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Abstract

The renowned k-nearest neighbor decision rule is widely used for classification tasks, where the label of any new sample is
estimated based on a similarity criterion defined by an appropriate distance function. It has also been used successfully for
regression problems where the purpose is to predict a continuous numeric label. However, some alternative neighborhood
definitions, such as the surrounding neighborhood, have considered that the neighbors should fulfill not only the proximity
property, but also a spatial location criterion. In this paper, we explore the use of the k-nearest centroid neighbor rule, which
is based on the concept of surrounding neighborhood, for regression problems. Two support vector regression models were
executed as reference. Experimentation over a wide collection of real-world data sets and using fifteen odd different values of
k demonstrates that the regression algorithm based on the surrounding neighborhood significantly outperforms the traditional
k-nearest neighborhood method and also a support vector regression model with a RBF kernel.

Keywords Nearest neighborhood - Regression analysis - Surrounding neighborhood - Symmetry criterion

1 Introduction

The nearest neighbor (NN) rule constitutes one of the most
popular nonparametric classification models in pattern rec-
ognition and machine learning [7]. The general idea behind
this technique is very simple and intuitive: if two examples
belong to the same class, they should be close enough to

>4 J. S. Sanchez
sanchez@uji.es

V. Garcia
vicente.jimenez @uacj.mx

A. 1. Marqués
imarques @uji.es

R. Martinez-Peldez
rmartinezp @delasalle.edu.mx

Division Multidisciplinaria en Ciudad Universitaria,
Universidad Auténoma de Ciudad Juarez,
32310 Ciudad Juérez, Chihuahua, Mexico

Department of Computer Languages and Systems, Institute
of New Imaging Technologies, Universitat Jaume I,
12071 Castell6 de la Plana, Spain

Department of Business Administration and Marketing,
Universitat Jaume I, 12071 Castell6 de la Plana, Spain

Facultad de Tecnologias de la Informacién, Universidad De
La Salle Bajio, Le6n, Mexico

each other according to a measure of dissimilarity in the
D-dimensional feature space RP. Thus, given a data set of
size n, T = {(X,,Y)),(X,, Y,), ..., (X,, Y,)}, where X; € RP
denotes the i-th training example and ¥; € {@,, @,, ..., 0y}
is its class label, a new sample p is assigned to the class of
its nearest neighbor in the training set 7. An extension to the
NN decision rule is the k-NN classifier, in which the label to
be assigned to p corresponds to the one with a majority of
votes from the k closest examples in 7.

Apart from other properties common to most nonpara-
metric classification techniques, the k&-NN rule combines its
conceptual simplicity and good performance with the fact
that its asymptotic or infinite (n — oo0) error tends to the
optimal Bayes error under very weak conditions (k — oo
and k/n — 0).

In general, the k-NN model has intensively been applied
to classification problems with the aim of predicting or esti-
mating a discrete class label. However, this technique has
already been used for regression modeling [3, 6, 17, 22]
where the labels to be estimated correspond to continuous
values. For instance, Yao and Ruzo [26] proposed a general
framework based on the k-NN algorithm for the prediction
of gene function. Dell’Acqua et al. [8] introduced the time-
aware multivariate NN regression method to predict traffic
flow. Treiber and Kramer [23] analyzed the k-NN regression
method in a multivariate times series model for predicting
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the wind power of turbines. Yang and Zhao [25] developed
several generalized algorithms of the k-NN regression and
applied them to a face recognition problem. Hu et al. [14]
predicted the capacity of lithium-ion batteries by means of
a data-driven method based on k-NN, which is used to build
a nonlinear kernel regression model. Xiao et al. [24] com-
bined NN and logistic regression for the early diagnosis of
late-onset neonatal sepsis. Eronen and Klapuri [10] proposed
an approach for tempo estimation from musical pieces with
k-NN regression. Leon and Popescu [16] presented an algo-
rithm based on large margin NN regression for predicting
students performance using their contributions to several
social media tools. Yu and Hong [27] developed an ensem-
ble of NN regression in low-rank multi-view feature space
to infer 3D human poses from monocular videos.

