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Abstract
Multi-pattern matching with variable-length wildcards is an interesting and important problem in bioinformatics, information 
retrieval and other domains. Most of the previously developed multi-pattern matching methods, such as famous Aho–Corasick 
and Wu–Manber algorithms, aimed to solve some classical string matching problems. However, these algorithms are not 
efficient for patterns with flexible wildcards or do-not-care characters. In this paper, we propose two efficient algorithms for 
multi-pattern matching with variable-length wildcards based on suffix tree, called MMST-L and MMST-S, according to the 
length of exact characters in a pattern. Experimental results show that the two MMST algorithms, in most cases, outperform 
other various versions of comparing algorithms.

Keywords Multi-pattern matching · Wildcards · Suffix tree

1 Introduction

Pattern matching, which discovers substrings as patterns in 
a string or a database, is an interesting and important issue 
in bioinformatics, information retrieval, knowledge graph, 
intrusion detection and other domains. For example, pat-
tern matching has been widely used in the analysis of DNA 
sequences and disease detection. Additionally, it has also 

been applied in automatic question and answering systems, 
entity matching, etc. With the increasing demand of applica-
tions, pattern matching research varies from single-pattern 
matching to multi-pattern matching and from exact pattern 
matching to approximate pattern matching. It is worth men-
tioning that regular expressions, gaps, wildcards or do-not-
care characters, are added onto the patterns to be matched, 
which to some extent broadens the applications of pattern 
matching. Therefore, the problem of multi-pattern matching 
with variable-length wildcards is a very important and valu-
able research topic.

In the classical multi-pattern matching problem, we are 
given a set of patterns  = {P1,P2, …,Pk} and a text, and 
aim to search all patterns in the same manner and read the 
text only once. Many algorithms for exact pattern match-
ing from a single pattern may be extended for multi-pattern 
matching, with more or less successes [1]. The simplest 
solution of a single-pattern matching algorithm extended to 
multi-pattern matching is to repeat n searches, which leads 
to the worst-case complexity of O(N) in a single-pattern 
matching enlarged to O(k*N) in multi-pattern matching. In 
order to improve the efficiency of multi-pattern matching 
algorithms, many solutions and their variations have been 
presented. These algorithms can be roughly classified into 
three categories, including (1) prefix-based approaches 
including the Aho–Corasick [2] and Multiple Shift-And 
[3] algorithms; (2) suffix-based approaches including the 
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Commentz–Walter [4] and Wu–Manber [5] algorithms; (3) 
factor-based approaches including the Multiple BNDM [6], 
Set Backward Dawg Matching (SBDM) and Set Backward 
Oracle Matching (SBOM) [7] algorithms. These afore-
mentioned approaches mainly focus on exact multi-pattern 
matching. However, when it comes to practice, patterns with 
more sophisticated forms, such as wildcards, gaps or regular 
expressions, will have more applications.

Pattern matching with regular expressions is complex in 
programming and costly in processing time. These limits 
constrain this approach to be only used when it is necessary. 
However, the wildcards, gaps or do-not-care characters can 
be solved in a more efficient way in some applications with 
simpler algorithms. A wildcard means that this position can 
match with any arbitrary character, and is denoted with *. 
A wildcard is also called a gap constraint [8] or a do-not-
care character [9]. Variable-length wildcards refer to those 
continuous positions, which carry arbitrary characters. The 
problem of pattern matching with wildcards was first intro-
duced by Fischer and Paterson [10] in 1974, who focused on 
a fixed number of wildcards. Afterward, many subsequent 
studies have been explored efficient and sophisticated solu-
tions for variable-length wildcards, even arbitrary length 
wildcards where the number of wildcards can be infinite or 
negative. In order to solve these complex problems, people 
have adopted corresponding approaches, such as dynamic 
programming [11], bit parallelism [12], Aho–Corasick auto-
mation [13], directed acyclic word graph (DAWG) [14] and 
fast Fourier transform (FFT) [15]. However, the study based 
on suffix tree to solve pattern matching with variable-length 
wildcards is less extensive compared with those studies 
exploring the approaches mentioned above.

Suffix tree is a powerful and popular data structure, 
which is similar to the trie structure. The trie structure 
can be employed to handle some exact string matching 
problems. The tree structure has also been applied in natu-
ral language processing and textual data representation. 
Recently, Zhang et al. [16] introduced a tree-structured 
representation for author recommendation in 2016. In the 
research, the tree structure was proposed to represent the 
rich features of each author. Suffix tree was first intro-
duced by Weiner [17] in 1973, which is a compacted trie 
structure storing all the suffixes of a given string in linear 
time and space. Therefore, the suffix tree has wide applica-
tions in many domains regarding string or text processing. 
For example, in exact string matching, a suffix tree can 
be used to find the longest common prefix, the longest 
repeated substring, the palindrome [18] or the recogni-
tion of DNA contamination. A significant feature of the 
suffix tree is that all characters of a string are stored by 
suffixes in a tree, while for each suffix tree node, the path 
string is obtained by concatenating the sequence of labels 
encountered along the path from the root to the node [19]. 

Additionally, once the suffix tree is built, it can be used 
repeatedly if the given string is not changed. Therefore, 
this feature is assumed as suitable for multi-pattern match-
ing. However, the majority of existing researches about the 
suffix tree focus on exact single-pattern matching. Can we 
develop an approach that may absorb the advantages of 
the suffix tree in exact single-pattern matching and try to 
fulfill in multi-pattern matching with wildcards? This can 
be a practical and meaningful research issue.

Hence, in this paper, we propose two efficient suffix-
tree-based algorithms, namely MMST-S and MMST-L, 
according to the length of the exact characters in the given 
pattern. Two different approaches fulfilling the approxi-
mate multi-pattern matching with variable-length wild-
cards are adopted. The core problem of the algorithms is 
to achieve a single-pattern matching with variable-length 
wildcards and then extend to multi-pattern matching. In 
order to simplify the research issue, the condition of infi-
nite or negative wildcards is not taken into consideration. 
To further improve the performance, we choose a dynamic 
programming approach to fulfill matching, called MMST-S 
for the ‘short-length’ exact characters (e.g., a*[2,3]b*[0,2]
c). In contrast, when the length of exact characters in a 
pattern is long (e.g., abc*[2,3]cde*[0,2]abcd), we adopt 
an editing distance approach to fulfill matching, which is 
called MMST-L. Based on the experimental results, these 
two MMST algorithms substantially outperform existing 
solutions in most cases.

The contributions of this paper are summarized as 
follows:

1. To extend the application of the suffix tree into approxi-
mate pattern matching and multi-pattern matching. 
There are other theoretical studies on the suffix tree in 
approximate pattern matching in the present researches, 
and our study will fulfill the experimental demonstra-
tion.

2. To design two efficient algorithms according to the 
length of exact characters in patterns, which can be 
applied in bioinformatics, such as DNA and protein 
sequences.

The rest of the paper is organized as follows. In Sect. 2, 
related work about multi-pattern matching with wildcards 
is described. Afterward, Sect. 3 defines the research prob-
lems on multi-pattern matching and pattern matching 
with wildcards. The proposed algorithms MMST-S and 
MMST-L are presented in Sect. 4. Section 5 presents our 
experimental results and the performance analysis of our 
proposed algorithms in real bioinformatics data. Finally, 
Sect. 6 summarizes the findings of the study and also gives 
suggestions about our future research.
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2  Related work

Many existing studies contributed to the pattern match-
ing, which are roughly divided into single-pattern 
matching and multi-pattern matching according to 
the number of pattern; or exact pattern matching and 
approximate pattern matching according to the accuracy 
of matching. This paper mainly presents an analysis 
about the problem of approximate multi-pattern match-
ing with wildcards.

