve global geometry as well as 
local geometry by a graph structure using neighbourhood 
information.

The linear dimensionality reduction technique such as 
orthogonal neighbourhood preserving projection (ONPP) 
proposed in [10] preserves global geometry of data and cap-
tures local relationship of neighbourhood also. A modified 
version of the same that deals with nonlinearity present in the 
local neighbourhood is given in [11]. ONPP is a linear exten-
sion of Locally Linear Embedding (LLE) proposed in [19]. 
LLE assumes that the data lie on or near a low-dimensional 
manifold and can be approximated as a linear combination 
its neighbours. LLE represents this relation using a weighted 
neighbourhood graph and tries to find embeddings that pre-
serve this linear relationship in lower-dimensional space also. 
Because of the nonlinear nature of LLE technique, it cannot be 
used as a tool for finding embeddings of out-of-sample data. 
ONPP projects the sample data onto a linear subspace using 
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the same philosophy of locally linear patches and also accom-
modates out-of-sample data into lower-dimensional space.

All these dimensionality reduction techniques try to 
optimize error functions based on some criteria imposed 
either on original data points in higher-dimensional space 
and/or on its embeddings in lower-dimensional space. Most 
of these error functions are formulated using L2-norm, 
which are not robust to outliers [16]. L1-norm, on the other 
hand, is known for its robustness to outliers [8]. In recent 
times, many dimensionality reduction techniques involve 
L1-norm optimization [12, 22, 25]. This article pro-
poses one such algorithm used in PCA-L1[12] to achieve 
L1-norm-based ONPP (now will be denoted as L1-ONPP). 
This work firstly documents the experiments performed 
on synthetic data using L2-ONPP, showing susceptibility 
of it towards outliers. Secondly, the relationship between 
ONPP and PCA is established and proved theoretically, 
and the experiments performed on synthetic as well as real 
data support the claim that ONPP basis can be obtained 
using PCA. PCA-L1 is used to obtain L1-ONPP, and per-
formance of L2-ONPP and L1-ONPP in the presence of 
outliers is compared. Experimental outcomes imply that 
L1-ONPP outperforms L2-ONPP while dealing with the 
data having outliers.

In Sect. 2, L1-norm-based PCA is explained in detail, 
followed by Sect. 3 in which a relation between ONPP and 
PCA is established theoretically, with supporting experi-
ments and results documented in Sect. 4, followed by con-
clusion in Sect. 5.

2 � L1‑NORM FOR DIMENSIONALITY 
REDUCTION

As discussed in Sect. 1, all conventional dimensional-
ity reduction techniques employ optimization of a cost 
function expressed using L2-norm. Conventional ONPP 
proposed in [10] is also based on L2-norm optimization. 
Despite the fact that it has been employed successfully in 
many problems like face recognition, etc., it is prone to 
the presence of outliers because the effect of the outliers 
with a large norm is magnified by the use of the L2-norm. 
In order to mitigate this problem and achieve robustness 
against outliers, research has been performed on dimen-
sionality reduction techniques based on L1-norm. Many 
works have been done in PCA and LDA based on the use of 
L1-norm [1, 3, 9, 12, 22, 25]. Not much efforts have been 
put into the use of L1-norm-based methods in recently pro-
posed dimensionality reduction techniques such as LPP 
and ONPP.

In [1, 9], instead of assuming that each component of 
error between the original data point and its projection 
follows Gaussian distribution, it is assumed to follow a 

Laplacian distribution and maximum likelihood estimation 
was used to formulate L1-norm PCA (L1- PCA) basis for 
the given data. In [1], a heuristic estimation approach for 
general L1-norm problem was applied to solve L1-PCA 
optimization, whereas in [9], convex programming meth-
ods and the weighted median method were proposed for 
L1-norm PCA. Despite being robust, L1-PCA has several 
disadvantages, it is computationally expensive because it is 
based on linear or quadratic programming. [15] discussed 
2D variants of L1-norm PCA. [3] proposed R1-PCA, which 
bands together the merits of L2-PCA and those of L1-PCA. 
R1-PCA is rotational invariant like L2-PCA, and it also 
overcomes the effect of outliers as L1-PCA does. However, 
these methods are highly dependent on the dimension d of 
a subspace to be found. For example, the projection vector 
obtained when d = 1 may not be in a subspace obtained 
when d = 2 . Moreover, as it is an iterative algorithm so for 
a large-dimensional input space, it takes a lot of time to 
achieve convergence. Let us now discuss the work done on 
L1-norm-based PCA.

