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Abstract
All the traditional feature selection methods assume that the entire input feature set is available from the beginning. However, 
online streaming features (OSF) are integral part of many real-world applications. In OSF, the number of training examples 
is fixed while the number of features grows with time as new features stream in. A critical challenge for online streaming 
feature selection (OSFS) is the unavailability of the entire feature set before learning starts. OS-NRRSAR-SA is a successful 
OSFS algorithm that controls the unknown feature space in OSF by means of the rough sets-based significance analysis. This 
paper presents an extension to the OS-NRRSAR-SA algorithm. In the proposed extension, the redundant features are filtered 
out before significance analysis. In this regard, a redundancy analysis method based on functional dependency concept is 
proposed. The result is a general OSFS framework containing two major steps, (1) online redundancy analysis that discards 
redundant features, and (2) online significance analysis, which eliminates non-significant features. The proposed algorithm 
is compared with OS-NRRSAR-SA algorithm, in terms of compactness, running time and classification accuracy during the 
features streaming. The experiments demonstrate that the proposed algorithm achieves better results than OS-NRRSAR-SA 
algorithm, in every way.

Keywords Feature selection · Rough set theory · Online streaming feature selection · Functional dependency

1 Introduction

In many practical machine learning tasks, we encounter a 
very large feature space with thousands of irrelevant and/
or redundant features [4, 13, 24–26]. Feature selection is 
an important pre-processing step to cope with the course 
of dimensionality. The task of feature selection is to select 
a small subset of most important and discriminative input 
features. Traditional feature selection methods consider that 
all input features are available from the beginning. However, 
incrementally update knowledge in data mining is getting 
more and more popular. The volume of data is growing at 
an unprecedented rate, both in the number of features and 

instances [23, 29]. Online streaming features (OSF) is the 
incrementally data growing scenario, where the number of 
instances is fixed while feature set grows with time. There 
are several scenarios where the feature space is unknown or 
even infinite and therefore the OSF consideration is inevi-
table. For example:

• In bioinformatic and clinical machine learning prob-
lems, acquiring the entire set of features for every train-
ing instance is expensive due to the high cost laboratory 
experiments [38].

• In texture-based image segmentation problems, the num-
ber of different texture filters can be infinite and therefore 
acquiring the entire feature set is infeasible [12, 29, 40].

• In statistical relational learning, an agent may search 
over the space of SQL queries to augment the base set of 
candidate features found in the tables of a relational data-
base. The number of candidate features generated by such 
a method is limited by the amount of CPU time available 
to run SQL queries. Generating 100,000 features can eas-
ily take 24 CPU hours, while millions of features may be 
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irrelevant due to the large numbers of individual words 
in text [35].

• In Twitter, trending topics keep changing over time, and 
thus the dimensionality of data is changed dynamically. 
When a new top topic appears, it may come with a set 
of new keywords, which usually serve as key features to 
identify new hot topics [44].

A rudimentary approach in these scenarios is to wait a 
long time for all features to become available and then carry 
out the feature selection process. This approach is infeasible 
for most of the OSF scenarios. Another approach is to take 
the set of all features seen at each time step and then apply 
an standard feature selection technique, starting afresh each 
time. However, this approach is very inefficient, especially 
when the set of features only increases by one every time 
step. A more efficient and rational approach is to design an 
online streaming feature selection (OSFS) method which 
selects a best subset from so far seen features and updates it 
on the fly whenever new features stream in.

There are also some scenarios where the entire feature 
space is accessible, but feature streaming offers many advan-
tages. In deep learning, the recently widely used method in 
machine learning, thousands (and or millions) of features 
could be generated by the network. Exhaustive searching 
over such a large feature space is very expensive or even 
infeasible. OSF can be considered as an integral part of such 
deep networks. Many emerging applications today, such as 
social media services, high-resolution images and document 
analysis, consume data of extremely high dimensionality 
[43, 45]. For example, the educational data mining data set 
from KDD CUP 2010 has about 29 million features. There-
fore, scalability of feature selection algorithms is a must 
in such scenarios. Traditional feature selection algorithms 
need to access the entire feature set on the training data and 
perform a global search for the best feature at each round. 
Accordingly, batch methods cannot be highly scalable for 
high-dimensional data applications and online feature selec-
tion algorithms will be required [46].

OSFS is a less studied subject as it is a new problem in 
the era of big data. However, we believe that with the fast 
growing data dimensionality, OSFS can be considered as 
an important candidate for huge data pre-processing. Any 
OSFS method should satisfy three critical conditions [10]: 
first, it should not require any domain knowledge about 
feature space, because the full feature space is unknown or 
inaccessible. Second, it should allow efficient incremental 
updates in selected features, specifically when we have a 
limited amount of computational time available in between 
each feature arrival. Third, it should be as accurate as pos-
sible at each time instance.

