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Abstract
Scale-invariant feature transform (SIFT), which represents a general purpose image descriptor, has been extensively used in 
the field of biometric recognition. Focusing on iris biometrics, numerous SIFT-based schemes have been presented in past 
years, offering an alternative approach to traditional iris recognition, which are designed to extract discriminative binary 
feature vectors based on an analysis of pre-processed iris textures. However, the majority of proposed SIFT-based systems 
fails to maintain the recognition accuracy provided by generic schemes. Moreover, traditional systems outperform SIFT-
based approaches with respect to other key system factors, i.e. authentication speed and storage requirement. In this work, 
we propose a SIFT-based iris recognition system, which circumvents the drawbacks of previous proposals. Prerequisites, 
derived from an analysis of the nature of iris biometric data, are utilized to construct an improved SIFT-based baseline iris 
recognition scheme, which operates on normalized enhanced iris textures obtained from near-infrared iris images. Subse-
quently, different binarization techniques are introduced and combined to obtain binary SIFT-based feature vectors from 
detected keypoints and their descriptors. On the CASIAv1, CASIAv4-Interval and BioSecure iris database, the proposed 
scheme maintains the performance of different traditional systems in terms of recognition accuracy as well as authentica-
tion speed. In addition, we show that SIFT-based features complement those extracted by traditional schemes, such that a 
multi-algorithm fusion at score level yields a significant gain in recognition accuracy.

Keywords Scale-invariant feature transform · Biometrics · Iris recognition

1 Introduction

Biometrics refers to automated recognition of individuals 
based on their biological and behavioural characteristics [23, 
25]. Due to its resistance to false matches, the iris represents 
one of the most powerful biometric characteristics [7]. In 
order to confirm an individual’s identity accurately and reli-
ably, iris recognition systems analyze the complex random 
texture that is visible in the iris of the eye. Iris recognition 
technologies [7, 16] are deployed in numerous large-scale 
nationwide projects and are currently entering the mobile 
market [43]. Following Daugman’s approach [16], which is 
the core of most operational applications, four key modules 
constitute an iris recognition system: (1) image acquisition, 
where most current deployments require subjects to fully 

cooperate with the system to capture images of sufficient 
quality; (2) pre-processing, which includes the detection of 
the pupil and the outer iris boundary, a normalization of the 
iris to a rectangular texture and enhancement of the textured 
image. Parts of the iris texture which are occluded by eye-
lids, eyelashes or reflections are stored in an according noise 
mask; (3) feature extraction, in which a binary feature vec-
tor, i.e. iris-code, is generated by applying appropriate filters 
to the pre-processed iris texture; (4) comparison, which is 
based on the estimation of Hamming distance (HD) scores 
between pairs of iris-codes and corresponding masks, can 
be performed rapidly achieving millions of comparisons per 
second per CPU core [16]. In the comparison stage, circular 
bit shifts are applied to iris-codes and HD scores are esti-
mated at different shifting positions, i.e. relative tilt angles. 
The minimal obtained HD, which corresponds to an optimal 
alignment, represents the final score.

Focusing on the feature extraction stage, Daugman [15] 
proposed the use of two-dimensional Gabor filters, which 
are applied to a pre-processed iris image in a dimensionless 
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polar coordinate system at different scales. Each complex 
Gabor response is encoded into two bits by the signs of its 
real and imaginary value. Numerous alternative methods 
have been suggested for the purpose of iris feature extrac-
tion, e.g. one-dimensional Gabor filters [36], packets of 
Gabor wavelets [27], differences of discrete cosine trans-
form (DCT) coefficients [39], custom-built filters [33, 49], 
including circular symmetric filters and tripole filters, or 
characterization of key local variations [34]. It has been 
shown that the vast majority of these methods resemble that 
of [16], in the sense that they quantize responses of other lin-
ear transforms or filters (replacing 2D Gabor filters), which 
are applied to iris textures in a similar manner [26].

Despite the above de facto standard approaches, some 
entirely different schemes have been proposed, which aim 
at extracting different types of iris features, e.g. salient key 
points [5, 57] or human-interpretable features [10, 50]. 
More recently, the use of deep neuronal networks has been 
introduced to iris recognition, too. With respect to the fea-
ture extraction stage, features obtained from convolutional 
neuronal networks have also revealed promising results, 
e.g. [30, 42]. In particular, several researchers have investi-
gated the usefulness of SIFT [32] for iris recognition based 
on near-infrared (NIR) [1, 11, 37, 38, 56, 58] and visible 
wavelength (VW) iris images [5, 31, 37]. SIFT represents 
a generic method for image-based extraction and compari-
son of keypoints and corresponding descriptors, which is 
invariant to translations, rotations and scaling transforma-
tions in the image domain. However, compared to traditional 
approaches, the vast majority of proposed SIFT-based iris 
recognition schemes suffer from three major drawbacks, 
see Sect. 2: (1) degraded biometric performance: signifi-
cant drops in recognition accuracy are reported, which might 
lead to unacceptable biometric performance, even in case of 
good-quality iris images; (2) poor comparison speed: the 
original comparison algorithm of SIFT requires a brute force 
comparison of extracted keypoint descriptors, which causes 
considerably longer response times compared to traditional 
HD-based iris comparators. (3) extensive storage require-
ment: SIFT-based reference data consist of a variable-sized 
set of keypoint descriptors, which requires significantly 
more storage compared to the compact binary iris-codes of 
traditional schemes.

In this work, we tackle all of the above-mentioned draw-
backs of SIFT-based iris recognition systems. We show that, 
in case iris biometric input data are prepared properly and 
an adequate post-processing is applied, a SIFT-based iris 
recognition scheme is capable of maintaining the biometric 
performance obtained by different traditional systems. In 
order to achieve a rapid comparison, we extract SIFT-based 
binary codes from iris textures, which allow for a simulta-
neous matching of keypoints and an efficient retrieval of 
corresponding descriptors via look-up tables. Further, we 

introduce a binarization of keypoint descriptors, which ena-
bles a fast comparison based on bit operations and, at the 
same time, significantly reduces storage requirements. The 
proposed system yields a substantial speed-up resulting in 
low transaction times comparable to those of traditional 
schemes. Moreover, the proposed system turns out to be a 
suitable candidate for biometric fusion, obtaining significant 
performance gains in a challenging multi-algorithm fusion 
with traditional schemes.

This article is organized as follows: Section 2 briefly 
summarizes the functionality of SIFT as well as existing 
applications of SIFT to iris recognition. Section 3 provides 
a detailed description of the constituting modules of the 
SIFT-based baseline iris recognition system. The generation 
of SIFT-based binary codes, the binarization of keypoint 
descriptors and the corresponding comparison techniques 
are introduced in Sect. 4. Experimental results are presented 
in Sect. 5. Finally, conclusions are drawn in Sect. 6.

2  Related work

The following subsections briefly review the fundamentals 
of SIFT (and its variants) and published approaches to SIFT-
based iris recognition.