2.1 � L2‑PCA and L1‑PCA

Let each data point �� be a column of � such that 
� = [��, ��,… , ��] ∈ m×N  be the given data matrix, 
where m denotes dimensions of the original input space 
and N denotes number of data samples. Without the loss 
of generality, data are assumed to be centred at origin i.e. 
𝐱̄ = 𝟎 . L2-PCA tries to search a d(< m)-dimensional linear 
subspace such that the basis vectors capture the direction 
of maximum variances by minimizing the error function in 
terms of L2-norm:

where � ∈ �×� is the projection matrix and its d columns 
are the bases of the d-dimensional linear subspace.

(1)
argmax (𝐲) = argmax

𝐲

N∑

i=1

∥ 𝐲𝐢 − 𝐲̄ ∥2

where, 𝐲𝐢 = 𝐕T𝐱𝐢

(2)

argmax (𝐕) = argmax
𝐕

N∑

i=1

∥ 𝐕T𝐱𝐢 − 𝐕T𝐱̄ ∥2

= argmax
𝐕

N∑

i=1

∥ 𝐕T𝐱𝐢 ∥2

argmax (𝐕) = argmax
𝐕

∥ 𝐕𝐓𝐗 ∥2

s. t. 𝐕T𝐕 = 𝐈𝐝
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In PCA-L1 proposed in [12], instead of finding bases in 
the original data space that capture the direction of maxi-
mum variances which is based on the L2-norm, a method 
that maximizes the dispersion in terms of L1-norm in the 
feature space is presented to achieve robust and rotation 
invariant PCA. The approach presented in [12] for L1-norm 
optimization is iterative and also proven to find a locally 
maximal solution.

Maximizing dispersion in the feature space using 
L1-norm can be formulated as

Since the closed form solution of problems involving 
L1-norm is not possible, the basis is sought iteratively as 
follows:

For d = 1

(3)argmax (�) = argmax
�

∥ �T� ∥1

For d > 1:
Once the basis in the direction of ith maximum variance 

�� ( �� for first basis) is sought by solving Eq. 4, the data are 
projected on this newly found basis vector. For the rest of the 
basis vectors �� (2 ≤ j ≤ d) the same maximization problem 
g iven  i n  4  i s  so lved  fo r  p ro j ec t ed  da t a 
( �� = ��−� − ��−�(�

T
�−�

��−�) ) iteratively, which essentially 

means in every iteration, direction of maximum variance in 
feature space is sought, until desirable d(d < m)dimensional 
space is achieved.

(4)
v1 = argmax

�

∥ �T� ∥1= argmax
�

N∑

i=1

|�T��|

s. t. ∥ � ∥� = 1



1484	 Pattern Analysis and Applications (2019) 22:1481–1492

1 3

3 � L1‑ONPP USING PCA‑L1

As stated in Sect. 1, ONPP [10] is a linear extension of LLE 
and thus inherits the sensitivity of LLE towards outliers. 
The degradation in manifold learning when the data have 
outliers, inspired the use of L1-norm minimization in ONPP 
to tackle the outliers. In order to use PCA-L1 explained in 
Sect. 2 to achieve L1-ONPP, a relationship between PCA 
and ONPP in established in this Section. Firstly, ONPP and 
a modified variant of ONPP, namely MONPP, is explained 
in detail in Sect. 3.1, followed by an theoretical explanation 
of a relation between PCA and ONPP. Section 3.3 explains 
how PCA-L1 can be used to compute L1-ONPP bases.