Motivated by these challenges, several research efforts 
have been made to address OSFS. Perkins and Theiler 

proposed an online grafting algorithm for this problem, 
which treats the feature selection task as part of a regular-
ized risk minimization problem [29]. An extension of this 
algorithm is adopted in [12] for edge detection. While the 
online grafting algorithm is able to handle streaming fea-
tures, choosing a suitable threshold requires information 
about the global feature space. Moreover, this algorithm suf-
fers from the so-called nesting effect [30]. Ungar et al. [35] 
proposed a streamwise regression algorithm, called informa-
tion-investing. In this algorithm, a newly generated feature 
is added to the model if the entropy reduction is greater than 
the cost of the feature coding. Zhou et al. [47] proposed �
-investing, a very similar algorithm to information-investing, 
which uses the p value of the generated feature as a criterion 
for adding it to the model. Similar to online grafting, these 
algorithms suffer from the nesting effect. The fast-OSFS, 
proposed by Wu et al. [40], is the first algorithm that tries to 
satisfy all the OSFS critical conditions. This algorithm con-
tains two major steps: (1) online relevance analysis that dis-
cards irrelevant features and (2) online redundancy analysis, 
which eliminates redundant features. Although successful 
in selecting most informative features and avoiding nesting 
effect, fast-OSFS uses conditional independence tests which 
need a large number of training instances, especially when 
the number of features contributed in test grows with time. 
Therefore, adopting this algorithm on data sets with limited 
number of instances does not generate reliable results.

Rough set (RS) theory, introduced by Pawlak [28], is a 
growing mathematical tool to express information in data 
by means of boundary region of a set. The main advantage 
of this tool is that it requires no human input or domain 
knowledge other than the given data set [15, 16, 27, 36]. This 
property makes the RS theory an ideal candidate for OSFS. 
Wang et al. [37] proposed a dimension incremental attrib-
ute reduction algorithm called DIA-RED. This algorithm 
maintains a RS-based entropy value of the current selected 
subsets and updates this value whenever new conditional 
features are added to the data set. While DIA-RED is able 
to handle streaming scenarios, experiments in [10] show that 
this algorithm is not applicable effectively to real-world data 
sets. Eskandari and Javidi [10] proposed OS-NRRSAR-SA 
algorithm, which adopts the classical RS-based feature sig-
nificance concept to eliminate irrelevant features in OSF sce-
narios. To significance analysis, we need to generate elemen-
tary subsets based on all the selected features. This causes a 
computational problem when the size of the selected subsets 
is not small enough during features streaming. This paper 
presents a method which based on the initial work in [10], 
filters out redundant features before significance analysis. 
In this regard, a redundancy analysis method based on 
functional dependency concept is proposed. The result is 
a general OSFS framework containing two major steps: (1) 
online redundancy analysis that discards redundant features 
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and (2) online significance analysis, which eliminates non-
significant features.

The remainder of this paper is structured as follows: 
Sect. 2 summarizes the theoretical background and ideas 
of RS along with a look at functional dependency concepts. 
Section 3 discusses the proposed OSFS framework and 
presents a new OSFS algorithm, called OSFS-MRMS. Sec-
tion 4 reports experimental results, and Sect. 5 concludes 
the paper.

2  Rough set

Rough set theory, introduced by Pawlak [28], proposes a 
mathematical approach to express vagueness by means of 
boundary region of a set. The main advantage of this imple-
mentation of vagueness is that it requires no human input 
or domain knowledge other than the given dataset [27, 36]. 
This section describes the fundamentals of the theory.

2.1  Information system and indiscernibility

An information system is a pair IS = (U,F) , where U is a 
non-empty finite set of objects called the universe and F is 
a non-empty finite set of features such that f ∶ U → Vf  , for 
every f ∈ F . The set Vf  is called the value set or domain of 
f  . A decision system is an information system of the form 
IS = (U,F, d) , where d is called the decision feature.

For any set B ⊆ F ∪ {d} , the B-indiscernibility relation 
is defined as:

If (x, y) belongs to INDIS(B) , x and y are said to be indis-
cernible according to the feature subset B . Equivalence 
classes of the relation INDIS(B) are denoted [x]B and referred 
to as B-elementary sets. The partitioning of U into B-ele-
mentary subsets is denoted by U∕INDIS(B) or simply U∕B . 
Generating such a partition is a common computational 
routine that affects the performance of any rough set-based 
operation. The general procedure PARTITION to compute 
U∕B is displayed in Fig. 1.

The time complexity of PARTITION is �(|B||P||U|) , 
where |P| is the number of generated B-elementary subsets. 
If none of the objects in U are indiscernible according to B , 
the number of B-elementary subsets is |U| and therefore the 
worst-case complexity of PARTITION is O(|B||U|2) . Fig-
ure 2, from [10], demonstrates the ratio |P|∕|U| from applica-
tion viewpoint. The figure on the left ( a ) shows the effect(s) of 
the number of features and instances on the number of gener-
ated partitions. The datasets for this figure have 30 uniformly 
distributed binary features. The figure shows the fast decrease 
in the ratio |P|∕|U| , once |B| becomes smaller than a threshold. 
The threshold is different for each data set and the larger the 

(1)INDIS(B) = {(x, y) ∈ U × U|∀f ∈ B, f (x) = f (y)}

|U| the larger the threshold. The figure on the right shows the 
effects of data sparseness (bias of feature values to a special 
value) on |P| . The data sets for this figure are all binary with 30 
features and 1000 instances, but different in terms of sparse-
ness (sparseness of 50% means uniformly distributed feature 
values). As it can be seen from this figure, the more sparse 
the data set, the higher the possibility of the objects become 
indiscernible and therefore the ratio |P|∕|U| is significantly 
small, even for large values of |B|.

