
Vol.:(0123456789)1 3

Pattern Analysis and Applications (2018) 21:1151–1165
https://doi.org/10.1007/s10044-018-0733-0

INDUSTRIAL AND COMMERCIAL APPLICATION

Multi‑pattern matching with variable‑length wildcards using suffix
tree

Na Liu1,2 · Fei Xie3 · Xindong Wu1,4

Received: 12 October 2017 / Accepted: 19 July 2018 / Published online: 25 September 2018
© Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract
Multi-pattern matching with variable-length wildcards is an interesting and important problem in bioinformatics, information
retrieval and other domains. Most of the previously developed multi-pattern matching methods, such as famous Aho–Corasick
and Wu–Manber algorithms, aimed to solve some classical string matching problems. However, these algorithms are not
efficient for patterns with flexible wildcards or do-not-care characters. In this paper, we propose two efficient algorithms for
multi-pattern matching with variable-length wildcards based on suffix tree, called MMST-L and MMST-S, according to the
length of exact characters in a pattern. Experimental results show that the two MMST algorithms, in most cases, outperform
other various versions of comparing algorithms.

Keywords Multi-pattern matching · Wildcards · Suffix tree

1 Introduction

Pattern matching, which discovers substrings as patterns in
a string or a database, is an interesting and important issue
in bioinformatics, information retrieval, knowledge graph,
intrusion detection and other domains. For example, pat-
tern matching has been widely used in the analysis of DNA
sequences and disease detection. Additionally, it has also

been applied in automatic question and answering systems,
entity matching, etc. With the increasing demand of applica-
tions, pattern matching research varies from single-pattern
matching to multi-pattern matching and from exact pattern
matching to approximate pattern matching. It is worth men-
tioning that regular expressions, gaps, wildcards or do-not-
care characters, are added onto the patterns to be matched,
which to some extent broadens the applications of pattern
matching. Therefore, the problem of multi-pattern matching
with variable-length wildcards is a very important and valu-
able research topic.

In the classical multi-pattern matching problem, we are
given a set of patterns = {P1,P2, …,Pk} and a text, and
aim to search all patterns in the same manner and read the
text only once. Many algorithms for exact pattern match-
ing from a single pattern may be extended for multi-pattern
matching, with more or less successes [1]. The simplest
solution of a single-pattern matching algorithm extended to
multi-pattern matching is to repeat n searches, which leads
to the worst-case complexity of O(N) in a single-pattern
matching enlarged to O(k*N) in multi-pattern matching. In
order to improve the efficiency of multi-pattern matching
algorithms, many solutions and their variations have been
presented. These algorithms can be roughly classified into
three categories, including (1) prefix-based approaches
including the Aho–Corasick [2] and Multiple Shift-And
[3] algorithms; (2) suffix-based approaches including the

Electronic supplementary material The online version of this
article (https ://doi.org/10.1007/s1004 4-018-0733-0) contains
supplementary material, which is available to authorized users.

 * Na Liu
 liuna3546@163.com

 Fei Xie
 xiefei9815057@sina.com

 Xindong Wu
 xwu@hfut.edu.cn

1 School of Computer Science and Information Engineering,
Hefei University of Technology, Hefei, China

2 School of General Education, Beifang Minzu University,
Yinchuan, China

3 Department of Computer Science and Technology, Hefei
Normal University, Hefei, China

4 School of Computing and Informatics, University
of Louisiana, Lafayette, LA, USA

http://orcid.org/0000-0002-0333-1353
http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-018-0733-0&domain=pdf
https://doi.org/10.1007/s10044-018-0733-0

1152 Pattern Analysis and Applications (2018) 21:1151–1165

1 3

Commentz–Walter [4] and Wu–Manber [5] algorithms; (3)
factor-based approaches including the Multiple BNDM [6],
Set Backward Dawg Matching (SBDM) and Set Backward
Oracle Matching (SBOM) [7] algorithms. These afore-
mentioned approaches mainly focus on exact multi-pattern
matching. However, when it comes to practice, patterns with
more sophisticated forms, such as wildcards, gaps or regular
expressions, will have more applications.

Pattern matching with regular expressions is complex in
programming and costly in processing time. These limits
constrain this approach to be only used when it is necessary.
However, the wildcards, gaps or do-not-care characters can
be solved in a more efficient way in some applications with
simpler algorithms. A wildcard means that this position can
match with any arbitrary character, and is denoted with *.
A wildcard is also called a gap constraint [8] or a do-not-
care character [9]. Variable-length wildcards refer to those
continuous positions, which carry arbitrary characters. The
problem of pattern matching with wildcards was first intro-
duced by Fischer and Paterson [10] in 1974, who focused on
a fixed number of wildcards. Afterward, many subsequent
studies have been explored efficient and sophisticated solu-
tions for variable-length wildcards, even arbitrary length
wildcards where the number of wildcards can be infinite or
negative. In order to solve these complex problems, people
have adopted corresponding approaches, such as dynamic
programming [11], bit parallelism [12], Aho–Corasick auto-
mation [13], directed acyclic word graph (DAWG) [14] and
fast Fourier transform (FFT) [15]. However, the study based
on suffix tree to solve pattern matching with variable-length
wildcards is less extensive compared with those studies
exploring the approaches mentioned above.

Suffix tree is a powerful and popular data structure,
which is similar to the trie structure. The trie structure
can be employed to handle some exact string matching
problems. The tree structure has also been applied in natu-
ral language processing and textual data representation.
Recently, Zhang et al. [16] introduced a tree-structured
representation for author recommendation in 2016. In the
research, the tree structure was proposed to represent the
rich features of each author. Suffix tree was first intro-
duced by Weiner [17] in 1973, which is a compacted trie
structure storing all the suffixes of a given string in linear
time and space. Therefore, the suffix tree has wide applica-
tions in many domains regarding string or text processing.
For example, in exact string matching, a suffix tree can
be used to find the longest common prefix, the longest
repeated substring, the palindrome [18] or the recogni-
tion of DNA contamination. A significant feature of the
suffix tree is that all characters of a string are stored by
suffixes in a tree, while for each suffix tree node, the path
string is obtained by concatenating the sequence of labels
encountered along the path from the root to the node [19].

Additionally, once the suffix tree is built, it can be used
repeatedly if the given string is not changed. Therefore,
this feature is assumed as suitable for multi-pattern match-
ing. However, the majority of existing researches about the
suffix tree focus on exact single-pattern matching. Can we
develop an approach that may absorb the advantages of
the suffix tree in exact single-pattern matching and try to
fulfill in multi-pattern matching with wildcards? This can
be a practical and meaningful research issue.

Hence, in this paper, we propose two efficient suffix-
tree-based algorithms, namely MMST-S and MMST-L,
according to the length of the exact characters in the given
pattern. Two different approaches fulfilling the approxi-
mate multi-pattern matching with variable-length wild-
cards are adopted. The core problem of the algorithms is
to achieve a single-pattern matching with variable-length
wildcards and then extend to multi-pattern matching. In
order to simplify the research issue, the condition of infi-
nite or negative wildcards is not taken into consideration.
To further improve the performance, we choose a dynamic
programming approach to fulfill matching, called MMST-S
for the ‘short-length’ exact characters (e.g., a*[2,3]b*[0,2]
c). In contrast, when the length of exact characters in a
pattern is long (e.g., abc*[2,3]cde*[0,2]abcd), we adopt
an editing distance approach to fulfill matching, which is
called MMST-L. Based on the experimental results, these
two MMST algorithms substantially outperform existing
solutions in most cases.

The contributions of this paper are summarized as
follows:

1. To extend the application of the suffix tree into approxi-
mate pattern matching and multi-pattern matching.
There are other theoretical studies on the suffix tree in
approximate pattern matching in the present researches,
and our study will fulfill the experimental demonstra-
tion.

2. To design two efficient algorithms according to the
length of exact characters in patterns, which can be
applied in bioinformatics, such as DNA and protein
sequences.