3.1 � L2‑ONPP and L2‑MONPP

ONPP is a linear extension of LLE, which is a nonlinear 
dimensionality reduction technique that finds lower-dimen-
sional embeddings of high-dimensional data samples, but the 
disadvantage of this embedding is a non-explicit mapping, in 
the sense that embedding is data dependent. In LLE, the inclu-
sion or exclusion of any data point will result in the learning 
of entirely different manifold. Hence, in tasks such as recogni-
tion or classification of out-of-sample data point, LLE fails. 
ONPP solves the problem of out-of-sample data and finds 
the explicit mapping of the data points in lower-dimensional 
subspace through a linear orthogonal projection matrix. This 
orthogonal projection matrix can embed the new test data 
point into the lower-dimensional subspace making tasks such 
as recognition or classification of out-of-sample data possible. 
Another variant of ONPP is modified ONPP [11], that suggests 
the use of piece-wise nonlinear weights to reconstruct the data 
and represent local nonlinearity present in the neighbourhood 
patch more effectively. ONPP and MONPP both use L2-norm 
optimization to find projection matrix, but they differ in the 
mechanism to assign weights to neighbours of a data points 
as explained below. However, ONPP and MONPP still inherit 
the susceptibility to the presence of outliers.

Let ��, ��,… , �� be the N data points from m-dimensional 
space and � = [��, ��,… , ��] ∈ m×N be the data matrix. 
The basic task of the dimentionality reduction techniques is 
to find a non-orthogonal or an orthogonal projection matrix 
� ∈ m×d which projects the data point �� ∈ m in the higher-
dimensional space to the embeddings �� ∈ d in the lower-
dimensional space (as d is assumed to be less than m) such 
that �� = �T��.

ONPP algorithm achieves the projection matrix in three 
basic steps. The first step involves finding neighbours of a data 
point �� . In unsupervised mode, neighbours are either decided 
by k-NN method or by using �-NN method, whereas in the 
supervised mode, neighbours are decided based on knowledge 
of class label. The second step considers local patch of a data 

point, where a linear relationship between a data point and its 
neighbours is expressed using reconstruction weights. In the 
third step, ONPP tries to achieve compactness in the lower-
dimensional space through a minimization problem such that 
this linear relationship in the high-dimensional neighbourhood 
is preserved.

Let set of k neighbours of data point �� be xi
 . First, data 

point �� is approximated as a linear combination of its neigh-
bours as 

∑k

j=1
wij�� where �� ∈ xi

 and the weight wij indicates 
�� ’s contribution in reconstructing �� . The optimum weights 
wij are computed by minimizing the sum of the reconstruction 
errors, i.e. sum of errors between all �� and linear combination 
of its neighbours �� ∈ xi

 . The minimization problem can be 
posed as:

The problem corresponding to each data point �� can be 
solved individually as a least square problem. Let matrix 
���

 be a neighbourhood matrix such that each neighbour 
�� ∈ xi

 constitutes its columns. Note that �� is also included 
in ���

 as one of its own neighbour, making dimension of ���
 

is m × k + 1 . Now, for each �� ∈ � Eq. (5) can be written as 
an individual least square problem (���

− ���
T)�� = � for a 

data point �� with a constraint �T�� = � , which results in a 
closed form solution for �� as shown in Eq. (6). Here, �� is 
a reconstruction weight vector of dimension k × 1 and � is a 
vector of ones of dimension k × 1.

w h e r e  ��  i s  G r a m i a m  m a t r i x  o f  d i m e n -
sion k × k  . Each element of � is calculated as 
��� = (�� − ��)

T(�� − ��), for∀ ��, �� ∈ xi
 . Detailed dis-

cussion on reconstruction weights can be found in [10, 19].
On the other hand, a variant of ONPP, modified orthogo-

nal neighbourhood preserving projections (MONPP) stresses 
on the fact that the local neighbourhood patch assumed to 
be lying on or near a linear manifold may have some inher-
ent nonlinearity. To take this nonlinearity into account while 
approximating a data point using its neighbours, MONPP 
uses nonlinear weights incorporating Z-shaped function [11] 
in place of linear weights obtained using least square solu-
tion. Equation (7) is used to assign weight to each neighbour 
�� ∈ ��

 using Z-shaped function based on the distance dij 
between data points �� and �� . Note that this equation is same 
as Eq. (6), where �−1 is replaced by � . The new weights are