2.2  Lower and upper approximations

Two fundamental concepts of rough set are the lower and 
upper approximations of sets. Let B ⊆ F and X ⊆ U , the B-
lower and B-upper approximations of X are defined as follows:

The BX and BX approximations define information con-
tained in B [27]. If x ∈ BX , it certainly belongs to X , but if 
x ∈ BX , it may or may not belong to X.

By the definition of BX and BX , the objects in U can be 
partitioned into three parts, called the positive, boundary and 
negative regions.

(2)BX = {x| [x]B ⊆ X}

(3)BX = {x| [x]B ∩ X ≠ 0}

(4)POSB(X) = BX

(5)BNDB(X) = BX − BX

(6)NEGB(X) = U − BX

Fig. 1  The partitioning algorithm to generate elementary subsets
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2.3  Dependency

Discovering dependencies between attributes is an impor-
tant issue in data analysis. Let D and C be subsets of 
F ∪ {d} . For 0 ≤ k ≤ 1 , it is said that D depends on C in 
the k th degree (denoted C ⇒k D ), if

where

is called a positive region of the partition U∕D with respect 
to C . This region is the set of all elements of U that can be 
uniquely classified to blocks of the partition U∕D , by means 
of C.

The rough functional dependency of D and C ( C ⇒ D ) 
is an special case of dependency where �(C,D) = 1 . In 
this case, we say that all values of attributes from D are 
uniquely determined by the values of attributes from C. 
The rough functional dependencies satisfy Armstrong’s 
axioms [1]. Let X  , Y  , Z  and W  be arbitrary subsets of 
attributes, and the rough functional dependency has the 
following properties:

1. Reflexivity If Y ⊆ X , then X ⇒ Y

2. Augmentat ion  I f  Z ⊆ W  and  X ⇒ Y  ,  t hen 
X ∪W ⇒ Y ∪ Z

3. Transitivity If X ⇒ Y  and Y ⇒ Z , then X ⇒ Z

4. Pseudo-transitivity If X ⇒ Y  and Y ∪W ⇒ Z  , then 
X ∪W ⇒ Z

5. Union If X ⇒ Y  and X ⇒ Z , then X ⇒ Y ∪ Z

6. Decomposition If X ⇒ Y ∪ Z , then X ⇒ Y  and X ⇒ Z

(7)k = �(C,D) =
|POSC(D)|

|U| ,

POSC(D) =
⋃

X∈U∕D

CX

2.4  Reduct

Two different definitions are introduced for the reduct con-
cept in the literature: (1) the indiscernibility relation preserv-
ing definition and (2) the dependency preserving definition. 
The former defines a reduct for a given information system 
IS(U,C) (or decision system DS(U,C,D) ) as a minimal set 
of attributes R ⊆ C such that INDIS(R) = INDIS(C) . The 
later, on the other hand, defines a reduct for a given deci-
sion system DS(U,C,D) as a minimal set of attributes R ⊆ C 
such that �(R,D) = �(C,D) . In our work, the later is consid-
ered as a base for reduct analysis.

An optimal reduct is a reduct with minimum cardinal-
ity. The intersection of all reducts contains those attributes 
that cannot be eliminated and is called the core. Finding a 
minimal reduct is NP-hard [34], because all possible subsets 
of conditional features must be generated to retrieve such a 
reduct. Therefore, finding a near optimal has generated much 
of interest [17, 18, 21].

2.5  Rough set extensions

Traditional rough set-based attribute reduction (RSAR) has 
three shortcomings which make it ineffective in real-world 
applications [20, 21, 27]. Firstly, it only operates effectively 
with data sets containing discrete values and therefore it is 
necessary to perform a discretization step for real-valued 
attributes, secondly, RSAR is highly sensitive to noisy data, 
and finally, RSAR methods examine only the information 
contained within the lower approximation of a set ignoring 
the information contained in the boundary region.

Several extensions to the original theory have been pro-
posed to overcome such shortcomings. Three well-known 
extensions are variable precision rough set (VPRS) [48], 
tolerance rough set model (TRSM) [33], fuzzy rough set 

Fig. 2  a The effects of |B| and |U| on |P| , b the effects of sparseness on |P|
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(FRS) [8, 20], decision-theoretic rough set [42], and game-
theoretic rough set [14].

In addition to rough set extensions, there are also some 
modifications, which do not change classical rough set prin-
ciples. The dependency notion in classical rough set is rede-
fined in [27] and [16] to deal with useful information that 
may be contained in the boundary region.

3  The proposed OSFS framework

In this section, we first define online streaming features. 
Then we review notations of feature significance and fea-
ture redundancy and make a theorem to deal with feature 
redundancy in streaming features. Finally, propose a general 
framework to implement the significance and redundancy 
concepts for feature selection with streaming features.