2.1  Scale‑invariant feature transform

Given an image I, points of interest, i.e. keypoints, are 
extracted by detecting scale space extrema using a differ-
ence of Gaussian (DoG) function. The main idea behind 
scale space extrema detection is to identify stable features 
which are invariant to changes in scale and viewpoint. In 
the first step, a Gaussian filter G(x, y, �) of size � is con-
volved with I(x,  y), L(x, y, �) = G(x, y, �) ∗ I(x, y) . Sub-
sequent scales are subtracted by employing a constant 
multiplicative factor k in order to obtain DoG images, 
D(x, y, �) = L(x, y, k�) − L(x, y, �) . The set of Gaussian-
smoothed images and corresponding DoG images form an 
octave, where different octaves are obtained by successively 
down sampling the original image by a factor of 2. In [32], it 
is suggested to use 3 octaves and s = 3 scales per octave with 
� = 1.6 and k = 21∕s . In order to cover a complete octave in 
the scale space extrema detection, s + 3 = 6 images have to 
be generated per octave. Keypoints are localized as minima 
or maxima by comparing each pixel in a DoG image against 
its eight neighbours in the same scale and corresponding 
nine neighbours in the scale above and below. Subsequently, 
the stability of detected feature points is verified by rejecting 
noise-sensitive points that exhibit low contrast and points 
which are along an edge. Therefore, additional parameters 
are introduced in [32], i.e. a contrast threshold of 0.04 and 
an edge threshold of 10. Figure 1 depicts SIFT keypoints 
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extracted from a NIR iris image of size 320 × 280 pixels 
where keypoint detection is applied at different stages of the 
iris biometric processing chain.

In the next step, the dominant orientation of gradients 
within a 16 × 16 pixel window around each keypoint is esti-
mated. Subsequently, a keypoint descriptor is extracted, rela-
tive to the rotation of the corresponding keypoint. Again, 
gradient magnitudes and orientations are sampled within 
a 16 × 16 pixel window and accumulated into orientation 
histograms summarizing the contents over 4 × 4 sub-regions 
where each orientation histogram consists of 8 bins. Hence, 
a total number of D = 4 × 4 × 8 = 128 bins form the descrip-
tor of a keypoint.

Given two images, extracted sets of keypoints can be 
matched by estimating the Euclidean distance between cor-
responding keypoint descriptors. This means, a reference 

descriptor is compared against all probe descriptors to deter-
mine the closest neighbour of distance d1 . In order to decide 
whether the closest neighbour is a match, a ratio test is per-
formed using the distance of the second closest neighbour 
d2 . In case, d1∕d2 < t corresponding keypoints are consid-
ered to match, where t ≃ 0.8 is suggested in [32]. An alterna-
tive to this ratio test is to cross-check matching pairs of key-
points. That is, only those matching pairs are retained where 
both keypoints are closest neighbours to each other. While 
the Euclidean distance between two points remains stable, 
the nearest neighbour of a specific point may change when 
changing the perspective of the comparison, which is illus-
trated in Fig. 2. By cross-checking whether pairs of descrip-
tors are nearest neighbours, the number of outliers (false 
positives) can be minimized without employing a ratio test, 
which might require an application-specific threshold. On 
the contrary, cross-checking of obtained matching pairs of 
keypoints requires significantly more computational effort.

In order to provide a more efficient detection as well as 
matching of keypoints and corresponding descriptors, dif-
ferent alternative techniques have been proposed, most nota-
bly Speeded-Up Robust Features (SURF) [4]. For SURF, 
keypoint matching is accelerated by employing keypoint 
descriptors of reduced size, e.g. 64 or 32 bins. Moreover, 
since binary descriptors allow for a fast HD-based keypoint 
comparison, different methods of how to binarize key-
point descriptors [2, 28] or directly extract binary keypoint 
descriptors have been suggested, such as Binary Robust 
Independent Elementary Features (BRIEF) [8].

2.2  SIFT‑based iris recognition

Numerous researchers have applied SIFT for the purpose of 
iris recognition. Table 1 summarizes most relevant works 
with respect to the input data from which SIFT keypoints 
and corresponding descriptors are extracted, major findings, 
employed databases and obtained biometric performance. 
It can be observed that, in comparison to conventional iris 
recognition systems, the vast majority of listed approaches 
do not reveal competitive biometric performance. Moreo-
ver, the complex procedure required to match sets of SIFT 
keypoints prevents from a rapid comparison of SIFT-based 
templates, which require significantly more storage than 

(a)

(b)

(c)

Fig. 1  Keypoint detection: SIFT keypoints extracted from a the iris, b 
the normalized iris texture and c the enhanced normalized iris texture 
for a sample image of the CASIAv4 iris database using the default 
parameters suggested in [32]. Keypoints are depicted using random 
colours for a better differentiation of nearby keypoints

Fig. 2  Example of cross-
checking matching point pairs: 
Euclidean distances between 
two point sets, Green and Red, 
are estimated where a Green 
is matched against Red, b Red 
is matched against Green and 
c cross-checking is performed 
after matching Green against 
Red and vice versa (a) (b) (c)
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binary iris-codes. Early works on SIFT-based iris recogni-
tion [1, 5] were motivated by unconstrained acquisition sce-
narios where accurate segmentation of the iris region turns 
out to be challenging. By extracting SIFT keypoints directly 
from the original (coarsely segmented) iris image potential 
self-propagating errors in the normalization stage can be 
avoided. Reported performance rates of early approaches 
were not competitive compared to traditional iris recogni-
tion systems, while more recent proposals reveal acceptable 
biometric performance [11]. However, it has been shown 
that SIFT descriptors carry complement information which 
can be utilized to improve the performance of a traditional 
iris recognition system in a score-level fusion scenario [1]. 
While it has been shown that keypoint matching fails for 
challenging off-angle iris images [5], biometric performance 
tends to improve in case keypoints are extracted from (cor-
rectly) normalized and/or enhanced iris textures [31, 56]. 
Compared to original iris images, normalized textures of 
constant size yield a more stable amount of detected key-
points and contrast enhancement techniques increase the 
amount of detected keypoints, since less of them exhibit 
low contrast.

Another important issue is the detection of false posi-
tive keypoint matches. Since relative positions of detected 
keypoints are expected to change only slightly, geometrical 
constraints can be applied in order to detect false positive 
keypoint matches, which is referred to as trimming of false 
matches [45]. In [5, 11], it is suggested to divide the detected 
iris into regions and perform keypoint detection and match-
ing per region. Similarly, a region-based matching of key-
points can be performed on normalized iris textures [31]. 
In [1], it is suggested to retain only matches within a dis-
tinct range of rotation and distance, which means that scale 
invariance and robustness to pupil dilation can no longer be 
guaranteed. Moreover, biometric performance might also 
be improved by employing alternative keypoint descriptors 
[38] or matching strategies [31]. SIFT can also be employed 
to detect and match macro-features, i.e. structures within 
the iris texture, such as furrows or crypts [50]. It is impor-
tant to note that the estimation of a final comparison score 
between two given iris images has received only little atten-
tion. Within most approaches, it is suggested to count the 
number of matching keypoints [1, 5]. However, if compared 
sets of keypoints and corresponding descriptors are subject 
to strong variations in size, score normalization techniques 
play an important role.

In summary, it can be concluded that existing approaches 
to SIFT-based iris recognition fail to obtain competitive 
biometric performance rates. We also observe that diverse 
processing steps of SIFT-based iris recognition schemes, 
e.g. keypoint matching or score estimation, might allow for 
potential improvements to obtain a more reliable recognition 
system. Such a system would be of particular interest, since Ta
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proposed studies have demonstrated the potential of SIFT-
based features to complement conventional iris-biometric 
feature vectors, i.e. iris-codes. In addition, comparison speed 
turns out to be vital to enable an operation of SIFT-based iris 
recognition in identification mode. Note, that all presented 
approaches require complex keypoint matching procedures, 
which do not allow for a rapid comparison. Finally, it is 
worth noting that so far there are no strategies for reduc-
ing the storage required within SIFT-based iris recognition 
schemes.