(5)

argmin(�) = argmax
W

N∑

i=1

∥ �� −

k∑

j=1

wij�� ∥2

s. t.

k∑

j=1

wij = 1

(6)�� =
��

−1�

�T��
−1�
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Third and the last step finds the projection matrix � ∈ �×� 
to reduce the dimensionality, using � the data point �� ∈ �m 
is projected on lower-dimensional space as �� ∈ �d ( d << m) 
assuming that the neighbours �� s used to approximate data 
point �� using reconstruction weights wij can be used to 
reconstruct data point �� in lower-dimensional space using 
the lower-dimensional embeddings �� s and corresponding 
weights wij . Problem of finding such embeddings can be 
posed as a minimization problem with cost function

This optimization problem results in a eigenvalue prob-
lem with the closed form solution. The eigenvectors 
corresponding to the smallest d eigenvalues of matrix 
� = �(� −�)(� −�T)�T constitute the basis of the low-
dimensional ONPP space. ONPP explicitly maps � to � , 
which is of the form � = �T� , where each column of � is 
an eigenvector of � . Once the ONPP projection space is 
obtained, any test data point �� can be embedded into the 
space using a simple matrix-vector product.

3.2 � ONPP as a PCA on reconstruction error

Rewriting Eq. (8) in a matrix form, to establish the relation-
ship between ONPP and PCA:

Now, comparing the optimization problems of PCA 
(Eq. 2) and the optimization problem of ONPP (Eq. 9), both 
result in an eigenvalue problems and have closed form solu-
tions in terms of eigenvectors. Equation (2) is maximization 
problem and thus the bases vectors of PCA are eigenvectors 

(7)�� =
���

�T���

(8)

argmin (�) = argmin
Y

N∑

i=1

∥ �� −

N∑

j=1

wij�� ∥2

argmin (�) = argmin
V

N∑

i=1

∥ �T�� −

N∑

j=1

wij�
T�� ∥2

s. t. �T� = ��

(9)

argmin (�) = argmin
�

∥ � − �� ∥2

argmin (�) = argmin
�

∥ �T� − ���� ∥2

= argmin
�

∥ �T(� − ��) ∥2

argmin (�) = argmin
�

∥ �T�� ∥2

s. t. �T� = �

corresponding to largest d eigenvalues, whereas Eq. (9) is 
minimization problem and thus the desired ONPP bases are 
eigenvectors corresponding to smallest d eigenvalues.

In other words, ONPP can be stated as a PCA of recon-
struction errors, and conventional ONPP algorithm is essen-
tially finding bases vectors � such that it actually captures 
the directions of minimum variances of reconstruction error. 
Thus, finding the strongest ONPP basis is same as finding 
weakest basis of PCA when performed on the reconstruction 
errors �� . Each column of �� is a reconstruction error for 
ith data point, which is calculated using its neighbours and 
corresponding weights found using (6) or (7) using

This relationship between PCA and ONPP bases is veri-
fied in experiments performed on the synthetic data, and 
it is observed that the ONPP bases obtained using conven-
tional L2-ONPP algorithm and ONPP bases obtained using 
L2-PCA on reconstruction error are same. Details of this 
experiment are documented in Sect. 4.

3.3 � L1‑ONPP using PCA on reconstruction error

Once the relationship between L2-PCA bases and L2-ONPP 
bases is in place, it is evident that PCA algorithm can also 
be used to find ONPP bases. This led to the use of existing 
L1-norm-based PCA algorithms to solve L1-ONPP optimi-
zation problem. Rewriting L2-ONPP optimization problem 
in Eq. (8) using L1-norm minimization, we have

In matrix form,

the problem stated in Eq. (12) is similar to problem stated in 
PCA-L1 (Eq. 4), and thus the solution of (Eq. 4) can be used 
to solve Eq. (12). L1-ONPP bases can be found using any 
L1-norm-based PCA algorithm when performed on recon-
struction error matrix �� . As discussed in Sect. 1, many 
L1-norm-based PCA methods have been developed which 