The rest of the paper is organized as follows. In Sect. 2,
related work about multi-pattern matching with wildcards
is described. Afterward, Sect. 3 defines the research prob-
lems on multi-pattern matching and pattern matching
with wildcards. The proposed algorithms MMST-S and
MMST-L are presented in Sect. 4. Section 5 presents our
experimental results and the performance analysis of our
proposed algorithms in real bioinformatics data. Finally,
Sect. 6 summarizes the findings of the study and also gives
suggestions about our future research.

1153Pattern Analysis and Applications (2018) 21:1151–1165

1 3

2 Related work

Many existing studies contributed to the pattern match-
ing, which are roughly divided into single-pattern
matching and multi-pattern matching according to
the number of pattern; or exact pattern matching and
approximate pattern matching according to the accuracy
of matching. This paper mainly presents an analysis
about the problem of approximate multi-pattern match-
ing with wildcards.

Compared with the single-pattern matching, the study of
multi-pattern matching is relatively less. Some algorithms
are extended from single-pattern matching. However, there
are still some good solutions presented for multi-pattern
matching. For example, Aho and Corasick [2] proposed
the Aho–Corasick automaton algorithm, which serves as
an extension of the classical single-pattern matching algo-
rithm Knuth–Morris–Pratt for a set of patterns in 1975. The
idea of the AC automaton is to traverse all prefixes of the
given text to build a trie from shorter to longer for each pre-
fix. Additionally, all the suffixes which are in the pattern set
need to be found [20] (e.g., ‘he,’ ‘she,’ ‘her’). The AC algo-
rithm and its extended variant algorithms have been widely
used for multi-pattern matching, the drawback of which is
that these algorithms require a large amount of memory
space. The Commentz–Walter algorithm [4] is never faster
than Aho–Corasick algorithm or other multi-pattern match-
ing algorithms. However, it is historically important because
it was the first expected sub-linear multi-pattern matching
algorithm. The algorithm of Wu and Manber [5] resolved the
obstacle of poor performance of the extension of Horspool
algorithm in 1994. The Wu–Manber algorithm is found to be
practical and simple for the reduction in the probability that
each character block appears in one of the patterns by reading
these blocks of characters. The shortage of Wu–Manber algo-
rithm is that too much memory is consumed if the length of
character blocks becomes larger. Additionally, some general
factor-based approaches can also be extended to multi-pattern
matching, such as MultiBDM [21] in 1997 and Dawg–Match
[22] in 1999. However, they are complicated. Meanwhile, the
performance is poor in practice. Some algorithms based on
the bit parallelism are efficient when the set of pattern is small.

There are few algorithms for approximate multi-pattern
matching targeting on those more complicated problems
being proposed. Muth and Manber [23] proposed a good
solution called MultiHash for one error in 1996. Baeza-Yates
and Navarro [24] extended the PEX algorithm to multi-pat-
terns called MultiPEX in 1997, which splits each pattern
into k + 1 pieces and performs a multi-pattern exact search
for all pieces. If a piece matched with more than one pattern,
then the algorithm needs to check the corresponding pattern
about whether it satisfies the permissible errors.

Pattern matching with wildcards was first proposed by
Fischer et al. [10] in 1974, with a fixed number of wildcards
in a single-pattern matching. Wildcard is also called gap
or do-not-care character, which matches with an arbitrary
character or a group of characters solving more sophisticated
problems in some applications, such as a word misspelling
or a DNA mutation. A series of efficient and sophisticated
methods regarding the pattern matching with wildcards have
been promoted. The number of wildcards changes from
one character to more, from the fixed length to the flexible
length, even arbitrary length. For example, Cole and Hari-
haran [25] improved the time efficiency of pattern matching
with constant wildcards with the time complexity O(nlogn)
in 2002. Rahman et al. [26] promoted an algorithm for the
problem of pattern matching with variable-length wildcards
in a certain range in 2006. Haapasalo et al. [27] proposed an
algorithm based on the classical Ahot–Corasick automaton
in which the range covers not only the variable length but
also the arbitrary one in 2011. All of the aforementioned
methods focus on the problem of single-pattern matching
with wildcards.

Browsing through previous studies, it can be found that
researches about multi-pattern matching with wildcards
are quite limited. In 1997, Kucherov and Rusinowitch [28]
solved the problem of multi-pattern matching with variable
length do not cares based on DAWG (directed acyclic word
graph) in dynamic dictionary matching. The main idea is to
scan the text from the left to right using the automaton and
then find the leftmost location during the matching process.
Therefore, when the matched pattern in the leftmost is in the
worst case, it scans continuously the rest text to find all of
the possibilities that results in the bad time complexity. In
2007, Kulekci [29] proposed a new multi-pattern matching
algorithm called TARA, which performs matching fixed-
length pattern with do-not-care characters based on bit paral-
lelism. The main idea is to slide a window on the string and
then have a check of any occurrence of given patterns in the
window via bitwise operations by Alignment, Mask and Shift
three matrices and scan the order of these positions in the
window. However, the bit parallelism algorithms are limited
as it can be only applied for the model of finite length. When
the worst case occurs, it can be time-consuming. In 2011,
Zhang et al. [30] presented three algorithms for multi-pattern
matching with wildcards based on fast Fourier transforms
(FFT). The first one finds the matches of a small set of pat-
terns, the second finds the occurrences of patterns based on
a prime number encoding of the pattern set and the text, and
the third is based on Hamming distance between bit vectors
when the number of wildcards in a pattern is very small.
However, in these three algorithms, the number of wildcards
is fixed or constant.

Suffix tree was first proposed by Weiner [17] based
on the trie structure in 1973. However, the construction

1154 Pattern Analysis and Applications (2018) 21:1151–1165

1 3

process is complicated. In 1976, McCreight [31] pro-
posed a more efficient method to construct the suffix tree
according to the reverse order. It is extremely difficult
to understand the two original approaches. Until 1995,
Ukkonen [32] developed an efficient and different linear-
time method for the construction of the suffix tree, which
is easier to understand while the complexity of the algo-
rithm is only Ο(N). Since then, suffix tree efficiently solves
the pattern matching problem in many applications.

Similarly, there are more researches about the suffix
tree in exact pattern matching and single-pattern match-
ing compared with those about the approximate pattern
matching and multi-pattern matching. Gusfield [33] thinks
that the suffix tree has provided a bridge between exact
pattern matching problems and inexact pattern matching
problems. In 2005, Chattaraj et al. [34] introduced the
inexact-suffix tree data structure to detect the extensible
patterns. The time complexity in worse case is Ο(2n), when
the size of the input string n is big. Meanwhile, it is very
time-costive. In 2009, Ukkonen [35] proposed a method to
find maximal and minimal equivalent representations for
gapped and non-gapped motifs. In this research, a motif is
a pattern that uses suffix-tree-based linear-time algorithms
to non-gapped motifs. Bille et al. [36] also conducted a
variety of researches for the problem of the pattern match-
ing with wildcards. In 2014, they provided two approaches
for string indexing in the pattern with variable-length
wildcards based on suffix tree search. The main idea is to
find all occurrences of a pattern in a top-down traversal
starting from the root and to build a compressed suffix
tree storing all possible modifications of all suffixes con-
taining the wildcards. However, the complexities of time
and space have increased corresponding to the increase in
the number of wildcards or gaps in the pattern. In 2016,
Thankachan et al. [37] described a method to extend the
generalized suffix tree model to incorporate a selected
bounded set of perturbed suffixes for complex approxi-
mate sequence matching problem. However, the methods
promoted above are theoretically described and hardly
usable in practice.

To sum up, these approaches proposed in the above
researches can solve one side of the problem. However, there
are two algorithms in this research based on suffix tree com-
bined with dynamic programming and editing distance to
solve the problem.

3 Preliminaries

In this section, we give a formal definition of the multi-pat-
tern matching with variable-length wildcards. Meanwhile,
these algorithms used some primitives.

3.1 Sequence and pattern

Definition 1 Let a sequence be composed of characters
S = s0s1 … sn−1 , where S is called an object sequence, n is
the length of S and si ∈ � (0 ≤ i ≤ n − 1) ⋅ � is an alphabet,
containing all of the different symbols of S, and |�| is the
size of � . For example, in DNA sequence, � is {A,C,G,T}
and the size of DNA alphabet is 4 denoted by |�| = 4.