Intuitively, neighborhood should be defined in a way that
the neighbors of a sample are as close to it as possible and
they are located as homogeneously around it as possible. The
second condition is a consequence of the first in the asymp-
totic case, but in some practical cases, the geometrical dis-
tribution may become even more important than the actual
distances to characterize a sample by means of its neighbor-
hood [19]. As the traditional concept of neighborhood takes
care of the first property only, the nearest neighbors may not
be placed symmetrically around the sample.

Some alternative neighborhoods have been proposed as
a way to overcome the problem just pointed out. These con-
sider both proximity and symmetry so as to define the gen-
eral concept of surrounding neighborhood [19]: they try to
search for neighbors of a sample close enough (in the basic
distance sense), but also in terms of their spatial distribu-
tion with respect to it. The nearest centroid neighborhood
[5] is a well-established representative of the surrounding
neighborhood, showing a better behavior than the classical
nearest neighborhood on a variety of preprocessing and clas-
sification tasks [12, 19, 20, 28].

Taking into account the good performance in classifica-
tion, the purpose of this paper is to introduce the k-nearest
centroid neighbors (k-NCN) model for regression and to
investigate its efficiency by carrying out a comprehensive
empirical analysis over 31 real-life data sets when varying
the neighborhood size (k).

Henceforth, the paper is organized as follows. Section 2
presents the foundations of the k~-NCN algorithm and defines
the regression algorithm proposed in this paper. Section 3
provides the main characteristics of the databases and the
setup of the experiments carried out. Section 4 discusses the
experimental results. Finally, Sect. 5 remarks the main con-
clusions and outlines possible avenues for future research.

@ Springer

2 Regression models based
on neighborhood

In this section, we briefly introduce the basis of the regres-
sion models based on k-NN and k-NCN.

Let T = {(x},a)),...,(X,,a,)} € (xxXa)" be a data set
of n independent and identically distributed (i.i.d.) ran-
dom pairs (X;, a;), where X; = [x;;, X5, ..., X;p] represents an
example in a D-dimensional feature space and a; denotes
the continuous target value associated to it. The aim of
regression is to learn a function f : y — a to predict the
value a for a query sample y = [y,,¥,,...,¥pl

2.1 k-NNregression

The concept of the k-NN rule for regression can be gen-
eralized since the nearest neighbor method assigns a new
sample y the same target value as the closest example in
T, according to a certain dissimilarity measure (generally,
the Euclidean distance). An extension of this procedure is
the k-NN decision rule, in which the algorithm retrieves
the k closest examples in 7.

When k = 1, the target value assigned to the input sam-
ple is the target value indicated by its closest neighbor. For
k > 1, the k-NN regression model (k-NNR) estimates the
target value f(y) of a new input sample y by averaging the
target values of its k-nearest neighbors [2, 13, 15]:

k

1
fo =7 (1)

i=1

where ¢; denotes the target value of the i-th nearest neighbor.

2.2 k-NCN regression

Let p be a query sample whose k-nearest centroid neigh-
bors should be found from a set X = {x,,...,x,}. These k
neighbors are such that (a) they are as near p as possible,
and (b) their centroid is also as close to p as possible. Both
conditions can be satisfied through the iterative procedure
given in Algorithm 1.
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Algorithm 1 Nearest centroid neighbors

1: Input:

2: X ={z1,...,2n} {Input data set}

3: k {Neighborhood size}

4: p {Query point}

5:

6: Output:

70 Q@ ={q1,-..,qr} {Nearest centroid neighbors}
8:

9 Q«— o

10: ¢1 < findNN(X, p) {q1 is the nearest neighbor}

1: Q@ —{q1}
12: Auz — X — {q1}

14: j«— 1

15: while j < k do

16: j—j+1

17: dist «+— oo

18: for all z; € Aux do

19: M — computeCentroid(Q U {z;})
20: if computeDist(M, p) < dist then
21: qj — x;

22: end if

23: end for

240 Q< QuU{g;}
25:  Aux — Aux —{q;}
26: end while

The algorithm is better illustrated through a simple exam-
ple in Fig. 1. The first neighbor of a query point p, which
is denoted by the letter a, corresponds to its first nearest
neighbor. The second neighbor is not the second nearest
neighbor (represented as e); instead, the algorithm picks a
point located in the opposite direction of the first neighbor
with respect to p so that the centroid of that point and all
previously selected neighbors is the closest to p.