(10)��� = �� −

k∑

j=1

wij��

(11)
argmin (�) = argmin

�

N∑

i=1

∥ �� −

N∑

j=1

wij�� ∥1

s. t., �T� = I

(12)

argmin (�) = argmin
�

∥ � − �� ∥1

argmin (�) = argmin
�

∥ �T� − ���� ∥1

= argmin
�

∥ �T(� − ��) ∥1

= argmin
�

∥ �T�� ∥1
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find bases vectors through linear or quadratic programming. 
These methods are computationally expensive. The PCA-L1 
algorithm [12] used here is a robust as well as fast L1-norm-
based method. PCA-L1 converts the L1-norm variance into 
a direct sum of signed training points into projection space. 
The bases vectors are updated by the sum of resigned train-
ing points. As a result, the convergence procedure is fast. 
Refer to [12] for the proof.

L2-ONPP involves closed form solution which involves 
eigenvalue problem of matrix size m × m . L1-ONPP is 
computationally costly because it involves an iterative pro-
cedure because each basis vector vk starts from a random 

m-dimensional vector and polarity check, flipping and maxi-
mization are performed iteratively until vk converges.

Comparing Eq. (12) of L1-ONPP with Eq. (4) of 
L1-PCA, we can intuitively state that the component in the 
direction of minimum variance gives the strongest ONPP 
basis. Considering reconstruction error between a data point 
�� and its approximation �′

�
 as a vector ��� , which is also a 

point in m-dimensional space (as shown in Fig. 1) L1-PCA 
can be performed on the reconstruction errors to search for 
the d-dimensional space such that the bases vectors are in 
the direction of minimum variances of these reconstruction 
errors. Such bases can be computed using PCA-L1 algo-
rithm, and the detailed algorithm is given in Table 1.

4 � EXPERIMENTS

To validate the theoretical conclusion on the relationship 
between ONPP and PCA, experiments were performed 
on the synthetic as well as real data as documented in this 
section.

4.1 � A small problem with Swiss‑role data

In the literature, definition of outlier is given as a data point 
that seems to be taken from an entirely different distribution. 

Fig. 1   Illustration of data point �� (represented by a blue square), its 
reconstruction �′

�
 using neighbours (represented by a red circle) ��

 
and error vector ��� (represented by a green diamond). ith reconstruc-
tion error vector is denoted by ���

Table 1   L1-ONPP Algorithm
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Fig. 2   L2-ONPP performed 
on Swiss-role data. a Continu-
ous manifold (left), sampled 
3D data (middle) and its 2D 
representation using the strong-
est 2 basis of ONPP(right). b 
Continuous manifold (left), 
sampled 3D data corrupted with 
additional outliers from uniform 
distribution (middle) and its 2D 
representation using the strong-
est 2 basis of ONPP (right)

Fig. 3   Manifold learning on S-curve data. a Continuous manifold. b 
Sampled 1000 3D clean data points. Its 2D representation using the 
strongest 2 basis of L2-ONPP starting with (c–g) with clean data, 

100, 200, 300 and 400 outliers, respectively. Its 2D representation 
using strongest 2 basis of L1-ONPP starting with (h–l) with clean 
data, 100, 200, 300 and 400 outliers, respectively
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To observe the effect of outliers on L2-ONPP algorithm, an 
experiment was performed on Swiss-role data. Over 2000 
three-dimensional data points were randomly sampled from 
a continuous Swiss-role manifold. Two-dimensional embed-
dings of clean data were found using L2-ONPP as shown 
in Fig. 2a right. Now, 50 data points (nearly 2.5% of clean 
data) from a normal distribution are added to these 2000 
clean data point as outliers, two-dimensional embeddings 
of this data are also found using L2-ONPP as shown in 2b 
right. Comparing embeddings from clean data (Fig. 2a) and 
embeddings from data having outliers (Fig. 2b), it can be 
observed that global structure as well as local geometry is 
well preserved in the case of clean data, whereas in the case 
of noisy data (Fig. 2b), two-dimensional representation is 
distorted. The reason is all neighbours of the clean data point 
may not lie on locally linear patch of a manifold in the pres-
ence of outliers, which leads to the biased reconstruction. 
On the other hand, the neighbourhood patch of the outlier 
will be comparatively very large and thus does not capture 
local geometry very well, as the effect of large distance is 

exaggerated by the use of L2-norm. It has been known that 
L2-norm-based techniques are not robust, in the sense that 
the presence of outliers can arbitrarily skew the solution 
from the desired solution.

