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Abstract
Feature selection techniques have become an apparent need in many bioinformatics applications, especially when there 
exist a huge number of features. For instance, classification of hereditary disease genes/proteins plays a significant role in 
prediction and diagnosis of diseases. In this regard, some knowledge of features’ goodness in making predictions is needed. 
Apparently, distinctive features and their relevancy to class labels are determinant in designing efficient classifiers. Indeed, 
excluding redundant and/or irrelevant features, without incurring much loss of information, can reduce the processing cost 
while improving the predictor’s performance. Consequently, feature selection is a preliminary task in most biological studies. 
Traditionally, biological data analysis methods also use the common feature selection techniques which imagine the data 
instances as independent objects and so not consider their possibly inter-relations. For instance, protein–protein interactions 
(PPIs) handle a wide range of biological processes including cell-to-cell interactions and metabolic and developmental con-
trol. Apparently, linked data have more similar characteristics than uncorrelated ones and so accounting these inter-relations 
beside to data content will be beneficial in feature selection. To incorporate the data inter-relations (e.g., PPIs in biological 
data) along with the data content in selecting more effective features, a novel feature selection algorithm is proposed. This 
method works in unsupervised manner to handle the unlabeled biological data since most of the real-world genes/proteins 
have no label. For this purpose, we try to optimize a novel objective function which incorporates both the inter-relations of 
data instances and their content. The proposed method tries to identify the most relevant and non-redundant features and 
extract the top-ranked ones. For this purpose, an efficient iterative algorithm is developed to optimize the objective func-
tion. To assess our methods, three well-known evaluation criteria are examined on some real-world biological datasets and 
the results are compared against some of the state-of-the-art feature selection methods. The experiments demonstrate the 
effectiveness of our proposed approach.

Keywords Feature selection · Unsupervised feature selection · Biological linked data · Protein–protein interaction

1 Introduction

A genetic disease is any disease that is caused by an abnor-
mality in an individual’s genome. The abnormality can range 
from minuscule to major; from a discrete mutation in a sin-
gle base in the DNA of a single gene to a gross chromo-
some abnormality involving the addition or subtraction of 
an entire chromosome or set of chromosomes. Some genetic 
disorders are inherited from the parents, while other genetic 
diseases are caused by acquired changes or mutations in a 

preexisting gene or group of genes. Mutations can occur 
either randomly or due to some environmental exposure.

Contemporary classification of human disease dates to the 
late 19th century and derives from observational correlation 
between pathological analysis and clinical syndromes. Char-
acterizing disease in this way established a classification 
schema that has served clinicians well to the current time, 
relying on observational skills to define the syndrome phe-
notype. Throughout the last century, this approach became 
more objective, as the molecular underpinnings of many dis-
orders were identified and definitive laboratory tests became 
an essential part of the overall diagnostic paradigm [1].

In bioinformatics, various large projects, such as the 
human genome project, together with new techniques, such 
as the microarray, have created enormous amount of data. 
These data often come with high dimensionality so that they 
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can involve a huge number of genes with many dimensions. 
This condition can significantly increase the computational 
burden, even to the extent that it renders some data mining 
approaches impossible. For example, it would be very diffi-
cult to train a neural network or support vector machine with 
tens of thousand input nodes. Furthermore, many of these 
tremendous input features are redundant and/or irrelevant 
to a given task and can act like noise to decrease perfor-
mance. Feature selection [3, 14] is a useful technique since 
it can help alleviate the curse of dimensionality, speed up the 
learning process, and provide better interpretability.

Network data have become increasingly popular in the 
past decades, because of the proliferation of various social 
and information networks. Social networks such as Face-
book and Twitter have millions of users all across the world. 
Different forms of information networks such as co-author 
networks, citation networks, and protein interaction net-
works also attract considerable research attention [4, 5]. In 
addition to the link structure, these network data are usually 
accompanied with content information on the nodes. For 
example, one can extract thousands of profiling features for 
users in social networks or ontology features for genes in 
protein interaction networks.

Proteins rarely act alone as their functions tend to be reg-
ulated. Many molecular processes within a cell are carried 
out by molecular machines that are built from a large num-
ber of protein components organized by their protein–pro-
tein interactions (PPIs). Direct PPIs are one of the strongest 
manifestations of a functional relation between genes/pro-
teins, so interacting proteins may lead to the same disease 
phenotype when mutated. Protein–protein interactions refer 
to lasting or ephemeral physical contacts of high specific-
ity established between two or more protein molecules as a 
result of biochemical events steered by electrostatic forces 
including the hydrophobic effect. These interactions make 
up the so-called interactomes of the organism, while aber-
rant PPIs are the basis of multiple aggregation-related dis-
eases. A recent study showed that interacting proteins tend to 
lead to similar disease phenotypes when mutated. Therefore, 
protein–protein interactions might in principle be used to 
identify potentially interesting disease gene candidates.

Accordingly, we have incorporated PPI networks in fea-
ture selection process. This is because two linked proteins 
are more likely to have similar properties than two randomly 
picked ones. Using this network information along with the 
features themselves, we have tried to select more discrimi-
native features of proteins. However, in most of the existing 
feature selection methods on gene/protein data, they seldom 
consider their inter-relations. This is due to lack of rela-
tionship information among instances in most biological 
datasets.

On the other hand, in the genomics setting, an increas-
ingly common data configuration consists of a small set of 

sequences possessing a targeted property (positive instances) 
among a large set of sequences for which class label is 
unknown. Therefore, our proposed feature selection method 
tries to work in unsupervised manner.

By coinciding the link information of unlabeled proteins 
besides their abundant features, we have proposed an Unsu-
pervised Feature Selection Framework for Linked Biological 
data (UFLB), in order to facilitate hereditary disease genes 
classification. For this purpose, we try to optimize a novel 
objective function via an efficient iterative algorithm in order 
to identify the most relevant and non-redundant features.

The rest of this paper is arranged as follows. The related 
work is presented in Sect. 2. Our new framework for unsu-
pervised feature selection in biological data, UFLB, is 
introduced in Sect. 3, including approaches to capture pro-
tein–protein interactions, clustering the proteins iteratively, 
and optimization analysis. The experimental results with 
discussion are presented in Sect. 4. Finally, we conclude 
this work in Sect. 5.

2  Related work

Feature selection is an important operation in processing the 
data stored in gene microarrays. The most relevant features 
increase our understanding of the mechanism of disease for-
mation and allow to predict the potential danger of being 
affected by such disease. The application of feature selection 
methods allows to identify a subset of important features 
that can be used as biomarkers of the appropriate disease. 
In the following, we introduce some related work on feature 
selection for both non-linked and linked data.