This definition leads to a type of neighborhood in which
both closeness and spatial distribution of neighbors are taken
into account because of the symmetry (centroid) criterion.
Besides, the proximity of the nearest centroid neighbors to

Fig.1 A comparison between NCN and NN

the sample is guaranteed because of the incremental nature
of the way in which those are obtained from the first nearest
neighbor. However, note that the iterative procedure outlined
in Algorithm 1 does not minimize the distance to the cen-
troid because it gives precedence to the individual distances
instead. On the other hand, the region of influence of the
NCN results bigger than that of the traditional nearest neigh-
borhood; as can be seen in Fig. 1, the four nearest centroid
neighbors (a, b, ¢, d) of a point p enclose a region quite
bigger than the region defined by the four nearest neighbors
(a,e.f, 8).

For a set of cardinality n, computation of one nearest
centroid neighbor of any point requires at most n centroid
and distance computations, and also n comparisons to find
the minimum of the distances. Therefore, k-nearest centroid
neighbors of a point can be computed in O(kN) time, which
is the same as that required for the computation of k-nearest
neighbors.

From the concept of nearest centroid neighborhood, it
is possible to introduce an alternative regression model,
namely k-NCNR, which estimates the output of a query
sample y as follows:

1. Find the k-nearest centroid neighbors of y by using
Algorithm 1.

2. Estimate the target value of y as the average of the target
values of its k neighbors by means of Eq. 1.

3 Experiments

The main purpose of the experiments in this study is two-
fold. First, we want to establish whether or not the proposed
k-NCNR model outperforms the classical k-NNR algorithm.
Second, we are also interested in evaluating the performance
of the best ~-NCNR and k-NNR algorithms in comparison
with two support vector regression methods. Experimenta-
tion was carried out over a collection of 31 data sets with a
wide variety of characteristics in terms of number of attrib-
utes and samples. All these data sets were taken from the
KEEL repository [1], and their main characteristics are sum-
marized in Table 1.

The fivefold cross-validation procedure was adopted for
the experiments because it provides some advantages over
other resampling strategies, such as bootstrap with a high
computational cost or re-substitution with a biased behavior
[18]. The original data set was randomly divided into five
stratified segments or folds of (approximately) equal size;
for each fold, four blocks were used to fit the model, and the
remaining portion was held out for evaluation as an inde-
pendent test set. Then the results reported here correspond
to the averages across the five trials.

@ Springer
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Table 1 Characteristics of the data sets used in the experiments

#Samples #Attributes
(1) Diabetes 43 2
?) Ele-1 495 2
A3) Plastic 1650 2
“) Quake 2178 3
%) Laser 993 4
6) Ele-2 1056 4
) AutoMPG6 392 5
®) Friedman 1200 5
9 Delta-Ail 7129 5
(10) MachCPU 209 6
(11 Dee 365 6
(12) AutoMPG8 392 7
(13) Anacalt 4052 7
(14) Concrete 1030 8
(15) Abalone 4177 8
(16) California 20,640 8
an Stock 950 9
(18) Wizmir 1461 9
19) Wankara 1609 9
(20) MV 40,768 10
21 ForestFire 517 12
22) Treasury 1049 15
(23) Mortgage 1049 15
24) Baseball 337 16
25) House 22,784 16
(26) Elevators 16,599 18
27 Compact 8192 21
(28) Pole 14,998 26
(29) Puma32h 8192 32
30) Ailerons 13,750 40
31) Tic 9822 85