3  SIFT‑based iris recognition system

In the subsequent subsections, we will summarize the pre-
processing and feature extraction process the baseline and 
the proposed system will build upon. Further, the baseline 
SIFT-based comparator and its used score estimation are 
described.

3.1  Pre‑processing and feature extraction

In the first step, the pupil and outer iris boundaries are 
detected and the iris is transformed to a normalized texture 
of W × H = 512 × 64 pixels according to the rubbersheet 
model [16], see Fig. 1a, b. The dimension of the normalized 
iris texture is derived from IS ISO/IEC 29794-6:2015 [20], 
where the iris radius, i.e. the radius of a circle approximating 
the iris–sclera boundary, is required to be at least 80 pixels. 
Subsequently, contrast-limited adaptive histogram equali-
zation (CLAHE) [59] is applied to the texture resulting in 
an enhanced texture, as shown in Fig. 1c. CLAHE is per-
formed using a block size of 40 × 64 pixels, 256 histogram 
bins and a clipping limit of 1. Similar image enhancement 
techniques are employed in conventional iris recognition 
systems relying on global feature extractors [7]. It can be 
observed that enhancing the contrast of the extracted iris tex-
ture significantly increases the amount of detected keypoints. 
By stretching the histogram of pixel intensities, detected 
keypoints exhibit higher contrast, i.e. numerous keypoints, 
which might have been discarded in the original image or 
the normalized texture due to low contrast, are now retained. 
Since CLAHE is performed locally, a rather uniform distri-
bution of detected keypoints is obtained, which can not be 
achieved by operating a global contrast threshold in case 
images or image regions vary in contrast.

Let � = (x, y, �) be a detected keypoint at (x, y) ∈ ℝ
2 

and � ∈ [0, 360) its orientation, i.e. angle. The correspond-
ing keypoint descriptor is denoted by � = (d1, d2,… , dD) , 
with D = 128 in case of SIFT. The biometric reference 
data  for a single enhanced iris texture consist of a set 
of N detected keypoints and a corresponding set of their 

keypoint descriptors,  = {(�n, �n)}, n = 1,… ,N . In con-
trast to a reliable feature selection procedure, which aims at 
reducing the extracted feature set to a discriminative subset 
thereof, the above-described pre-processing step increases 
N. Moreover, proposed feature selection methods mostly rely 
on global contrast thresholds [11] without analyzing whether 
feature descriptors of high contrast keypoints do carry the 
most discriminative information in case of iris biometrics. 
Note that, for the baseline system storage requirement, which 
increases with N, is considered a less relevant factor.

3.2  Keypoint comparison and score estimation

Given a reference set  and a probe set  , keypoint descrip-
tors are compared using the L2-norm. In the employed com-
parison step, each keypoint descriptor of  is compared 
against all keypoint descriptors of  and vice versa. After 
performing the previously described cross-checking step, a 
set of matching keypoints  = {(�rk, �pk)}, k = 1,… ,K is 
obtained, �rk ∈ ,�pk ∈  . Since an increased amount of 
detected keypoints raises the probability of false positive 
keypoint matches, a detection and exclusion of such matches 
are performed based on geometric constraints. Given  , 
only those matches are retained for which the correspond-
ing keypoint coordinates lie within a distance defined by 
two thresholds, �x and �y , yielding a new set of matches ′,

with l = 1,… , L and L ≪ K . These geometrical constraints 
are adjusted to detect false positive keypoint matches and 
to tolerate natural variance in keypoint locations. In par-
ticular, �x compensates for horizontal shifts of iris textures 
resulting from head tilts, while �y defines a vertical tolerance 
which might be caused by (non-accurate) normalization of 
iris images exhibiting large variation pupil dilation [51]. 
Figure 3 illustrates a SIFT-based comparison of a genuine 
pair of enhanced iris textures without and with employing 
geometrical constraints. Note that in contrast to [1], scale 
invariance is not affected since textures are normalized 
prior to keypoint detection. The proposed comparison is 
somewhat similar to a block or region-based comparison 
of keypoint descriptors [5, 31], in the sense that keypoints 
of matching descriptors have to be located within a �x × �y 
region. However, in the presented approach, these regions 
are, in transferred sense, dynamically stretched around each 
keypoint such that no matches are missed due to keypoints 
located at region boundaries. Moreover, matching pairs of 
descriptors are obtained from the entire sets of reference and 
probe descriptors so that the probability of false matches to 
occur within the defined region is further reduced.

Finally, a comparison score s between  and  is esti-
mated. In diverse approaches [1, 5, 58], it is suggested to 

(1)
� = {(�rl, �pl) ∶ ‖xrl − xpl‖ < 𝜖x, ‖yrl − ypl‖ < 𝜖y},
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return the number of obtained matching pairs of descrip-
tors as final score, i.e. s = ‖�‖ . However, the amount of 
detected keypoints does significantly differ in case parts of 
the iris are occluded by eyelids, eyelashes or reflections. 
Moreover, potential attackers might perform presentation 
attacks [21] using textures which exhibit a large amount 
of keypoints in order to artificially increase the chance 
of a false accept. Hence, similar to the estimation of the 
fractional Hamming distance in relation to iris-code bits, 
comparison scores need to be normalized. Given , and 
obtained matches of keypoints ′ , a dissimilarity score 
s is estimated as,

We suggest to define a lower limit for ‖‖ as a quality check. 
Such a limit prevents from presentation attacks in which 
only a few descriptors are presented to the system and com-
pared against the entire reference set, which might result (by 
chance) in a match and, hence, in a low dissimilarity score.

The presented baseline scheme reveals two major dis-
advantages: firstly, variable-sized sequences of real-valued 
keypoint triples and corresponding integer-valued descrip-
tors cause an increased storage requirement, in contrast to 
conventional compact binary iris-codes; secondly, com-
parisons of keypoint descriptors are performed by estimat-
ing the L2-norm between corresponding histograms, which 
requires (N2) steps using the described comparator. Con-
sequentially, the required computational effort is signifi-
cantly compared to an efficient Hamming distance-based 
comparator, which might prevent the system to be oper-
ated in identification mode (on large databases). Note that 
the stated drawbacks apply to all proposals of SIFT-based 

(2)s = 1 −
‖�‖

min(‖‖, ‖‖) .

iris recognition. Hence, an acceleration of the presented 
baseline SIFT-based iris recognition system is of interest.

4  Proposed system

The proposed scheme builds upon the pre-processing and 
feature extraction of the previously described baseline 
scheme. Key components of our system, which are described 
in detail in the following subsections, include the generation 
of a keypoint-code and a look-up-table, a specific alignment 
procedure, a binarization of keypoint descriptors as well as 
a specific comparator.