Compared with the single-pattern matching, the study of 
multi-pattern matching is relatively less. Some algorithms 
are extended from single-pattern matching. However, there 
are still some good solutions presented for multi-pattern 
matching. For example, Aho and Corasick [2] proposed 
the Aho–Corasick automaton algorithm, which serves as 
an extension of the classical single-pattern matching algo-
rithm Knuth–Morris–Pratt for a set of patterns in 1975. The 
idea of the AC automaton is to traverse all prefixes of the 
given text to build a trie from shorter to longer for each pre-
fix. Additionally, all the suffixes which are in the pattern set 
need to be found [20] (e.g., ‘he,’ ‘she,’ ‘her’). The AC algo-
rithm and its extended variant algorithms have been widely 
used for multi-pattern matching, the drawback of which is 
that these algorithms require a large amount of memory 
space. The Commentz–Walter algorithm [4] is never faster 
than Aho–Corasick algorithm or other multi-pattern match-
ing algorithms. However, it is historically important because 
it was the first expected sub-linear multi-pattern matching 
algorithm. The algorithm of Wu and Manber [5] resolved the 
obstacle of poor performance of the extension of Horspool 
algorithm in 1994. The Wu–Manber algorithm is found to be 
practical and simple for the reduction in the probability that 
each character block appears in one of the patterns by reading 
these blocks of characters. The shortage of Wu–Manber algo-
rithm is that too much memory is consumed if the length of 
character blocks becomes larger. Additionally, some general 
factor-based approaches can also be extended to multi-pattern 
matching, such as MultiBDM [21] in 1997 and Dawg–Match 
[22] in 1999. However, they are complicated. Meanwhile, the 
performance is poor in practice. Some algorithms based on 
the bit parallelism are efficient when the set of pattern is small.

There are few algorithms for approximate multi-pattern 
matching targeting on those more complicated problems 
being proposed. Muth and Manber [23] proposed a good 
solution called MultiHash for one error in 1996. Baeza-Yates 
and Navarro [24] extended the PEX algorithm to multi-pat-
terns called MultiPEX in 1997, which splits each pattern 
into k + 1 pieces and performs a multi-pattern exact search 
for all pieces. If a piece matched with more than one pattern, 
then the algorithm needs to check the corresponding pattern 
about whether it satisfies the permissible errors.

Pattern matching with wildcards was first proposed by 
Fischer et al. [10] in 1974, with a fixed number of wildcards 
in a single-pattern matching. Wildcard is also called gap 
or do-not-care character, which matches with an arbitrary 
character or a group of characters solving more sophisticated 
problems in some applications, such as a word misspelling 
or a DNA mutation. A series of efficient and sophisticated 
methods regarding the pattern matching with wildcards have 
been promoted. The number of wildcards changes from 
one character to more, from the fixed length to the flexible 
length, even arbitrary length. For example, Cole and Hari-
haran [25] improved the time efficiency of pattern matching 
with constant wildcards with the time complexity O(nlogn) 
in 2002. Rahman et al. [26] promoted an algorithm for the 
problem of pattern matching with variable-length wildcards 
in a certain range in 2006. Haapasalo et al. [27] proposed an 
algorithm based on the classical Ahot–Corasick automaton 
in which the range covers not only the variable length but 
also the arbitrary one in 2011. All of the aforementioned 
methods focus on the problem of single-pattern matching 
with wildcards.

Browsing through previous studies, it can be found that 
researches about multi-pattern matching with wildcards 
are quite limited. In 1997, Kucherov and Rusinowitch [28] 
solved the problem of multi-pattern matching with variable 
length do not cares based on DAWG (directed acyclic word 
graph) in dynamic dictionary matching. The main idea is to 
scan the text from the left to right using the automaton and 
then find the leftmost location during the matching process. 
Therefore, when the matched pattern in the leftmost is in the 
worst case, it scans continuously the rest text to find all of 
the possibilities that results in the bad time complexity. In 
2007, Kulekci [29] proposed a new multi-pattern matching 
algorithm called TARA, which performs matching fixed-
length pattern with do-not-care characters based on bit paral-
lelism. The main idea is to slide a window on the string and 
then have a check of any occurrence of given patterns in the 
window via bitwise operations by Alignment, Mask and Shift 
three matrices and scan the order of these positions in the 
window. However, the bit parallelism algorithms are limited 
as it can be only applied for the model of finite length. When 
the worst case occurs, it can be time-consuming. In 2011, 
Zhang et al. [30] presented three algorithms for multi-pattern 
matching with wildcards based on fast Fourier transforms 
(FFT). The first one finds the matches of a small set of pat-
terns, the second finds the occurrences of patterns based on 
a prime number encoding of the pattern set and the text, and 
the third is based on Hamming distance between bit vectors 
when the number of wildcards in a pattern is very small. 
However, in these three algorithms, the number of wildcards 
is fixed or constant.

Suffix tree was first proposed by Weiner [17] based 
on the trie structure in 1973. However, the construction 
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process is complicated. In 1976, McCreight [31] pro-
posed a more efficient method to construct the suffix tree 
according to the reverse order. It is extremely difficult 
to understand the two original approaches. Until 1995, 
Ukkonen [32] developed an efficient and different linear-
time method for the construction of the suffix tree, which 
is easier to understand while the complexity of the algo-
rithm is only Ο(N). Since then, suffix tree efficiently solves 
the pattern matching problem in many applications.

Similarly, there are more researches about the suffix 
tree in exact pattern matching and single-pattern match-
ing compared with those about the approximate pattern 
matching and multi-pattern matching. Gusfield [33] thinks 
that the suffix tree has provided a bridge between exact 
pattern matching problems and inexact pattern matching 
problems. In 2005, Chattaraj et al. [34] introduced the 
inexact-suffix tree data structure to detect the extensible 
patterns. The time complexity in worse case is Ο(2n), when 
the size of the input string n is big. Meanwhile, it is very 
time-costive. In 2009, Ukkonen [35] proposed a method to 
find maximal and minimal equivalent representations for 
gapped and non-gapped motifs. In this research, a motif is 
a pattern that uses suffix-tree-based linear-time algorithms 
to non-gapped motifs. Bille et al. [36] also conducted a 
variety of researches for the problem of the pattern match-
ing with wildcards. In 2014, they provided two approaches 
for string indexing in the pattern with variable-length 
wildcards based on suffix tree search. The main idea is to 
find all occurrences of a pattern in a top-down traversal 
starting from the root and to build a compressed suffix 
tree storing all possible modifications of all suffixes con-
taining the wildcards. However, the complexities of time 
and space have increased corresponding to the increase in 
the number of wildcards or gaps in the pattern. In 2016, 
Thankachan et al. [37] described a method to extend the 
generalized suffix tree model to incorporate a selected 
bounded set of perturbed suffixes for complex approxi-
mate sequence matching problem. However, the methods 
promoted above are theoretically described and hardly 
usable in practice.

To sum up, these approaches proposed in the above 
researches can solve one side of the problem. However, there 
are two algorithms in this research based on suffix tree com-
bined with dynamic programming and editing distance to 
solve the problem.

3  Preliminaries

In this section, we give a formal definition of the multi-pat-
tern matching with variable-length wildcards. Meanwhile, 
these algorithms used some primitives.

3.1  Sequence and pattern

Definition 1 Let a sequence be composed of characters 
S = s0s1 … sn−1 , where S is called an object sequence, n is 
the length of S and si ∈ � (0 ≤ i ≤ n − 1) ⋅ � is an alphabet, 
containing all of the different symbols of S, and |�| is the 
size of � . For example, in DNA sequence, � is {A,C,G,T} 
and the size of DNA alphabet is 4 denoted by |�| = 4.