Definition 2 Sj
i
= sisi+1 … sj, is called the subsequence of

S, denoted by Sub(S), where 0 ≤ i ≤ j ≤ n − 1 , when i = 0,
S
j

i
= s0s1 … sj is the prefix of S, denoted by Prefix(S); when

j = n − 1, Sn−1
i

= sisi+1 … sn−1 is the suffix of S, denoted by
Suffix(S).

Example 1 Given an object sequence S = s
0
s
1
s
2
s
3
s
4
s
5

= gtccgc , Sj
i
= s2s3s4 = ccg is one of the subsequences

of S, Sj
i
= s0s1s2s3 = gtcc is one of the prefixes of S and

S
j

i
S
j

i
= s2s3s4s5 = ccgc is one of the suffixes of S.

Definition 3 The subsequence of P = p0p1…pm−1
is called a pattern, where m is the length of P, and
pj ∈ �(0 ≤ j ≤ m ≤ n − 1).

3.2 Wildcards

Definition 4 If one of the positions pj in the pattern P can
match arbitrary character, it is called a wildcard denoted
with *.

Definition 5 Let a pattern P = p
0
∗
[
l
0
, h

0

]
p
1
… ∗[

lj−1, hj−1
]
pj … ∗

[
lm−1, hm−1

]
pm be constructed by the charac-

ter pj and wildcard *, where pj ∈ � (0 ≤ j ≤ m), ∗ [lj−1, hj−1]
is the gap constraint between two exact characters, lj−1 and
hj−1 refer to integer numbers, representing the minimum and
maximum numbers of wildcards between the characters pj−1
and pj.

• When 0 ≤ lj−1 ≤ hj−1 and hj−1 ≠ ∞ , the pattern P is called
a pattern with variable-length wildcards, especially in the
case when lj−1 = hj−1 presenting the length of wildcard
gap is constant;

• The pattern P is called a pattern with arbitrary length
wildcards, if lj−1 ≤ hj−1 while lj−1 and hj−1 can be a neg-
ative integer, or when lj−1 is an arbitrary integer, and
hj−1 = ∞,.

• When l0 = l1… = l j−1…lm−1, and h0 = h1… = hj−1
= … = hm−1, the pattern P is called a pattern with periodic
length wildcards.

Example 2 For the pattern P = p0*[l0,h0]p1*[l1,h1]p2*[l2,h2
]p3 = gt*[0,1]c*[0,0]c*[1,∞]gc, where the p0 = gt, p1 = c,

1155Pattern Analysis and Applications (2018) 21:1151–1165

1 3

p2 = c, p3 = gc, the sub-pattern gt*[0,1]c means that the mini-
mum of the position range of wildcards between p0 = gt and
p1 = c is 0 while the maximum is 1. This sub-pattern is a
pattern with variable-length wildcards. When it comes to
the sub-pattern c*[0,0]c, the minimum and maximum of the
position range of wildcards between p1 = c and p2 = c are
0. When there is no character between p1 and p2, c*[0,0]
c = cc. The sub-pattern c*[1,∞]gc means that the number of
characters between p2 = c and p3 = gc is an arbitrary integer.
Such sub-pattern is a pattern with arbitrary length wildcards.

This study only focuses on the problem of pattern match-
ing with variable-length wildcards. Because this prob-
lem is more sophisticated, we need to consider more
sub-problems.

Definition 6 G denotes the gap constraint size of wildcards.
In a variable-length wildcard constraint *[l,h], l and h are
positive integer numbers, l is the minimum of the gap and h
is the maximum, then G = h − l + 1.

Definition 7 Mmin denotes the minimum length of the sin-
gle pattern P = p0 ∗

[
l0, h0

]
p1 … ∗

[
lj−1, hj−1

]
pj … ∗

[
lm−1, hm−1

]
pm

and Mmax denotes the maximum length of P. Then,
Mmin = m + 1 + �

m−1
j=0

lj , Mmax = m + 1 + �
m−1
j=0

hj , where

m + 1 means the number of the exact characters, �m−1
j=0

lj

means the sum of the minimum of each wildcard and �m−1
j=0

hj

means the sum of the maximum of each wildcard.

Example 3 Given a pattern P = g*[0,1]g, the gap length
of wildcards G = h − l + 1 = 1 − 0 + 1 = 2. In this case, the
minimum length of P Mmin = 2 + 0 = 2, while the maximum
length of P Mmax = 2 + 1 = 3.

3.3 Pattern matching

Definition 8 Given an object sequence S = s0s1…sn−1 and a
pattern P = p0p1…pm−1. If there are some positions i1,… , im
satisfying the following equation:

where 0 ≤ j ≤ m − 1 and 0 ≤ i1 ≤ … ≤ im ≤ n , then the
sequence i1,… , im can be called as an occurrence.

Example 4 Given a DNA sequence S = s0s1s2s3s4…
s9 = ggcgtccgcg, n = 10, and a pattern P = g*[1,2] cg*[1,4]
c, find all of the occurrence positions of pattern P in S.

⎧⎪⎨⎪⎩

Sij = pj

lj−1 ≤ ij − ij−1 − 1 ≤ hj−1 ⇒ lj−1 + 1 ≤ ij − ij−1 ≤ hj−1 + 1

Mmin ≤ im − i
1
+ 1 ≤ Mmax ≤ n

For the pattern, P = g*[1,2]cg*[1,4]c, Mmin = 4 + 1 + 1 = 6,
M max = 4 + 2 + 4 = 10 , G 0 = 2 − 1 + 1 = 2 and
G1 = 4 − 1 + 1 = 4. As shown in Fig. 1, the occurrence
positions of p0 = g are 0,1,3,7,9 in the object sequence S,
while the occurrence positions of p1 = cg are (2,3), (6,7)
and (8,9). When p0 = 1, p1 = 2, lj−1 ≤ ij − ij−1 − 1 ≤ hj−1 ,
2 − 1 − 1 = 0 < lj−1 , this equation fails. Meanwhile, the other
positions cannot satisfy the Eq. 8. When p1 = cg = (8,9), the
end position of p1 = 9 added to G1 = 4 is equal to 13 > Mmax
and also bigger than n = 10. So this position also does not
satisfy Eq. 8.

Therefore, the positions satisfying the gap range [1,2] are
p0 = 0 and p1 = (2,3). By the same token, when p1 = (2,3), the
satisfied positions of p2 are 5 and 6. Therefore, occurrence
matching the pattern P in S is 2, while the occurrence posi-
tions are {0,2,3,5} and {0,2,3,6}.

3.4 Multi‑pattern matching

Definition 9 Given an object sequence S = s0s1…sn−1 and a
pattern set = {P0,P1,…,Pk−1}, all of them were constructed
by alphabet � where n is the length of S and k is the size
of the pattern set . The key of the multi-pattern matching
is to find all the occurrences of each pattern in the given
sequence.

If multiple object sequences and the multiple patterns are
given, it is the problem of multi-pattern matching in multiple
sequences. This paper only focuses on the problem of one
object sequence and multiple patterns. If each of the pat-
terns in the pattern set is the exact pattern, it is the problem
of exact multi-pattern matching. In the pattern set of this
research, each one is the pattern with variable-length wild-
cards (see Definition 5).

According to the realistic application, each pattern can get
different matching results through the logical operators, such
as AND, OR and NOT. Specifically, there are two patterns,
including A and B. The relation A AND B suggests that the
output results match with patterns A and B; the relation A
OR B means that the output results either match pattern A
or match pattern B; the relation A NOT B means that the
output results only match pattern A and do not match pattern

g g c g t c c g c g
0 1 2 3 4 5 6 7 8 9

p0 p0 p0 p0 p0

p1

p2 p2 p2 p2

p1 p1

[1,2]

[1,4]

Fig. 1 An example of the pattern matching with variable-length wild-
cards

1156 Pattern Analysis and Applications (2018) 21:1151–1165

1 3

B. The OR relation is adopted in this paper for multi-pattern
matching to output the matching result of each pattern and
the total matching numbers.

