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Abstract
Unnatural patterns in process control charts exhibit out-of-control conditions. Therefore, increase in sensitivities in control 
charts is mandatory to study these situations. Because of the existence of inevitable natural variations, real-time detection 
and analysis of the significant patterns is a problem, especially when sensitivity level of the process to unnatural patterns 
formation is high. In the previous studies, most researchers have applied neural networks techniques to monitor significant 
patterns. Although this approach is effective, but structures of networks are complex and their architectures are difficult. 
The current paper develops fitted line and fitted cosine curve of samples to recognize and analyze the unnatural patterns. 
This simpler solution is more efficient and consumes less feedback time. The proposed model alarms occurrence of single 
and concurrent patterns and estimates their corresponding parameters. These fitted line and curve facilitate recognition and 
analysis of significant patterns at different levels of sensitivity, while the presented models often face with patterns misclas-
sification error when high level of sensitivity is desired for unnatural patterns discrimination. To implement the proposed 
model, S2 control chart has been selected as a case study. The accuracy and precision of the proposed tools are evaluated by 
simulated experiments.

Keywords Patterns recognition · Process control charts · Fitted line · Fitted cosine curve

1 Introduction

The seven tools of statistical process control (SPC) sup-
port its technical and statistical aspects. Among these 
tools, Shewhart’s process control charts play a very crucial 
role. These charts make online control of the attribute and 
variable qualitative characteristics possible. In the general 
applications, whenever all samples fall between the control 
limits of the charts, the process is considered under-control. 

This traditional conclusion was suitable to meet the primary 
needs; however, with the gradual introduction of significant 
patterns formation issue in process control charts, such 
analysis lost its adequacy. In other words, the formation of 
non-random behaviors in scattered samples between control 
limits associate out-of-control situations. Therefore, patterns 
recognition was selected as one of the most important tools 
to enhance the qualitative sensitivity of process control 
charts. Indeed, the emergence of significant patterns alarm 
some disorders in production processes and since Shewhart’s 
control charts only study samples individually and do not 
consider the obtained common data from consecutive sam-
ples, real-time recognition and continued analysis of behav-
ioral patterns, accurately and precisely, is vital.

In the literature, shift (Sh.), trend (Tr.), cycle (Cyc.) and 
systematic (Sys.) patterns have been introduced as the “basic 
patterns,” since these behaviors have process roots and gen-
erally occur in most control charts (see Fig. 1). The basic 
patterns can appear as single or concurrent.

The various factors cause the formation of significant pat-
terns in process control charts. For example, utilization of 
new operators, new production methods, new machinery and 
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changes in inspections and standards are some occurrence 
reasons of the Sh. pattern [1]; the gradual wear of machinery 
and tools, and seasonal effects are some causative factors of 
Tr. pattern [1]; environmental changes, such as temperature 
variations, fatigue of operators, continuous displacement of 
operators and/or any variable related to production machin-
ery, cause Cyc. pattern [1]; the alternative changes in pro-
duction factors appear as Sys. pattern [1].

In addition to patterns recognition, the determination 
of desired qualitative sensitivity levels of production pro-
cesses and the monitor of improvement plans progress are 
necessary. To make these possible, corresponding to each 
basic pattern, the numerical parameters (such as displace-
ment magnitude, trend slope, amplitude, period) have been 
defined.

A very important point is that the concept of “patterns 
recognition” in control charts signifies whenever the limits 
of charts are same for all samples [1]. Therefore, when the 
sizes of samples are various and the chart limits are calcu-
lated separately for each sample, behavioral patterns and 
their simulations lose their meanings.