Suppose that DSt = (At,Ft, d) is a decision system at time 
t where At = {x1t , x2t ,… , xNt

} , Ft = {f1, f2,… , fMt
} and d is 

a decision feature. In online streaming features (OSF), new 
conditional features flow in one by one over time, while the 
number of objects in A remains fixed. In other words, for 
every time t′ > t , Mt′ ≥ Mt while Nt� = Nt.

Because we do not have access to the full feature space 
in the online streaming features context, we need to gradu-
ally build a reduct over time based on features seen so far. A 
rudimentary approach is to take the set of all features seen 
at each time step and then apply an standard traditional fea-
ture selection technique, starting afresh each time. However, 
a more rational approach is to design an algorithm which 
keeps a best subset from so far seen features and updates it 
on the fly whenever new features stream in. Here, we will 
review notions of feature significance and then define the 
feature redundancy concept. We will use the significance 
and redundancy notions to propose a general framework 
to update selected subset in OSF. In the definitions below, 
DS = (A,F, d) represents a decision system, where A , F , and 
d represent the universe, the full set of conditional features, 
and the decision feature, respectively. Moreover, F − {f } 
represents the feature subset excluding the single feature f .

Definition 1 (non‑significant feature [34]) A feature f ∈ F 
is a non-significant feature for DS = (A,F, d) iff

Definition 2 (non‑significant feature subset [34]) A fea-
ture subset F′ ⊆ F is a non-significant feature subset for 
DS = (A,F, d) iff

(8)�(F,d)(f ) =
�(F, d) − �(F − {f }, d)

�(F, d)
= 0

(9)�(F,d)(F
�) =

�(F, d) − �(F − F�, d)

�(F, d)
= 0

Significance analysis is a tool for measuring the effect of 
removing an attribute, or a subset of attributes, from a deci-
sion system on the positive region defined by that decision 
system. The more the significance of an attribute (set), the 
higher the change in dependency is. If the significance is 0, 
then the attribute (set) is dispensable and can be eliminated 
from the decision system.

Definition 3 (redundant feature) A feature f ∈ F is a redun-
dant feature for DS = (A,F, d) iff ∃F� ⊆ F − {f } s.t. F′ ⇒ f  , 
otherwise it is non-redundant.

Definition 4 (redundant feature subset) A feature sub-
set C ⊂ F  is a redundant subset for DS = (A,F, d) iff 
∃F� ⊆ F − C s.t. F′ ⇒ C , otherwise it is non-redundant.

Redundant features can be completely described using 
some other features in the conditional feature set, and there-
fore they can be eliminated without loosing any useful 
information.

By Definitions 1–4, we propose an OSFS framework that 
contains two major steps: (1) online redundancy analysis 
that discards redundant features, and (2) online significance 
analysis, which eliminates non-significant features from the 
features selected so far (see Fig. 3).

4  The proposed OSFS algorithm

Algorithm 1 represents the proposed algorithm which imple-
ments the OSFS framework. The algorithm starts with an 
empty selected subset R . Then it waits for a new incoming 
feature (line 3). Once a new feature f  is provided, the algo-
rithm tests the consistency of the current decision system. If 
it is not consistent, the first phase of the algorithm triggers. 
This phase calculates two values; (1) the increase of the 
dependency value, when f  is added to current subset, and 
(2) the noise-resistent dependency of d on f  . If at least one 

Fig. 3  The proposed OSFS framework
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of these values is nonzero, the current subset is updated to 
include f  (line 6); otherwise, f  is simply rejected. However, 
if the current decision system is consistent before arriving 
f  , the second and third phases are triggered, respectively. 
In the second phase (lines 9–17), the algorithm checks to 
see if there exists any current reduct subset, which becomes 
redundant due to the presence of f  . If such subset exists, and 
its size is larger than one, then the subset can be replaced 
with f  (lines 12–14). Moreover, if only one feature (say f ′ ) 
becomes redundant due to f  , then one of the features f  and 
f ′ is removed based on the noise-resistant measure value 
(lines 28–30). The third phase (lines 18–25) removes the 
non-significant features, with a methodology similar to the 
second phase.

Different stopping criterions can be adopted to control 
the algorithm execution. If the size of the streaming data 
set is known, the algorithm can keep running to see the last 
feature. (No further features are available.) However if we 
have no knowledge about the feature space (including maxi-
mum number of features), then the algorithm can stop once 
a pre-defined accuracy is satisfied or a maximum number of 
iterations is reached.

4.1  The REDUNDANT routine in OSFS

Procedure 2 uses the notation REDUNDANT routine to 
identify features, which became redundant due to the new 
incoming feature. Several implementations of the routine 
can be adopted based on the relative importance of the 
reduct size compared with the time required to locate the 
redundant features. Finding the redundant subset with 
maximum size is an expensive task, because we need to 
consider all feature subsets, and for each subset we need 
to investigate its redundancy using other subsets. Algo-
rithm 3 represents an efficient sequential backward elimi-
nation procedure to find features that became redundant 
due to presence of a new incoming feature f .