Definition 2 Sj
i
= sisi+1 … sj, is called the subsequence of 

S, denoted by Sub(S), where 0 ≤ i ≤ j ≤ n − 1 , when i = 0, 
S
j

i
= s0s1 … sj is the prefix of S, denoted by Prefix(S); when 

j = n − 1, Sn−1
i

= sisi+1 … sn−1 is the suffix of S, denoted by 
Suffix(S).

Example 1 Given an object sequence S = s
0
s
1
s
2
s
3
s
4
s
5

= gtccgc , Sj
i
= s2s3s4 = ccg is one of the subsequences 

of S, Sj
i
= s0s1s2s3 = gtcc is one of the prefixes of S and 

S
j

i
S
j

i
= s2s3s4s5 = ccgc is one of the suffixes of S.

Definition 3 The subsequence of P = p0p1…pm−1 
is called a pattern, where m is the length of P, and 
pj ∈ �(0 ≤ j ≤ m ≤ n − 1).

3.2  Wildcards

Definition 4 If one of the positions pj in the pattern P can 
match arbitrary character, it is called a wildcard denoted 
with *.

Definition 5 Let a pattern P = p
0
∗
[
l
0
, h

0

]
p
1
… ∗[

lj−1, hj−1
]
pj … ∗

[
lm−1, hm−1

]
pm be constructed by the charac-

ter pj and wildcard *, where pj ∈ � (0 ≤ j ≤ m), ∗ [lj−1, hj−1] 
is the gap constraint between two exact characters, lj−1 and 
hj−1 refer to integer numbers, representing the minimum and 
maximum numbers of wildcards between the characters pj−1 
and pj.

• When 0 ≤ lj−1 ≤ hj−1 and hj−1 ≠ ∞ , the pattern P is called 
a pattern with variable-length wildcards, especially in the 
case when lj−1 = hj−1 presenting the length of wildcard 
gap is constant;

• The pattern P is called a pattern with arbitrary length 
wildcards, if lj−1 ≤ hj−1 while lj−1 and hj−1 can be a neg-
ative integer, or when lj−1 is an arbitrary integer, and 
hj−1 = ∞,.

• When l0 = l1… = l j−1…lm−1, and h0 = h1… = hj−1  
= … = hm−1, the pattern P is called a pattern with periodic 
length wildcards.

Example 2 For the pattern P = p0*[l0,h0]p1*[l1,h1]p2*[l2,h2
]p3 = gt*[0,1]c*[0,0]c*[1,∞]gc, where the p0 = gt, p1 = c, 
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p2 = c, p3 = gc, the sub-pattern gt*[0,1]c means that the mini-
mum of the position range of wildcards between p0 = gt and 
p1 = c is 0 while the maximum is 1. This sub-pattern is a 
pattern with variable-length wildcards. When it comes to 
the sub-pattern c*[0,0]c, the minimum and maximum of the 
position range of wildcards between p1 = c and p2 = c are 
0. When there is no character between  p1 and  p2, c*[0,0]
c = cc. The sub-pattern c*[1,∞]gc means that the number of 
characters between p2 = c and p3 = gc is an arbitrary integer. 
Such sub-pattern is a pattern with arbitrary length wildcards.

This study only focuses on the problem of pattern match-
ing with variable-length wildcards. Because this prob-
lem is more sophisticated, we need to consider more 
sub-problems.

Definition 6 G denotes the gap constraint size of wildcards. 
In a variable-length wildcard constraint *[l,h], l and h are 
positive integer numbers, l is the minimum of the gap and h 
is the maximum, then G = h − l + 1.

Definition 7 Mmin denotes the minimum length of the sin-
gle pattern P = p0 ∗

[
l0, h0

]
p1 … ∗

[
lj−1, hj−1

]
pj … ∗

[
lm−1, hm−1

]
pm 

and Mmax denotes the maximum length of P. Then, 
Mmin = m + 1 + �

m−1
j=0

lj , Mmax = m + 1 + �
m−1
j=0

hj , where 

m + 1 means the number of the exact characters, �m−1
j=0

lj 

means the sum of the minimum of each wildcard and �m−1
j=0

hj 

means the sum of the maximum of each wildcard.

Example 3 Given a pattern P = g*[0,1]g, the gap length 
of wildcards G = h − l + 1 = 1 − 0 + 1 = 2. In this case, the 
minimum length of P Mmin = 2 + 0 = 2, while the maximum 
length of P Mmax = 2 + 1 = 3.

3.3  Pattern matching

Definition 8 Given an object sequence S = s0s1…sn−1 and a 
pattern P = p0p1…pm−1. If there are some positions i1,… , im 
satisfying the following equation:

where 0 ≤ j ≤ m − 1 and 0 ≤ i1 ≤ … ≤ im ≤ n , then the 
sequence i1,… , im can be called as an occurrence.

Example 4 Given a DNA sequence S = s0s1s2s3s4…
s9 = ggcgtccgcg, n = 10, and a pattern P = g*[1,2] cg*[1,4]
c, find all of the occurrence positions of pattern P in S.

⎧⎪⎨⎪⎩

Sij = pj

lj−1 ≤ ij − ij−1 − 1 ≤ hj−1 ⇒ lj−1 + 1 ≤ ij − ij−1 ≤ hj−1 + 1

Mmin ≤ im − i
1
+ 1 ≤ Mmax ≤ n

For the pattern, P = g*[1,2]cg*[1,4]c, Mmin = 4 + 1 + 1 = 6, 
M max =  4  +  2  +  4  =  10 ,  G 0 =  2  −  1  +  1  =  2  and 
G1 = 4 − 1 + 1 = 4. As shown in Fig.  1, the occurrence 
positions of p0 = g are 0,1,3,7,9 in the object sequence S, 
while the occurrence positions of p1 = cg are (2,3), (6,7) 
and (8,9). When p0 = 1, p1 = 2, lj−1 ≤ ij − ij−1 − 1 ≤ hj−1 , 
2 − 1 − 1 = 0 < lj−1 , this equation fails. Meanwhile, the other 
positions cannot satisfy the Eq. 8. When p1 = cg = (8,9), the 
end position of p1 = 9 added to G1 = 4 is equal to 13 > Mmax 
and also bigger than n = 10. So this position also does not 
satisfy Eq. 8.

Therefore, the positions satisfying the gap range [1,2] are 
p0 = 0 and p1 = (2,3). By the same token, when p1 = (2,3), the 
satisfied positions of p2 are 5 and 6. Therefore, occurrence 
matching the pattern P in S is 2, while the occurrence posi-
tions are {0,2,3,5} and {0,2,3,6}.

3.4  Multi‑pattern matching

Definition 9 Given an object sequence S = s0s1…sn−1 and a 
pattern set  = {P0,P1,…,Pk−1}, all of them were constructed 
by alphabet � where n is the length of S and k is the size 
of the pattern set  . The key of the multi-pattern matching 
is to find all the occurrences of each pattern in the given 
sequence.

If multiple object sequences and the multiple patterns are 
given, it is the problem of multi-pattern matching in multiple 
sequences. This paper only focuses on the problem of one 
object sequence and multiple patterns. If each of the pat-
terns in the pattern set is the exact pattern, it is the problem 
of exact multi-pattern matching. In the pattern set of this 
research, each one is the pattern with variable-length wild-
cards (see Definition 5).

According to the realistic application, each pattern can get 
different matching results through the logical operators, such 
as AND, OR and NOT. Specifically, there are two patterns, 
including A and B. The relation A AND B suggests that the 
output results match with patterns A and B; the relation A 
OR B means that the output results either match pattern A 
or match pattern B; the relation A NOT B means that the 
output results only match pattern A and do not match pattern 

g g c g t c c g c g
0 1 2 3 4 5 6 7 8 9

p0 p0 p0 p0 p0

p1

p2 p2 p2 p2

p1 p1

[1,2]

[1,4]

Fig. 1  An example of the pattern matching with variable-length wild-
cards
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B. The OR relation is adopted in this paper for multi-pattern 
matching to output the matching result of each pattern and 
the total matching numbers.