In the previous years, the numerous models have been 
presented to discriminate and analyze significant patterns in 
process control charts. In an overview, these researches are 
divided into two categories:

In the first category, artificial neural networks have been 
utilized widely, because of their abilities in patterns learning: 
Pham and Oztemel [2] applied the learning vector quantiza-
tion (LVQ) network for the classification of unnatural pat-
terns. Cheng [3] presented a multilayer network for detection 

of changes in the process mean. Cheng [4] used neural net-
work approach to analyze control chart patterns. Hwarng 
[5] offered a model for study of elementary cyclic patterns. 
Chang and Aw [6] introduced a neural fuzzy control chart 
to discriminate and classify mean variations in production 
processes. Anagun [7] trained a multilayer neural network 
with back-propagation (BP) algorithm for patterns recogni-
tion in statistical process control. Pham and Sagiroglu [8], 
in their paper, compared four training algorithms of multi-
layer perceptron (MLP) networks for patterns recognition 
of process control chart. Chiu et al. [9] used BP and AR(1) 
time series models for architecture of a perceptron network 
to identify the changes in the process parameters. Guh and 
Hsieh [10] introduced a model based on neural networks for 
patterns recognition and estimation of their corresponding 
parameters in process control charts. Guh et al. [11] sug-
gested a model for online detection of unnatural patterns 
in control charts. Guh and Tannock [12] trained perceptron 
networks with BP algorithm to recognize concurrent pat-
terns. These networks simulate the simultaneous occurrence 
of some basic patterns. Guh [13] combined artificial intel-
ligence technique with an expert system to implement SPC 
tasks automatically. Guh [14] used genetic algorithm to train 
the feed-forward neural networks to solve recognition issue. 
Guh [15] presented a model based on neural networks and 
expert systems for online detection and analysis of control 
chart patterns. Guh [16] presented a real-time model based 
on neural networks for the simultaneous recognition of pat-
terns in both mean and variance control charts. Chen et al. 
[17] offered a combined model for recognition of concurrent 

Fig. 1  Illustrated formation of shift (upward, downward) pattern, 
trend (upward, downward) pattern, a mode of cycle pattern and a 
mode of systematic pattern. (In these control charts, the significant 

patterns start at 13th sample; the horizontal axes are the samples 
number, and the vertical axes are the samples value)
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patterns. Fatemi Ghomi et al. [18] analyzed basic and some 
concurrent patterns in process control charts through a 
LVQ network and seven two-layer perceptron networks. 
Ebrahimzadeh et al. [19] introduced a dual-phase model to 
analyze the basic patterns. This model has used the capa-
bilities of several types of the neural networks algorithms. 
Yang et al. [20] suggested a hybrid model based on several 
types of networks for the simultaneous control of patterns 
in mean and variance charts. Lesany et al. [21] classified 
basic and all states of concurrent patterns in control charts 
via a LVQ network, a MLP network and fitted line of sam-
ples. The model proposed by the authors solves the problem 
of patterns misclassification error, acceptably. Cheng et al. 
[22] used a neural network-based pattern recognizer with 
extracted features from correlation analysis for study of pat-
terns in control charts.

In the second category, other approaches have been 
utilized:

Yang and Yang [23] presented a model based on statis-
tical correlation coefficient to identify patterns in control 
charts. Lin et al. [24] proposed a support vector machine 
(SVM) for online real-time recognition of unnatural patterns.

One of the problems that happens during patterns rec-
ognition of process control charts is called “patterns mis-
classification”. Particularly, when qualitative sensitivity 
level of the processes to the significant patterns formation 
is high, the probability of misclassification error increases 
in the models. Although the previous models have studied 
misclassification problem, they often face with patterns mis-
classification error when high level of sensitivity is desired 
for unnatural patterns detection. Most of the presented works 
have applied neural networks as recognition tool. Accord-
ing to the results of these models, the neural networks have 
uncertain reliability, when the sensitivity of processes to the 
appearance of unnatural patterns is high. Lesany et al. [21] 
via analysis of the samples’ fitted line decreased misclas-
sification error of Sh. and Tr. patterns, at different levels of 
sensitivity, considerably.

The proposed model in this paper develops samples’ fit-
ted line and samples’ fitted cosine curves for more accurate 
recognition of patterns type and more precise estimation of 
their corresponding parameters at different levels of sensi-
tivity. These tools decrease misclassification error of Sh. 
(upward/downward) pattern, Tr. (upward/downward) pattern, 
Cyc. pattern (in all formation phases) and Sys. (in all for-
mation phases) pattern, considerably. Moreover, the current 
model can alarm concurrent occurrence of basic patterns in 
all the forms.

The rest of this paper is organized as follows: Sect. 2 
deals with definitions, expressions and notations used in this 
model and also introduces the simulator functions of pro-
cess control charts patterns. Section 3 explains the general 
structure of the proposed model and describes its details. 