4.1  Keypoint‑code, look‑up table and alignment

We assume that iris images are acquired from a direct 
frontal angle. This assumption is considered reasonable, 
since it has been shown that SIFT-based iris recognition 
becomes unreliable in case of off-angle image acquisition 
[5]. If iris images are taken frontally, the relative locations 
of keypoints detected in enhanced iris textures are expected 
to persist. Based on this assumption, a simultaneous pair-
ing of keypoints can be achieved prior to a comparison 
of keypoint descriptors. For this purpose, we quantize 
a given keypoint triple � = (x, y, �) and map it to a two-
dimensional binary map, in order to ease further process-
ing steps. This two-dimensional binary map is referred to 
as keypoint-code. In the first step, function f maps a given 
keypoint triple to a quantized two-dimensional point, 
f (�, qx, qy, q𝜃) = �̃ = (x̃, ỹ) ∈ ℕ

2 , where qx, qy and q
�
 denote 

predefined quantisation factors and,

Hence, angle values only take influence on resulting y-coor-
dinates. For instance, let qx = 4, qy = 2, q

�
= 90 , and accord-

ing to the previously defined setting H = 64 , a keypoint 
triple � = (15, 5, 100) is mapped to (x̃, ỹ) =

�⌊3.75⌋, ⌊2.5⌋
+⌊100∕90⌋ ⋅ ⌊64∕4⌋� = (3, 2 + 1 ⋅ 16) = (3, 18) . Note that, 
while this process reduces the dimensionality of the feature 
space, it does not cause any information loss and, hence, 
does not reduce storage requirement. However, in the fol-
lowing process of keypoint pairing, i.e. feature alignment, 
two-dimensional binary maps offer a more efficient internal 
representation.

In  the  second step,  (x̃, ỹ) i s  mapped into 
t he  b ina r y  keypo in t - code  �  o f  d imens ion 
W̃ × H̃ = ⌊W∕qx⌋ × ⌊H∕qy⌋ ⋅ ⌊360∕q𝜃⌋ ,  such that  1s 
indicate keypoint coordinates, �[x̃][ỹ] = 1 . In order to 
achieve a certain robustness against small changes in key-
point coordinates, neighbouring bit positions are set to 1 

(3)
x̃ = ⌊x∕qx⌋,
ỹ = ⌊y∕qy⌋ + ⌊H∕qy⌋ ⋅ ⌊𝜃∕q𝜃⌋.

(a)

(b)

Fig. 3  Trimming of false matches: comparison of obtained keypoint 
matches from a genuine comparison a without and b with geometri-
cal constraints. Keypoint matches are depicted using random colours 
for a better differentiation of nearby matches
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in case x∕qx or y∕qy are close to according boundaries. In 
the previous example, x̃ = ⌊x∕qx⌋ = ⌊15∕4⌋ = 3 , while 
x∕qx = 15∕4 = 3.75 is close to its right neighbour 4. There-
fore, we define a threshold t, to which the distances to neigh-
bouring positions are compared against,

Obviously, �[x̃][ỹ] = �[x̃ + i][ỹ] or �[x̃][ỹ] = �[x̃][ỹ + j] 
applies in case i = 0 or j = 0 , respectively. For 
instance, let t = 0.5 ,  then for � = (15, 5, 100) we 
g e t  x mod qx = 15 mod 4 = 3 ≥ 4∕2 + 0.5  a n d 
y mod qy = 5 mod 2 = 1 , resulting in i = 1 and j = 0 . This 
means, in this example the right neighbour of �[x̃][ỹ] will be 
set to 1 as well, �[x̃ + i][ỹ] = �[4][18] = 1.

Keypoint-codes, which is merely constructed from sets 
of keypoint coordinates, will be used to determine corre-
spondence between keypoints. Comparisons merely based 
on keypoint-codes, which do not carry information about 
descriptors of keypoints, are not expected to achieve reliable 
biometric recognition in particular, if the number of detected 
keypoints is specifically maximized. Hence, in addition to 
the keypoint-code, we extract a look-up table, denoted as 
� , of same dimension, which consists of integer values 
defining the correspondence between 1s in the keypoint-
code and keypoint descriptor indices. For the n-th keypoint 
�n, n = 1,… ,N,�[x̃n][ỹn] = n , where neighbouring posi-
tions might be set as well according to the above-described 
process. It is important to note that prior to generating the 
keypoint-code and the look-up table, keypoints are arranged 
in ascending order with respect to their response values. 
Thereby, keypoints with highest response values overlap 
those with lower response values in the keypoint-code and 
the look-up table, in case of identical quantized coordinates. 
Figure 4 illustrates two examples of keypoint-codes and vis-
ualizations of their look-up tables. From the look-up tables, 
we observe that cells originating from keypoints with high-
est response values (red cells) tend to overlap those originat-
ing from low-response keypoints (blue cells). From the look-
up table in Fig. 4a, where q

�
= 360 (angles are ignored), it 

can clearly be observed that keypoints with highest response 
values mostly occur in the upper regions of the enhanced iris 

(4)�[x̃ + i][ỹ] = 1,�[x̃][ỹ + j] = 1,�[x̃ + i][ỹ + j] = 1,

(5)i =

⎧
⎪⎨⎪⎩

1, if x mod qx ≥ qx∕2 + t

−1, if x mod qx < qx∕2 − t

0, otherwise.

(6)j =

⎧
⎪⎨⎪⎩

1, if y mod qy ≥ qy∕2 + t

−1, if y mod qy < qy∕2 − t

0, otherwise.

texture, i.e. iris texture parts near the pupil which are hardly 
occluded by eyelids or eyelashes.

In order to efficiently retrieve correspondence between 
keypoints (and their descriptors) of a given reference and 
probe set,  and  , we align their keypoint-codes, �r and 
�p , respectively. In generic iris recognition schemes, the 
minimum HD-score obtained from various circular bit 
shifts of the probe iris-codes, which correspond to different 
relative tilt angles, represents an optimal alignment [16]. 
Similarly, we apply circular bit shifts to the probe keypoint-
code, but seek for the maximum overlap of 1s between the 
reference and probe keypoint-code. At the optimal align-
ment, the intersection of the reference and probe keypoint-
code is referred to as alignment-code. Let S be the maxi-
mum tolerated pixel-shift in both directions for enhanced 
iris textures, then the set of considered shifting positions is 
defined as � = {−⌈S∕qx⌉,… , ⌈S∕qx⌉} . Let g(�, s) denote a 
keypoint-code � shifted by s bits, then the alignment-code 
�rp between �r and �p is estimated as,

(7)�rp = max
s∈�

(
�r ∩ g

(
�p, s

))
.

0 64 128 192 256 320 384 448 512 576 640 725

(a)

(b)

(c)

Fig. 4  Keypoint-code and look-up table: two examples of extracted 
binary codes and their corresponding visualized look-up tables 
extracted from the enhanced normalized texture of Fig.  1c. Chosen 
parameters of a and b yield identical dimensions for codes and look-
up tables
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That is, the pairing of two sets of keypoints can now be 
performed based on efficient bit operations, comparable to 
HD-based comparators, where the amount of required bit 
comparisons depends on the dimension of keypoint-codes 
and the degree of rotation compensation. Note that, com-
pared to the baseline system, the proposed alignment process 
implicitly trims false positive pairs of keypoints.