2.1  Feature selection for non‑linked data

Recently, many learning techniques have been proposed to 
solve the problem of feature selection. It is certainly worth 
mentioning a number of methods that have emerged empiri-
cally for their effectiveness. One of the differences among 
various feature selection procedures is the way they perform 
the search in the feature space. Three categories of feature 
selection methods can be distinguished as follows: filter [7, 
13], wrapper [8], and embedded methods [9, 10].

Filter methods assess features by calculating a relevant 
score for each one of them. The low‐relevant features are 
then removed, and the selected features may then be used 
to serve classification via many types of classifiers. Fea-
ture selection filter-based methods can scale easily to high-
dimensional datasets since they are computationally simple 
and fast compared with the other approaches. Various exam-
ples for filter-based approaches are ReliefF [11], mRMR 
[12], SPEC [13], Laplacian score [14], and its extensions 
[13].
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Wrapper methods evaluate feature subsets using a pre-
dictive model which is run on the dataset partitioned into 
training and testing sets. Each subset is used with training 
dataset to train the model, which is then tested on the test 
set. Calculating a model prediction error from the test set 
gives a score for that feature subset. The subset with the 
highest evaluation is selected as the final set on which to 
run this particular model. The wrapper methods are com-
putationally expensive since they need a new model to be 
fitted for each subset [15, 16]. In the embedded models, 
however, feature selector is a combination of both filter 
and wrapper. They are less computationally expensive 
than the wrapper methods.

Depending on the availability of class labels, feature 
selection algorithms can be categorized into supervised 
methods and unsupervised methods [8]. In the supervised 
methods such as Fisher score [17] and ReliefF [11], class 
labels provide a clear guidance to the feature selection pro-
cess. This is because supervised methods usually are more 
reliable than unsupervised ones. However, these methods 
suffer from two main restrictions. First, since they evalu-
ate each feature independently, they ignore the correlation 
between features. Second, access to labeled training data 
in real world is too expensive. Nevertheless, much atten-
tion has been paid to unsupervised feature selection in 
recent years.

Unsupervised feature selection becomes more challeng-
ing problem due to the absence of class labels. Unsuper-
vised filter methods usually assign each feature a score 
which can indicate the feature’s capacity to preserve the 
structure of data. Top-ranked features are selected since 
they can best preserve the structure of data. The typical 
methods include maximum variance [18], Laplacian score 
[14], and SPEC [13]. Unsupervised wrapper methods [19] 
require a learning algorithm to evaluate the candidate fea-
ture subsets. Unsupervised embedded methods perform 
feature selection as a part of model training process, e.g., 
UDFS [20] and NDFS [21].

State-of-the-art approaches introduce the notion of 
pseudo-labels [20–22] to guide the feature selection pro-
cess. Unsupervised Discriminative Feature Selection 
(UDFS) [20] introduces pseudo-labels to better capture 
the discriminative information, and the sparsity-inducing 
l2,1 norm is used to select features in an iterative manner. 
NDFS [21] performs non-negative spectral analysis and 
feature selection simultaneously.

The basic idea is to imitate supervised methods by gen-
erating pseudo-labels via certain clustering methods (e.g., 
spectral clustering and non-negative matrix factorization) 
and performing sparse regression toward these cluster 
labels. However, the generated pseudo-labels are usually 
inaccurate and could further mislead the feature selection 
process.

2.2  Feature selection for linked data

Traditional feature selection approaches assume that data 
instances are independent and identically distributed (i.i.d). 
Several methods have been proposed in recent years in 
which the relationships among data are also considered. 
In the network data, however, instances are implicitly or 
explicitly related to certain correlations and dependencies. 
For example, in research collaboration networks, researchers 
who collaborate with each other (i.e., connections in the net-
work) tend to share more similar research topics (i.e., close 
distances in the feature space) than researchers without such 
collaboration. Most existing feature selection approaches fail 
to exploit the rich information contained in the links.

In [23], a supervised feature selection algorithm (called 
FSNet) is proposed. It adopts linear regression to fit the con-
tent information. Moreover, it uses graph regularization to 
capture the link information. On the other hand, LinkedFS 
[24] selects features in social media data in a semi-super-
vised manner. A supervised feature selection framework, 
CoSelect, for social media data is proposed in [25]. Instance 
selection is incorporated into feature selection in CoSelect 
in order to select relevant instances while selecting features 
simultaneously.

Linked unsupervised feature selection (LUFS) [26] is 
an unsupervised feature selection method that utilizes both 
content and link information. LUFS exploits network infor-
mation through incorporating social dimension-based regu-
larization [27] into the UDFS framework [20]. It enforces 
the nodes within the same social dimension to have similar 
pseudo-labels. But the social dimensions generated from 
links (e.g., by modularity [28] or spectral clustering [29]) 
and pseudo-labels generated from attributes are usually far 
from accurate, which could mislead the feature selection 
process.

In our previous work, an unsupervised feature selection 
method in social media data (called UFSS) is presented 
[43]. UFSS incorporates the inter-relationship of objects in 
addition to their feature values. By using graph partitioning, 
the objects are labeled and then are applied in the objective 
function. An iterative algorithm is designed to optimize the 
proposed objective function. However, in UFSS, the labeling 
of objects is a pre-processing step and these labels do not 
change during the algorithm’s run; which is a constraint.

In this paper, however, the labels of objects are assigned in 
a dynamic manner. Unlike UFSS and LUFS which use graph 
partitioning and social dimension incorporation for static labe-
ling, the proteins are labeled dynamically in the consecutive 
iterations of UFLB so that, after its convergence, an appropri-
ate clustering of proteins is achieved. Our unsupervised feature 
selection method for linked biological data takes into account 
both inter-protein relationship information and feature content 



1002 Pattern Analysis and Applications (2019) 22:999–1013

1 3

of proteins. It tries to select some features which effectively 
discriminate proteins in the reduced space by using PPIs.

3  The proposed method

Our proposed approach is categorized in hybrid methods since 
combines both filter and wrapper methods. In this section, we 
present several concepts as preliminaries of our unsupervised 
feature selection method. We aim to select a set of effective 
features which can highly discriminate the protein classes.

3.1  Notations

In this work, we use P =
{
p1, p2,… , pn

}
 to denote the set 

of n proteins and F =
{
f1, f2,… , fm

}
 the set of m features. 

Also, let A ∈ m×n holds the feature values of these proteins. 
That is, the vector A(∶, j) represents the features of protein 
and A(i, ∶) is the values of feature fi in all proteins. Addition-
ally, R ∈ n×n denotes the link information for protein–protein 
network where R(i, j) is set to 1 if protein pi and pj are linked 
and 0 otherwise. We imagine there are undirected connec-
tions between proteins, that is, R = RT . By applying the cen-
tering matrix H = In −

1

n
1n1

T
n
 on A via X = AH , we obtain 

the data matrix X ∈ m×n . This matrix is centered, that is, ∑n

j=1
X(∶, j) = 0 . In H , In is the identity matrix and 1n is a 

column vector of n ones.