Section 4 implements the proposed model in S2 control 
charts as a case study. Section 5 evaluates the performance 
of the proposed model in recognition and analysis of control 
charts patterns. Section 6 presents comparative studies. And 
finally, Sect. 7 is devoted to conclusions and recommenda-
tion for further research.

2  Definitions, expressions and notations

2.1  Control box and control vector

To recognize and analyze the unnatural patterns, R random 
samples are entered into the model. Suppose this R-dimen-
sional vector as a box. Since the aim is detection and inter-
pretation of the significant patterns in this box, it is called 
“control box”; also the related vector is called “control 
vector.” After determination of the samples situation in a 
control box, R new random samples are replaced with the 
current samples. In this paper, each control box comprises 
12 random samples. After determination of the situation of 
existing samples, 12 new random samples are replaced with 
12 current samples.

2.2  Fitted line

Consider the scattered samples in a control box. The fitted 
line of these samples is a line which the sum of squared ver-
tical intervals of samples points from it would be minimal. 
This method is called the “least squares method” [25].

2.3  Fitted cosine curve

The fitted cosine curve of samples (in a control box) is a 
cosine curve which the sum of squared vertical intervals of 
samples points from it would be minimal. See Fig. 2. 

2.4  Simulation of natural variations

The existence of common cause variations in processes is 
natural and inevitable. These variations make accurate, pre-
cise and real-time recognition of unnatural behaviors diffi-
cult, because natural variations change significant patterns 
from their expected forms.

In applied statistics, there is a probability distribution 
function for each random variable [26]. Since common 
cause variations are random variables inherently, they have 
a probability distribution function. This theorem is the basis 
of natural behaviors simulation in process control charts.

The existence of natural variations in processes is unavoid-
able; therefore, simulated samples for an under-control process 
are always as follows:
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In this equation, t determines the sample’s number; n(t) 
is the value of natural variation of process in tth sample, and 
its statistical distribution function is the same as distribution 
function of samples in its corresponding chart (for example, 
in a x̄ under-control chart, natural variations and samples have 
Normal distribution); x(t) is the value of tth sample.

2.5  Simulation of unnatural patterns 
and introduction of their corresponding 
parameters

The formation of any unnatural pattern in control charts warns 
a special disorder and out-of-control situation in the produc-
tion process. For this reason, each pattern must be studied 
separately and exactly. Therefore, the measurable criteria for 
basic patterns have been defined. The definition of numeri-
cal parameters makes the determination of desired qualitative 
sensitivity levels of production processes and the monitor of 
improvement plans progress possible. The generating func-
tions of the basic patterns and their corresponding parameters 
are as follows:

2.5.1  The generating function of Sh. pattern

The Sh. pattern generating function (including natural varia-
tions) is as:

In this equation, b is the parameter of Sh. pattern and 
shows displacement magnitude (see Fig. 1). The value of this 
parameter can be positive (upward Sh.) or negative (down-
ward Sh.).

(1)x(t) = n(t)

(2)x(t) = n(t) + b

2.5.2  The generating function of Tr. pattern

The Tr. pattern generating function (including natural vari-
ations) is as follows:

In this equation, s is the parameter of Tr. pattern and 
shows trend slope (see Fig. 1). The value of this parameter 
can be positive (upward Tr.) or negative (downward Tr.).

2.5.3  The generating functions of Sys. and Cyc. patterns 
(the periodic patterns)

Consider the following function:

When parameter of T(i.e., period) is equal to 2, Eq. (4) 
is Sys. pattern generating function (including natural varia-
tions), and a reflects the amplitude of fluctuations. In other 
cases, this function can be the generating function of Cyc. 
pattern (including natural variations), and a reflects ampli-
tude of cycle. In the current paper, interval of 8 ≤ T ≤ 12 
is considered as Cyc. pattern generating function. Note that 
the occurrence causative roots of Sys. and Cyc. patterns are 
completely different and technical concepts of these two 
behaviors have no relationship together!