At each step, the algorithm considers a random feature 
g that has not already been evaluated and drops the feature 
out if it is redundant based on available features. Test-
ing the redundancy of g consists of finding a subset S of 
already non-eliminated features, such that (S ∪ {f }) ⇒ g . 
The algorithm uses a bottom-up process to find such a 
subset. Thus, it considers subsets of size one in the first 
step, subsets of size two in the next step, and so on. The 
maximum subset size is controlled by the parameter k . 
The larger the value of this parameter, the algorithm is 
more successful in locating redundant features, but on the 
other hand, the time complexity of the algorithm is greater. 
Therefore, a trade-off is needed between the success of the 
algorithm and its time complexity. Our empirical studies 
show that even small values of k , such as 3 or 4, yield 
satisfactory results.
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4.2  The NON‑SIGNIFICANT routine in OSFS

As the REDUNDANT routine, several implementations 
can be adopted for NON-SIGNIFICANT routine, based on 
the relative importance of the reduct size compared with 
the time required to locate the non-significant features. 
Algorithm 4.2, which represents a very efficient routine, is 
proposed in our previous work [10], which uses a sequen-
tial backward elimination mechanism.

Starting from full reduct, at each step the method con-
siders a random feature that has not already been evaluated 
and drops the feature out if it is non-significant based on 
available feature subset. Because of random considera-
tion of features, different executions of this method may 
return different non-significant subsets and therefore a 
good heuristic would be to executing the method k times 

and selecting the result with maximum size. Experiments 
in [10] show that k = 3 causes satisfactory results.

4.3  Some properties of selected subset by OSFS

Let Ft = {f1, f2,… , fMt
} be the set of features that have 

arrived until the time t , such that fi arrives before fj if and 
only if i < j . Here, we prove two important theorems about 
our proposed OSFS algorithm. The first theorem is about the 
consistency-preserving property of the proposed algorithm. 
If the decision system becomes consistent at a time t , it will 
remain consistent at any time t′ > t . The second theorem 
gives a better insight about the selected subsets size changes 
during the time.

For convenience, we list some important mathematic 
notations that are employed in this paper in Table 1.

Lemma 1 (monotonicity of � [19]) Suppose that R ⊆ F is 
a subset of conditional attributes, f ∈ F is an arbitrary 
conditional attribute, and d is the decision attribute. Then 
�(R ∪ {f }, d) ≥ �(R, d).

The following lemma implies that removing a redundant 
feature from a consistent decision system preserves the con-
sistency of that decision system.

Lemma 2 Let DS = (A, F, d) be a consistent decision system 
(�(F, d) = 1) and G ⊂ F be a redundant attribute set. Then 
�(F − G, d) = 1.

Proof Based on definition of the functional depend-
ency, F ⇒ d . Because G is a redundant subset for DS , 
∃F� ⊆ F − G s.t. F′ ⇒ G . Based on reflexivity property of 

Table 1  List of important notations

Notation Description Notation Description

IS Information system DS Decision system
U Set of all objects F Total feature s
d Decision feature f A single feature
Vf Value set or domain of feature f INDIS (B) INDIS(B) = {(x, y) ∈ U × U|∀ f ∈ B, f (x) = f (y)}

[x]B [x]B = {y ∈ U|(x, y) ∈ INDIS(B)} U/B partitioning of U into B-elementary subsets
P The set of all elementary subsets B

−
X B

−
X = {x|[x]B ⊆ X}

B̄X B̄X = {x|[x]B ∩ X ≠ 0} POSB (X) POSB(X) = B
−
X

BNDB (X) BNDB(X) = B̄X − B
−
X NEGB (X) NEGB(X) = U − B̄X

γ (C, D) �(C,D) =
|POSC (D)|

|U|
C ⇒ D Rough functional dependency of D on C

xt The object x at time t Nt Number of objects at time t
At At =

{
x1t , x2t ,… xNt

}
Mt Total number of features at time t

ft The feature that arrives at time t Ft Ft =
{
f1, f2,… fMt

}
ρ (C, D) The noise resistance dependency of D on D Rt Selected subset at time t
σ(F,d) (f) �(F,d)(f ) =

�(F,d)−�(F−{f },d)

�(F,d)
σ(F,d) (F′) �(F,d)(F

�) =
�(F,d)−�(F−F� ,d)

�(F,d)
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the functional dependency, F − G ⇒ F� and we can conclude 
that F − G ⇒ G , based on transitivity property. Now con-
sidering that X = F − G , Y = G , W = F − G and Z = {d} , 
we can conclude from the pseudo-transitivity property that 
F − G ⇒ d and therefore �(F − G, d) = 1 , which means that 
the decision system is consistent using F − G.□

Theorem 1 Let Rt be the selected feature subset using OSFS 
at time t. IF �(Rt, d) = 1, then ∀t� ≥ t, �(Rt� , d) = 1.