3.2  Unsupervised feature selection for linked 
biological data

Supposing the n proteins are sampled from c classes/clus-
ters, we assume that there is a mapping matrix M ∈ m×c 
which assigns the proteins with a cluster label indicator 
matrix C ∈ c×n . In this matrix, C(∶, i) ∈ {0, 1}c×1 rep-
resents the cluster indicator vector for protein pi . To use 
its scaled version G(∶, i) , we define the scaled cluster indi-
cator matrix G ∈ c×n where G =

(
CCT

)− 1

2C [30] and 
GGT =

(
CCT

)− 1

2CCT
(
CCT

)− 1

2 = Ic.
Accordingly, our aim was to learn the scaled cluster indi-

cator matrix G and the feature selection matrix M simultane-
ously. In this regard, we propose to optimize the following 
objective function:

 where ‖.‖2
F
 is the Frobenius norm [32] and ‖M‖2,1 is the l2,1

-norm of M [31] which controls the capacity of this matrix. 
The parameter � is used to control the sparsity of M . Due to 

(1)min
M

���M
TX − G

���
2

F
+ �‖M‖2,1

the nature of the l2,1-norm penalty, some coefficients will be 
shrunk to exact 0 if � is large enough.

In (1), M essentially contains the combination coefficients 
for different features in approximating G . The joint minimiza-
tion of the regression model and l2,1-norm regularization term 
enables M to evaluate the correlation between cluster indicator 
and features. Also, minimizing ‖M‖2,1 ensures that M is sparse 
in rows. These reasons, altogether, make M particularly suit-
able for feature selection.

By considering matrix R and the fact that linked proteins 
are likely to have similar cluster label indicator, we are going 
to minimize the following term:

 where L = D − R is a Laplacian matrix and D is a diagonal 
matrix with Dii =

∑n

j=1
Rij on diagonal elements. Including 

(2) in (1), we obtain the new version of objective function:

According to the definition of G , its elements are con-
strained to be discrete values, making the optimization of (3) 
an NP-hard problem [33]. A well-known solution is to relax it 
from discrete values to continuous ones [33, 34], so the objec-
tive function in (3) is relaxed to:

The last part of our objective function is formed by taking 
into account the (centered) protein information matrix X for 
discrimination. A well-known method to utilize discriminative 
information is to find a low-dimensional subspace in which the 
between-class scatter matrix Qb is maximized while minimiz-
ing the total scatter matrix Qt [35].

As in [43], the maximum of Tr
(

Qb

Qt

)
 (minimum of its nega-

tive) is included in (4) and the new objective function is given 
by:

(2)min
G

1

2

n�

i,j=1

RijG‖(∶, i) − G(∶, j)‖2
2
= Tr

�
GLGT

�

(3)minM,G
���M

TX − G
���
2

F
+ �‖M‖2,1 + Tr

�
GLGT

�

(4)minM,G
���M

TX − G
���
2

F
+ �‖M‖2,1 + Tr

�
GLGT

�
.

s.t. GGT = Ic

(5)

min
M,G

���M
TX − G

���
2

F
+ �‖M‖2,1 + Tr

�
GLGT

�
− �Tr

�
Qb

Qt

�

s.t. GGT = Ic
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 where parameter � controls the discrimination value. In 
order to use the definitions of Qb and Qt in [43], we define 
Y = MTX and so:

Note that all the elements of G are non-negative by 
definition. However, the optimal G of (6) has mixed signs 
which violates its definition and makes G severely deviate 
from the ideal cluster indicators. As a result, we cannot 
directly assign labels to data using the cluster indicator 
matrix G . To address this problem, it is reasonable to 
impose a non-negative constraint into the objective func-
tion. When both non-negative and orthogonal constraints 
are satisfied, there is only one positive element in each row 
of G , while all others are zero. In that way, the learned G is 
more accurate and more capable to provide discriminative 
information. Therefore, by rewriting (6), the new objective 
function is obtained as follows:

To optimize this function, we propose an iterative opti-
mization algorithm. In this regard, we rewrite the objective 
function in (7) as follows:

 where 𝛼 > 0 is a parameter to control the orthogonality con-
dition. In practice, � should be large enough to insure the 
orthogonality satisfied. For the ease of representation, the 
last objective function J(M,G) is defined as follows:

(6)
min
M,G

���M
TX − G

���
2

F
+ �‖M‖2,1 + Tr

�
GLGT

�
+ �Tr

�
YYT − YGTGYT

�

s.t. GGT = Ic

(7)

min
M,G

���M
T
X − G

���
2

F

+ �‖M‖2,1 + Tr
�
GLG

T
�

+ �Tr(MT
X
�
I
n
− G

T
G
�
X
T
M

s.t. GGT = Ic and G ≥ 0

(8)

min
M,G

���M
T
X − G

���
2

F

+ �‖M‖2,1 + Tr
�
GLG

T
�

+ �Tr(MT
X
�
I
n
− G

T
G
�
X
T
M + �

���GG
T − I

���
2

cF

s.t. G ≥ 0

Theorem  1 The mapping matrix M in J(M,G) can be 
updated as follows:

 where DM is an m × m diagonal matrix with 1

‖2M(i,∶)‖2
 on its 

i th row.

Proof In order to minimize J(M,G) in (9), its derivative is 
taken as follows:

By setting this derivative to zero, the update rule in (10) is 
obtained. □

Theorem  2 The scaled cluster indicator matrix, G , is 
updated by this rule:

 w h e r e  U = MTX +MTXGTMTX + 2�G  a n d 
V = G + GL + 2�GGTG.

Proof Following [36–38], we introduce multiplicative updat-
ing rules. Setting derivative of J(M,G) with respect to Gij 
to 0 and using the Karush–Kuhn–Tucker condition [39], we 
obtain the updating rule in (11). □

Using the updating rule of M in (10) and of G . in (11), 
we have developed the iterative algorithm of UFLB:

(9)

J(M,G) =
���M

T
X − G

���
2

F

+ �‖M‖2,1 + Tr
�
GLG

T
�

+ �Tr(MT
X
�
I
n
− G

T
G
�
X
T
M + �

���GG
T − I

���
2

cF

(10)M(new) =
(
XXT + �X

(
In − GTG

)
XT + �D

(old)

M

)−1

XGT

�J(M,G)

�M
= 2XXTM − 2XGT + 2�DMM + 2�X

(
In − GTG

)
XTM

(11)G
(new)

ij
= G

(old)

ij
.
U

(old)

ij

V
(old)

ij
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The larger the norm of ‖M(i, ∶)‖2 , the more informative 
the feature fi is.

4  Experiments and discussion

In this section, we present experiment details to verify the 
effectiveness of the proposed framework, UFLB. In this 
regard, it is compared against the state-of-the-art unsuper-
vised feature selection with/without link information. We 
evaluate the effectiveness of the selected features using both 
accuracy measure and clustering quality. Then, the effects 
of parameters on performance of UFLB are discussed. At 
last, its convergence analysis is conducted via experiments.