In Eq. (4), k is a virtual parameter and represents the 
phase difference in the starting point of these patterns. This 
parameter does not play a role in process analysis, but accel-
erates accurate recognition of Sys. and Cyc. patterns and 
covers all states of their formations [18]. Figure 3 illustrates 
the concept of phase difference in starting point and displays 

(3)x(t) = n(t) + s.t

(4)x(t) = n(t) +
[
a. cos

(
2�.t

T
+

2�.k

T

)]
−
[
scst + bcs

]

Fig. 2  Fitted cosine curve of 
samples (in this graph, the 
horizontal axis is the samples 
number and the vertical axis is 
the samples value)



751Pattern Analysis and Applications (2019) 22:747–765 

1 3

the various formation modes of Cyc. pattern with a period 
8 and k = 0, 1, 2,… , 7.

The numerical value of the parameter of T(period) is a 
subset of the natural numbers, and the parameter of k(phase 
difference) is a subset of nonnegative integer numbers, and 
always k < T .

The reviewed models in the literature (except references 
of [18, 22] and [21]) have considered incomplete expression 
of 
[
a. sin

(
2�.t

T

)]
 and 

[
a.(−1)t

]
 as generating functions of Cyc. 

and Sys. patterns, respectively. Fatemi Ghomi et al. [18] 
defined virtual parameter of the phase difference ( k ) and 
presented expression of 

[
a. cos

(
2�t

T
+

2�k

T

)]
 as generating 

function of Cyc. and Sys. patterns. However, the expression 
of 
[
a.cos

(
2�t

T
+

2�k

T

)]
 (abbreviated as un(t) ) cannot alone be 

the generating function of Cyc. and/or Sys. patterns.
Lesany et al. [21] developed the fitted line of samples for 

study of Sh. and Tr. patterns and completed the expression of 
un(t) . See Fig. 4. Figure 4 (Part a) illustrates the expression 
of un(t)(with parameters of T = 12 and k = 3 ) in a control 

box. The fitted line intercept and slope of this curve’s points 
must be zero, because this curve should be generating func-
tion of Cyc. and Sys. patterns merely and these two elements 
indicate Sh. and Tr. patterns, respectively [21]. Therefore, the 
“modification expression” of 

[
scs.t + bcs

]
 is removed from it. 

In this case, the fitted line intercept and slope of the improved 
generating function are zero (see Fig. 4 (Part b)). Indeed, the 
modification expression is the fitted line of points of un(t) that 
has been calculated by least squares method. The slope ( scs ) 
and intercept ( bcs ) of this line are as:

(5)scs =

n.

�
n∑
t=1

t.un(t)

�
−

��
n∑
t=1

t

�
.

�
n∑
t=1

un(t)

��

n.

�
n∑
t=1

t2

�
−

�
n∑
t=1

t

�2

(6)
bcs =

n∑
t=1

un(t) −

�
scs.

n∑
t=1

t

�

n

Fig. 3  Various formation modes 
of Cyc. pattern with a period 8

Fig. 4  Comparison of the generating function of periodic patterns, before (a) and after (b) improvement
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In these equations,n is number of samples (and dimension 
of control vectors).

2.5.4  Simulation of concurrent patterns

As mentioned in the literature, the basic patterns can occur 
singly or concurrently. The simulator function of each form 
of concurrent occurrence of the basic patterns is a result of 
addition of the terms including occurred patterns parameters 
and n(t) . For instance, the simulator function of concurrent 
occurrence of Sh. and Tr. patterns, including natural varia-
tions, is as x(t) = n(t) + b + s.t ; and so on.

2.6  Sensitivity level

As mentioned, the main goal of unnatural patterns recogni-
tion in process control charts is the enhancement of charts’ 
sensitivities to detect and analyze out-of-control situations. 
The sensitivity specifies the value of required accuracy in a 
process and directly depends on the parameters of unnatu-
ral patterns. The determination of the boundary value of a 
parameter for approval of the formation of its corresponding 
unnatural pattern is called “determination of the sensitivity 
level.” The determination of the sensitivity levels for the 
study of the significant patterns is mandatory. For example, 
Table 1 determines sensitivity levels for the current model. 
According to this table, the sensitivity level of upward Sh. 
has been considered as b ≥ 0.5�(� is the standard deviation 
of natural variations); therefore, the process is under-control, 
when the estimated magnitude for this parameter is less than 
0.5�.