Proof We prove this theorem by induction. For t� = t , the 
theorem holds by assumption. Let �(Rt�=t+k, d) = 1 for a 
given k ≥ 1 . Suppose that a new feature ft+k+1 is streamed in 
at time t� = t + k + 1 . Because the decision system is consist-
ent using current selected feature subset Rt+k , the second and 
third phases of the algorithm will be triggered, respectively. 
The following cases can occur after the two phases:

1. |A| > 1 or |B| > 1 : Rt+k+1 will be one of the subsets (a) 
Rt+k ∪ {ft+k+1} − A , (b) Rt+k ∪ {ft+k+1} − B , and (c) 
Rt+k ∪ {ft+k+1} − A − B . Firstly, Rt+k ∪ {ft+k+1} will 
remain consistent according to Lemma 1. Secondly, 
A is a redundant subset for Rt+k ∪ {ft+k+1} ; therefore, 
Rt+k ∪ {ft+k+1} − A will remain consistent according to 
Lemma 2. Finally, B is a non-significant feature subset 
for Rt+k ∪ {ft+k+1} (or Rt+k ∪ {ft+k+1} − A ). That is

then

2. |A| ≤ 1 and |B| ≤ 1 : Rt+k+1 will be one of the two subsets 
(a) Rt+k and (b) Rt+k ∪ {ft+k+1} − X − Y  . In either case, 
it is obvious that �(Rt+k+1, d) = 1.

□
Theorem 2 Let Rt be the selected feature subset using OSFS 
algorithm at time t.

�(Rt+k∪{ft+k+1},d)(B) =
�
(
Rt+k ∪ {ft+k+1}, d

)
− �

((
Rt+k ∪ {ft+k+1}

)
− B, d

)

�
(
Rt+k ∪ {ft+k+1}, d

) = 0

(or �(Rt+k∪{ft+k+1}−A,d)(B) =
�
(
Rt+k ∪ {ft+k+1} − A, d

)
− �

((
Rt+k ∪ {ft+k+1} − A

)
− B, d

)

�
(
Rt+k ∪ {ft+k+1} − A, d

) = 0)

�((Rt+k ∪ {ft+k+1}) − B, d) = �(Rt+k ∪ {ft+k+1}, d) = 1

(or �((Rt+k ∪ {ft+k+1} − A) − B, d) = �(Rt+k ∪ {ft+k+1} − A, d) = 1)

(a) If 𝛾(Rt, d) < 1, then ∀t� < t , |Rt′ | ≤ |Rt|,
(b) If �(Rt, d) = 1, then ∀t� ≥ t , |Rt′ | ≤ |Rt|.

Proof We prove (a) by contradiction. Suppose that ∃t� < t , 
such that |Rt′ | > |Rt| . Then it is obvious that Rt′ ⊄ Rt . There-
fore, ∃a ∈ Rt� s.t a ∉ Rt and hence ∃t1, t ≤ t1 < t� , when a is 
removed from selected subset. Removing feature(s) from 
selected subset only occurs during the second phase of the 
algorithm, and this phase triggers if the decision system is 
consistent using selected subset. Therefore, �(Rt1

, d) = 1 . 
However, by Theorem 1, we have �(Rt, d) = 1 , which is a 
contradiction.□

In order to prove (b), we use induction. For t� = t , the 
theorem holds by assumption. Let |Rt+k| ≤ |Rt| for a given 
k ≥ 1 . Suppose that a new feature ft+k+1 is streamed in at 
time t + k + 1 . Based on Theorem 1, the decision system 
is consistent using Rt+k and therefore the second and third 
phases of the algorithm will be triggered, respectively. 
As shown in proof of Theorem 1, Rt+k+1 can be one of the 
subsets (a) Rt+k ∪ {ft+k+1} − A , (b) Rt+k ∪ {ft+k+1} − B , 
(c) Rt+k ∪ {ft+k+1} − A − B , (d) Rt+k ∪ {ft+k+1} − X − Y  , 
and (e) Rt+k . Given that ∀I ∈ {A,B,X, Y}, |I| ≥ 1 , then 
|Rt+k+1| ≤ |Rt+k|.

Let F = {f1, f2,… , fM} be the set of features that have 
arrived so far. Assume that the data set has been non-con-
sistent for the |M1| first incoming features and consistent 
for the remaining |M2| features, where |M1| + |M2| = |M| . 

The size of the selected subsets constitutes a sequence over 
time, that, starting from the first element (the size of the first 
subset), we will encounter elements in non-decreasing order 
until we reach the maximum element in the list, after which 
we will encounter elements in non-increasing order. The 
selected subset with maximum size is located after arriving 
fM1

 (based on Theorem 2).