3.5 Suffix Tree

Definition 10 Let S be a sequence of n characters. Accord-
ing to the Ukkonen’s approach [31], the last character ‘$’
denoting the end marker for the sequence is added. The
path from the root to any leaf represents a suffix for the
sequence denoted SuffixTree(S), commonly abbreviated
Suf(S). Such as the object sequence S = s0s1…si…sn–1, the
Suf(Si) = sisi+1…sn–1$.

Example 5 Given a DNA sequence S = s0s1s2s3s4…
s19 = ggcgtccgcgcacacctccc, n = 20, the special terminal
symbol ‘$’ is added to construct the suffix tree, which is
shown in Fig. 2. The root node is denoted (− 1, − 1) while
altogether there are 21 paths form the root to the leaves cor-
responding to the 21 suffix sequences altogether including
the ‘$.’ The number in the leaf node gives the start position
of the corresponding suffix, denoted by Suf(Si). The path is
a subsequence which, from the middle node to the leaf node,
denoted (u, v), where u is the start position of the middle
node and v is the end position of the leaf node. The suffix
links (character-$) belong to compressed path.

Lemma 1 If a sequence S with length n is constructed to
form a suffix tree (include the ‘$’), then the suffix tree will
have these following properties:

• It has n + 1 leaves numbered from 0 to n.
• Except for the root node, every internal node has at least

two children nodes.
• Every edge is labeled with a non-empty subsequence of

S.

• Subsequences represented by sibling nodes must begin
with different characters.

Lemma 2 If there are two children nodes of the root node
of Suf(S$), namely A and B, A and B must be the one
of the elements of � or the terminal symbol ‘$’ denoted
A,B ∈ � ∪

{
$
}
 and A ≠ B. Therefore, it can be assumed

that the number of branches for the root node is equal to the
size of |�| in addition to $.

Example 6 As shown in Fig. 2, the length n of the DNA
sequence S is 20 while the $ is added. The suffix tree Suf(S$)
has 21 leaves which are numbered from 0 to 20; two char-
acters a, c are the children nodes of the root node, so a, c
∈ � . Besides, the number of the branches of this root node
can be obtained in this way, which is the size of the alphabet
|�| + 1 = 4 + 1 = 5.

Lemma 3 If T is the subsequence of sequence S, T must be
a prefix of another subsequence T’ in the suffix tree Suf(S$).
Additionally, the occurrence number of T must be the num-
ber of the children nodes of this non-leaf node of T’.

Lemma 4 If T is the subsequence of sequence S, then T is
the deepest non-leaf node from the root node, and T must
be the longest common subsequence or the longest repeat
subsequence.

Example 7 As shown in Fig. 2, the subsequences T1 = cgc
and T2 = gcg both are the deepest non-leaf nodes from the
root node in the DNA sequence Suf(S$), while both T1 and
T2 are the longest common subsequences, the length of
which is 3. T1 has two leaf nodes 6 and 8, and T2 also has
two leaf nodes 1 and 7. This suggests that the two subse-
quences also occurred two times in S. The number of the leaf
node is the start position of two subsequences, respectively.

Fig. 2 The suffix tree for the
DNA sequence S

S= g g c g t c c g c g c a c a c c t c c c $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

(20,20)

(-1,-1)

(4,20)

g

(1,20)

a-$

9

t

(11,20)

0
g-$t-$

3
(4,20)

(16,20)

g

c-$

15

2
t-$

(4,20)

(10,20)

c

t-$
1 7

c-$

11 13

c-$

(12,20)

c-$

(14,20)

t-$
$
19
(20,20)

6 8
(9,20) (11,20)

a-$g-$
14 17 18

t-$

(14,20)

(19,20)(20,20)

$c-$

(7,20)10 12
c-$

(12,20)

(16,20)

a

a

c

c

5
g-$

c
g

c-$

(5,20)

4

c-$

(17,20)

16

20

1157Pattern Analysis and Applications (2018) 21:1151–1165

1 3

4 Algorithm design

The efficient algorithms for multi-pattern matching with vari-
able-length wildcards based on the suffix tree are presented in
this section. The algorithm involves three important phases.
In the first phase, the suffix tree is constructed based on the
Ukkonen’s method [32]. During the second phase, multiple
patterns are pre-processed and classified using the approach
in the next step. When it comes to the third phase, which is
also the important phase, the problem of multi-pattern match-
ing with variable-length wildcards is solved using our two
algorithms (MMST-S and MMST-L) in detail. Finally, it is
the complexity analysis of two algorithms.

4.1 Suffix tree construction

Recently, the approach to constructing the suffix tree is
mostly based on the Ukkonen’s method [32], the basic idea
of which is to start from an empty tree, which is the root
node, and then insert nodes into the tree in the order of the
characters of the object sequence. Such node is a new branch
node, and each of the branch nodes is an active node during
the suffix tree construction period. It inserts characters from
left to right. It needs to determine the position of the path
when the letter of new character has existed at the current
active node. A new branch node would be created if the
letter of new character did not exist. All of the characters
of the object sequence are inserted in this suffix tree before
the terminal symbol ‘$’appears, which is shown in Fig. 2.
The time complexity of this method is only Ο(n), while n
represents the length of the object sequence.

Our algorithm to construct the suffix tree also takes the
above approach. We traverse the tree in the top-down order.
Each of the paths from the root to the leaf node is the suffix
subsequence of the object sequence. The number of the leaf
nodes for the corresponding branch node and the start position
of the edge of the compact path are stored. The suffix tree was
constructed in Algorithm 1, which is shown as follows.

Once the suffix tree is constructed, the tree can be repeatedly
applied if there is no change occurring over the object sequence.
This property is appropriate for multi-pattern matching.

4.2 Multiple‑pattern pre‑processing

Holding the purpose of improving the efficiency of our algo-
rithm, some pre-processing measures have been taken for the
pattern set. The pseudo-code was, respectively, described in
Algorithms 2 and 3. According to the length of exact char-
acters in the pattern, there are two approaches.

The short form is that the exact characters of a pattern are
composed of single or short characters, such as P1 = a*[1,2]b;

P2 = c*[0,1]de*[2, 3]f. The pre-process measure of multi-pat-
terns is simple for short exact characters. The patterns are clas-
sified based on the exact character alphabetical order. Because
of the short form, we will take dynamic programming from front
to back in the suffix tree. According to the property of the suf-
fix tree, if the first character of the suffixes P1 and P2 is same,
these two suffixes must be in the same alphabetic branch node,
by Lemma 2. Hence, the sort of the patterns in the pre-process
phase will improve the efficiency of the algorithm MMST-S.

The long form is that exact characters of a pattern are com-
posed of a group of characters, such as P1 = abcd*[1,2]bbbbb
and P2 = cacbd*[0,1]dec*[2,3]fght; it requires to split the
exact characters into groups and gaps. Meanwhile, they need
to be stored in the array, respectively. Afterward, the patterns
are classified according to the alphabetical order of the last
exact characters’ group. Because we will take editing distance
for these exact groups from back to front in the algorithm
MMST-L, and in the matching phase, the approach based on
suffix is usually faster than the approach based on prefix. For
example, if a subsequence does not satisfy the last group but
it satisfies all of the front groups, it must not be the correct
occurrence position. Meanwhile, if a subsequence satisfies
the last group, it is possible the correct occurrence position.