Table 2 Parameters of the regression algorithms

Method Learning parameters

k-NCNR k =1, 3, --., 29; Euclidean distance

k-NNR k =1, 3, --., 29; Euclidean distance

SVR(L1) Complexity parameter = 1; linear kernel
(polynomial of degree 1); sequential minimal
optimization algorithm; epsilon round-off
error = 1 X 10'%; epsilon insensitive loss func-
tion = 0.001; tolerance = 0.001

SVR(RBF) Complexity parameter = 1; RBF kernel;

sequential minimal optimization algorithm;
gamma = 0.01; epsilon round-off error = 1
x 10'%; epsilon insensitive loss function =

0.001; tolerance = 0.001

@ Springer

The main hyper-parameters of the regression models used
in the experiments are listed in Table 2. Note that two sup-
port vector regression (SVR) algorithms [21], with linear
and RBF kernels, were also employed as reference solutions
for comparison purposes.

3.1 Evaluation criteria

In the framework of regression, the purpose of most per-
formance evaluation scores is to estimate how much the
predictions (py, p,, ..., p,) deviate from the target values
(a;,a,, ... ,a,). These metrics are minimized when the pre-
dicted value for each query sample agrees with its true value
[4]. Probably, the most popular measure that has extensively
been used to evaluate the performance of a regression model
is the root mean square error (RMSE),

RMSE = 1/ rl; 2;(17i —a)? 2

This metric indicates how far the predicted values p; are
from the target values a; by averaging the magnitude of indi-
vidual errors without taking care of their sign.

From the RMSE, we defined the error normalized differ-
ence, which is computed for each data set i and each neigh-
borhood size k as follows:

RMSEyy, — RMSEycy,,
RMSEyy . )

D lfferroriv,\. =

where RMSEyy,, and RMSEycy,  represent the RMSE
achieved on data set i using k-NNR and k-NCNR,
respectively.

In practice, Diffr;,, can be considered as an indicator of
improvement or deterioration of the &-NCNR method with
respect to the k-NNR model:

— if Diff sy, > 0, k-NCNR is better than k<-NNR;
— if Diff,yor,, <0, k-NCNR is worse than k~-NNR;
— if Dijﬁrmr;k ~ 0, there are no significant differences

between k-NNR and k-NCNR.

3.2 Nonparametric statistical tests

When comparing the results of two or more models over
multiple data sets, a nonparametric statistical test is more
appropriate than a parametric one because the former is not
based on any assumption such as normality or homogeneity
of variance [9, 11].

Both pairwise and multiple comparisons were used
in this paper. First, we applied the Friedman’s test to
discover any statistically significant differences among
all the regression models. This starts by ranking the
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algorithms for each data set independently according to
the RMSE results: as there are 30 competing models (15
k-NNR and 15 k-NCNR), the ranks for each data set are
from 1 (best) to 30 (worst). Then the average rank of each
algorithm across all data sets is computed.

As the Friedman’s test only detects significant differ-
ences over the whole pool of comparisons, we then pro-
ceeded with the Holm’s post hoc test in order to compare
a control algorithm (the best model) against the remaining
techniques by defining a collection of hypothesis around
the control method.

Afterward, the Wilcoxon’s paired signed-rank test was
employed to find out whether or not there exist significant
differences between each pair of the five top k.-NNR and
k-NCNR algorithms. This statistic ranks the differences in
performance of two algorithms for each data set, ignoring
the signs, and compares the ranks for the positive and the
negative differences.

In summary, the statistical tests were used as follows:
(i) the Friedman’s test was employed over all the models;
(ii) the Wilcoxon’s, Friedman’s and Holm’s post hoc tests
were applied to the five top-ranked k-NNR and k-NCNR
algorithms with the aim of concentrating the analysis on
the best results of each approach.

4 Results

This section is divided into two blocks. First, the comparison
between the k-NCNR and k-NNR models is discussed in
Sect. 4.1. Second, the results of the best configurations of
k-NCNR and k-NNR are compared against the results of the
SVR models in Sect. 4.2. The detailed results obtained over
each data set and each algorithm are reported in Tables 8
and 9 in the Appendix.