4.4  The time complexity of OSFS

The time complexity of OSFS depends on the number of 
tests. Two types of tests are used in the algorithm: the �-
tests and the �-tests. As stated previously, the time required 
by this RS-based test can be attributed by the time that is 
required to generate equivalence classes (the PARTITION 
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algorithm). Suppose that at time t  a new feature ft be pre-
sent to the OS-NRRSAR-RA algorithm and let Rt be the 
selected feature subset at this time. If the available deci-
sion system is not consistent using Rt , the first phase of the 
algorithm will be triggered. This phase includes constant 
number of � and � tests. Therefore, the worst-case time 
complexity of this phase is �(|Rt||U|2) . However, if the 
data set is consistent, the redundancy and significance 
analysis phases will be triggered, respectively. The redun-
dancy analysis phase (second phase) uses REDUNDANT 
routine in Fig. 2. This routine tests the redundancy of all 
features in Rt and the maximum number of subsets that are 
c o n s i d e r e d  f o r  e a c h  t e s t  i s ( |Rt|

1

)
+

( |Rt|
2

)
+⋯ +

( |Rt|
k

)
 . Therefore, the worst-

c a s e  t i m e  c o m p l e x i t y  o f  t h i s  p h a s e  i s 

|Rt|
( |Rt|

1

)
+

( |Rt|
2

)
+⋯ +

( |Rt|
k

)
|U2| . On the other 

hand, the significance analysis phase (third phase) uses 
NON-SIGNIFICANT routine in Fig.  3, which has the 
worst-case time complexity of O(|Rt|2|U|2).

Let F = {f1, f2,… , fM} be the set of features that have 
arrived so far. As stated, The selected subset with maxi-
mum size is located after arriving fM1

 , and therefore, the 
worst-case time complexity of OSFS is

where

Although the worst-case time complexity of the pro-
posed algorithm is square with respect to the number of 
selected features, in many real-world applications, only 
a small number of features in a large feature space are 
predictive and relevant to decision feature [40]. Therefore 
|Rt| (and hence |RM1

| ) is so small that its square does not 
affect the time complexity of the OSFS algorithm, sig-
nificantly. Being squared with respect to |U| (number of 
training instances) is because of the fact that we consid-
ered the worst-case time complexity of the PARTITION 
algorithm, for analysing the complexity of the proposed 
algorithm. However, as stated in Sect. 2.1, the time com-
plexity of PARTITION routine tends to be linear, when the 
number of participating features is small. OSFS keeps the 
|Rt| (number of selected features at time t  ) very small and 
therefore all the PARTITION calls (in � and � tests) will be 
executed with small feature subsets. Therefore, |P| << |U| 
and the PARTITION algorithm will be very time efficient. 
Moreover, most of the real-world large scale data sets are 
highly sparse, which means even faster executions of the 
PARTITION calls.

O
((|M1||RM1

||U|2) + (|M2||RM1
|�1|U|2) + (|M2||RM1

|2|U|2))

�1 =

( |RM−1|
1

)
+

( |RM−1|
2

)
+⋯ +

( |RM−1|
k

)

5  Experimental results

In this section, we show the performance of the proposed 
method. To do this, the proposed OSFS algorithm is com-
pared with OS-NRRSAR-SA [10]. Table 2 summarizes the 
12 high-dimensional data sets used in our experiments. For 
VOC 2007, which is an image classification data set, we 
extracted convolutional neural network (CNN)-based fea-
tures from the penultimate layer of the VGG-VD [32] (4096 
features) deep network. In order to provide OSF scenario, 
features are considered one by one. All the experiments are 
carried out on a DELL workstation with Windows 7, 2 GB 
memory and 2.4 GHz CPU. Two classifiers are employed 
for the classification of the data, J48 [31, 39] and kernel 
SVM with RBF kernel function [3]. For two class classifica-
tion problems, average precision (AP %) is used as accuracy 
measure. For multi-class cases, we used the mean of the 
APs (mAP %) on different classes. In all the experiments, 
the maximum subset size ( k ) in REDUNDANT routine is 
set to be 3. 

Because we do not have access to the full feature space, 
the streaming order of the features affects the final results. 
Therefore, in order to strengthen the comparison, the results 
are averaged over 30 different pre-generated random stream-
ing orders for each data set.

5.1  Compactness

The selected subsets sizes during the features streaming 
are reported in Fig. 4. As it can be seen, the proposed 
OSFS-MRMS results in more compact reducts in most 
of the cases. Moreover, considering the selected subsets 
at the end of the streaming (100% of the features seen), 
this algorithm outperforms the OS-NRRSAR-SA for all 

Table 2  Summary of the benchmark high-dimensional data sets

C categorical, R real and I integer

Data set # Attributes # Train # Test Type Source

dorothea 100000 800 800 C [5]
arcene 10000 100 700 I [5]
dexter 20000 300 2000 I [5]
madelon 500 2000 1800 C [5]
sido0 4932 12678 10000 C [7]
cina0 132 16033 10000 I, C [7]
nova 16969 1754 17537 C [6]
sylva 216 13086 130854 I, C [6]
hiva 1617 3845 38449 C [6]
arrhythmia 279 452 – C, I, R [2]
mf 649 2000 – I, R [2]
VOC 2007 Not specified 5011 4952 R [11]
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the data sets. The two algorithms are the same when the 
decision system is not consistent. Therefore, we expect 
the same selected subsets at the early stages of the stream-
ing. We can see this phenomenon for sido0, cina0 and 
sylva data sets, which did not become consistent using 
less then 10% of the streaming features. 