4.2  Binarization of descriptors and proposed 
comparator

In order to efficiently compare and store keypoints descriptors, 
we propose to binarize them, too. Given  , the corresponding 
set of keypoint descriptors {�n} is binarized to obtain {�n} with 
�n = (b1n,… , bDn) and n = 1,… ,N , by defining a binariza-
tion threshold � , such that,

where D = 128 in case of SIFT. With the use of this trivial, 
yet effective, quantization method, the most dominant bins 
of each descriptor histogram are set to 1. For the first 16 
keypoint descriptors of keypoints detected in Fig. 1c, the 
resulting binarized descriptors are depicted in Fig. 5 for vari-
ous values of � . Obviously, the proposed binarization sig-
nificantly reduces the required storage for extracted feature 
descriptors. In particular, the stored reference data consist 
of W̃ × H̃ bits and integers for the keypoint-code and the 
corresponding look-up table, respectively, and N × D bits for 
the set of binarized keypoint descriptors. In order to avoid 
arbitrary large sets of feature descriptors, the extraction of 
descriptors could be limited to N keypoints, which exhibit 
the highest response values.

Given a pair of feature descriptors, �r and �p , the distance 
function d is used for comparison,

(8)bin =

{
1, if din > 𝜏

0, otherwise.
, i = 1,… ,D

Hence, the amount of identical dominant descriptor bins, i.e. 
1s, is counted and normalized by the total amount 1s occur-
ring in both binarized descriptors. The proposed distance 
function operates on bit level and, thus, enables a highly 
efficient comparison of feature descriptors.

Let o be the shifting position which yields an optimal 
alignment, i.e. � = �r ∩ g(�p, o) . The final dissimilarity 
score between  and  is estimated as,

In case, �rp[w][h] = 1 , which indicates that at least one 
keypoint in  and  occur at identical coordinates, the cor-
responding binarized descriptors are obtained through the 
look-up table and compared. The amount of detected pairs 
‖�rp‖ is used to normalize the score.

5  Experiments

The subsequent subsections summarize the experimental 
setup and present evaluation with respect to biometric per-
formance as well as time measurements.

5.1  Experimental setup

Experiments are carried out on CASIAv1 [12], CASIAv4-
Interval [14] and the BioSecure iris database [44]. For the 
BioSecure database, we use all left eye images for perfor-
mance evaluations and corresponding right eyes are for score 
normalization purposes in fusion scenarios (see Sect. 5.3). 
Number of subjects, images, image resolution, image type 
and resulting amounts of genuine and impostor authentica-
tion attempts are summarized in Table 2. Examples of iris 
images of each database are depicted in Fig. 6. In accordance 
with IS ISO/IEC 19795-1:2006 [22], biometric performance 
is evaluated in terms of genuine match rate (GMR) and false 
match rate (FMR) by plotting the detection error trade-off 
(DET) curve and the equal error rate (EER).

In Fig. 7, the frequency of locations of detected keypoints 
in enhanced iris textures across all datasets is depicted 
in a heatmap. In can be observed that less keypoints are 
detected in iris parts which are frequently occluded by 
eyelids (two-dome pattern), since these yield homogene-
ous regions in the enhanced texture. This implicit regional 
limitation of keypoint detection makes an additional stor-
age of noise masks redundant, while these could obviously 

(9)d(�r, �p) = 1 −
2‖�r ∩ �p‖
‖�r‖ + ‖�p‖ .

(10)

1

‖�rp‖
W̃�
w=1

H̃�
h=1

�rp[w][h] ⋅ d(�r[�r[w][h]],�p[�p[w + o][h]]).

(a)

(b)

(c)

Fig. 5  Binarization of keypoint descriptors: examples for the first 16 
binarized keypoint descriptors of the normalized enhanced texture of 
Fig.  1c according to three different thresholds. Each row represents 
one binarized keypoint descriptor. a � = 10 . b � = 20 . c � = 30
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be easily incorporated in order to exclude unreliable key-
points. Figure 8 shows the frequency distribution of the 
amount of detected keypoints in enhanced iris textures on 
each database. We observe that the number of detected key-
points might vary considerably, e.g. if large parts of iris 
textures are affected by occlusions. Hence, that the number 
of detected keypoints could serve as an input for the qual-
ity check module of an iris recognition system. Across all 
used databases, an average number of keypoints extracted 
from enhanced iris textures is N=645. Hence, the look-up 
table has to consist of at least 10 bits per entry in order 
to index all keypoints. Together with the keypoint-code 
and the binarized descriptors, the stored template consists 
of W̃ ⋅ H̃ + 10 ⋅ W̃ ⋅ H̃ + N ⋅ D bits. In contrast, assuming 
that a keypoint triple and its response value can be stored 
in 32 bits and that each feature descriptor bin consists of 
8 bits, the average template size of the baseline system is 
estimated as N ⋅ (32 + 128 ⋅ 8) bits. Depending on the used 
quantisation factors, qx, qy , and q

�
 , a significant reduc-

tion in storage requirement can be achieved in the pro-
posed system. For instance, let qx = 4, qy = 4, q

�
= 90 , 

we get W̃ = 512∕4 = 128 and H̃ = 64∕4 ⋅ 360∕90 = 64 , 
such that the average size of stored template results in 
128 ⋅ 64 + 10 ⋅ 128 ⋅ 64 + 645 ⋅ 128 ≃ 170 kB. In con-
trast, the baseline system would on average require 
645 ⋅ (32 + 128 ⋅ 8) ≃ 665 kB.

5.2  Performance evaluation

In a first experiment, we measure the biometric performance 
of the baseline system of Sect. 3. Table 3 compares obtained 
performance rates using SIFT, SURF and BRIEF keypoint 
descriptors across employed datasets for different reasonable 
values of �x and �y . As can be seen, for best configurations, 

Table 2  Overview of employed databases w.r.t. image resolution, image type, corresponding number of subjects, number of iris images and the 
resulting number of genuine and impostor comparisons

Genuine and impostor scores have been derived following the recommendations in [35]

Database Resolution Type Subjects Images Gen. comp Imp. comp

CASIAv1 320 × 280 NIR 108 756 8336 5778
CASIAv4 320 × 280 NIR 198 1332 4454 19,503
BioSecure 640 × 480 NIR 210 840 1260 21,945

Fig. 6  Sample NIR iris images 
of the a CASIAv1, b CASIAv4-
Interval and c BioSecure iris 
database

(a) (b) (c)

Fig. 7  Location of detected keypoints: frequencies of keypoint coor-
dinates of SIFT keypoints detected in normalized enhanced textures 
extracted from all images of employed databases
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(b)

(c)

Fig. 8  Number of detected keypoints: distributions of the amount 
of detected keypoints in normalized enhanced textures for the three 
employed databases. a CASIAv1. b CASIAv4-Interval. c BioSecure
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Fig. 9  DET curves for the best parameter configurations for SIFT, 
SURF and BRIEF keypoint detectors and corresponding keypoint 
descriptors using all-against-all comparison of keypoint descriptors, 

cross-checking of keypoint matches and geometrical constraints. a 
CASIAv4-Interval. b BioSecure

Table 3  Biometric performance 
in terms of EER (%) on 
employed databases for SIFT, 
SURF and BRIEF keypoint 
detectors and corresponding 
descriptors using an all-
against-all comparison of 
descriptors, cross-checking of 
keypoint matches and different 
parameters for geometrical 
constraints

Bold values indicate the best results (lowest error rates)