3.5  Suffix Tree

Definition 10 Let S be a sequence of n characters. Accord-
ing to the Ukkonen’s approach [31], the last character ‘$’ 
denoting the end marker for the sequence is added. The 
path from the root to any leaf represents a suffix for the 
sequence denoted SuffixTree(S), commonly abbreviated 
Suf(S). Such as the object sequence S = s0s1…si…sn–1, the 
Suf(Si) = sisi+1…sn–1$.

Example 5 Given a DNA sequence S = s0s1s2s3s4…
s19 = ggcgtccgcgcacacctccc, n = 20, the special terminal 
symbol ‘$’ is added to construct the suffix tree, which is 
shown in Fig. 2. The root node is denoted (− 1, − 1) while 
altogether there are 21 paths form the root to the leaves cor-
responding to the 21 suffix sequences altogether including 
the ‘$.’ The number in the leaf node gives the start position 
of the corresponding suffix, denoted by Suf(Si). The path is 
a subsequence which, from the middle node to the leaf node, 
denoted (u, v), where u is the start position of the middle 
node and v is the end position of the leaf node. The suffix 
links (character-$) belong to compressed path.

Lemma 1 If a sequence S with length n is constructed to 
form a suffix tree (include the ‘$’), then the suffix tree will 
have these following properties:

• It has n + 1 leaves numbered from 0 to n.
• Except for the root node, every internal node has at least 

two children nodes.
• Every edge is labeled with a non-empty subsequence of 

S.

• Subsequences represented by sibling nodes must begin 
with different characters.

Lemma 2 If there are two children nodes of the root node 
of Suf(S$), namely A and B, A and B must be the one 
of the elements of � or the terminal symbol ‘$’ denoted 
A,B ∈ � ∪

{
$
}
 and A ≠ B. Therefore, it can be assumed 

that the number of branches for the root node is equal to the 
size of |�| in addition to $.

Example 6 As shown in Fig. 2, the length n of the DNA 
sequence S is 20 while the $ is added. The suffix tree Suf(S$) 
has 21 leaves which are numbered from 0 to 20; two char-
acters a, c are the children nodes of the root node, so a, c 
∈ � . Besides, the number of the branches of this root node 
can be obtained in this way, which is the size of the alphabet 
|�| + 1 = 4 + 1 = 5.

Lemma 3 If T is the subsequence of sequence S, T must be 
a prefix of another subsequence T’ in the suffix tree Suf(S$). 
Additionally, the occurrence number of T must be the num-
ber of the children nodes of this non-leaf node of T’.

Lemma 4 If T is the subsequence of sequence S, then T is 
the deepest non-leaf node from the root node, and T must 
be the longest common subsequence or the longest repeat 
subsequence.

Example 7 As shown in Fig. 2, the subsequences T1 = cgc 
and T2 = gcg both are the deepest non-leaf nodes from the 
root node in the DNA sequence Suf(S$), while both T1 and 
T2 are the longest common subsequences, the length of 
which is 3. T1 has two leaf nodes 6 and 8, and  T2 also has 
two leaf nodes 1 and 7. This suggests that the two subse-
quences also occurred two times in S. The number of the leaf 
node is the start position of two subsequences, respectively.

Fig. 2  The suffix tree for the 
DNA sequence S 
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4  Algorithm design

The efficient algorithms for multi-pattern matching with vari-
able-length wildcards based on the suffix tree are presented in 
this section. The algorithm involves three important phases. 
In the first phase, the suffix tree is constructed based on the 
Ukkonen’s method [32]. During the second phase, multiple 
patterns are pre-processed and classified using the approach 
in the next step. When it comes to the third phase, which is 
also the important phase, the problem of multi-pattern match-
ing with variable-length wildcards is solved using our two 
algorithms (MMST-S and MMST-L) in detail. Finally, it is 
the complexity analysis of two algorithms.

4.1  Suffix tree construction

Recently, the approach to constructing the suffix tree is 
mostly based on the Ukkonen’s method [32], the basic idea 
of which is to start from an empty tree, which is the root 
node, and then insert nodes into the tree in the order of the 
characters of the object sequence. Such node is a new branch 
node, and each of the branch nodes is an active node during 
the suffix tree construction period. It inserts characters from 
left to right. It needs to determine the position of the path 
when the letter of new character has existed at the current 
active node. A new branch node would be created if the 
letter of new character did not exist. All of the characters 
of the object sequence are inserted in this suffix tree before 
the terminal symbol ‘$’appears, which is shown in Fig. 2. 
The time complexity of this method is only Ο(n), while n 
represents the length of the object sequence.

Our algorithm to construct the suffix tree also takes the 
above approach. We traverse the tree in the top-down order. 
Each of the paths from the root to the leaf node is the suffix 
subsequence of the object sequence. The number of the leaf 
nodes for the corresponding branch node and the start position 
of the edge of the compact path are stored. The suffix tree was 
constructed in Algorithm 1, which is shown as follows.

Once the suffix tree is constructed, the tree can be repeatedly 
applied if there is no change occurring over the object sequence. 
This property is appropriate for multi-pattern matching.

4.2  Multiple‑pattern pre‑processing

Holding the purpose of improving the efficiency of our algo-
rithm, some pre-processing measures have been taken for the 
pattern set. The pseudo-code was, respectively, described in 
Algorithms 2 and 3. According to the length of exact char-
acters in the pattern, there are two approaches.

The short form is that the exact characters of a pattern are 
composed of single or short characters, such as P1 = a*[1,2]b; 

P2 = c*[0,1]de*[2, 3]f. The pre-process measure of multi-pat-
terns is simple for short exact characters. The patterns are clas-
sified based on the exact character alphabetical order. Because 
of the short form, we will take dynamic programming from front 
to back in the suffix tree. According to the property of the suf-
fix tree, if the first character of the suffixes P1 and P2 is same, 
these two suffixes must be in the same alphabetic branch node, 
by Lemma 2. Hence, the sort of the patterns in the pre-process 
phase will improve the efficiency of the algorithm MMST-S.

The long form is that exact characters of a pattern are com-
posed of a group of characters, such as P1 = abcd*[1,2]bbbbb 
and P2 = cacbd*[0,1]dec*[2,3]fght; it requires to split the 
exact characters into groups and gaps. Meanwhile, they need 
to be stored in the array, respectively. Afterward, the patterns 
are classified according to the alphabetical order of the last 
exact characters’ group. Because we will take editing distance 
for these exact groups from back to front in the algorithm 
MMST-L, and in the matching phase, the approach based on 
suffix is usually faster than the approach based on prefix. For 
example, if a subsequence does not satisfy the last group but 
it satisfies all of the front groups, it must not be the correct 
occurrence position. Meanwhile, if a subsequence satisfies 
the last group, it is possible the correct occurrence position.

4.3  Algorithm MMST‑S

As mentioned in the pre-processing phase, the algorithm 
MMST-S is suitable for the short form of the multi-pattern 

Algorithms 1: Suffix Tree Construction
Input: an objected sequence text
Output: SuffixTree(text) 
1. root=new SfxNode();
2. Add(‘$’,S[n]);
3. temp= SfxNode(suffix_link=root);
4.root.add_link(S[0],longest);
5. for ( i=0; i n;i++) 
6.   current=temp; previous=None;
7.   while T[i] is not in the current.children do
8.      NewNode= new SfxNode();
9.      current.add_link(T[i],NewNode);
10.     If previous node is not null then 
11.       previous.suffix_link=NewNode;
12. end if
13.     previous=NewNode;
14.     current=current.add_link;
15.   end while
16. if current is root
17.     previous.suffix_link=root;
18. else previous.suffix_link=current.children[S[i]];
19.   temp=temp.children[S[i]];
20. end for
21. return root;
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with short exact character. After the pre-processing phase, the 
multi-pattern set  = {P0,P1,…,Pk−1} where Pi = p0*[l0,h0]p1…
*[lj−1,hj−1]pj…*[lm−1,hm−1]pm, are sorted according to the 
alphabetical order of the first character p0 in each pattern. 
Firstly, the algorithm MMST-S was judged to p0, which is the 
element of the alphabet � . Besides, the dynamic programing 
measures have been adopted to search the next exact character 
p1, in the branch of the letter of p0, to find its children node 
and leaf node which satisfied the gap range [l0,h0]. If one of 
the possible occurrence positions is found, then it requires to 
continue to find p2 until the last exact character pm was found.