4.1 k-NCNR versus k-NNR

Figure 2 depicts the error normalized difference for each
database (i = 1,...,31) with all neighborhood sizes. The
most important observation is that a vast majority of cases
achieved positive values (Diff., , > 0), indicating that the
performance of the &-NCNR model was superior to that of
the corresponding k-NNR algorithm for most databases.

Figure 3 shows the Friedman’s average ranks achieved
from the RMSE results with all the regression methods (k-
NNR and £-NCNR). As can be observed, the lowest (best)
average ranks were achieved with both strategies using k
values in the range from 9 to 21. More specifically, the best
k-NNR configurations were withk = 9, 11,17, 13, 15, whose
ranks were 6.4194, 6.7097, 6.7903, 6.9032 and 6.9032,
respectively. In the case of k-NCNR, the best k values were
11, 19, 21, 9 and 13 with ranks 7.0323, 7.1935, 7.2581,
7.3226 and 7.3871, respectively.

Fig.2 Error normalized differ- 04 T T T T T T 1
ence on the 31 data sets 3 *
5
03 } {1 7
. 9
3 1 o
% 13 i
02 03 X x1 15 A
x - b4 17 A
= ? = g 19 @
=] o *
E A * ?; ~ 21
e 017 Bx 8 ; 280 4+ 1 23
o §# T & & o © 0 25
0}§'¢'§3++;+~.'§++§++;+;++++lj‘++8*¥-;+$+if29 .
7 ° 2
A
0.1 ¥ 1
_02 L 1 1 1 1 1
5 10 15 20 25 30
# Dataset
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K-NNR o k-NCNR  m—

Friedman ranks

13 6§ 7 9 11 13

15
Neighborhood size(k)

17 19 21 23 25 27 29

Fig.3 Friedman’s ranks of the <-NNR and k&-NCNR models

Table 3 reports the results of the Wilcoxon’s test applied
to the ten best regression models. The upper diagonal half
summarizes this statistic at a significance level of « = 0.10
(10% or less chance), and the lower diagonal half corre-
sponds to a significance level of @ = 0.05. The symbol “¢”
indicates that the method in the row significantly outper-
forms the method in the column, whereas the symbol “o”
means that the method in the column performs significantly
better than the method in the row.

Analysis of the results in Table 3 allows to remark that the
k-NCNR models were significantly better than the k--NNR
algorithms. On the other hand, it is also interesting to note
that different values of k did not yield statistically significant
differences between pairs of the same strategy; for instance,
in the case of k-NCNR, there was no neighborhood size per-
forming significantly better than some other value of k.

Because the Wilcoxon’s test for multiple comparisons
does not allow to conclude which algorithm is the best,
we applied a Friedman’s test to the five top-ranked k-NNR
and k-NCNR approaches and afterward, a Holm’s post

hoc test in order to determine whether or not there exists
significant differences with the best (control) model. As
we had 10 algorithms and 31 databases, the Friedman’s
test using the Iman—Davenport statistic, which is distrib-
uted according to the F-distribution with 10 — 1 =9 and
(10 — 3)(31 — 1) = 270 degrees of freedom, was 8.425717.
The p value calculated by F(9, 270) was 4.3 x 10~!! and
therefore, the null hypothesis that all algorithms performed
equally well can be rejected with a high significance level.
Figure 4 depicts the Friedman’s average rankings for the
five top-ranked k-NNR and k-NCNR algorithms. One can
see that the approach with the best scores corresponds to
11-NCNR, which will be the control algorithm for the subse-
quent Holm’s post hoc test. It is also worth pointing out that
all the k.-NCNR models achieved lower rankings than the
k-NNR methods, proving the superiority of the surrounding
neighborhood to the conventional neighborhood,

Friedman ranks

Fig.4 Friedman’s ranks of the five best results for the k-NNR and
k-NCNR models

Table 3 Summary of the

Wilcoxon'’s statistic for the best M @ ® @ © © @ ® ® a0
k-NNR and k-NCNR models 1) 9-NNR _ ) o )
2) 11-NNR - ° o ° o °
3) 17-NNR - ° o o o °
4 13-NNR - ° o o o °
5) 15-NNR - ° o ° o °
6) 11-NCNR . . d . . -
@) 19-NCNR . d . . -
8) 21-NCNR . d . . -
) 9-NCNR . . . . . _
(10) 13-NCNR . . . . . =