Another experiment was performed to analyse the effec-
tiveness of the proposed algorithm in the presence of dif-
ferent amounts of outliers. As shown in Fig. 3b, 1000 3D 
clean data points were sampled from S-shaped continuous 
manifold shown in Fig. 3a. Figure 3c, h shows 2D represen-
tation of clean data using L2-ONPP and L1-ONPP, respec-
tively. The clean data are then corrupted with 100, 200, 
300 and 400 outliers sampled from an uniform distribution. 
Figure 3d–g shows 2D representation of noisy data using 
L2-ONPP, and Fig. 3i–l shows 2D representation of noisy 
data using L1-ONPP. As it can be seen from this experiment 
L1-ONPP very well handles outliers by preserving intrin-
sic neighbourhood relations as well as global geometry of 
data. On the contrary, increasing density of outliers distorts 
the learned manifold in increasing manner, the presence of 

Fig. 4   A toy example with 700 
data samples from 7 clusters. 
Solid line represents first 
projection basis and dotted line 
represents second projection 
basis a Projection basis using 
conventional L2-ONPP. b 
Projection basis using L2-PCA 
on reconstruction basis. c 
Projection basis overlapped 
on reconstruction errors. d 
Projection basis using proposed 
L1-ONPP
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outliers even affects the orientation of data as can be seen 
in Fig. 3d–e.

4.2 � Comparing bases of L2‑PCA, L2‑ONPP 
and L1‑ONPP

To validate the relationship between PCA and ONPP as 
described in Sect. 3.1, the experiment was performed on 
synthetically generated data. 2D data were randomly gener-
ated to form 7 clusters with 100 data point each resulting in 
700 data points. The clusters are closely placed and slightly 
overlapping, and 2 out of 7 were slightly separated as shown 
in Fig. 4a. L2-ONPP bases were found using the conven-
tional algorithm, and another set of bases vectors were com-
puted by performing L2-PCA on reconstruction error. The 
bases found using both methods are same.

L2-norm ONPP basis [Fig. 4a]
1st basis : [0.6361, 0.7716]T             2nd basis: 

[− 0.7716, 0.6361]T

PCA basis on reconstruction errors [Fig. 4b]
1st basis : [0.6360, 0.7717]T             2nd basis: 

[− 0.7717, 0.6360]T

Figure 4c shows that L2-ONPP bases are essentially 
pointing the direction in which the variance of reconstruc-
tion error is minimum. Note that the reconstruction error of 
all data point is centred at origin (same as the assumption 
in PCA that the data points are mean centred). For this data, 
L1-ONPP bases were computed using L1-PCA algorithm. 
As it can be seen from Fig. 4d, the projection bases are tilted 
towards the outlier data.

L1-norm ONPP basis [Fig. 4b]
1st basis : [0.4741, 0.8805]T             2nd basis: 

[− 0.8805, 0.4741]T

In this experiment, the residual error was observed for 
both, L2-ONPP and L1-ONPP. Residual error is a measure 
of how well the information is preserved while projecting 
data on the lower-dimensional space using few strongest 
bases, while discarding other dimensions. In this case, the 
data were projected using only one dimension using the 

strongest basis vector. The average residual error was cal-
culated using

The average residual errors of L2-ONPP and L1-ONPP are 
2.3221 and 0.7894, respectively. Thus. it can be concluded 
that L1-ONPP is less susceptible to outliers compared to 
L2-ONPP. The same behaviour related to residual error 
is observed with real data also as stated in the following 
experiment.