As shown in Fig. 3, the suffix tree is constructed for 
the object sequence S = s0s1s2s3s4…s19 = ggcgtccgcg-
cacacctccc and two patterns P0 = p0*[l0,h0]p1 = g*[0,1]g, 
P1 = p0*[l0,h0]p1 = c*[0,1]c. The first step is to sort these 
patterns according to the alphabetical order of each first 
exact character. Because letter c is in the front of letter 
g, so P1 is matched first. Afterward, the occurrence posi-
tion must be in the branch node or leaf node in the first 
character p0 = ‘c,’ while other branches such as ‘a,’ ‘g,’ 
‘t’ are excluded. During the third stage, it needs to find 
the occurrence position of p1 = ‘c,’ which satisfies the gap 
range [0,1]. Figure 3 makes it relatively easy to get the 
occurrence positions matching pattern P1; when the mini-
mum number of wildcards is 0, the positions are the chil-
dren or leaf nodes of the subsequence ‘cc’:(5,6),(14,15), 
(17,18),(18,19); when the maximum number of wildcards is 
one, the positions are the children or leaf nodes of the sub-
sequence ‘c*c’: (6,8),(8,10),(10,12),(12,14),(17,19). There-
fore, the occurrence number of P1 in the object sequence 
S is nine. Similarly, when the pattern is p0 = g*[0,1]g, the 
occurrence positions must appear in the branch of the first 
farther node ‘g,’ which satisfies the wildcard condition: 
(0,1),(1,3),(7,9). The occurrence number is three.

According to the above description and the exam-
ple of the algorithm MMST-S, Algorithm 2 shows the 
pseudo-code.

Algorithms 2: MMST-S
Input: root, Pattern set ={P0,P1,…,Pk-1}
Output: Match position and march number
1. initialize the arrays and parameters;
2. node=root;
3. sort the set and store in the array P
4.for (i=0;i k;i++)  // k is the size of the Patterns
5.  for (j=0;j P[i].length; j++)
6.    if(p[j] ) then
7.   search p[j] in node;
8.   save temp=node[p[j]].children;
9.    else (p[j] ) // p[j] is the wildcard;
10.      save min[j]=lj, max[j]=hj;
11.      save next=getchar(p[j+1]);
12.   for (t=0;t temp.length ;t++)
13.     search the next in the temp;
14.     if(next.position match the gap of the min and max) then
15.     save the Position;
16.     temp=Position;
17. else continue
18.    end for
19.  save MatchPosition[i] and MatchNumber[i];
20.  end for
21. end for

4.4  Algorithm MMST‑L

Algorithm MMST-L is proposed for the long form of the 
multi-pattern with long exact characters. The main idea is 
to make a comparison of the occurrence positions of each 
exact character group by the editing distance and judge the 
gap range of these groups whether to satisfy the variable 
length of wildcards. Specifically, after the pre-processing 
phase, the multiple patterns set  = {P0,P1,…, Pk−1}, where 
Pi = p0*[l0,h0]p1…*[lj−1,hj−1]pj…*[lm−1,hm−1]pm are stored 
in the array according to the alphabetical order of the first 
letter of the last exact group pm in each pattern. Then, we 
get the start position from the leaf nodes of the last exact 

Fig. 3  An example of MMST-S 
algorithm
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characters’ group of the first pattern from the suffix tree. 
Lemma 3 shows that the occurrence number is the total num-
ber of leaf nodes in a branch node, while the occurrence 
position is the start number of each leaf node. Additionally, 
the end position of pm−1 is calculated accordingly, which 
is equal to the start position of pm−1 added by the length of 
pm−1 − 1. Finally, to further improve the efficiency of the 
algorithm, we take the measure from back to front to judge 
the gap range of the start position of the first character of pm 
minus the end position of the last character of pm−1. If the 
range satisfies the length of wildcard [lm−1,hm−1], continue to 
judge the rang of pm−1 and pm−2, until p0. The same approach 
is adopted to judge the next pattern if the range does not 
satisfy the length.

As shown in Fig.  4, given the object sequence 
S = s0s1s2s3s4…s19 = ggcgtccgcgcacacctccc we construct a 
suffix tree of two patterns P0 = p0*[l0,h0]p1 = gcg*[0,6]cc 
and P1 = p0*[l0,h0]p1 = cgc*[1,2]ca. Firstly, sort these pat-
terns according to the alphabetical order of the last exact 
group. Since ‘ca’ is in front of ‘cc,’ pattern P1 is first. In 

the pre-processing phase, we need to split these exact char-
acter groups and their gap ranges of wildcards. Secondly, 
we get the start positions of pm = p1 = ‘ca’ from the suffix 
tree which are 10 and 12. Afterward, we calculate the end 
position of pm−1 = p0 = ‘cgc.’ We need to get the start posi-
tions of the ‘cgc,’ which are 6 and 8, while the length of the 
p0 = 3. Therefore, the end positions of ‘cgc’ are 6 + 3 − 1 = 8 
and 8 + 3 − 1 = 10. Thirdly, the distance of two groups was 
evaluated to see whether they can satisfy the wildcard 
*[l0,h0] = [1,2]. The occurrence positions are ([6,8][10,11]), 
([8,10][12,13]). In ([m,n]), m refers to the start position of 
the group and n is the end position of the group. When m = n, 
it suggests that there is only a single character in the group. 
The number of occurrences is two. Then, the position of the 
next pattern P0 is obtained through a similar method. The 
start positions of ‘cc’ are 5,14,17,18, while the end positions 
of ‘gcg’ are 3 and 9, and the occurrences satisfying the vari-
able length of wildcard *[0,6] are ([1,3][5,6]),([7,9][14,15]).

Algorithm 3 is the pseudo-code of algorithm MMST-L.

Algorithms 3: MMST-L
Input: root, Pattern set ={P0,P1,…,Pk-1}
Output: Match position and march number
1. initialize the arrays and parameters;
2. node=root;
3. split the exact character group and store in the array P;
4.sort the P;
5.for (i=0;i k;i++)  // k is the number of the Patterns
6.  for (j= P[i].length; j 0 ;j--)
7.    search p[j] in node;
8.    save subp[j]=p[j].leafnode;
9.    if(subp[j].position)>subp[j-1].position) then// optimize the algorithm
10.     gap=subp[j].get(0)-subp[j-1].get(1);

// the start position of the latter one minus the end position of the previous one
11.      if(gap match the rang of the min and max) then
12.        save the Position;
13.      else continue
14.    else continue
15.  end for
16.  save MatchPosition[i] and MatchNumber[i];
17. end for
18. return MatchPosition and MatchNumber;
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4.5  Complexity analysis

This section focuses on the complexity and the extensibil-
ity of the aforementioned algorithms. Let the length of the 
object sequence S be n, the alphabet size be |�| , the multi-
pattern set  = {P0,P1,…,Pk−1}, where k is the number of 
the patterns, and Pi = p0*[l0,h0]p1…*[lj−1,hj−1]pj… *[lm

−1,hm−1]pm, where m is the average length of the patterns. 
The algorithm of constructing suffix tree is based on the 
Ukkonen’s method. Both the time and space complexities are 
Ο(n) [31]. However, the algorithms MMST-S and MMST-L 
are based on different approaches, so the time complexities 
are different.