Upper and lower diagonal halves are for a = 0.10 and @ = 0.05, respectively
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Table4 Unadjusted p values for @« = 0.05 and a =0.10 with
11-NCNR as the control algorithm

Table5 Average RMSE results of two SVR models and the best
neighborhood-based algorithms

z p value a=0.05/i a=0.10/i SVR(L1) SVR(RBF) 11-NCNR 9-NNR
15-NNR 4.026889 0.000057 0.005556 0.011111 Diabetes 5.88x 1071 6.62x 107! 6.16 x 107! 6.31 x 107!
17-NNR 3.942996 0.000080 0.006250 0.012500 Ele-1 640 x 102 7.64 x 102 641 x 10>  6.41 x 10?
21-NNR 3775209 0.000160  0.007143 0.014286 Plastic 153% 100  2.19x10° 1.59x10°  1.63 x 10°
13-NNR 3.775209 0.000160 0.008333 0.016667 Quake 204x 107" 2.04x 107" 1.94x 107" 1.95x 107!
9-NNR 3.313794 0.000920 0.010000 0.020000 Laser 234 % 101 2.46 X 101 1.06 X 101 1.14 x 101
9-NCNR 0.545308 0.585542 0.012500 0.025000 Ele-2 168%102 216% 102 1.19% 102  1.60 x 102
21-NCNR 0.503361 0.614710 0.016667 0.033333 AutoMPG6  355% 10° 3.67x 10° 3.88x 10°  4.14 x 10°
19-NCNR 0.419468 0.674874 0.025000 0.050000 Friedman 271%x10°  2.69%10° 1.68x10° 1.81 x 10°
13-NCNR 0.041947 0.966541 0.050000 0.100000 Delta-Ail 174 %107 176 % 10~ 185% 10~ 1.90 x 10~
The models in bold were significantly worse than the control algo- MachCPU  6.98 x 10"  9.03x 10"  8.04 x 10!  7.53 x 10!
rithm Dee 408x 107" 423x 107" 4.02x 107" 4.22x 107!
AutoMPG8 3.45x 10° 3.61 x 10° 3.92x10° 4.20 x 10°
. Anacalt 515x 107" 514 x 107" 7.67x 1072 7.80 x 1072
Table 4 reports the resul.ts of. the Holm s test using  concrete L11x 10" 1.09% 10"  7.91%10° 964 % 10°
1 1—NCNR as thei control a}l]gorlt.hm, 1ncluding the 2 va}lﬁue, the  Apatone 227%10° 240%10° 2.12%10° 220 % 10°
;‘“a‘lllus;%d (fs va (‘1“(‘)’ ‘ligdlt e a‘E“St?d a gahue *1“1 Sﬁgi\;{ance California  7.08 x 10* 733 x 10°  9.17x 10*  9.67 x 10*
evels of 0.05and .10. It can be viewed that 1 1- WaS  Stock 239%10° 248x10° 923x 107"  8.46x 10”!
significantly better than the five top-ranked k-NNR models at - 0 0 0 0
- ... . Wizmir 1.26 x 10 1.27 x 10 1.31x 10 1.45 x 10
both significance levels. On the contrary, it is not possible to
. . . Wankara 1.57x10°  1.58%x10° 1.36x10° 1.48x10°
reject the null hypothesis of equivalence between 11-NCNR MV 0 o N 0
and the rest of k-NCNR algorithms. i S3TXI0T 235X 107 6.08 X107 7.07x 10
ForestFire 571 x 10" 571 x 10" 587 x 10! 597 x 10!
Treasury 248 x 1071 2.85x 107! 544 x 107! 5.17x 107!
4.2 Neighborhood-based regression models Mortgage 531107 235x10°  3.72x 107" 3.54x 107!