4.3 Algorithm MMST‑S

As mentioned in the pre-processing phase, the algorithm
MMST-S is suitable for the short form of the multi-pattern

Algorithms 1: Suffix Tree Construction
Input: an objected sequence text
Output: SuffixTree(text)
1. root=new SfxNode();
2. Add(‘$’,S[n]);
3. temp= SfxNode(suffix_link=root);
4.root.add_link(S[0],longest);
5. for (i=0; i n;i++)
6. current=temp; previous=None;
7. while T[i] is not in the current.children do
8. NewNode= new SfxNode();
9. current.add_link(T[i],NewNode);
10. If previous node is not null then
11. previous.suffix_link=NewNode;
12. end if
13. previous=NewNode;
14. current=current.add_link;
15. end while
16. if current is root
17. previous.suffix_link=root;
18. else previous.suffix_link=current.children[S[i]];
19. temp=temp.children[S[i]];
20. end for
21. return root;

1158 Pattern Analysis and Applications (2018) 21:1151–1165

1 3

with short exact character. After the pre-processing phase, the
multi-pattern set = {P0,P1,…,Pk−1} where Pi = p0*[l0,h0]p1…
[lj−1,hj−1]pj…[lm−1,hm−1]pm, are sorted according to the
alphabetical order of the first character p0 in each pattern.
Firstly, the algorithm MMST-S was judged to p0, which is the
element of the alphabet � . Besides, the dynamic programing
measures have been adopted to search the next exact character
p1, in the branch of the letter of p0, to find its children node
and leaf node which satisfied the gap range [l0,h0]. If one of
the possible occurrence positions is found, then it requires to
continue to find p2 until the last exact character pm was found.

As shown in Fig. 3, the suffix tree is constructed for
the object sequence S = s0s1s2s3s4…s19 = ggcgtccgcg-
cacacctccc and two patterns P0 = p0*[l0,h0]p1 = g*[0,1]g,
P1 = p0*[l0,h0]p1 = c*[0,1]c. The first step is to sort these
patterns according to the alphabetical order of each first
exact character. Because letter c is in the front of letter
g, so P1 is matched first. Afterward, the occurrence posi-
tion must be in the branch node or leaf node in the first
character p0 = ‘c,’ while other branches such as ‘a,’ ‘g,’
‘t’ are excluded. During the third stage, it needs to find
the occurrence position of p1 = ‘c,’ which satisfies the gap
range [0,1]. Figure 3 makes it relatively easy to get the
occurrence positions matching pattern P1; when the mini-
mum number of wildcards is 0, the positions are the chil-
dren or leaf nodes of the subsequence ‘cc’:(5,6),(14,15),
(17,18),(18,19); when the maximum number of wildcards is
one, the positions are the children or leaf nodes of the sub-
sequence ‘c*c’: (6,8),(8,10),(10,12),(12,14),(17,19). There-
fore, the occurrence number of P1 in the object sequence
S is nine. Similarly, when the pattern is p0 = g*[0,1]g, the
occurrence positions must appear in the branch of the first
farther node ‘g,’ which satisfies the wildcard condition:
(0,1),(1,3),(7,9). The occurrence number is three.

According to the above description and the exam-
ple of the algorithm MMST-S, Algorithm 2 shows the
pseudo-code.

Algorithms 2: MMST-S
Input: root, Pattern set ={P0,P1,…,Pk-1}
Output: Match position and march number
1. initialize the arrays and parameters;
2. node=root;
3. sort the set and store in the array P
4.for (i=0;i k;i++) // k is the size of the Patterns
5. for (j=0;j P[i].length; j++)
6. if(p[j]) then
7. search p[j] in node;
8. save temp=node[p[j]].children;
9. else (p[j]) // p[j] is the wildcard;
10. save min[j]=lj, max[j]=hj;
11. save next=getchar(p[j+1]);
12. for (t=0;t temp.length ;t++)
13. search the next in the temp;
14. if(next.position match the gap of the min and max) then
15. save the Position;
16. temp=Position;
17. else continue
18. end for
19. save MatchPosition[i] and MatchNumber[i];
20. end for
21. end for

4.4 Algorithm MMST‑L

Algorithm MMST-L is proposed for the long form of the
multi-pattern with long exact characters. The main idea is
to make a comparison of the occurrence positions of each
exact character group by the editing distance and judge the
gap range of these groups whether to satisfy the variable
length of wildcards. Specifically, after the pre-processing
phase, the multiple patterns set = {P0,P1,…, Pk−1}, where
Pi = p0*[l0,h0]p1…*[lj−1,hj−1]pj…*[lm−1,hm−1]pm are stored
in the array according to the alphabetical order of the first
letter of the last exact group pm in each pattern. Then, we
get the start position from the leaf nodes of the last exact

Fig. 3 An example of MMST-S
algorithm

S= g g c g t c c g c g c a c a c c t c c c $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

(20,20)

(-1,-1)

(4,20)

g

(1,20)

a-$

9

t

(11,20)

0
g-$t-$

3
(4,20)

(16,20)

g

c-$

15

2
t-$

(4,20)

(10,20)

c

t-$
1 7

c-$

11 13

c-$

(12,20)

c-$

(14,20)

t-$
$
19
(20,20)

6 8
(9,20) (11,20)

a-$g-$
14 17 18

t-$

(14,20)

(19,20)(20,20)

$c-$

(7,20)10 12
c-$

(12,20)

(16,20)

a

a

c

c

5
g-$

c
g

c-$

(5,20)

4

c-$

(17,20)

16

20

P0=g*[0,1]g
P1=c*[0,1]c

1159Pattern Analysis and Applications (2018) 21:1151–1165

1 3

characters’ group of the first pattern from the suffix tree.
Lemma 3 shows that the occurrence number is the total num-
ber of leaf nodes in a branch node, while the occurrence
position is the start number of each leaf node. Additionally,
the end position of pm−1 is calculated accordingly, which
is equal to the start position of pm−1 added by the length of
pm−1 − 1. Finally, to further improve the efficiency of the
algorithm, we take the measure from back to front to judge
the gap range of the start position of the first character of pm
minus the end position of the last character of pm−1. If the
range satisfies the length of wildcard [lm−1,hm−1], continue to
judge the rang of pm−1 and pm−2, until p0. The same approach
is adopted to judge the next pattern if the range does not
satisfy the length.

As shown in Fig. 4, given the object sequence
S = s0s1s2s3s4…s19 = ggcgtccgcgcacacctccc we construct a
suffix tree of two patterns P0 = p0*[l0,h0]p1 = gcg*[0,6]cc
and P1 = p0*[l0,h0]p1 = cgc*[1,2]ca. Firstly, sort these pat-
terns according to the alphabetical order of the last exact
group. Since ‘ca’ is in front of ‘cc,’ pattern P1 is first. In

the pre-processing phase, we need to split these exact char-
acter groups and their gap ranges of wildcards. Secondly,
we get the start positions of pm = p1 = ‘ca’ from the suffix
tree which are 10 and 12. Afterward, we calculate the end
position of pm−1 = p0 = ‘cgc.’ We need to get the start posi-
tions of the ‘cgc,’ which are 6 and 8, while the length of the
p0 = 3. Therefore, the end positions of ‘cgc’ are 6 + 3 − 1 = 8
and 8 + 3 − 1 = 10. Thirdly, the distance of two groups was
evaluated to see whether they can satisfy the wildcard
*[l0,h0] = [1,2]. The occurrence positions are ([6,8][10,11]),
([8,10][12,13]). In ([m,n]), m refers to the start position of
the group and n is the end position of the group. When m = n,
it suggests that there is only a single character in the group.
The number of occurrences is two. Then, the position of the
next pattern P0 is obtained through a similar method. The
start positions of ‘cc’ are 5,14,17,18, while the end positions
of ‘gcg’ are 3 and 9, and the occurrences satisfying the vari-
able length of wildcard *[0,6] are ([1,3][5,6]),([7,9][14,15]).

Algorithm 3 is the pseudo-code of algorithm MMST-L.