As much as the qualitative sensitivity level to the occur-
rence of an unnatural pattern would be higher and process 
would be more sensitive to its formation, the absolute value 
of its corresponding parameter limit in “out-of-control” 
interval (see Table 1) is smaller, and vice versa. Generally, 
the determined intervals in Table 1 are considered as high 
levels of the qualitative sensitivities.

The determination of suitable sensitivity levels for a pro-
cess is very important, because inaccurate determination of 

sensitivity levels increases incorrect discrimination risk of 
real situations. For instance, an under-control situation is 
decided as out-of-control falsely and vice versa. The tech-
nical knowledge of the production process affects suitable 
determination of sensitivity levels.

2.7  Standardization

In an overview, the “standardization” of the samples of a 
control vector is as follows:

In this equation,�n(t) and �n(t) are the average and standard 
deviation of natural variations in its corresponding control 
chart, respectively.

2.8  Normalization

Generally, the “normalization” is elimination of the effects 
of unnatural pattern/patterns from the samples of a control 
vector. The meaning of the normalization in the proposed 
model is elimination of the effects of Sh. and Tr. patterns 
from the samples of a control vector as follows:

3  Introduction of the proposed model

In this section, the structure and details of the proposed 
model are introduced and described.

3.1  General structure of the proposed model

In an overview, Fig. 5 illustrates the loop of the proposed 
model. The following steps introduce the procedure of the 
proposed model:

Select 12 independent samples randomly (the size of each 
sample is m ) and then calculate the corresponding statis-
tic to each sample (as examples, this statistic in x̄ control 

(7)x�(t) =
x(t) − �n(t)

�n(t)

(8)x�
norm

(t) = x�(t) − [b + s.t] t = 1, 2,… , 12

Table 1  Determined 
sensitivities for parameters in 
this research

a In the current model, since the components of control vector are standardized, the value of sigma is 1

Pattern name Parameter Under-control interval Out-of-control interval

Upward shift (Sh.+) b+
b < 0.5𝜎a

b ≥ 0.5�

Downward shift (Sh.−) b−
b > − 0.5𝜎 b ≤ − 0.5�

Upward trend (Tr.+) s+
s < 0.05𝜎 s ≥ 0.05�

Downward trend (Tr.−) s−
s > − 0.05𝜎 s ≤ − 0.05�

Cycle a, T, k a < 0.5𝜎 or T < 8(except T = 2) a ≥ 0.5� and 8 ≤ T ≤ 12

Systematic a, k a < 0.5𝜎 a ≥ 0.5�



753Pattern Analysis and Applications (2019) 22:747–765 

1 3

chart is the average of the observations of each sample 
and in S2 control chart is the variance of the observations 
of each sample).
Consider 12 calculated samples (i.e., statistics) as com-
ponents of a control vector.
Standardize the components (samples) of the control vec-
tor, according to Eq. (7).
Calculate the fitted line of the control vector’s samples. 
The slope and intercept of this line represent the param-
eters of Tr. and Sh. patterns, respectively [21]. With 
respect to the determined sensitivity levels, monitor the 
formation of these two patterns.
Normalize the components (standardized samples) of 
control vector, according to Eq. (8).
Calculate the fitted cosine curve of the normalized sam-
ples. With respect to the determined sensitivity levels, 
monitor the formation of Cyc. pattern or Sys. pattern.

Now, the users can judge about the situation of pro-
cess. Indeed, the fitted line and curve have facilitated 

recognition and analysis of the basic and concurrent pat-
terns at different levels of sensitivity.

When the unnatural patterns appear, the improvement 
plans are performed, and then the process control contin-
ues via new samplings and replacement of 12 new samples 
with the current samples.

3.2  Details of the proposed model

In this subsection, the cited steps are described, and the 
guideline of the calculation and analysis of the samples’ 
fitted line and also, the proposed algorithm of the calcula-
tion and interpretation of the samples’ fitted cosine curve 
are presented.

Fig. 5  Loop of the proposed 
model

Calculate 
Fitted cosine 

curve

Normalize the
components of 
control vector

interpretation
of curve 

alarms Cyc. or
Sys.?