versus SVR Baseball 757 %102 7.76 x 10> 9.08 x 10>  8.92 x 102
House 477x10*  479x10*  5.02x10* 507 x 10*
This section analyzes the results of the two top k-NCNR and ~ Elevators 297 x 107 2.93x 107  6.35x107 656 x 10~
k-NNR algorithms with respect to two SVR algorithms. The =~ Compact 124x 10" 135x10"  623x10° 6.50 % 10°
average RMSE results of these models on the 31 data sets  Pole 3.10x 10" 3.28x 10" 820x10° 8.33x 10°
and the Friedman’s average rankings are reported in Table 5.  Puma32H 271 x 102 2.70x 1072 279 x 1072 2.82 x 102
Friedman’s average ranks for the four regressions models  Ailerons 1.77x107*  1.70x 10 3.00x 10 3.49 x 107*
are plotted in Fig. 5. As can be seen, both 11-NCNR and Tic 244 %1071 244x107' 239x 1077 241x107!
SVR(L1) arose as the algorithms with the lowest rankings, Diabetes 588%10°" 6.62%x10~" 6.16% 10! 6.31 x 10!
that is, the lowest RMSE in average. Ele-1 640 x 10> 7.64x 10> 641 x 10>  6.41 x 10
. Ig order to (fheck whether or not the RMSE res1.11t's WEIre  Plastic 153%10° 2.19%10° 1.59%10° 1.63 x 10°
significantly Q1f'fere.nt,.the Iman—Da.venport’s ste}tlst.lc Was  Quake 204% 1070 2.04%10"" 1.94x10-1 1.95% 10-!
cqmputed. This is distributed according to an F-distribution | 234%10"  246x10'  1.06%10'  1.14 x 10'
W“%%i‘;?ggjzz‘ér;es ;’f flr?e‘liom‘hThe p Yal}lfie Compl‘“e‘: Ele-2 168x 102 2.16x 102 1.19% 102 1.60 x 102
was U. » which 1s fess than a significance fevel — , MpGe  3.55x 100 3.67x 100 388X 100 4.14 x 10°
of @ = 0.05. Therefore, the null hypothesis that all regression . 0 0 0 0
. Friedman 271x10°  2.69x10 1.68 x 10 1.81 x 10
models performed equally well can be rejected. .
. s Delta-Ail 1.74x107* 176 x 107  1.85x 10 1.90 x 107*
Table 6 shows the unadjusted p values for a Holm’s MachCPU 698 x 10! 9.03x 10!  8.04x 101 7.53x 10!
post hoc test using the 11-NCNR algorithm as the control Dac oo X L % L % L % B
method. For a significance level of a = 0.05, the procedure e 4.08 % 100 4.23% 100 402 100 4.22% 100
could not reject the null hypothesis of equivalence in any of AutoMPGS  3.45x10°  361x10° 392x10° 42010
. . . —1 —1 —2 —2
the three algorithms. Conversely, at a significance level of ~ Anacalt 315107 5.14x107 7.67x10™ 7.80x 10
a = 0.10, the Holm’s test indicates that 11-NCNR was sig- ~ Concrete L1Tx 10" 1.09x 101 7.91x 107 9.64 x 10°
nificantly better than 9-NNR and SVR(RBF), and equivalent ~ Abalone  2.27x10°  240x10°  2.12x10°  2.20x 10°
California 7.08 x 10+ 7.33x10* 9.17x 10*  9.67 x 10*