4.1  Datasets

In this work, some labeled genes from Online Mendelian 
Inheritance in Man (OMIM) with six groups of confirmed 
diseases are selected. The labels are cardiovascular disease, 
endocrine disease, cancer disease, metabolic disease, neuro-
logical disease, and ophthalmological disease [40, 45]. With 
respect to the quality and the performance of disease gene 
classification methods, the data are derived from multiple 
biological sources [41]. This dataset consists of 949 genes 
with 4004 features and 956 links. The features are extracted 

from gene ontology (3000 features), protein domain (1000 
features), and protein–protein interactions (4 features) to con-
struct the feature vector of each gene [45]. We have reduced 
the dataset to uncover the features which none of the genes 
contain them. So, the dataset is reduced to 3522 features.

The second dataset consists of a subset of IntAct1 with 
three groups of diseases. IntAct provides an open source 
database and toolkit for the storage, presentation, and analy-
sis of protein interactions. We extract 846 genes/proteins 
from cancer, Alzheimer, and Parkinson databases with 1980 
links. The sequence of each gene/protein is obtained from 
UniProt2 database. Then, using the distribution of 1 gram, 2 
grams and 3 grams in each protein sequence, 8420 features 
are extracted from the combinations of amino acids [44]. 
By reducing the dataset to uncover the features which none 
of the genes/proteins contain them, the dataset is reduced to 
8404 features.

A subset of HPRD3 database is selected as third dataset. 
This dataset contains 234 genes from four disease classes: 
diabetes, myopathy, syndrome, and cancer. Each gene has 
8420 features which are extracted from the combinations of 
amino acids. In our experiments, a small number of samples 

1 http://www.ebi.ac.uk/intac t/.
2 http://www.unipr ot.org/unipr ot/.
3 http://www.hprd.org/.

http://www.ebi.ac.uk/intact/
http://www.uniprot.org/uniprot/
http://www.hprd.org/
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(genes) versus too many features are selected to evaluate 
UFLB.

The fourth dataset contains fewer features than the three 
datasets. In this dataset, 966 genes with 127 features are 
used. Its six classes, Parkinson, Alzheimer, vitiligo, chronic 
lymphocytic leukemia, schizophrenia, and type I diabetes 
mellitus, are extracted from Hetio4 database.

The statistics of datasets is shown in Table 1.

4.2  Evaluation measures

Following the convention of clustering study, we have evalu-
ated the clustering quality of UFLB by two commonly used 
metrics, Unsupervised Accuracy Measure (UAM) and Nor-
malized Mutual Information (NMI).

Denoting qi as the clustering result and gi as the ground-
truth label of protein pi , UAM is computed as [20]:

 where

and map(q) is the best mapping function that permutes 
clustering labels to match the ground-truth labels using the 
Kuhn–Munkres algorithm. The larger UAM indicates the 
better performance.

Also, NMI is computed as [42]:

where tl is the number of proteins in l th cluster (l = 1,… , c) ., 
and th is the number of proteins in h th ground-truth class 
(h = 1,… , c) . Also, tl,h is the number of proteins in both l 

(12)UAM =
1

n

n∑

i=1

�
(
gi,map

(
qi
))

(13)�(g, q) =

{
1, if g = q

0, if g ≠ q

(14)NMI =
∑

l

∑

h

tl,hlog

(
n × tl,h

tl × th

)
∕

√√√√
(
∑

l

tllog
( tl
n

))(
∑

h

thlog
( th
n

))

th cluster and h th ground-truth class. Agn, higher values of 
NMI, report the better clustering results.

4.3  Experimental results

In this subsection, we compare the quality of features, 
selected by different algorithms, using NMI and accuracy 
metrics. For baseline methods with some parameters, we 
have tried different parameter values and reported the best 
performance. UFLB has three important parameters: � , � , 
and � which control the discriminative information, sparsity, 
and orthogonality, respectively. To select the best param-
eters, each one is set while holding the others fixed to see 
how accuracy of UFLB varies when different number of 
features is selected. Figure 1 depicts the NMI measure when 
three parameters of UFLB are examined for OMIM dataset.

As shown in Fig. 1, it is clear that for 𝛼 > 0.5 , NMI values 
degrade. In the case of � , the values are closer to each other 
though for � = 0.9 , they are least. Also for � , the values of 
NMI decrease when � decreases. However, for � = 0.9 , NMI 
reduces drastically. Consequently, setting the parameters of 
orthogonality, sparsity, and discrimination to high values 
cannot generate the desired results. At last, these parameters 
are set as � = 0.5 , � = 0.7 , and � = 0.3 in the experiments 
on OMIM dataset. Similarly, for three other datasets, these 
settings are achieved: � = 0.3 , � = 0.5 , � = 0.3 for IntAct; 
� = 0.1 , � = 0.2 , � = 0.3 for HPRD, and � = 0.3 , � = 0.1 , 
� = 0.1 for Hetio.

After setting appropriately the parameters of UFLB, its 
performance is compared against seven unsupervised feature 
selection algorithms in terms of UAM and NMI metrics. 
These methods are described briefly here.

(1) UDFS is proposed in [20] to optimize the l2,1-norm 
regularized minimization problem with orthogonal 
constraint. It selects the most discriminative feature 
subset from the whole feature set in batch mode.

(2) UFSS [43] utilizes both the relationship between 
instances and information of features to propose an 
objective function. This function seeks for a mapping 
matrix in which the discriminative information of each 

feature exists. Finally, the ranked features are obtained 
by utilizing this mapping matrix.

(3) NMF [37] is a matrix factorization method which 
approximately decomposes a known matrix into two 
unknown matrices with much lower dimensions.

Table 1  Statistics of four linked biological datasets

Dataset No. of 
genes/pro-
teins

No. of features No. of links No. of 
classes

OMIM 949 3522 956 6
IntAct 846 8404 1980 3
HPRD 234 8420 716 4
Hetio 966 127 2124 6

4 http://het.io/disea se-genes /.

http://het.io/disease-genes/
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(4) Laplacian score [14] is based on the observation that, 
in many real-world classification problems, data from 
the same class are often close to each other. The impor-
tance of a feature is evaluated by its power of locality 
preserving via Laplacian score.

(5) LUFS [2] is an unsupervised feature selection frame-
work for linked data in social media. This framework 
utilizes a concept of social dimensions from social net-
work analysis to extract relations among linked data 

as groups. Then, it defines a social dimension regu-
larization inspired by linear discriminant analysis to 
mathematically model these relations.

(6) SPEC [13] is a general framework of spectral feature 
selection for both supervised and unsupervised learn-
ing. It is based on sparse multi-output regression by 
considering l2.1-norm. This algorithm performs well in 
both redundant features removing and relevant features 
preserving.