Algorithms 3: MMST-L
Input: root, Pattern set ={P0,P1,…,Pk-1}
Output: Match position and march number
1. initialize the arrays and parameters;
2. node=root;
3. split the exact character group and store in the array P;
4.sort the P;
5.for (i=0;i k;i++) // k is the number of the Patterns
6. for (j= P[i].length; j 0 ;j--)
7. search p[j] in node;
8. save subp[j]=p[j].leafnode;
9. if(subp[j].position)>subp[j-1].position) then// optimize the algorithm
10. gap=subp[j].get(0)-subp[j-1].get(1);

// the start position of the latter one minus the end position of the previous one
11. if(gap match the rang of the min and max) then
12. save the Position;
13. else continue
14. else continue
15. end for
16. save MatchPosition[i] and MatchNumber[i];
17. end for
18. return MatchPosition and MatchNumber;

1160 Pattern Analysis and Applications (2018) 21:1151–1165

1 3

4.5 Complexity analysis

This section focuses on the complexity and the extensibil-
ity of the aforementioned algorithms. Let the length of the
object sequence S be n, the alphabet size be |�| , the multi-
pattern set = {P0,P1,…,Pk−1}, where k is the number of
the patterns, and Pi = p0*[l0,h0]p1…*[lj−1,hj−1]pj… *[lm

−1,hm−1]pm, where m is the average length of the patterns.
The algorithm of constructing suffix tree is based on the
Ukkonen’s method. Both the time and space complexities are
Ο(n) [31]. However, the algorithms MMST-S and MMST-L
are based on different approaches, so the time complexities
are different.

For the algorithm MMST-S, it consists of three ‘for’
loops: The time of the first loop is the number of patterns k,
the second loop is the average length of the patterns m and
the third loop is the average children nodes of the characters
n∕|�| . It needs to make a comparison about the wildcards.
In the worst case, the number of the wildcards is m − 1, so
the G is the gap range of each wildcard. Beginning with the
construction of suffix tree, the overall time complexity is
O
�
n + k(n∕���)

�∑m−1

i=0
Gi

��
 . When |�| is big, the n∕|�|

tends to be a constant number which is less than n. Accord-
ing to the first character, it can exclude all of the branch
nodes in other character branches.

For the algorithm MMST-L, it has two ‘for’ loops: The
time of the first loop is also the number of patterns k, while
the second loop is the number of the exact characters’ group
w, and the number of the wildcards is w − 1; the G is the gap
range of each wildcard. Therefore, the general time complex-
ity is O

�
n + k(n∕���)

�∑m−1

i=0
Gi

��
 . Compared with the algo-

rithm MMST-S, the group w is less than the number of pat-
terns m. Thus, when w equals to m that means the pattern
has the short form, the algorithm consumes more time.

The suffix tree is a data structure, which can improve the
time efficiency through space–consumption. If the length of
a sequence is n, when constructing the suffix tree, the tree
contains at most n leaves and 2n nodes, the space complexity
is Ο(n). In the two algorithms MMST-S and MMST-L, the
cost of the memory is mainly used to store some probability
occurrence positions in the array. The number of these posi-
tions is less than n, which can be absolutely ignored. Thus,
both of the space complexity of two MMST algorithms are
Ο(n).

5 Experimental evaluation

In this section, we mainly discuss the time performance of
the two algorithms, namely MMST-S and MMST-L. We first
give the experimental environment and test data and then
report the experimental results by testing various parameters
in real biological data against other existing algorithms.

5.1 Experimental environment and data sets

All experiments were conducted on a laptop with Intel Core
i5 2.7 GHz CPU and 8G main memory, running on OS X
EI Capitan Operating System. The algorithms of MMST-S,
MMST-L and also the comparison algorithms of WM-gap,
BG-gap and ST-TWEC-gap are written in JAVA language.
The algorithms WM-gap and BG-gap were recomposed by
the algorithms WM and BG promoted by Salmela et al. [38]
and the thought of Ukkonen [39]. The WM-gap is based on
the famous Wu–Manber [5] algorithm, the BG-gap is based
on the Multiple BNDM [6] algorithm, and the ST-TWEC-
gap is recomposed by the algorithms ST-TWEC [40].

This experiment chose the real biological data, the DNA
sequence AX829174 and the protein sequence AJM00528

Fig. 4 An example of MMST-L
algorithm

S= g g c g t c c g c g c a c a c c t c c c $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

(20,20)

(-1,-1)

(4,20)

g

(1,20)

a-$

9

t

(11,20)

0
g-$t-$

3
(4,20)

(16,20)

g

c-$

15

2
t-$

(4,20)

(10,20)

c

t-$
1 7

c-$

11 13

c-$

(12,20)

c-$

(14,20)

t-$
$
19
(20,20)

6 8
(9,20) (11,20)

a-$g-$
14 17 18

t-$

(14,20)

(19,20)(20,20)

$c-$

(7,20)10 12
c-$

(12,20)

(16,20)

a

a

c

c

5
g-$

c
g

c-$

(5,20)

4

c-$

(17,20)

16

20

P0=gcg*[0,6]cc
P1=cgc*[1,2]ca

1161Pattern Analysis and Applications (2018) 21:1151–1165

1 3

as the experimental data, which are downloaded from the
NCBI (National Center for Biotechnology Information) Web
site [41]. Compared with the natural language texts, Gonzalo
et al. [1] think that DNA sequences are comparatively more
difficult to deal with than natural language texts. This is
because DNA sequences contain more intrinsic repetitions.
For example, the size of the alphabet is |�| = 4 in DNA
sequences. The length of the DNA sequence AX829174 is
10,011; the protein sequence AJM00528 consists of 34,350
characters. In our experiments, we will pick some length-L
segments from the two sequences as the object sequence for
providing the various values of L.

5.2 Experimental results

In this section, we first provide the experimental results
obtained from the measurement of the running time of two
algorithms MMST-S and MMST-L in comparison with
WM-gap, BG-gap and ST-TWEC-gap under the condition
of different variables in two different sequences. After-
ward, it presents a deep analysis regarding the reason why
our algorithms outperform other algorithms. For chang-
ing the different various parameters, we take the tool to
generate the multi-pattern set = {P0,P1,…,Pk−1}, where
k is the number of patterns. The formation of the pat-
tern is P = p0l0, h0p1 … lj−1, hj−1pj … lm−1, hm−1pm, where
p0 … pj … pm ∈ � are the exact characters from the alpha-
bet of experimental data, while m refers to the length of the
pattern. The l0, h0 … lj−1, hj−1 … lm−1, hm−1 are the positive
integer numbers which denote the variable-length wild-
cards. In the experiment, we only set the value of the G,
because G = h − l + 1, and the values of h and l are generated
randomly.

5.2.1 DNA sequence data

This study presents a comparison of the running time on the
DNA sequence AX829174 with varied sequence lengths,
varied pattern sizes, varied wildcard numbers, varied gap
sizes and varied exact characters’ lengths. When we compare
a variable, other parameters are given.

The first test of our algorithms is on the varied object
sequence with length n changing from 1000, 2500, 5000
to 10,011. The multiple pattern set is = {P0,P1,…,Pk−1}
where k is 10. For each single pattern Pi = p0l0,h0p1…
lj−1,hj−1pj…lm−1,hm−1pm, p0…pj…pm ∈

∑
 = {a,g,c,t} and m is

3. Besides, the number of wildcards w is 2. The maximum of
gap range G is 9. Figure 5 presents the experimental results
to better compare the runtime. It is clear that the algorithm
MMST-S is faster than other algorithms, and the algorithm
BG-gap uses the bit parallelism method which limited the
length of word size of memory. Since the tested patterns are

in the short forms, the algorithm MMST-L needs to compare
many repeat positions that reduced efficiency.

Figure 6 displays the time performance of four algorithms
with different numbers of patterns on DNA sequence. In
this experiment, the length of the object sequence is 10,011,
while the patterns in this study adopt the short exact char-
acter, and there are two wildcards in each pattern; the G is
also 9. The number of patterns k changes from 1 to 100.
When k = 1 for the single pattern, it consumes some time
for the two algorithms MMST-S and MMST-L to construct
the suffix tree. Therefore, the time performance is not as
good as the comparison algorithms. However, the suffix tree
is repeatedly used once constructed. With the number of
patterns increasing, the time performance of MMST-S is
better than other algorithms. The algorithm MMST-L is not
suitable for the short pattern form.