For the algorithm MMST-S, it consists of three ‘for’ 
loops: The time of the first loop is the number of patterns k, 
the second loop is the average length of the patterns m and 
the third loop is the average children nodes of the characters 
n∕|�| . It needs to make a comparison about the wildcards. 
In the worst case, the number of the wildcards is m − 1, so 
the G is the gap range of each wildcard. Beginning with the 
construction of suffix tree, the overall time complexity is 
O
�
n + k(n∕���)

�∑m−1

i=0
Gi

��
 . When |�| is big, the n∕|�| 

tends to be a constant number which is less than n. Accord-
ing to the first character, it can exclude all of the branch 
nodes in other character branches.

For the algorithm MMST-L, it has two ‘for’ loops: The 
time of the first loop is also the number of patterns k, while 
the second loop is the number of the exact characters’ group 
w, and the number of the wildcards is w − 1; the G is the gap 
range of each wildcard. Therefore, the general time complex-
ity is O

�
n + k(n∕���)

�∑m−1

i=0
Gi

��
 . Compared with the algo-

rithm MMST-S, the group w is less than the number of pat-
terns m. Thus, when w equals to m that means the pattern 
has the short form, the algorithm consumes more time.

The suffix tree is a data structure, which can improve the 
time efficiency through space–consumption. If the length of 
a sequence is n, when constructing the suffix tree, the tree 
contains at most n leaves and 2n nodes, the space complexity 
is Ο(n). In the two algorithms MMST-S and MMST-L, the 
cost of the memory is mainly used to store some probability 
occurrence positions in the array. The number of these posi-
tions is less than n, which can be absolutely ignored. Thus, 
both of the space complexity of two MMST algorithms are 
Ο(n).

5  Experimental evaluation

In this section, we mainly discuss the time performance of 
the two algorithms, namely MMST-S and MMST-L. We first 
give the experimental environment and test data and then 
report the experimental results by testing various parameters 
in real biological data against other existing algorithms.

5.1  Experimental environment and data sets

All experiments were conducted on a laptop with Intel Core 
i5 2.7 GHz CPU and 8G main memory, running on OS X 
EI Capitan Operating System. The algorithms of MMST-S, 
MMST-L and also the comparison algorithms of WM-gap, 
BG-gap and ST-TWEC-gap are written in JAVA language. 
The algorithms WM-gap and BG-gap were recomposed by 
the algorithms WM and BG promoted by Salmela et al. [38] 
and the thought of Ukkonen [39]. The WM-gap is based on 
the famous Wu–Manber [5] algorithm, the BG-gap is based 
on the Multiple BNDM [6] algorithm, and the ST-TWEC-
gap is recomposed by the algorithms ST-TWEC [40].

This experiment chose the real biological data, the DNA 
sequence AX829174 and the protein sequence AJM00528 

Fig. 4  An example of MMST-L 
algorithm
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as the experimental data, which are downloaded from the 
NCBI (National Center for Biotechnology Information) Web 
site [41]. Compared with the natural language texts, Gonzalo 
et al. [1] think that DNA sequences are comparatively more 
difficult to deal with than natural language texts. This is 
because DNA sequences contain more intrinsic repetitions. 
For example, the size of the alphabet is |�| = 4 in DNA 
sequences. The length of the DNA sequence AX829174 is 
10,011; the protein sequence AJM00528 consists of 34,350 
characters. In our experiments, we will pick some length-L 
segments from the two sequences as the object sequence for 
providing the various values of L.

5.2  Experimental results

In this section, we first provide the experimental results 
obtained from the measurement of the running time of two 
algorithms MMST-S and MMST-L in comparison with 
WM-gap, BG-gap and ST-TWEC-gap under the condition 
of different variables in two different sequences. After-
ward, it presents a deep analysis regarding the reason why 
our algorithms outperform other algorithms. For chang-
ing the different various parameters, we take the tool to 
generate the multi-pattern set  = {P0,P1,…,Pk−1}, where 
k is the number of patterns. The formation of the pat-
tern is P = p0l0, h0p1 … lj−1, hj−1pj … lm−1, hm−1pm, where 
p0 … pj … pm ∈ � are the exact characters from the alpha-
bet of experimental data, while m refers to the length of the 
pattern. The l0, h0 … lj−1, hj−1 … lm−1, hm−1 are the positive 
integer numbers which denote the variable-length wild-
cards. In the experiment, we only set the value of the G, 
because G = h − l + 1, and the values of h and l are generated 
randomly.

5.2.1  DNA sequence data

This study presents a comparison of the running time on the 
DNA sequence AX829174 with varied sequence lengths, 
varied pattern sizes, varied wildcard numbers, varied gap 
sizes and varied exact characters’ lengths. When we compare 
a variable, other parameters are given.

The first test of our algorithms is on the varied object 
sequence with length n changing from 1000, 2500, 5000 
to 10,011. The multiple pattern set is  = {P0,P1,…,Pk−1} 
where k is 10. For each single pattern Pi = p0l0,h0p1…
lj−1,hj−1pj…lm−1,hm−1pm, p0…pj…pm ∈

∑
 = {a,g,c,t} and m is 

3. Besides, the number of wildcards w is 2. The maximum of 
gap range G is 9. Figure 5 presents the experimental results 
to better compare the runtime. It is clear that the algorithm 
MMST-S is faster than other algorithms, and the algorithm 
BG-gap uses the bit parallelism method which limited the 
length of word size of memory. Since the tested patterns are 

in the short forms, the algorithm MMST-L needs to compare 
many repeat positions that reduced efficiency.

Figure 6 displays the time performance of four algorithms 
with different numbers of patterns on DNA sequence. In 
this experiment, the length of the object sequence is 10,011, 
while the patterns in this study adopt the short exact char-
acter, and there are two wildcards in each pattern; the G is 
also 9. The number of patterns k changes from 1 to 100. 
When k = 1 for the single pattern, it consumes some time 
for the two algorithms MMST-S and MMST-L to construct 
the suffix tree. Therefore, the time performance is not as 
good as the comparison algorithms. However, the suffix tree 
is repeatedly used once constructed. With the number of 
patterns increasing, the time performance of MMST-S is 
better than other algorithms. The algorithm MMST-L is not 
suitable for the short pattern form.

Fig. 5  Comparison of the runtime by varying lengths of DNA 
sequence

Fig. 6  Comparison of the runtime by varying numbers of patterns
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The third test of four algorithms is on the varied number 
of wildcards. The number of wildcards w varies from 1 to 
6, and the maximum of gap range G is also 9. However, 
the form of patterns is long exact character, such as each 
single pattern Pi = gcg0,2cct1,9cgc. The number of patterns 
is 10, while the object sequence is also the DNA sequence 
AX829174, whose length is 34,350. Figure 7 shows the time 
performance of four algorithms under different numbers of 
wildcards. With the increase in the wildcard number, the 
algorithms BG-gap, WM-gap and ST-TWEC-gap consume 
more time than our two algorithms. Even though there will 
no matching result with the rise of the wildcards, all of the 
positions in sequences have still been searched by these three 
compared algorithms. Our algorithms MMST-S and MMST-
L will decrease time by some optimized judgments, and the 
performance of MMST-L is better than of MMST-S in long 
exact character patterns.