5.2  Running time

Table 3 reports the running times of the two algorithms at 
the end of the features streaming. A hypothesis paired t test 
is carried out to compare the results on the 30 streaming 
orders. Let tA , tB be the set of running times of the methods 
A and B, respectively, for the 30 different streaming orders. 
We define the following two one-tailed t tests:

Fig. 4  Selected subsets size during features streaming
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where �D is the population mean of set D.
Based on results of these tests, the variable t is defined as

We see that the proposed OSFS-MRMS is superior for 
six (dorothea, dexter, sido0, nova, mf and voc 2007) and 
inferior for three cases (madelon, sylva and hiva). The tests 
show that the mean running times of the two algorithms 
are not significantly different for hiva and mf. Although the 
redundancy analysis step in the proposed algorithm imposes 
an extra computational time, the smaller selected subsets 
during features streaming cause faster PARTITION routine 
executions for this algorithm.

5.3  Classification accuracy

The classification results, presented in Figs. 5 and 6, show 
that the proposed OSFS-MRMS algorithm performs very 
well and shows increase in classification accuracies for most 
of the tests. Compared with OS-NRRSAR-SA in terms of 
J48 classifier, OSFS-MRMS is superior in most of the cases 
except dexter, sido0 and mf. The same comparison in terms 

(10)t1 ∶

(
H0 ∶ 𝜇dA

= 𝜇dB

H1 ∶ 𝜇dA
> 𝜇dB

(11)t2 ∶

{
H0 ∶ 𝜇dA

= 𝜇dB

H1 ∶ 𝜇dB
> 𝜇dA

(12)

t =

⎛⎜⎜⎝

↑ if the null hypothesis (H0) in t1 is rejected

↓ if the null hypothesis in t2 is rejected

= if none of the null hypothesis in t1 and t2 is rejected

of SVM classifier shows that our proposed algorithm won 
the tests for seven data sets arcene, dexter, sido0, cina0, 
nova, sylva and hiva. Table 4 reports the t  test results on 
the classification accuracies of the two algorithms during 
features streaming.

According to the recorded accuracy values for each data 
set (10 measurements on 30 streaming orders), OSFS-
MRMS outperforms the OS-NRRSAR-SA in 65 and 61% 
of the cases using J48 and SVM, respectively. Moreover, 
considering all the records, the average accuracy of the 
OSFS-MRMS is 2.28 and 2.16% higher, in terms of J48 and 
SVM, respectively.

6  Conclusions

This paper presented a method which based on the OS-
NRRSAR-SA algorithm proposed in [10], filters out redun-
dant features before significance analysis. In this regard, a 
redundancy analysis method based on functional depend-
ency concept was proposed. The result was a general OSFS 
framework containing two major steps: (1) online redun-
dancy analysis that discards redundant features and (2) 
online significance analysis, which eliminates non-signif-
icant features. To show the efficiency and accuracy of the 
proposed algorithm, it was compared with OS-NRRSAR-SA 
algorithm. Several high-dimensional data sets were used for 
comparisons, and their features considered one by one to 
simulate the true OSF scenarios. The compactness, running 
time and classification accuracy during the features stream-
ing were the comparison terms. The experiments demon-
strate that the proposed algorithm achieves better results 
than OS-NRRSAR-SA algorithm, for all evaluation terms.

The authors would like to propose the following subjects 
for future works on OSFS scenarios:

1. OSFS with missing values Feature vectors with missing 
values are common in remote sensing where incomplete 
data may occur when certain regions are covered by a 
subset of sensors. Data missing in clinical databases 
due to expense or difficulty of obtaining certain results, 
particularly when they are not routine clinical measure-
ments, is another example. OSFS, where new incoming 
features have one or more missing values, can be con-
sidered as an important problem in dealing with OSFS 
problems.

2. OSFS with streaming instances In this paper, the main 
consideration was that the number of feature vectors is 
fixed. However, it is possible that a data set grows both 
in terms of number of features and instances.

3. OSFS in deep learning Deep learning is the recently 
widely used method in machine learning [22, 41]. We 
would have millions or billions features generated by 

Table 3  Comparison of run times for OS-NRRSAR-SA and OSFS-
MRMS

Dominant results are shown in bold 

Data set OS-NRRSAR-RA OSFS-MRMS t

dorothea 509.73 486.92 ↓
arcene 82.28 80.66 =
dexter 572.75 511.02 ↓
madelon 87.03 123.87 ↑
sido0 961.99 798.10 ↓
cina0 62.82 65.01 =
nova 214.84 183.22 ↓
sylva 782.09 852.68 ↑
hiva 2311.89 3027.84 ↑
arrhythmia 123.10 118.32 =
mf 234.89 163.01 ↓
voc 2007 3028 2472 ↓
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Fig. 5  J48 classification results of selected subsets during features streaming
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Fig. 6  SVM classification results of selected subsets during features streaming
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deep networks. One approach would be to adopt FS to 
select most important features (weights) from a trained 
model [9]. This is the approach we adopted in this paper 
for PASCAL VOC data sets. Another approach would be 
to use OSFS as a construction or training part to reduce 
the tons of parameters for deep networks.
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