4.3 � Experiment with IRIS dataset

To further compare behaviour of L2-ONPP and L1-ONPP 
regarding residual error and performance in classification 
task, Iris data form UCI Machine Learning Repository [4] 
are used. The data set contains 150 instances of 4-dimen-
sional data belonging to three different classes. The residual 
error obtained while reconstructing the data using varying 
number of dimensions is shown in Fig. 5. Table 2 lists the 
residual errors using different numbers of dimensions; as it 
can be seen, the residual error is less in L1-ONPP as com-
pared to L2-ONPP which significantly improves classifica-
tion accuracy at lower dimensions. When all 4 dimensions 
are used in projection space, the projection of data spans 

(13)���� =
�

�

�∑

�=�

�� − ��
(
��
�
��
)

Fig. 5   Performance comparison 
of L2-ONPP and L1-ONPP 
with respect to varying number 
of dimensions used to recon-
struct the IRIS data in terms of 
Residual Error (left) Classifica-
tion Error (right)

Table 2   Comparison of performance in terms of residual error and 
classification error (in %) of L2-ONPP and L1-ONPP with varying 
number of dimensions on IRIS data

Dim  Residual error Classification error (%)

L2-ONPP L1-ONPP L2-ONPP L1-ONPP

1 7.8614 7.8546 16.00 13.00
2 7.7450 7.6730 6.67 4.00
3 7.0055 5.6545 5.33 2.67
4 1.44e−15 1.45e−15 6.67 6.67
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entire original space, and thus the residual error drops to 
almost zero for both methods, L2-ONPP and L1-ONPP. 
Similar behaviours expected for classification also at 4 
dimensions; as can be seen from Table 2, the classification 
error at 4 dimensions yields greater than the lower dimen-
sion representation because it includes the redundant details 
present in higher dimensions. The same behaviour at higher 
dimensions can be observed in all dimensionality reduc-
tion techniques. Here, nearest neighbour (NN) is used as 
a classifier.

4.4 � Experiment with handwritten numerals

Handwritten text or numerals have huge variations in terms 
of shape, stroke width, orientations and pattern, thus making 
an ideal data to test the capacity of L1-ONPP to handle out-
liers. To compare performance of L1-ONPP and L2-ONPP 
with real-world data having outliers, three handwritten 
numeral databases, one English and two different Indian 
languages Gujarati and Devnagari, are used. The images in 
each database are resized to 30 × 30 to maintain uniformity 
across all three databases.

English numerals
The MNIST database [13] is a large database of hand-

written English digits which contains nearly 70,000 images 
of each digit. Some of the examples of digit ′2′ are shown 
in Fig. 6a. 1000 samples were selected randomly such that 
each digit is equally present in training, while remaining 
samples were used for testing. Average recognition accu-
racy of 20 randomization are reported here. Performance of 
L2-ONPP and L2-MONPP is compared with L1-ONPP and 
L1-MONPP with varying number of dimensions as shown in 
Fig. 7. As it can be seen, L1-ONPP and L1-MONPP outper-
form their L2-norm counterparts with large difference. Best 
average recognition accuracy of L1-ONPP and L1-MONPP 
is almost same, nearly 87.52% achieved at 210 dimen-
sions. As it can be seen from Fig. 7, the performance of 
L2-ONPP and L2-MONPP is poor compared to its L1-norm 
counterparts.

Gujarati numerals
The Gujarati Handwritten numeral dataset [5, 18] have 

nearly 1300 samples for each digit. Some of the examples 
of digit ′7′ are given in Fig. 6b to show the large variations 
in the dataset. Randomly, 1000 samples were selected such 
that each digit is well represented in training data and the 

Fig. 6   a Examples of 2 s in 
the MNIST database first 100 
examples. b Examples of 7 s in 
the Gujarati database first 100 
examples. c Examples of 4 s in 
the Devnagari numerals data-
base first 100 examples. Notice 
the very diverse shape, stroke 
width, orientation and pattern of 
different digits