�
x

�
y

CASIAv1 CASIAv4-Interval BioSecure

SIFT SURF BRIEF SIFT SURF BRIEF SIFT SURF BRIEF

12 2 0.485 1.511 7.207 0.916 1.972 4.317 3.382 5.145 7.292
12 3 0.503 1.311 6.840 0.931 1.752 3.964 3.138 4.356 5.907
12 4 0.516 1.385 7.206 0.943 1.685 3.755 2.971 3.874 5.580
12 5 0.525 1.511 7.067 0.943 1.753 3.835 2.866 3.720 5.474
12 6 0.533 1.686 7.367 0.891 1.757 4.039 2.781 3.720 5.495
14 2 0.263 1.455 7.664 0.605 1.451 4.487 3.274 4.856 6.968
14 3 0.262 1.328 7.238 0.530 1.302 4.001 3.023 4.040 5.948
14 4 0.262 1.359 7.234 0.475 1.369 4.044 2.664 3.888 5.739
14 5 0.311 1.599 7.708 0.493 1.468 4.062 2.608 3.621 5.096
14 6 0.350 1.660 7.888 0.488 1.409 4.152 2.555 3.612 5.331
16 2 0.048 1.398 7.809 0.445 1.371 4.651 3.166 4.721 6.989
16 3 0.049 1.367 7.618 0.427 1.122 4.148 2.850 3.987 5.825
16 4 0.049 1.407 7.709 0.332 1.125 4.320 2.779 3.701 5.532
16 5 0.049 1.630 7.683 0.334 1.278 4.306 2.488 3.740 5.271
16 6 0.079 1.621 7.966 0.332 1.213 4.336 2.398 3.653 5.235
18 2 0.049 1.455 8.081 0.412 1.404 4.746 3.341 5.085 7.569
18 3 0.049 1.319 7.945 0.335 1.136 4.431 2.841 4.049 6.414
18 4 0.079 1.494 8.172 0.297 1.189 4.450 2.590 3.772 6.097
18 5 0.049 1.700 8.425 0.292 1.278 4.561 2.451 3.586 5.606
18 6 0.088 1.629 8.648 0.292 1.184 4.713 2.384 3.720 5.523
20 2 0.079 1.424 8.659 0.399 1.351 4.807 3.341 5.145 7.651
20 3 0.088 1.415 8.269 0.316 1.149 4.649 3.016 3.992 6.503
20 4 0.088 1.551 8.556 0.249 1.208 4.640 2.696 4.052 6.205
20 5 0.048 1.717 8.578 0.246 1.264 4.793 2.675 3.612 5.669
20 6 0.127 1.743 8.687 0.249 1.256 5.015 2.631 3.729 5.829
22 2 0.088 1.629 8.875 0.402 1.383 5.217 3.461 4.845 8.105
22 3 0.088 1.533 8.896 0.311 1.165 4.943 3.063 4.045 6.323
22 4 0.088 1.494 9.006 0.246 1.206 4.961 2.703 3.871 6.344
22 5 0.088 1.669 8.845 0.265 1.275 5.269 2.788 3.687 5.897
22 6 0.136 1.726 9.237 0.302 1.302 5.205 2.698 3.745 6.154
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�x values are significantly larger than �y values, since rota-
tions of the eye (head tilts) cause significant variations in 
x-coordinates of detected keypoints. The DET curves for 
the best configurations on the CASIAv4-Interval and the 
BioSecure database are plotted in Fig. 9. While SURF and 
BRIEF extract more compact descriptors, which enable a 
faster comparison of keypoints, recognition accuracy drasti-
cally drops for these approaches compared to SIFT, which 
obtains practical performance rates across all datasets. These 
drastic performance drops, which have been observed across 
all datasets, stress the importance of discriminative keypoint 

descriptors. If no cross-checking is applied, the EER of the 
best configuration on the CASIAv4-Interval database is 
almost doubled, from 0.246 to 0.431%. From Table 1, we 
observe that the proposed SIFT-based baseline system, 
which operates on enhanced iris textures and utilizes geo-
metrical constraints as well as cross-checking of detected 
keypoint matches, significantly outperforms the vast major-
ity of proposed approaches.

Table 4 summarizes obtained performance rates for the 
proposed system for appropriate parameter settings. For all 
evaluations, we use S = 18 , which corresponds to a relative 

Table 4  Biometric performance 
in terms of EER (%) on 
employed databases for the 
proposed system using different 
quantization parameters and 
thresholds for the binarization 
of keypoint descriptors

Bold values indicate the best results (lowest error rates)

q
x

q
y

q
�

CASIAv1 CASIAv4-Interval BioSecure

� = 10 � = 15 � = 20 � = 10 � = 15 � = 20 � = 10 � = 15 � = 20

2 2 60 0.350 0.310 0.319 0.289 0.292 0.313 2.857 3.104 3.415
2 2 45 0.232 0.302 0.302 0.359 0.383 0.428 2.788 2.947 3.337
2 2 36 0.302 0.350 0.406 0.249 0.225 0.316 2.961 3.318 3.749
2 3 60 0.358 0.350 0.406 0.313 0.311 0.359 2.550 2.815 3.178
2 3 45 0.310 0.310 0.310 0.359 0.337 0.375 2.691 2.859 3.019
2 3 36 0.262 0.262 0.310 0.340 0.359 0.426 3.092 3.263 3.420
2 4 60 0.350 0.358 0.358 0.297 0.268 0.270 2.693 2.931 3.178
2 4 45 0.302 0.341 0.319 0.289 0.313 0.313 2.592 2.700 3.092
2 4 36 0.398 0.398 0.398 0.268 0.268 0.294 2.640 3.021 3.184
2 5 60 0.533 0.524 0.516 0.359 0.287 0.356 2.864 2.767 3.009
2 5 45 0.398 0.446 0.476 0.359 0.359 0.359 2.377 2.608 2.610
2 5 36 0.319 0.350 0.271 0.268 0.287 0.356 2.651 2.613 2.696
3 2 60 0.524 0.454 0.446 0.313 0.294 0.354 3.092 3.175 3.433
3 2 45 0.476 0.350 0.350 0.354 0.364 0.340 2.597 3.095 3.251
3 2 36 0.398 0.437 0.533 0.289 0.263 0.375 2.693 3.021 3.018
3 3 60 0.485 0.485 0.564 0.313 0.292 0.356 2.767 3.014 3.305
3 3 45 0.485 0.437 0.437 0.292 0.361 0.423 2.532 2.624 2.956
3 3 36 0.437 0.350 0.485 0.289 0.337 0.380 2.705 2.774 3.092
3 4 60 0.437 0.398 0.485 0.340 0.246 0.313 2.622 2.830 3.245
3 4 45 0.310 0.350 0.350 0.337 0.292 0.337 2.147 2.601 2.785
3 4 36 0.350 0.437 0.446 0.273 0.268 0.313 2.610 2.862 3.150
3 5 60 0.533 0.524 0.603 0.359 0.362 0.359 2.945 2.945 3.101
3 5 45 0.476 0.358 0.350 0.380 0.426 0.404 2.259 2.223 2.451
3 5 36 0.446 0.437 0.428 0.268 0.292 0.356 2.772 2.615 2.709
4 2 60 0.398 0.350 0.446 0.340 0.313 0.340 2.788 3.092 3.325
4 2 45 0.406 0.446 0.446 0.383 0.359 0.359 3.014 3.362 3.487
4 2 36 0.406 0.494 0.485 0.268 0.268 0.294 2.942 2.871 3.168
4 3 60 0.485 0.485 0.485 0.359 0.316 0.356 2.866 3.083 3.099
4 3 45 0.350 0.398 0.454 0.388 0.428 0.404 2.629 2.776 3.003
4 3 36 0.310 0.350 0.398 0.311 0.316 0.364 2.853 2.862 3.099
4 4 60 0.485 0.446 0.516 0.356 0.292 0.337 2.375 2.714 3.097
4 4 45 0.310 0.319 0.398 0.335 0.335 0.356 2.541 3.005 3.332
4 4 36 0.463 0.485 0.485 0.402 0.356 0.378 2.594 2.772 3.090
4 5 60 0.572 0.620 0.572 0.429 0.402 0.471 2.687 2.465 2.848
4 5 45 0.468 0.446 0.612 0.302 0.319 0.416 2.543 2.732 2.933
4 5 36 0.494 0.572 0.590 0.287 0.292 0.380 2.227 2.375 2.696
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rotation of approximately ±10◦ , and t = 1 in order to achieve 
rotation invariance and a more robust pairing of keypoint 
coordinates, respectively. In case only the overlap of probe 
and reference keypoint-codes, ‖�rp‖ , would be employed as 
comparison score, i.e. not taking into account correspond-
ing keypoint descriptors, biometric performance significantly 
decreases. For instance, for the best configuration on the 
CASIAv4-Interval database the obtained EER increases from 
0.225 to 5.021%. For the binarization of keypoint descriptors 
thresholds of � = 10 , 20, and 30 have been found to reveal 
best biometric performance. As can be observed, on the more 
challenging CASIAv4-Interval and BioSecure database, the 
presented scheme maintains the recognition accuracy of the 
SIFT-based baseline iris recognition system. Best perfor-
mance rates, which indicate a robust pairing of keypoints, 
are achieved for rather small quantisation values of qx and qy . 
Focusing on keypoint angles, best recognition accuracies are 
obtained for q