Fig. 5 Comparison of the runtime by varying lengths of DNA
sequence

Fig. 6 Comparison of the runtime by varying numbers of patterns

1162 Pattern Analysis and Applications (2018) 21:1151–1165

1 3

The third test of four algorithms is on the varied number
of wildcards. The number of wildcards w varies from 1 to
6, and the maximum of gap range G is also 9. However,
the form of patterns is long exact character, such as each
single pattern Pi = gcg0,2cct1,9cgc. The number of patterns
is 10, while the object sequence is also the DNA sequence
AX829174, whose length is 34,350. Figure 7 shows the time
performance of four algorithms under different numbers of
wildcards. With the increase in the wildcard number, the
algorithms BG-gap, WM-gap and ST-TWEC-gap consume
more time than our two algorithms. Even though there will
no matching result with the rise of the wildcards, all of the
positions in sequences have still been searched by these three
compared algorithms. Our algorithms MMST-S and MMST-
L will decrease time by some optimized judgments, and the
performance of MMST-L is better than of MMST-S in long
exact character patterns.

The fourth test is the comparison of four algorithms with
different gap ranges of wildcards. As shown in Fig. 8, the
length of the object sequence n is 10,011 while the number
of pattern k is 10. The number of wildcard w is 1. Besides,
the form of pattern is long exact character, while the maxi-
mum of gap range G changes from 1 to 100. None matching
results is obtained for these five algorithms when the gap is
small. With the increase in gap range, the number of match-
ing results is also increasing. Similar to the third test, the
algorithms MMST-S and MMST-L consume less time than
compared algorithms by optimized judgments.

5.2.2 Protein sequence data

The size of the alphabet in protein sequence |�| is 20. It
includes {a,c,d,e,f,g,h,i,k,l,m,n,p,q,r,s,t, v,w,y}. Compared
with the DNA sequence, the size of the alphabet is closer
to the natural language. For example, the size of alphabet is
26 in English language. Then, a comparison will be made
about the time performance of five algorithms on the real
protein sequence AJM00528. The length n is 34,350. With
the decrease in repeat positions, the number of matching
results will decrease. It has been proven that the algorithms
of MMST-S and MMST-L have more advantages than the
comparing algorithms.

Similar to Sect. 5.2.1 where other parameters are given,
we compare the time performance by varying sequence
lengths, varying pattern sizes, varying wildcard numbers,
varying gap sizes and different lengths of exact characters
in a pattern.

As shown in Fig. 9, the comparison of four algorithms
is under different lengths of object sequence, n = 2500,
5000, 10,000, 20,000 and 34,350. Other parameters are
similar to the first test in DNA sequence where the pattern
set = {P0,P1,…,Pk−1}, k = 10, and each single pattern
Pi = p0l0,h0p1… lj−1,hj−1pj…lm−1,hm−1pm. Here, p0…pj…pm

Fig. 7 Comparison of the runtime by varying numbers of wildcards

Fig. 8 Comparison of the runtime by varying gap ranges of wildcards
Fig. 9 Comparison of the runtime by varying lengths of protein
sequence

1163Pattern Analysis and Applications (2018) 21:1151–1165

1 3

∈
∑

 = {a, c, d, e, f, g, h, i, k, l, m, n, p, q, r, s, t, v, w, y},
m is 3, the number of wildcards w = 2 and the maximum
of gap range G = 9. The form of each pattern is short exact
character. The result is similar to that in DNA sequence.
These three compared algorithms consume more time with
the increase in the length of the object sequences. The
difference is that the algorithm MMST-S is faster when
the size of alphabet character increases. This is because
more impossible positions are excluded. When it comes to
the algorithm MMST-L, the number of leaf nodes is also
increasing with the length of the object sequence increas-
ing under the short pattern form.

Figure 10 shows the runtime of four algorithms with
the increase in the number of the patterns. Here, k changes
from 1 to 100, n is 34,350, and other parameters are simi-
lar to the first test in protein sequence. In particular, when
the size of patterns k is big, the algorithm BG-gap will
be error.

Because there are less repeat characters in the protein
sequence, the number of occurrences becomes less cor-
responding to the increase in the number of wildcards.
In this experiment, we also take the short form pattern to
get more occurrences. As shown in Fig. 11, the number
of wildcards w increases from 1 to 6, when n = 34,350,
k = 10, and G = 9. The algorithm MMST-S is the fastest
among other algorithms. It takes the MMST-L more time
to judge the added possible occurrence positions with the
increase in w.

Figure 12 shows the comparison of runtime with dif-
ferent gap ranges of wildcards. The maximum value of
gap range G is from 1 to 100, when n = 34,350, k = 10,
and w = 1. The gap and occurrence present a positive
correlation. With the increase in the gap, the number of

occurrences also increases correspondingly. So we take
the long form pattern in this test. Compared with the DNA
sequence, the protein sequence contains 20 characters, and
since our algorithms MMST-S and MMST-L can exclude
more impossible positions, these two algorithms are much
more efficient than WM-gap, BG-gap and ST-TWEC-gap.

5.2.3 Performance analysis

With the above time performance experiments on DNA
sequence and protein sequence, we conclude that the algo-
rithms MMST-S and MMST-L have better performance than
compared algorithms. Although the construction of suffix
tree is time-consuming, the tree can be used repeatedly. It
is an advantage in multi-pattern matching. Additionally,
MMST-S and MMST-L exclude more impossible positions

Fig. 10 Comparison of the runtime by varying numbers of patterns

Fig. 11 Comparison of the runtime by varying numbers of wildcards

Fig. 12 Comparison of the runtime by varying gap ranges of wild-
cards

1164 Pattern Analysis and Applications (2018) 21:1151–1165

1 3

by the properties of suffix tree. Combined with our opti-
mized judgments, MMST-S and MMST-L have comparative
higher efficiency in pattern matching with variable-length
wildcards.

The compared algorithm BG-gap is based on the bit
parallelism, which is limited by processor word size. This
algorithm is only valuable for a small set of patterns or small
object sequence. In Figs. 6 and 10, the BG-gap is overflow
when the number of patterns k is 100. Moreover, there are
two major difficulties sabotaging the re-composition of the
BG-gap algorithm for the variable-length wildcards. One is
to shift the set of patterns safely to avoid skipping an occur-
rence; the other is to recognize the character block in the
object sequence.

WM-gap recomposed WM and split the segments by
wildcards, leading to the differences in the length of the
segments. Besides, it will consume more time to choose the
reasonable size of shifts of the blocks. It reduces the effi-
ciency of the algorithm.

ST-TWEC-gap is recomposed ST-TWEC algorithm
which presented a suffix-tree-based tweet clustering algo-
rithm. Because this compared algorithm is also based on a
suffix tree index structure, the efficiency of the algorithm is
similar to our algorithms MMST-S and MMST-L than other
compared algorithms in sometimes. However, MMST-S and
MMST-L algorithms are more focused on multi-pattern
matching with wildcards than ST-TWEC-gap algorithm.

Consequently, our algorithms MMST-S and MMST-L
based on suffix tree are more efficient than compared algo-
rithms in multiple patterns matching with variable-length
wildcards.

6 Conclusion and future work

In this paper, we have proposed two algorithms, namely
MMST-S and MMST-L, based on the suffix tree for solving
the problem of the multi-pattern matching with variable-
length wildcards. The results of our empirical study sug-
gest that our algorithms are more efficient than compared
algorithms in terms of time performance. According to the
length of exact characters in patterns, we designed MMST-S
based on dynamic programming for short form patterns and
MMST-L based on editing distance for long form patterns.
It is demonstrated, respectively, by a series of experiments
in DNA sequences and protein sequences.

There are several interesting issues that will be studied
in our future work. For example, the problem of arbitrary
length wildcards needs to consider negative or infinite
values. Additionally, the problem of mining approximate
patterns based on the suffix tree, and developing applica-
tions in other domains such as document representation and

indexing [16] are also worthwhile topics. The mined patterns
can be used to reflect semantic relations between phrases in
documents.

Acknowledgements This research is supported by the National
Key Research and Development Program of China (Grant No.
2016YFB1000900) and National Natural Science Foundation of China
(NSFC) (Grant Nos. 61503116 and 61229301).