Fig. 7   Performance comparison 
in terms of recognition accuracy 
for L2-ONPP, L1-ONPP, 
L2-MONPP and L1-MONPP 
for MNIST handwritten numer-
als database
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remaining samples were used as testing data. Recogni-
tion accuracy of L2-ONPP, L2-MONPP, L1-ONPP and 
L1-MONPP with varying number of dimensions are com-
pared in Fig. 8. Average recognition accuracy achieved by 
L1-ONPP and L1-MONPP is 75.20% and 67.32% nearly at 
20 dimensions, whereas that of L2-ONPP and L2-MONPP 
is 67.16% and 61.28% nearly at 290 dimensions, respec-
tively. As it can be seen, the performance of L1-ONPP and 
L1-MONPP stabilizes nearly at 30 dimensions, but the per-
formance of L2-ONPP and L2-MONPP deteriorates after 
300 dimensions due to the presence of redundant informa-
tion present at higher dimensions, but the use of all dimen-
sions again leads to almost similar recognition as that of 
L1-norm counterparts as observed with IRIS data.

Devnagari numerals
The Devnagari handwritten database [2] has approxi-

mately 1800 sample of each digit. Randomly selected 
samples of digit ‘4’ are shown in Fig. 6c. Randomly 900 

samples are used for training data, and the remaining are 
used for testing. As it can be seen from Fig. 9, L1-ONPP 
and L1-MONPP achieve nearly 50% and 60% recognition 
accuracy at 30 dimensions, respectively, whereas the per-
formance of L2-ONPP and L2-MONPP is consistently poor 
compared to L1-norm counterpart.

The purpose of this experiment is not to show recognition 
performance of L1-ONPP and compare it with other state-
of-the-art OCR techniques, but to compare L2-ONPP and 
L1-ONPP when data are very diverse and have large varia-
bility and to show the capacity of L1-ONPP and L1-MONPP 
of handling such diverse data. With a larger number of train-
ing data, L1-ONPP proves to be a better at recognizing digits 
compared to L2-ONPP. L2-MONPP and L1-MONPP also 
perform at par with L2-ONPP and L1-ONPP. Here, nearest 
neighbour (NN) is used for classification, the use of sophis-
ticated classifier like SVM can lead to improved recognition 
accuracy. The proposed L2-ONPP algorithm converges in 

Fig. 8   Performance comparison 
in terms of recognition accuracy 
for L2-ONPP, L1-ONPP, 
L2-MONPP and L1-MONPP 
for Gujarati handwritten numer-
als

Fig. 9   Performance comparison 
in terms of recognition accuracy 
for L2-ONPP, L1-ONPP, 
L2-MONPP and L1-MONPP 
for Devnagari handwritten 
numerals database
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about 16 iterations for a single basis vector when nearly 
1000 samples of images having size 30 × 30 are used for 
training and the procedure of learning L1-ONPP bases took 
average 3 min. On the other hand, having an closed form 
solution, L2-ONPP takes on an average 7 s to learn the 
bases. The configuration of the machine used is as follows: 
Intel Xeon® E5-2620 @ 2.40GB, 24 core, 64-bit with 2GB 
RAM allocation.

5 � CONCLUSION

Linear dimensionality reduction techniques such as PCA, 
LDA, LPP and ONPP solve an optimization problem based 
on some criteria. Usually, the optimization problem is 
defined using L2-norm. However, use of L2-norm makes 
these techniques susceptible to outliers present in the data. 
The present work is first attempt to compute bases vectors 
for ONPP using L1-norm. In particular, a relation is estab-
lished to show that ONPP bases can be obtained by per-
forming PCA on reconstruction error. These phenomenon is 
established both theoretically and experimentally. An exist-
ing algorithm of finding PCA bases using L1-norm opti-
mization is applied to compute the L1-ONPP bases. It has 
also been proved experimentally that the residual error cal-
culated after discarding few dimensions in projection space 
and reconstructing data with less number of dimensions 
is comparatively low in the case of L1-ONPP than that of 
L2-ONPP. Experiments are performed for synthetic as well 
as real data, and the same conclusion as mentioned above 
is observed. Performance of L1-ONPP is compared with 
L2-ONPP on numeral recognition task, and it is observed 
that with larger number of training data, L1-ONPP outper-
forms L2-ONPP with huge margin, but being an iterative 
method, L1-ONPP is computationally expensive compared 
to L2-ONPP.
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