The fourth test is the comparison of four algorithms with 
different gap ranges of wildcards. As shown in Fig. 8, the 
length of the object sequence n is 10,011 while the number 
of pattern k is 10. The number of wildcard w is 1. Besides, 
the form of pattern is long exact character, while the maxi-
mum of gap range G changes from 1 to 100. None matching 
results is obtained for these five algorithms when the gap is 
small. With the increase in gap range, the number of match-
ing results is also increasing. Similar to the third test, the 
algorithms MMST-S and MMST-L consume less time than 
compared algorithms by optimized judgments.

5.2.2  Protein sequence data

The size of the alphabet in protein sequence |�| is 20. It 
includes {a,c,d,e,f,g,h,i,k,l,m,n,p,q,r,s,t, v,w,y}. Compared 
with the DNA sequence, the size of the alphabet is closer 
to the natural language. For example, the size of alphabet is 
26 in English language. Then, a comparison will be made 
about the time performance of five algorithms on the real 
protein sequence AJM00528. The length n is 34,350. With 
the decrease in repeat positions, the number of matching 
results will decrease. It has been proven that the algorithms 
of MMST-S and MMST-L have more advantages than the 
comparing algorithms.

Similar to Sect. 5.2.1 where other parameters are given, 
we compare the time performance by varying sequence 
lengths, varying pattern sizes, varying wildcard numbers, 
varying gap sizes and different lengths of exact characters 
in a pattern.

As shown in Fig. 9, the comparison of four algorithms 
is under different lengths of object sequence, n = 2500, 
5000, 10,000, 20,000 and 34,350. Other parameters are 
similar to the first test in DNA sequence where the pattern 
set  = {P0,P1,…,Pk−1}, k = 10, and each single pattern 
Pi = p0l0,h0p1… lj−1,hj−1pj…lm−1,hm−1pm. Here, p0…pj…pm 

Fig. 7  Comparison of the runtime by varying numbers of wildcards

Fig. 8  Comparison of the runtime by varying gap ranges of wildcards
Fig. 9  Comparison of the runtime by varying lengths of protein 
sequence



1163Pattern Analysis and Applications (2018) 21:1151–1165 

1 3

∈
∑

 = {a, c, d, e, f, g, h, i, k, l, m, n, p, q, r, s, t, v, w, y}, 
m is 3, the number of wildcards w = 2 and the maximum 
of gap range G = 9. The form of each pattern is short exact 
character. The result is similar to that in DNA sequence. 
These three compared algorithms consume more time with 
the increase in the length of the object sequences. The 
difference is that the algorithm MMST-S is faster when 
the size of alphabet character increases. This is because 
more impossible positions are excluded. When it comes to 
the algorithm MMST-L, the number of leaf nodes is also 
increasing with the length of the object sequence increas-
ing under the short pattern form.

Figure 10 shows the runtime of four algorithms with 
the increase in the number of the patterns. Here, k changes 
from 1 to 100, n is 34,350, and other parameters are simi-
lar to the first test in protein sequence. In particular, when 
the size of patterns k is big, the algorithm BG-gap will 
be error.

Because there are less repeat characters in the protein 
sequence, the number of occurrences becomes less cor-
responding to the increase in the number of wildcards. 
In this experiment, we also take the short form pattern to 
get more occurrences. As shown in Fig. 11, the number 
of wildcards w increases from 1 to 6, when n = 34,350, 
k = 10, and G = 9. The algorithm MMST-S is the fastest 
among other algorithms. It takes the MMST-L more time 
to judge the added possible occurrence positions with the 
increase in w.

Figure 12 shows the comparison of runtime with dif-
ferent gap ranges of wildcards. The maximum value of 
gap range G is from 1 to 100, when n = 34,350, k = 10, 
and w = 1. The gap and occurrence present a positive 
correlation. With the increase in the gap, the number of 

occurrences also increases correspondingly. So we take 
the long form pattern in this test. Compared with the DNA 
sequence, the protein sequence contains 20 characters, and 
since our algorithms MMST-S and MMST-L can exclude 
more impossible positions, these two algorithms are much 
more efficient than WM-gap, BG-gap and ST-TWEC-gap.

5.2.3  Performance analysis

With the above time performance experiments on DNA 
sequence and protein sequence, we conclude that the algo-
rithms MMST-S and MMST-L have better performance than 
compared algorithms. Although the construction of suffix 
tree is time-consuming, the tree can be used repeatedly. It 
is an advantage in multi-pattern matching. Additionally, 
MMST-S and MMST-L exclude more impossible positions 

Fig. 10  Comparison of the runtime by varying numbers of patterns

Fig. 11  Comparison of the runtime by varying numbers of wildcards

Fig. 12  Comparison of the runtime by varying gap ranges of wild-
cards
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by the properties of suffix tree. Combined with our opti-
mized judgments, MMST-S and MMST-L have comparative 
higher efficiency in pattern matching with variable-length 
wildcards.

The compared algorithm BG-gap is based on the bit 
parallelism, which is limited by processor word size. This 
algorithm is only valuable for a small set of patterns or small 
object sequence. In Figs. 6 and 10, the BG-gap is overflow 
when the number of patterns k is 100. Moreover, there are 
two major difficulties sabotaging the re-composition of the 
BG-gap algorithm for the variable-length wildcards. One is 
to shift the set of patterns safely to avoid skipping an occur-
rence; the other is to recognize the character block in the 
object sequence.

WM-gap recomposed WM and split the segments by 
wildcards, leading to the differences in the length of the 
segments. Besides, it will consume more time to choose the 
reasonable size of shifts of the blocks. It reduces the effi-
ciency of the algorithm.

ST-TWEC-gap is recomposed ST-TWEC algorithm 
which presented a suffix-tree-based tweet clustering algo-
rithm. Because this compared algorithm is also based on a 
suffix tree index structure, the efficiency of the algorithm is 
similar to our algorithms MMST-S and MMST-L than other 
compared algorithms in sometimes. However, MMST-S and 
MMST-L algorithms are more focused on multi-pattern 
matching with wildcards than ST-TWEC-gap algorithm.

Consequently, our algorithms MMST-S and MMST-L 
based on suffix tree are more efficient than compared algo-
rithms in multiple patterns matching with variable-length 
wildcards.

6  Conclusion and future work

In this paper, we have proposed two algorithms, namely 
MMST-S and MMST-L, based on the suffix tree for solving 
the problem of the multi-pattern matching with variable-
length wildcards. The results of our empirical study sug-
gest that our algorithms are more efficient than compared 
algorithms in terms of time performance. According to the 
length of exact characters in patterns, we designed MMST-S 
based on dynamic programming for short form patterns and 
MMST-L based on editing distance for long form patterns. 
It is demonstrated, respectively, by a series of experiments 
in DNA sequences and protein sequences.

There are several interesting issues that will be studied 
in our future work. For example, the problem of arbitrary 
length wildcards needs to consider negative or infinite 
values. Additionally, the problem of mining approximate 
patterns based on the suffix tree, and developing applica-
tions in other domains such as document representation and 

indexing [16] are also worthwhile topics. The mined patterns 
can be used to reflect semantic relations between phrases in 
documents.

Acknowledgements This research is supported by the National 
Key Research and Development Program of China (Grant No. 
2016YFB1000900) and National Natural Science Foundation of China 
(NSFC) (Grant Nos. 61503116 and 61229301).