Fig. 1  NMI measure with different values of a � , b � , and c �

Table 2  NMI measure of 
different feature selection 
methods for OMIM dataset

Bold values represent the best result compare to other results

Method Number of selected best features 3522

200 400 600 800 1000 2000

UFLB 0.1186 0.1169 0.1181 0.1061 0.0965 0.0848 0.0795
UFSS 0.0446 0.0944 0.0859 0.0854 0.0870 0.0750
UDFS 0.0372 0.0406 0.0398 0.0428 0.0459 0.0547
SPEC 0.0421 0.0454 0.0403 0.0403 0.0441 0.0765
Laplacian 0.0184 0.0267 0.0621 0.0759 0.0667 0.0694
CGSSL 0.1075 0.0889 0.0882 0.0938 0.0976 0.0818
NMF 0.0652 0.0817 0.0866 0.0845 0.0831 0.0880
LUFS 0.0796 0.0881 0.0872 0.0828 0.0884 0.0955
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(7) CGSSL [6] jointly exploits non-negative spectral analy-
sis and structural learning with sparsity. In this unsuper-
vised feature selection approach, the cluster indicators, 
learned by non-negative spectral clustering, are used to 
provide label information for the structural learning.

The comparison results w.r.t both UAM and NMI are 
demonstrated in Table 2 and Table 3 for OMIM dataset. 
In these tables, q best features of each method are exam-
ined. Moreover, the clustering performance with all features 
(i.e., without feature selection) is also reported. Note that 
the results of each evaluation criterion are reported in two 
forms: in tabular (left) and in plot (right).

According to results in Table 2 and 3, UFLB mostly 
outperforms seven compared methods. Although NMI’s 
results for UFLB are much better than other methods, its 
values are generally small. This is because those proteins, 
which are placed in a ground-truth class, are not neces-
sarily grouped in the same cluster. This in turn leads to a 
noticeable decrease in NMI. This also occurs for UAM.

In order to evaluate the accuracy measure more reli-
able, ground-truth labels are considered. By utilizing 
these labels, Multi-class Support Vector Machine (SVM) 
classifier [46] is trained and the classification accuracy is 
calculated according to the obtained results in Table 4. As 
depicted here, the accuracy of UFLB is near to LUFS and 

Table 3  UAM of different 
feature selection methods for 
OMIM dataset

Bold values represent the best result compare to other results

Method Number of selected best features 3522

200 400 600 800 1000 2000

UFLB 0.3404 0.3267 0.3298 0.3171 0.3120 0.3446 0.3135
UFSS 0.3219 0.3305 0.3259 0.3151 0.3118 0.3213
UDFS 0.2544 0.2551 0.2430 0.2512 0.2745 0.2822
SPEC 0.2450 0.2473 0.2408 0.2507 0.2701 0.2880
Laplacian 0.2415 0.2786 0.2976 0.2932 0.2900 0.3020
CGSSL 0.3066 0.2982 0.2972 0.2961 0.3066 0.2856
NMF 0.2898 0.3024 0.2845 0.2761 0.2782 0.2929
LUFS 0.2613 0.2782 0.2929 0.3035 0.2972 0.2887

Table 4  Classification accuracy 
of different feature selection 
methods for OMIM dataset

Bold values represent the best result compare to other results

Method Number of selected best features 3522

200 400 600 800 1000 2000

UFLB 0.6196 0.6812 0.7160 0.7544 0.7981 0.8661 0.9020
UFSS 0.5653 0.6668 0.7260 0.7412 0.7653 0.8165
UDFS 0.3898 0.4278 0.4373 0.4942 0.5057 0.7323
SPEC 0.4836 0.5110 0.5468 0.5690 0.6122 0.8061
Laplacian 0.3466 0.4351 0.4762 0.5395 0.5911 0.7249
CGSSL 0.5932 0.6585 0.7070 0.7523 0.7839 0.8514
NMF 0.5047 0.5268 0.6111 0.6406 0.6701 0.8155
LUFS 0.5911 0.6680 0.7260 0.7618 0.7829 0.8351

Table 5  NMI measure of 
different feature selection 
methods for IntAct dataset

Bold values represent the best result compare to other results

Method Number of selected best features 8404

500 1000 1500 2000 4000 6000

UFLB 0.0239 0.0095 0.0121 0.0181 0.0183 0.0107 0.0094
UFSS 0.0084 0.0124 0.0094 0.0087 0.0050 0.0150
UDFS 0.0073 0.0084 0.0071 0.0071 0.0071 0.0085
SPEC 0.0078 0.0094 0.0079 0.0094 0.0082 0.0107
Laplacian 0.0097 0.0106 0.0078 0.0087 0.0101 0.0123
CGSSL 0.0102 0.0122 0.0066 0.0086 0.0147 0.0083
NMF 0.0071 0.0073 0.0072 0.0072 0.0073 0.0071
LUFS 0.0205 0.0105 0.0096 0.0046 0.0052 0.0197
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Table 6  UAM of different 
feature selection methods for 
IntAct dataset

Bold values represent the best result compare to other results

Method Number of selected best features 8404

500 1000 1500 2000 4000 6000

UFLB 0.3853 0.3830 0.3690 0.3917 0.3700 0.3747 0.3700
UFSS 0.3775 0.3570 0.3629 0.3593 0.3700 0.3725
UDFS 0.3570 0.3700 0.3569 0.3700 0.3688 0.3700
SPEC 0.3688 0.3725 0.3582 0.3570 0.3672 0.3700
Laplacian 0.3383 0.3582 0.3441 0.3476 0.3547 0.3606
CGSSL 0.3593 0.3593 0.3511 0.3546 0.3759 0.3558
NMF 0.3582 0.3569 0.3570 0.3570 0.3570 0.3570
LUFS 0.3558 0.3712 0.3696 0.3697 0.3712 0.3695

Table 7  Classification accuracy 
of different feature selection 
methods for IntAct dataset

Bold values represent the best result compare to other results

Method Number of selected best features 8404

500 1000 1500 2000 4000 6000

UFLB 0.7133 0.6733 0.6866 0.6800 0.6766 0.6466 0.6333
UFSS 0.6766 0.6866 0.6666 0.6533 0.6533 0.6533
UDFS 0.6266 0.6400 0.6600 0.6533 0.6466 0.6400
SPEC 0.5133 0.6266 0.5266 0.5866 0.5733 0.5333
Laplacian 0.6066 0.6400 0.5733 0.6066 0.5666 0.5933
CGSSL 0.6866 0.6600 0.6600 0.6733 0.6600 0.6533
NMF 0.6733 0.5933 0.6600 0.6533 0.6466 0.6400
LUFS 0.6800 0.6800 0.6733 0.6600 0.6600 0.6600