to SVR(LI).

@ Springer
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Table 5 (continued)

SVR(L1) SVR(RBF) 11-NCNR 9-NNR

Stock 239%10° 248x10° 923x10°" 8.46x 107!
Wizmir 1.26 x 10° 1.27 x 10° 1.31 x 10Y 1.45 x 109
Wankara 1.57x10°  1.58x10° 1.36x10° 1.48x10°
MV 531x10°  235x10° 6.08x10° 7.07 x 10°
ForestFire 5.71 x 10! 5.71 x 10! 5.87 x 10! 5.97 x 10!
Treasury 248x 107" 285x 107" 544x 107" 5.17x 107!
Mortgage 531 x10° 235x10° 372x 10" 3.54x 107!
Baseball 7.57% 10> 776 x 10> 9.08 x 10> 8.92 x 10?
House 477x10*  479%x10* 5.02x10* 5.07x 10*
Elevators 297x107% 293x 103 6.35%x1073 6.56% 1073
Compact 1.24 x 10! 1.35 x 10! 6.23x10°  6.50 x 10°
Pole 3.10x 100 328x 10" 820x10° 8.33x10°
Puma32H 271 %1072 270x 1072 2.79x 107> 2.82x 1072
Ailerons 1.77x10* 1.70x 10* 3.00x 10™* 3.49x 10
Tic 244 %x 107" 244 x 107" 239x 107" 2.41x 107!
Avg. Ran. 2.16 2.87 2.16 2.81

Friedman ranks
—_ N
N 3] ) 3]

7y N> < N>
% % “ gz

Fig.5 Friedman’s ranks of two best ~-NCNR and k-NNR bench-
marked methods and two SVR models

Table 6 Unadjusted p values for a« =0.05 and « =0.10 with
11-NCNR as the control algorithm when compared against 9-NNR,
SVR(L1), and SVR(RBF)

Z p value a=005/i a=0.10/i
SVR (RBF) 2164225  0.030447  0.016667 0.033333
9-NNR 1.967478  0.049128  0.025 0.05
SVR (L1) 0 1 0.05 0.10

The model in bold was significantly worse than the control algorithm
ata = 0.10

@ Springer

Table 7 Summary of the Wilcoxon’s statistic for the best &-NNR and
k-NCNR models, and two SVR algorithms

(D) ) 3) 4
(1 11-NCNR - . .
2 9-NNR o -
3) SVR (L1) _ .
@ SVR (RBF) o _

Upper and lower diagonal halves are for ¢ =0.10 and a = 0.05,
respectively

We run a Wilcoxon’s paired signed-rank test for « = 0.05
and a = 0.10 between each pair of regression algorithms.
From Table 7, we can observe that 11-NCNR performed
significantly better than 9-NNR at both significance levels,
and it was significantly better than SVR(RBF) at a = 0.10.
On the other hand, it also has to be noted that SVR(L1) was
significantly better than the SVR model with an RBF kernel
ata = 0.10 and @ = 0.05. This suggests that, for regression
problems, we can use either k-NCNR or the linear SVR,
since both these models yielded equivalent performance
results.

5 Conclusions and future work

In this paper, a new regression technique based on the near-
est centroid neighborhood has been introduced. The general
idea behind this strategy is that neighbors of a query sam-
ple should fulfill two complementary conditions: proximity
and symmetry. In order to discover the applicability of this
regression model, it has been compared to the k-NNR algo-
rithm when varying the neighborhood size k from 1 to 29
(using only the odd values) and two configurations of SVR
(with linear and RBF kernels) over a total of 31 databases.

The experimental results in terms of RMSE (and the
error normalized difference proposed here) have shown that
the k-NCNR model is statistically better than the k-NNR
method. In particular, the best results have been achieved
with values of & in the range from 9 to 21 and more specifi-
cally, the 11-NCNR approach has outperformed the five top-
ranked k-NNR algorithms. When compared against the two
SVR models, the results have suggested that the <-NCNR
algorithm performs equally well as the linear SVR and better
than SVR(RBF).

It is also important to note that the k-NCNR model is a
lazy algorithm that does not require any training, which can
constitute an interesting advantage over the SVR methods
for big data applications.

Several promising directions for further research have
emerged from this study. First, a natural extension is to
develop regression models based on other surrounding
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neighborhoods such as those defined from the Gabriel graph
and the relative neighborhood graph, which are two well-
known proximity graphs. Second, it would be interesting
to assess the performance of the k-NCNR algorithm and
compared to other regression models when applied to some
real-life problem.
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Appendix

Tables 8 and 9 report the average RMSE results for all the
data sets and for each value of k. In addition, the Friedman’s
rankings are given in the last row of each table.
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