References

 1. Gonzalo N, Mathieu R (2007) Flexible pattern matching in
strings: practical on-line search algorithms for texts and bio-
logical sequences. Publishing House of Electronics Industry,
Beijing

 2. Aho AV, Corasick MJ (1975) Efficient string matching: an aid
to bibliographic search. Commun ACM 18(6):333–340

 3. Baeza-Yates R, Gonnet GH (1992) A new approach to text
searching. Commun ACM 35(10):74–82

 4. Commentz-Walter B (1979) A string matching algorithm fast on
the average. Automata, languages and programming, pp 118–132

 5. Wu S, Manber U (1994) A fast algorithm for multi-pattern
searching. Department of Computer Science, University of
Arizona, Tucson

 6. Raffinot M (1997) On the multi backward dawg matching algo-
rithm (MultiBDM). In: Proceedings of the 4th South American
workshop on string processing. Carleton University Press, pp
149–165

 7. Allauzen C, Raffinot M (1999) Factor oracle of a set of words.
Technical report 99-11

 8. Rahman MS, Iliopoulos CS, Lee I et al (2006) Finding patterns
with variable length gaps and don’t cares. In: Proceedings of the
12th annual international computing and combinatorics confer-
ence, vol 8, pp 146–155

 9. Akutsu T (1996) Approximate string matching with vari-
able length don’t care characters. IEICE Trans Inf Syst
79(9):1353–1354

 10. Fischer MJ, Paterson MS (1974) String-matching and other
products. In: Proceeding of the 7th SIAM AMS complexity of
computation, Cambridge, USA, pp 113–125

 11. Min F, Wu XD, Lu ZY (2009) Pattern matching with independ-
ent wildcard gaps. In: Proceedings of the 8th IEEE international
conference on dependable, autonomic and secure computing.
Chengdu, China, IEEE, pp 194–199

 12. Guo D, Hong XL, HuX G, Gao J, Liu YL, Wu GQ, Wu XD
(2011) A bit-parallel algorithm for sequential pattern matching
with wildcards. Cybernet Syst 42(6):382–401

 13. Bille P, Gørtz IL, Vildhøj HW, Wind DK (2012) String matching
with variable length gaps. Theoret Comput Sci 443(1):25–34

 14. Inenaga S, Hoshino H, Shinohara A, Takeda M, Arikawa S,
Mauri G, Pavesi G (2001) On-line construction of compact
directed acylic word graphs. In: Proceedings of the 12th annual
symposium on combinatorial pattern matching, pp 169–180

 15. Zhang M, Zhang Y, Hu L (2010) A faster algorithm for match-
ing a set of patterns with variable length don’t cares. Inf Process
Lett 110(6):216–220

 16. Zhang H, Chow TW, Wu QM (2016) Organizing books and
authors by multilayer SOM. IEEE Trans Neural Netw Learn
Syst 27(12):2537

 17. Weiner P (1973) Linear pattern matching algorithm. In: 14th
annual IEEE symposium on switching and automata theory, pp
1–11

1165Pattern Analysis and Applications (2018) 21:1151–1165

1 3

 18. Giegerich R, Kurtz S (1997) From Ukkonen to McCreight and
Weiner: a unifying view of linear-time suffix tree construction.
Algorithmica 19(3):331–353

 19. Grossi R, Italiano GF (1993) Suffix trees and their applications
in string algorithms. In: Proceedings of the 1st South American
workshop on string processing, pp 57–76

 20. Zhou Z, Zhang T, Chow SSM, Zhang Y, Zhang K (2016) Effi-
cient authenticated multi-pattern matching. In: Presented at the
11th ACM, ACM Press, New York, USA, pp 593–604. http://
doi.org/10.1145/28978 45.28979 06

 21. Raffinot M (1997) On the multi backward Dawg matching algo-
rithm (MultiBDM). In: Baeza-Yates R, (ed) Proceedings of the
4th South American workshop on string processing, Valparaíso,
Chile. Carleton University Press, pp 149–165

 22. Crochemore M, Czumaj A, Gasieniec L, Lecroq T, Plandowski W,
Rytter W (1999) Fast practical multi-pattern matching. Inf Process
Lett 71(3/4):107–113

 23. Muth R, Manber U (1996) Approximate multiple string search.
In: Proceedings of the 7th annual symposium on combinatorial
pattern matching, number 1075 in lecture notes in computer sci-
ence, Springer, Berlin, pp 75–86

 24. Baeza-Yates RA, Navarro G (1997) Multiple approximate string
matching. In: Proceedings of the 5th workshop on algorithms and
data structures, number 1272 in lecture notes in computer science,
Springer, Berlin, pp 174–184. Extended version to appear in Ran-
dom Structures and Algorithms (Wiley)

 25. Cole R, Hariharan R (2002) Verifying candidate matches in sparse
and wildcard matching. In: Proceedings of the 34th annual ACM
symposium on theory of computing, May 2002, pp 592–601

 26. Rahman MS, Iliopoulos CS, Lee I et al (2006) Finding patterns
with variable length gaps or don’t cares. In: Proceedings of the
12th annual international computing and combinatorics confer-
ence, August 2006, pp 146–155

 27. Haapasalo T, Silvasti P, Sippu S, Soisalon-Soininen E (2011)
Online dictionary matching with variable-length gaps. In:

Proceedings of the 10th international symposium, SEA Kolim-
pari, Chania, Crete, Greece. Springer, Berlin, pp 76–87

 28. Kucherov G, Rusinowitch M (1997) Matching a set of
strings with variable length don’t cares. Theoret Comput Sci
178(1–2):129–154

 29. Kulekci MO (2007) TARA: an algorithm for fast searching of
multiple patterns on text files. In: 22nd international symposium
on computer and information sciences, pp 136–141

 30. Zhang M, Zhang Y, Tang J, Bai X (2011) Multi-pattern matching
with wildcards. J Softw 6(12):2391–2398

 31. McCreight EM (1976) A space-economical suffix tree construc-
tion algorithm. J ACM 23(2):262–272

 32. Ukkonen E (1995) On-line construction of suffix trees. Algorith-
mica 14(3):249–260

 33. Gusfield D (1997) Algorithms on strings, trees, and sequences
Computer Science and Computational Biology. Cambrigde Uni-
versity Press, Cambridge

 34. Chattaraj A, Parida L (2005) An inexact-suffix-tree-based algo-
rithm for detecting extensible patterns. Theoret Comput Sci
335(1):3–14

 35. Ukkonen E (2009) Maximal and minimal representations of
gapped and non-gapped motifs of a string. Theoret Comput Sci
410(43):4341–4349

 36. BilleP Gørtz IL et al (2014) String indexing for patterns with
wildcards. Theory of Computing Systems 55(1):41–60

 37. Thankachan SV, Apostolico A, Aluru S (2016) A provably effi-
cient algorithm for the k-mismatch average common substring
problem. J Comput Biol 23(6):472–482

 38. Salmela L, Tarhio J, Kytöjoki J (2007) Multi-pattern string match-
ing with q-grams. J Exp Algorithm 11(1):1–19

 39. Ukkonen E (1992) Approximate string-matching with q-grams
and maximal matches. Theoret Comput Sci 92(1):191–211

 40. Arın İnanç, Erpam MK, Saygın Y (2018) I-TWEC: interactive
clustering tool for Twitter. Expert Syst Appl 96:1–13

 41. NCBI: http://www.ncbi.nlm.nih.gov/

http://doi.org/10.1145/2897845.2897906
http://doi.org/10.1145/2897845.2897906
http://www.ncbi.nlm.nih.gov/

	Multi-pattern matching with variable-length wildcards using suffix tree
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Sequence and pattern
	3.2 Wildcards
	3.3 Pattern matching
	3.4 Multi-pattern matching
	3.5 Suffix Tree

	4 Algorithm design
	4.1 Suffix tree construction
	4.2 Multiple-pattern pre-processing
	4.3 Algorithm MMST-S
	4.4 Algorithm MMST-L
	4.5 Complexity analysis

	5 Experimental evaluation
	5.1 Experimental environment and data sets
	5.2 Experimental results
	5.2.1 DNA sequence data
	5.2.2 Protein sequence data
	5.2.3 Performance analysis

	6 Conclusion and future work
	Acknowledgements
	References