Table 8  NMI measure of 
different feature selection 
methods for HPRD dataset

Bold values represent the best result compare to other results

Method Number of selected best features 8420

500 1000 1500 2000 4000 6000

UFLB 0.1332 0.1323 0.1324 0.1346 0.1295 0.1295 0.1303
UFSS 0.1317 0.1275 0.1295 0.1323 0.1323 0.1323
UDFS 0.1204 0.1295 0.1227 0.0989 0.1060 0.0989
SPEC 0.1022 0.1216 0.1241 0.1317 0.1295 0.0989
Laplacian 0.1397 0.1235 0.1205 0.1205 0.1096 0.1096
CGSSL 0.0968 0.0989 0.1060 0.0837 0.0837 0.0847
NMF 0.1204 0.1204 0.1204 0.1204 0.0964 0.1204
LUFS 0.1264 0.1258 0.1295 0.1302 0.1204 0.1295

Table 9  UAM of different 
feature selection methods for 
HPRD dataset

Bold values represent the best result compare to other results

Method Number of selected best features 8420

500 1000 1500 2000 4000 6000

UFLB 0.4487 0.4444 0.4444 0.4487 0.4444 0.4444 0.4444
UFSS 0.4389 0.4256 0.4265 0.4308 0.4269 0.4239
UDFS 0.4226 0.4252 0.4145 0.3974 0.3718 0.3932
SPEC 0.3761 0.3932 0.3632 0.3803 0.3974 0.3932
Laplacian 0.3846 0.3675 0.3889 0.4359 0.3761 0.3803
CGSSL 0.3932 0.3675 0.3718 0.3932 0.4188 0.4017
NMF 0.4145 0.4017 0.3932 0.4060 0.4060 0.3718
LUFS 0.4246 0.4275 0.3932 0.4017 0.3975 0.3918
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UFSS in most cases. This is because these algorithms take 
into account the link information. However, the execution 
time of UFLB is less than both LUFS and UFSS.

In the same way, the NMI, UAM, and classification 
accuracy of eight methods for IntAct dataset are shown in 
Tables 5, 6, and 7, respectively.

It is clear that in most cases for IntAct dataset, UFLB 
is better than the other methods. It outperforms almost all 
traditional feature selection methods which do not take 
into account link information. Also, in comparison with 
UFSS and LUFS, our proposed method obtains the better 
results in most cases.

In Tables 8, 9, and 10, the NMI, UAM, and classifica-
tion accuracy of eight feature selection methods are shown 
for HPRD dataset. Clearly, UFLB works the best in most 
cases, though the sample size is not large. This depicts that 
the performance of UFLB is acceptable in medium-sized 
datasets with huge dimensions.

The results of NMI, UAM, and accuracy on Hetio data-
set are reported in Tables 11, 12, and 13 where UFLB 
is compared against seven unsupervised feature selection 
methods. According to these results, UFLB outperforms 
the other methods, in most cases, for this dataset with 
many genes and a few features, because of taking into 
account the link information.

Table 10  Classification 
accuracy of different feature 
selection methods for HPRD 
dataset

Bold values represent the best result compare to other results

Method Number of selected best features 8420

500 1000 1500 2000 4000 6000

UFLB 0.3437 0.3437 0.3750 0.3750 0.4062 0.3958 0.3437
UFSS 0.3125 0.3333 0.3437 0.3541 0.3541 0.3541
UDFS 0.3125 0.3125 0.3125 0.3437 0.3541 0.3541
SPEC 0.2708 0.3333 0.3541 0.3541 0.3333 0.3125
Laplacian 0.3125 0.2916 0.2916 0.3125 0.3125 0.3125
CGSSL 0.3333 0.3125 0.3125 0.3125 0.3125 0.3541
NMF 0.3333 0.3333 0.3958 0.3541 0.3125 0.3125
LUFS 0.3225 0.3325 0.3425 0.3525 0.3333 0.3541

Table 11  NMI measure of 
different feature selection 
methods for Hetio dataset

Bold values represent the best result compare to other results

Method Number of selected best features 127

20 40 60 80 100 120

UFLB 0.0696 0.0761 0.0778 0.0756 0.0773 0.0723 0.0768
UFSS 0.0619 0.0562 0.076 0.0734 0.0735 0.0745
UDFS 0.0719 0.0608 0.0753 0.0723 0.0717 0.0743
SPEC 0.0722 0.073 0.0738 0.073 0.0738 0.0727
Laplacian 0.0609 0.0685 0.0676 0.0714 0.0723 0.0743
CGSSL 0.0577 0.0744 0.0672 0.0736 0.0735 0.0739
NMF 0.0741 0.071 0.07 0.0732 0.0735 0.0731
LUFS 0.0751 0.0727 0.0754 0.0739 0.0741 0.0736

Table 12  UAM of different 
feature selection methods for 
Hetio dataset

Bold values represent the best result compare to other results

Method Number of selected best features 127

20 40 60 80 100 120

UFLB 0.2295 0.2276 0.2307 0.2286 0.2254 0.2236 0.2226
UFSS 0.2429 0.2205 0.2214 0.2249 0.2225 0.221
UDFS 0.218 0.2215 0.2195 0.2217 0.2197 0.2217
SPEC 0.2164 0.2197 0.2189 0.2209 0.2216 0.2203
Laplacian 0.2236 0.2201 0.2236 0.2236 0.22 0.2206
CGSSL 0.2153 0.2195 0.2215 0.2205 0.2184 0.2195
NMF 0.2233 0.2201 0.2264 0.2209 0.2206 0.2205
LUFS 0.2274 0.2195 0.2274 0.2254 0.2212 0.2219
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4.4  Time complexity

To evaluate the time complexity of UFLB, all unsupervised 
feature selection methods are implemented in MATLAB 
R2017, and then, their required CPU time is compared in 
the experiments. The codes are run on a Core i7, 1.8 GHz 
CPU with 8 GB of memory in 64-bit Windows 10. Table 14 
shows the CPU time of UFLB against seven compared meth-
ods when run on four datasets.

From the results, it is clear that UFLB is considerably 
faster than LUFS and UFSS which consider the link infor-
mation. Also, it is faster than CGSSL and UDFS. However, 
UFLB is not faster than SPEC, Laplacian, and NMF since 
they do not use the link information in feature selection. 
Clearly, those methods which select the features by consid-
ering the link information between samples require more 
CPU time to process these communications to improve their 
performance.

4.5  Non‑parametric test

In order to assess statistically the compared methods, we 
have used the non-parametric statistical test to justify the 
significant differences among them. Friedman’s test [47] 
with confidence level of 0.05 is used in the experiment. 

This test is usually applied to show any significant differ-
ence among more than two results.

In Table 15, the classification accuracy of all algorithms 
for the smallest subset of selected features (as reported in 
Tables 4, 7, 10, and 13) on four datasets is displayed. We use 
the Friedman’s test on these accuracies to examine the rejec-
tion of the hypothesis that all the feature selection methods 
perform equally well for a given level. It ranks the methods 
for each dataset separately, and the best performing method 
gets the highest rank.