Set a control box

Standardize the
components of 
control vector

Calculate
Fitted line

analysis 
of line 
alarms

Sh. and/or 
Tr.?

Yes

No

Determination of 
parameter(s)

&
Decision-making

No

Yes

Sampling

Determination of 
parameters

&
Decision-making
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3.2.1  Standardization of samples

In the first step, the samples of the control vector are 
standardized, according to Eq. (7). This transformation is 
mandatory for utilization of the proposed model.

3.2.2  Calculation and analysis of the fitted line

As defined in Sect. 2.2, the fitted line of these samples (in 
a control box) is a line which the sum of squared vertical 
intervals of samples points from it would be minimal. This 
line’s equation is considered as x�(t) = s.t + b . The slope 
( s ) and the intercept ( b ) of the fitted line (for 12-dimen-
sional control vectors) are calculated as follows:

The fitted line’s intercept and slope represent the param-
eters of Sh. and Tr. patterns, respectively [21]. Indeed, the 
intercept indicates the mean of displacement (positive or 
negative) of samples, and the slope indicates trend slope 
(downward or upward) of samples. With respect to the 
determined sensitivity levels for a process, the user can 
monitor the formation of these two patterns via the values 
of the fitted line’s intercept and slope.

The fitted line’s elements alarm the occurrence of Sh. 
and Tr. patterns (singly or concurrently) accurately and 
estimate their corresponding parameters precisely.

3.2.3  Elimination of effects of Sh. and Tr. patterns

In this step, the elimination of the effects of Sh. and Tr. 
patterns from samples of the control vector is necessary, 
even if the values of their corresponding parameters are 
less than the determined sensitivity levels. Therefore, 
according to Eq. (8), the components of control vector 
are normalized.

(9)s =

12.

�
12∑
t=1

t.x�(t)

�
−

��
12∑
t=1

t

�
.

�
12∑
t=1

x�(t)

��

12.

�
12∑
t=1

t2

�
−

�
12∑
t=1

t

�2

(10)
b =

12∑
t=1

x�(t) −

�
s.

12∑
t=1

t

�

12

3.2.4  Calculation and interpretation of the fitted cosine 
curve

The fitted cosine curve of samples (in a control box) is a 
cosine curve which the sum of squared vertical intervals 
of samples points from it would be minimal (see Fig. 2); 
in other word:

When we take the partial derivatives of Eq.  (11) as 
�Δ

�a
= 0 , �Δ

�T
= 0 and �Δ

�k
= 0 , we have the required equations 

for calculation of the optimum fitted cosine curve (includ-
ing optimum amplitude(s), optimum period and optimum 
phase difference). The cited curve is real optimum cosine 
curve.

Since the above solution to achieve the optimum param-
eters is very difficult, we have proposed a heuristic algo-
rithm as following:

First, assume the parameters of k and T  are constant 
values (because phase difference does not play a role 
in process analysis [18], moreover, the amplitude in 
Cyc. pattern and Sys. pattern is more important than 
the period). In this case, ãT ,k is calculated as follows: 

Then, calculate ãT ,k for all alternatives of T  and k . (The 
list of all alternatives of T  and k is shown in Table 2.)
Now, calculate Eq. (11), i.e., the value of Δ , for each 
of (T , k;ãT ,k).
Finally, find the minimum value of Δ , and consider its 
corresponding parameters as optimum parameters (i.e., 
ah, Th, kh).

We have run this algorithm using a spreadsheet applica-
tion, simply.

According to the determined sensitivity levels for the 
parameters in this research (see Table 1), the interpreta-
tions of the algorithm outputs are as follows:

State (I): When Th = 1 , the patterns of Cyc. and Sys. 
have not occurred.

State (II): When Th = 2 and ah ≥ 0.5� , the formation of 
Sys. pattern with the parameters of ah and kh is confirmed.

State (III): When 2 < Th < 8 or ah < 0.5𝜎 , the formation 
of Cyc. pattern is not confirmed.