References

 1. Gonzalo N, Mathieu R (2007) Flexible pattern matching in 
strings: practical on-line search algorithms for texts and bio-
logical sequences. Publishing House of Electronics Industry, 
Beijing

 2. Aho AV, Corasick MJ (1975) Efficient string matching: an aid 
to bibliographic search. Commun ACM 18(6):333–340

 3. Baeza-Yates R, Gonnet GH (1992) A new approach to text 
searching. Commun ACM 35(10):74–82

 4. Commentz-Walter B (1979) A string matching algorithm fast on 
the average. Automata, languages and programming, pp 118–132

 5. Wu S, Manber U (1994) A fast algorithm for multi-pattern 
searching. Department of Computer Science, University of 
Arizona, Tucson

 6. Raffinot M (1997) On the multi backward dawg matching algo-
rithm (MultiBDM). In: Proceedings of the 4th South American 
workshop on string processing. Carleton University Press, pp 
149–165

 7. Allauzen C, Raffinot M (1999) Factor oracle of a set of words. 
Technical report 99-11

 8. Rahman MS, Iliopoulos CS, Lee I et al (2006) Finding patterns 
with variable length gaps and don’t cares. In: Proceedings of the 
12th annual international computing and combinatorics confer-
ence, vol 8, pp 146–155

 9. Akutsu T (1996) Approximate string matching with vari-
able length don’t care characters. IEICE Trans Inf Syst 
79(9):1353–1354

 10. Fischer MJ, Paterson MS (1974) String-matching and other 
products. In: Proceeding of the 7th SIAM AMS complexity of 
computation, Cambridge, USA, pp 113–125

 11. Min F, Wu XD, Lu ZY (2009) Pattern matching with independ-
ent wildcard gaps. In: Proceedings of the 8th IEEE international 
conference on dependable, autonomic and secure computing. 
Chengdu, China, IEEE, pp 194–199

 12. Guo D, Hong XL, HuX G, Gao J, Liu YL, Wu GQ, Wu XD 
(2011) A bit-parallel algorithm for sequential pattern matching 
with wildcards. Cybernet Syst 42(6):382–401

 13. Bille P, Gørtz IL, Vildhøj HW, Wind DK (2012) String matching 
with variable length gaps. Theoret Comput Sci 443(1):25–34

 14. Inenaga S, Hoshino H, Shinohara A, Takeda M, Arikawa S, 
Mauri G, Pavesi G (2001) On-line construction of compact 
directed acylic word graphs. In: Proceedings of the 12th annual 
symposium on combinatorial pattern matching, pp 169–180

 15. Zhang M, Zhang Y, Hu L (2010) A faster algorithm for match-
ing a set of patterns with variable length don’t cares. Inf Process 
Lett 110(6):216–220

 16. Zhang H, Chow TW, Wu QM (2016) Organizing books and 
authors by multilayer SOM. IEEE Trans Neural Netw Learn 
Syst 27(12):2537

 17. Weiner P (1973) Linear pattern matching algorithm. In: 14th 
annual IEEE symposium on switching and automata theory, pp 
1–11



1165Pattern Analysis and Applications (2018) 21:1151–1165 

1 3

 18. Giegerich R, Kurtz S (1997) From Ukkonen to McCreight and 
Weiner: a unifying view of linear-time suffix tree construction. 
Algorithmica 19(3):331–353

 19. Grossi R, Italiano GF (1993) Suffix trees and their applications 
in string algorithms. In: Proceedings of the 1st South American 
workshop on string processing, pp 57–76

 20. Zhou Z, Zhang T, Chow SSM, Zhang Y, Zhang K (2016) Effi-
cient authenticated multi-pattern matching. In: Presented at the 
11th ACM, ACM Press, New York, USA, pp 593–604. http://
doi.org/10.1145/28978 45.28979 06

 21. Raffinot M (1997) On the multi backward Dawg matching algo-
rithm (MultiBDM). In: Baeza-Yates R, (ed) Proceedings of the 
4th South American workshop on string processing, Valparaíso, 
Chile. Carleton University Press, pp 149–165

 22. Crochemore M, Czumaj A, Gasieniec L, Lecroq T, Plandowski W, 
Rytter W (1999) Fast practical multi-pattern matching. Inf Process 
Lett 71(3/4):107–113

 23. Muth R, Manber U (1996) Approximate multiple string search. 
In: Proceedings of the 7th annual symposium on combinatorial 
pattern matching, number 1075 in lecture notes in computer sci-
ence, Springer, Berlin, pp 75–86

 24. Baeza-Yates RA, Navarro G (1997) Multiple approximate string 
matching. In: Proceedings of the 5th workshop on algorithms and 
data structures, number 1272 in lecture notes in computer science, 
Springer, Berlin, pp 174–184. Extended version to appear in Ran-
dom Structures and Algorithms (Wiley)

 25. Cole R, Hariharan R (2002) Verifying candidate matches in sparse 
and wildcard matching. In: Proceedings of the 34th annual ACM 
symposium on theory of computing, May 2002, pp 592–601

 26. Rahman MS, Iliopoulos CS, Lee I et al (2006) Finding patterns 
with variable length gaps or don’t cares. In: Proceedings of the 
12th annual international computing and combinatorics confer-
ence, August 2006, pp 146–155

 27. Haapasalo T, Silvasti P, Sippu S, Soisalon-Soininen E (2011) 
Online dictionary matching with variable-length gaps. In: 

Proceedings of the 10th international symposium, SEA Kolim-
pari, Chania, Crete, Greece. Springer, Berlin, pp 76–87

 28. Kucherov G, Rusinowitch M (1997) Matching a set of 
strings with variable length don’t cares. Theoret Comput Sci 
178(1–2):129–154

 29. Kulekci MO (2007) TARA: an algorithm for fast searching of 
multiple patterns on text files. In: 22nd international symposium 
on computer and information sciences, pp 136–141

 30. Zhang M, Zhang Y, Tang J, Bai X (2011) Multi-pattern matching 
with wildcards. J Softw 6(12):2391–2398

 31. McCreight EM (1976) A space-economical suffix tree construc-
tion algorithm. J ACM 23(2):262–272

 32. Ukkonen E (1995) On-line construction of suffix trees. Algorith-
mica 14(3):249–260

 33. Gusfield D (1997) Algorithms on strings, trees, and sequences 
Computer Science and Computational Biology. Cambrigde Uni-
versity Press, Cambridge

 34. Chattaraj A, Parida L (2005) An inexact-suffix-tree-based algo-
rithm for detecting extensible patterns. Theoret Comput Sci 
335(1):3–14

 35. Ukkonen E (2009) Maximal and minimal representations of 
gapped and non-gapped motifs of a string. Theoret Comput Sci 
410(43):4341–4349

 36. BilleP Gørtz IL et al (2014) String indexing for patterns with 
wildcards. Theory of Computing Systems 55(1):41–60

 37. Thankachan SV, Apostolico A, Aluru S (2016) A provably effi-
cient algorithm for the k-mismatch average common substring 
problem. J Comput Biol 23(6):472–482

 38. Salmela L, Tarhio J, Kytöjoki J (2007) Multi-pattern string match-
ing with q-grams. J Exp Algorithm 11(1):1–19

 39. Ukkonen E (1992) Approximate string-matching with q-grams 
and maximal matches. Theoret Comput Sci 92(1):191–211

 40. Arın İnanç, Erpam MK, Saygın Y (2018) I-TWEC: interactive 
clustering tool for Twitter. Expert Syst Appl 96:1–13

 41. NCBI: http://www.ncbi.nlm.nih.gov/

http://doi.org/10.1145/2897845.2897906
http://doi.org/10.1145/2897845.2897906
http://www.ncbi.nlm.nih.gov/

	Multi-pattern matching with variable-length wildcards using suffix tree
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Sequence and pattern
	3.2 Wildcards
	3.3 Pattern matching
	3.4 Multi-pattern matching
	3.5 Suffix Tree

	4 Algorithm design
	4.1 Suffix tree construction
	4.2 Multiple-pattern pre-processing
	4.3 Algorithm MMST-S
	4.4 Algorithm MMST-L
	4.5 Complexity analysis

	5 Experimental evaluation
	5.1 Experimental environment and data sets
	5.2 Experimental results
	5.2.1 DNA sequence data
	5.2.2 Protein sequence data
	5.2.3 Performance analysis


	6 Conclusion and future work
	Acknowledgements 
	References