By applying the Friedman’s non-parametric test, we get 
the p value < 0.01. It can be concluded that at least two of 
the algorithms are significantly different from each other. 

Table 13  Classification 
accuracy of different feature 
selection methods for Hetio 
dataset

Bold values represent the best result compare to other results

Method Number of selected best features 127

20 40 60 80 100 120

UFLB 0.6555 0.5400 0.3888 0.2866 0.2861 0.2555 0.2500
UFSS 0.4611 0.3761 0.3944 0.3000 0.2722 0.2502
UDFS 0.4166 0.3111 0.2777 0.2555 0.2444 0.2500
SPEC 0.1444 0.1777 0.1722 0.1722 0.2277 0.2500
Laplacian 0.4833 0.4333 0.3277 0.2888 0.2533 0.2500
CGSSL 0.4166 0.4166 0.3222 0.2944 0.2722 0.2505
NMF 0.1888 0.1833 0.1833 0.2611 0.2444 0.2516
LUFS 0.5111 0.4888 0.3611 0.2866 0.2633 0.25

Table 14  CPU time (in seconds) of UFLB against seven methods, run 
on four datasets

Method Dataset

OMIM IntAct HPRD Hetio

UFLB 139 1160 704 2.2
UFSS 153 1590 1480 3.9
UDFS 700 4970 7010 3.2
SPEC 63 107 5 6.1
Laplacian 2 3 1 0.4
CGSSL 468 4223 4410 3.3
NMF 4 10 2 0.6
LUFS 762 5716 4520 2.6

Table 15  Classification accuracy of different feature selection meth-
ods for the smallest subset of selected features on four datasets

Method Dataset

OMIM IntAct HPRD Hetio

UFLB 0.6196 0.7133 0.3437 0.6555
UFSS 0.5653 0.6766 0.3125 0.4611
UDFS 0.3898 0.6266 0.3125 0.4166
SPEC 0.4836 0.5133 0.2708 0.1444
Laplacian 0.3466 0.6066 0.3125 0.4833
CGSSL 0.5932 0.6866 0.3333 0.4166
NMF 0.5047 0.6733 0.3333 0.1888
LUFS 0.5911 0.6800 0.3225 0.5111

Table 16  Average rankings of 
the compared methods

Method Ranking

UFLB 8.0
LUFS 6.0
CGSSL 6.0
UFSS 4.5
NMF 4.1
Laplacian 3.0
UDFS 2.8
SPEC 1.5
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Average rankings of the eight methods on four biologi-
cal datasets, examined by Friedman’s test, are shown in 
Table 16. These rankings reveal that UFLB is the most influ-
ential for classification tasks.

5  Discussion

In biological studies, it is important to know that which fea-
tures can better discriminate the groups of hereditary dis-
eases. In this subsection, we explain the nature of selected 
features in four datasets. First, by examining the top-ranked 
features for OMIM dataset, we found that 1000 top features 
are related to gene ontology (specifically biological process 
subontology). According to [46], gene ontology includes 
three subontologies: molecular function as the elemental 
activities of a gene product at the molecular level, biological 
process as a set of molecular functions, and cellular com-
ponents which represent some parts of a cell or its extracel-
lular environment. So, the features which are derived from 
biological process can do better discrimination.

Similarly, for IntAct and HPRD datasets, the top-ranked 
features are investigated. Since the large number of features 
is related to 3-gram distribution, compared to 1 gram and 2 
grams, it is rational that a considerable portion of top-ranked 
features belong to this category. In IntAct dataset, among 
1000 top features, 202 features are from 2-gram and only 

3 features belong to 1-gram distribution. This means that 
the 1-gram features are not discriminative in disease genes.

Furthermore for Hetio dataset, two groups of features are 
extracted: (1) the features computed for each gene–disease pair 
and (2) the processed version of the GNF BodyMap [47] pro-
viding a gene’s expression value for 77 specific tissues which 
can do discrimination more precise.

As stated before, UFLB mostly outperforms the other meth-
ods. Usually, for small number of best features in four datasets, 
UFLB is the best method. This means that UFLB is able to 
recognize the top discriminative features in comparison with 
the other methods. It is worth mentioning that the methods, 
which consider link information, usually outperform the other 
methods. This is because the interacted genes/proteins have 
more similar characteristics than uncorrelated ones. Thus, it is 
beneficial to incorporate PPIs beside to features in the feature 
selection process.

5.1  Convergence study

In this part, we justify it experimentally via plotting the con-
vergence speed. Figure 2 shows the value of objective func-
tion, in (9), in consecutive iterations of algorithm. From these 
plots, it is clear that UFLB converges only after few iterations 
in four datasets. This justifies that the algorithm of UFLB con-
verges certainly and quickly.

Fig. 2  Convergence curves of 
UFLB for a OMIM, b IntAct, c 
HPRD, and d Hetio datasets
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6  Conclusion

Classification of hereditary disease genes/proteins plays 
a significant role in prediction and diagnosis of diseases. 
Diseases with the same or similar phenotype have the same 
biological features which describe them. Since there are 
often a large number of features related to biological data 
(genes/proteins), it is important to find out which input 
features are useful in diagnosis of a given disease. This is 
because feature selection is an important tool in biological 
researches.

On the other hand, almost all methods presented so far 
for feature selection in biological data have not considered 
the inter-relationship between data. However, interacted 
proteins have more similar characteristics than uncorre-
lated ones; it is beneficial to incorporate PPI in addition 
to features in feature selection.

Therefore, an unsupervised method for feature selection 
is proposed here because of the existing a huge subset of 
unlabeled data in biological studies. For this purpose, by 
optimizing a novel objective function, which incorporates 
both the inter-relationship of genes/proteins in addition to 
their features, the top-ranked features are extracted. Also, 
unlike other methods, in this paper, the data are labeled 
dynamically in the consecutive iterations of proposed 
algorithm so that, after its convergence, an appropriate 
clustering of proteins is achieved.

We compare our proposed method with some well-
known evaluation criteria on two real-world datasets. The 
experimental results demonstrated the effectiveness of our 
proposed method in exploiting link information for select-
ing informative features in comparison with the state-of-
the-art methods.