�
 values of 45 or less. In order to further assess 

the goodness of the presented binarization method, we evalu-
ate the proposed system employing two alternative descriptor 
binarization schemes referred to as Binarized Scale-Invariant 
Feature Transform (B-SIFT) [29] and Binarization of Gradi-
ent Orientation Histograms (BIG-OH) [3]. In the B-SIFT 
approach, the median bin value of each descriptor is used 
as threshold based on which all bins are binarized. In the 
BIG-OH scheme, consecutive bin values are compared and 
greater/smaller-or-equal relations are binary encoded. Both 
approaches employ HD-scores to determine the dissimilarity 
between keypoint descriptors. Moreover, in case keypoint 
descriptors are not binarized, the L2-norm can be employed 
in order to compare them. Obtained performance rates for 
applying the L2-norm on original keypoint descriptors and the 
B-SIFT as well as the BIG-OH scheme are shown in Table 5 
for various parameter configurations. The proposed binariza-
tion technique outperforms the B-SIFT as well as the BIG-
OH approach on all datasets. Performance rates achieved 
when applying the L2-norm on original keypoint descriptors 
underline that information loss is negligible in the presented 
binarization method. DET curves which compare the best 
configurations of the proposed system to the aforementioned 
schemes are depicted in Fig. 10 for the CASIAv4-Interval 
and the BioSecure database. The corresponding probability 
density functions of the proposed system for both databases 
are depicted in Fig. 11.

5.3  Comparison and fusion with traditional systems

Further, we compare and fuse the proposed system with two 
traditional approaches. The first feature extraction method 
follows the Daugman-like 1D-Log Gabor feature extraction 
algorithm of Masek [36] (LG), and the second follows the 
algorithm proposed by Ma et al. [34] (QSW) based on a 
quadratic spline wavelet transform. Both methods divide 

the pre-processed iris texture into stripes to obtain 10 one-
dimensional signals, each one averaged from the pixels of 5 
adjacent rows, and extract iris-codes consisting of 512 × 20 
bits. In the comparison stage, HD-based scores are esti-
mated performing ± 16 bit shifts to compensate misalign-
ments. Implementations of the employed feature extractors 
are freely available in the University of Salzburg Iris Toolkit 
(USIT) [52]. Table 6 compares the biometric performance 
of LG and QSW to the best configurations of the previously 
evaluated schemes. We observe that the proposed system 
reveals competitive biometric performance compared to the 
traditional systems across all databases achieving the lowest 
EERs on the CASIAv4-Interval and the BioSecure database.

In order to investigate whether features extracted by the 
proposed system complement those extracted by traditional 
schemes, as reported in [1], we perform a biometric fusion 
on the BioSecure database, which has been found to be the 
most challenging one. In the context of biometric fusion, 
score-level fusion using the sum-rule with proper normaliza-
tion has been observed to result in competitive performance 
[24]. To fuse scores obtained by the traditional and the pro-
posed system, we perform a z-score normalization prior to 
performing a score-level fusion based on the sum-rule. Nor-
malization parameters are estimated employing score distri-
butions obtained from right eye comparisons. From the DET 
curves in Fig. 12, we observe that a fusion of the traditional 
schemes does not yield a significant gain in biometric per-
formance. In contrast, a fusion of the proposed system with 
LG or QSW does reveal a clear improvement in recognition 
accuracy resulting in EERs of 1.58 and 1.74%, respectively.

5.4  Time measurements

Experiments were performed on a single core of an Intel Core 
i7-3610QM CPU with 3.2G Hz on a standard work station 
with sufficient RAM. Keypoint-codes, binarized descriptors 
and iris-codes are internally represented as two-dimensional 
arrays consisting of bytes (chars). Comparisons are performed 
by using according bit operations where the number of bits set, 
i.e. 1s, within resulting bytes is derived from a 8-bit look-up 
table. The implementation can be considered lightweight and 
fully portable as it does not make use of larger look-up tables 
which require a significant amount of RAM nor of CPU-spe-
cific PopCnt (population count) functions. That is, our imple-
mentation yields an upper bound for the time required for a 
single comparison. Figure 13 depicts average execution time 
and corresponding boxplots for a single iris biometric com-
parison required by all considered systems. As can be seen, 
the proposed system clearly outperforms the baseline systems 
based on SIFT and SURF revealing an average execution time 
comparable to that of the BRIEF-based baseline system, which 
obtained unpractical recognition accuracy. Using B-SIFT or 
BIG-OH in order to binarize descriptors slightly reduces the 
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execution time, since these schemes do not require a normali-
zation of intermediate scores. However, it has been shown that 
these schemes fail to maintain the recognition accuracy of the 
SIFT-based baseline system. Hence, focusing on SIFT, the 
proposed system yields the best trade-off between biometric 
performance and authentication speed. The traditional systems 

still outperform the proposed system in terms of execution 
time as these require less bit comparisons. Nevertheless, as 
previously mentioned, a limitation of the template construc-
tion to a fixed number of N keypoints, which exhibit highest 
response values, could be used to achieve further speed-ups as 
well as more constant execution times.