References

 1. Loscalzo J, Kohane I, Barabási A-L (2007) Human disease clas-
sification in the postgenomic era: a complex systems approach 
to human pathobiology. Mol Syst Biol 3(124):1–11

 2. Tang J, Liu H (2012) Unsupervised feature selection for linked 
social media data. In: KDD

 3. Nie F, Huang H, Cai X, Ding CHQ (2010) Efficient and robust 
feature selection via joint l2, 1-norms minimization. In: NIPS, 
pp 1813–182

 4. Newman MEJ, Girvan M (2004) Finding and evaluating com-
munity structure in networks. Phys Rev E 69(2):026113

 5. Backstrom L, Leskovec J (2011) Supervised random walks: pre-
dicting and recommending links in social networks. In: WSDM, 
pp 635–644

 6. Li Z, Liu J, Yang Y, Zhou X, Lu H (2014) Clustering-guided 
sparse structural learning for unsupervised feature selection. 
IEEE Trans Knowl Data Eng 26(9):2138–2150

 7. Peng H, Long F, Ding CHQ (2005) Feature selection based on 
mutual information: criteria of maxdependency, max-relevance, 

and min-redundancy. IEEE Trans Pattern Anal Mach Intell 
27(8):1226–1238

 8. Dy JG, Brodley CE (2004) Feature selection for unsupervised 
learning. J Mach Learn Res 5:845–889

 9. Cawley GC, Talbot NLC, Girolami M (2006) Sparse multinomial 
logistic regression via bayesian l1 regularisation. In: NIPS, pp 
209–216

 10. Tibshirani R (1996) Regression shrinkage and selection via the 
lasso. J R Stat Soc (Ser B) 58:267–288

 11. Robnik-Sikonja M, Kononenko I (2003) Theoretical and empirical 
analysis of ReliefF and RReliefF. Mach Learn 53(1):23–69

 12. Peng H, Long F, Ding C (2005) Feature selection based on 
mutual information: criteria of max-dependency, max-relevance, 
and min-redundancy. IEEE Trans Pattern Anal Mach Intell 
27(8):1226–1238

 13. Zhao Z, Liu H (2007) Spectral feature selection for supervised and 
unsupervised learning. In: Proceedings of the 24th international 
conference on machine learning, ACM, pp. 1151–1157

 14. He X, Cai D, Niyogi P (2006) Laplacian score for feature selec-
tion. In: NIPS, vol. 18, no. 507

 15. Constantinopoulos C, Titsias M, Likas A (2006) Bayesian feature 
and model selection for gaussian mixture models. In: TPAMI, pp. 
1013–1018

 16. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for 
cancer classification using support vector machines. Mach Learn 
46(1):389–422

 17. Pehro D, Stork DG (2001) Pattern Classification. Wiley, London
 18. Krzanowski W (1987) Selection of variables to preserve mul-

tivariate data structure, using principal components. Appl Stat 
26:22–33

 19. Cai D, Zhang C, He X (2010) Unsupervised feature selection for 
multi-cluster data. In: KDD. ACM pp. 333–342

 20. Yang Y, Shen H, Ma Z, Huang Z, Zhou X (2011) L21-norm regu-
larized discriminative feature selection for unsupervised learning. 
In: Proceedings of the twenty-second international joint confer-
ence on artificial intelligence

 21. Li Z, Yang Y, Liu J, Zhou X, Lu H (2012) Unsupervised feature 
selection using nonnegative spectral analysis. In: AAAI

 22. Qian M, Zhai C (2013) Robust unsupervised feature selection. In: 
IJCAI

 23. Gu Q, Han J (2011) Towards feature selection in network. In: 
CIKM

 24. Tang J, Liu H (2012) Feature selection with linked data in social 
media. In: SIAM international conference on data mining

 25. Tang J, Liu H (2013) CoSelect: feature selection with instance 
selection for social media data. In: SIAM international conference 
on data mining

 26. Tang J, Liu H (2014) An unsupervised feature selection frame-
work for social media data. IEEE Trans Knowl Data Eng 
26(12):2914–2927

 27. Tang L, Liu H (2009) Relational learning via latent social dimen-
sions. In: KDD

 28. Newman ME (2006) Modularity and community structure in net-
works. Proc Natl Acad Sci USA 103(23):8577–8582

 29. Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analy-
sis and an algorithm. In: NIPS. MIT Press, pp 849–856

 30. Yang Y, Shen HT, Nie F, Ji R, Zhou X (2011) Nonnegative spec-
tral clustering with discriminative regularization. In: AAAI

 31. Ding C, Zhou D, He X, Zha H (2006) R 1-pca: rotational invari-
ant l 1-norm principal component analysis for robust subspace 
factorization. In: ICML

 32. Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. 
Johns Hopkins, Baltimore

 33. Shi J, Malik J (2000) Normalized cuts and image segmentation. 
IEEE Trans PAMI 22:888–905

 34. Yu SX, Shi J (2003) Multiclass spectral clustering. In: ICCV



1013Pattern Analysis and Applications (2019) 22:999–1013 

1 3

 35. Fukunaga K (1990) Introduction to statistical pattern recognition, 
2nd edn. Academic Press Professional Inc, San Diego

 36. Lee D, Seung H (1999) Learning the parts of objects by nonnega-
tive matrix factorization. Nature 401:788–791

 37. Lee D, Seung H (2001) Algorithms for nonnegative matrix fac-
torization. In: NIPS

 38. Liu Y, Jin R, Yang L (2006) Semi-supervised multilabel learning 
by constrained non-negative matrix factorization. In: AAAI

 39. Kuhn H, Tucker A (1951) Nonlinear programming. In: Berkeley 
symposium on mathematical statistics and probabilistics

 40. Goh K et  al (2007) The human disease network. PNAS 
104(21):8685–8690

 41. Gill N, Singh S, Aseri TC (2014) Computational disease gene 
prioritization: an appraisal. J Comput Biol 21(6):456–465

 42. Strehl A, Ghosh J (2002) Cluster ensembles—a knowledge reuse 
framework for combining multiple partitions. J Mach Learn Res 
3:583–617

 43. Hoseini E, Mansoori EG (2016) Selecting discriminative features 
in social media data: an unsupervised approach. Neurocomputing 
205(C):463–471

 44. Mansoori EG, Zolghadri MJ, Katebi SD (2009) Protein superfam-
ily classification using fuzzy rule-based classifier. IEEE Trans 
Nanobiosci 8(1):92–99

 45. Jowkar GH, Mansoori EG (2016) Perceptron ensemble of graph-
based positive unlabeled learning for disease gene identification. 
Comput Biol Chem 64:263–270

 46. Hsu CW, Lin CJ (2002) A comparison of methods for multiclass 
support vector machines. IEEE Trans Neural Netw 13(2):415–425

 47. Friedman M (1937) The use of ranks to avoid the assumption 
of normality implicit in the analysis of variance. Am Stat Assoc 
32(200):675–701


	Unsupervised feature selection in linked biological data
	Abstract
	1 Introduction
	2 Related work
	2.1 Feature selection for non-linked data
	2.2 Feature selection for linked data

	3 The proposed method
	3.1 Notations
	3.2 Unsupervised feature selection for linked biological data

	4 Experiments and discussion
	4.1 Datasets
	4.2 Evaluation measures
	4.3 Experimental results
	4.4 Time complexity
	4.5 Non-parametric test

	5 Discussion
	5.1 Convergence study

	6 Conclusion
	References