Table 5  Biometric performance 
in terms of EER (%) on 
employed databases using 
different quantization 
parameters with L2-norm and 
fractional HD, after binarization 
with BIG-OH and B-SIFT, 
for the comparison of feature 
descriptors

Bold values indicate the best results (lowest error rates)

q
x

q
y

q
�

CASIAv1 CASIAv4-Interval BioSecure

L2 BIG-OH B-SIFT L2 BIG-OH B-SIFT L2 BIG-OH B-SIFT

2 2 60 0.249 0.970 0.905 0.350 1.198 0.766 3.195 5.746 4.077
2 2 45 0.127 0.708 0.668 0.459 1.085 0.737 3.068 5.091 4.278
2 2 36 0.214 0.786 0.834 0.374 1.136 0.721 3.630 6.185 4.492
2 3 60 0.327 0.970 0.874 0.420 1.412 0.838 2.801 6.115 4.125
2 3 45 0.214 0.747 0.620 0.359 1.058 0.764 2.921 5.318 3.978
2 3 36 0.209 0.699 0.795 0.473 1.257 0.788 3.224 6.086 4.273
2 4 60 0.314 1.066 0.874 0.353 1.465 0.795 3.017 5.878 4.045
2 4 45 0.305 0.795 0.620 0.348 1.120 0.694 2.601 5.165 4.132
2 4 36 0.253 0.786 0.747 0.380 1.257 0.812 3.311 6.037 3.964
2 5 60 0.380 1.319 1.193 0.389 1.679 0.938 2.549 5.158 3.653
2 5 45 0.358 1.018 0.882 0.321 1.154 0.881 2.474 4.910 3.729
2 5 36 0.257 0.978 0.826 0.398 1.369 0.780 2.515 5.401 4.047
3 2 60 0.367 0.930 0.922 0.386 1.482 0.900 3.272 5.882 4.300
3 2 45 0.349 0.708 0.572 0.416 1.163 0.852 3.214 5.315 4.342
3 2 36 0.305 0.804 0.852 0.432 1.311 0.855 3.076 5.940 3.955
3 3 60 0.445 1.057 0.970 0.412 1.675 1.008 3.113 5.721 4.195
3 3 45 0.327 0.843 0.826 0.424 1.326 0.911 2.753 5.488 4.206
3 3 36 0.394 0.834 0.834 0.441 1.353 0.876 2.916 5.892 3.931
3 4 60 0.353 1.000 0.922 0.390 1.760 1.034 2.921 6.196 4.358
3 4 45 0.197 0.769 0.660 0.396 1.312 0.890 2.596 5.230 4.033
3 4 36 0.319 0.930 0.795 0.403 1.573 1.008 2.928 6.115 4.116
3 5 60 0.389 1.249 1.097 0.470 1.934 1.013 2.710 5.841 3.969
3 5 45 0.288 1.026 0.708 0.401 1.501 0.967 2.580 4.849 3.493
3 5 36 0.363 0.970 0.865 0.434 1.800 1.010 2.579 5.313 3.731
4 2 60 0.275 0.843 0.930 0.383 1.693 0.927 3.162 6.021 4.213
4 2 45 0.358 0.882 0.795 0.478 1.340 0.900 3.083 5.152 4.365
4 2 36 0.349 0.922 0.882 0.392 1.580 0.879 2.963 5.894 4.121
4 3 60 0.384 1.018 1.057 0.381 1.817 1.136 3.034 6.189 4.054
4 3 45 0.349 0.970 0.843 0.431 1.415 1.021 2.606 5.345 4.040
4 3 36 0.305 0.891 0.891 0.428 1.651 0.975 3.008 6.026 4.211
4 4 60 0.358 1.040 1.018 0.430 2.053 1.026 2.710 5.993 4.042
4 4 45 0.284 0.852 0.786 0.382 1.479 0.933 3.090 5.523 4.287
4 4 36 0.415 0.961 1.018 0.465 1.774 1.082 3.203 6.046 4.061
4 5 60 0.502 1.249 1.280 0.596 2.294 1.106 2.428 5.472 3.749
4 5 45 0.341 1.066 0.930 0.453 1.641 1.083 2.597 5.029 3.793
4 5 36 0.411 1.074 1.049 0.456 2.032 1.112 2.483 5.297 3.830
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Fig. 10  DET curves for the best parameter configurations for L2-norm and HD-based comparison of binarized keypoint descriptors BIG-OH, 
B-SIFT and the proposed method. a CASIAv4-Interval. b BioSecure
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Fig. 11  Probability density functions for the best parameter configurations of the proposed method. a CASIAv4-Interval. b BioSecure

Table 6  Summary of biometric performance in terms of EER (%) 
for all databases obtained by the baseline systems and best parameter 
configurations all keypoint-based approaches

Bold values indicate the best results (lowest error rates)

Method CASIAv1 CASIAv4-
Interval

BioSecure

QSW ± 16 bit shift 0.485 0.356 2.930
LG ± 16 bit shift 1.144 0.447 2.301
SIFT with geom. constr. 0.048 0.246 2.384
SURF with geom. constr. 1.311 1.122 3.612
BRIEF with geom. constr. 6.840 3.755 5.096
Keypoint-code with L2-norm 0.127 0.321 2.474
Keypoint-code with BIG-OH 0.708 1.058 4.849
Keypoint-code with B-SIFT 0.620 0.694 3.729
Proposed 0.232 0.225 2.147
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Fig. 12  DET curves on the BioSecure database for the baseline sys-
tems, the best parameter configuration of the proposed method and 
pair-wise score-level fusions thereof
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6  Conclusion

In contrast to proposed studies, we have shown that the 
discriminative power of SIFT-based features is compara-
ble to that of traditional NIR iris recognition systems. In 
order to obliterate the additional shortcomings regarding 
authentication speed and storage requirement, we pro-
posed an improved SIFT-based iris recognition system 
achieving an approximately 75-fold speed-up (without 
the use of intrinsic functions), compared to an accord-
ing baseline system. The authentication speed provided 
by the proposed approach is similar to that of traditional 
scheme. Furthermore, employed binarization methods sig-
nificantly reduce storage requirements. Hence, the pro-
posed approach represents the first practical applicable 
SIFT-based iris recognition system in particular, in sce-
narios where reliable recognition and comparison speed 
represent crucial factors such as large-scale identification 
systems. Finally, we confirmed that SIFT-based features 
complement those extracted by traditional schemes, such 
that a multi-algorithm yields a significant gain in recogni-
tion accuracy, as reported in [1]. It is important to note that 
generic improvement which have been the proposed for 
traditional iris recognition system, e.g. by using general-
ized or personalized weight maps [17], can be easily inte-
grated in order to further improve recognition accuracy.

An application of the proposed system to VW iris 
images is subject to future work. Since VW iris recogni-
tion schemes tend to exhibit inferior recognition accuracy 
compared to systems based on NIR images [7], a compu-
tationally efficient multi-algorithm fusion would be espe-
cially appealing in order to improve performance rates. 
Computational efficiency might as well play an impor-
tant role in mobile iris recognition systems [7, 48], where 
computing and storage capacities are limited. Further, the 
presented concept could be applied to speed-up finger-
print recognition systems, which perform a brute-force 

comparison of vicinity-based descriptors of minutiae 
triples, e.g. [6, 9]. In contrast to iris recognition, where 
alignment involves a one-dimensional shifting, in case 
of a fingerprint recognition system proper pre-alignment 
methods would have to be employed. In order to facili-
tate reproducible research [54], an implementation of the 
improved SIFT-based baseline iris recognition system is 
made available together with [52] and the proposed system 
will be included upon acceptance.
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