(11)

Min Δ = f (a, T , k) =

12∑
t=1

(
x�
norm

(t) −
[
a. cos

(
2�.t

T
+

2�.k

T

)])2

(12)

ãT ,k =
𝜕Δ

𝜕a
= 0 ⇒ ãT ,k =

12∑
t=1

�
x�
norm

(t). cos
�

2𝜋.t

T
+

2𝜋.k

T

��

12∑
t=1

cos2
�

2𝜋.t

T
+

2𝜋.k

T

�
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State (IV): When Th > 8 and ah ≥ 0.5� , the forma-
tion of Cyc. pattern with the parameters of ah , Th and kh is 
confirmed.

4  Case study: recognition and analysis 
of unnatural patterns in S2 control charts

In control charts of variable qualitative characteristics, the 
“process variability” and “process mean” are monitored 
simultaneously. Since, the control of process variability 
chart is the main prerequisite of the control of process mean 
chart [1]. In other word, change in the process mean affects 
only the mean control chart, while the process variability 
affects both the mean and variability control charts.

Typically, the mean is controlled by x-bar chart and the 
variability is controlled by one of S2 chart, S chart or R chart.

To implement the proposed model, S2 control chart has 
been selected as a case study. This chart control the process 
variability certainly. However, the proposed model is appli-
cable for other control charts.

The upper control limit (UCL), center line (CL) and lower 
control limit (LCL) of S2 control chart are as follows [1]:

In this equation, m is sample size; �2

��∕2,m−1
 and 

�2

(1−��∕2),m−1
 are (��∕2)% of upper and lower points of Chi-

square distribution with the m − 1 degree of freedom, respec-
tively; and �2

P
 is the variance of corresponding statistical 

population. When the variance of statistical population is 
unknown, S̄2(i.e., the mean of the samples) is replaced with 

(13)

⎧⎪⎨⎪⎩

UCL =
�2

P

m−1
.�2

��∕2,m−1

CL = �2

P

LCL =
�2

P

m−1
.�2

1−(��∕2),m−1

�2

P
 . Note that the control limits in S2 control chart are prob-

able limits.

4.1  Simulation of natural variations in S2 control 
chart

The samples in S2 control chart are calculated as:

In this equation, t determines the sample’s number; m is 
sample size; oj is the value of jth observation; and ō is the 
mean of observations in tth sample. The statistic of S2

t
 is an 

unbiased estimator for the variance of statistical population.
As explained in Sect. 2.2, the statistical distribution func-

tion of the natural variations in a control chart is the same as 
distribution function of its samples. The samples in S2 con-
trol chart have Gamma distribution function with parameters 
of m−1

2
 (shape parameter) and 2�

2

P

m−1
 (scale parameter) [18]; 

therefore, the natural variations in an under-control S2 chart 
have Gamma distribution function with parameters of m−1

2
 

and 2�
2

P

m−1
.

4.2  The numerical values of the corresponding 
parameters to unnatural patterns in control 
charts

The numerical parameters make the determination of desired 
qualitative sensitivity levels of production processes and the 
monitor of improvement plans progress possible.

Usually, the parameters values of b(displacement magni-
tude), s(trend slope) and a(amplitude of cycle and amplitude 
of fluctuations) are determined in terms of “coefficients of 
standard deviation of natural variations (abbreviated as �).”

(14)S2
t
=

∑m

j=1

�
oj − ō

�2
m − 1

Table 2  List of all periodic 
alternatives

Period The corresponding phase dif-
ferences

The alternatives of ( T , k) ã
T ,k

1 0 (1, 0) ã1,0

2 0,1 (2, 0), (2, 1) ã2,0, ã2,1

3 0,1,2 (3, 0), (3, 1), (3, 2) ã3,0, ã3,1, ã3,2

4 0,1,2,3 (4, 0), (4, 1),… , (4, 3) ã4,0, ã4,1,… , ã4,3

5 0,1,2,3,4 (5, 0), (5, 1),… , (5, 4) ã5,0, ã5,1,… , ã5,4

6 0,1,2,3,4,5 (6, 0), (6, 1),… , (6, 5) ã6,0, ã6,1,… , ã6,5

7 0,1,2,3,4,5,6 (7, 0), (7, 1),… , (7, 6) ã7,0, ã7,1,… , ã7,6

8 0,1,2,3,4,5,6,7 (8, 0), (8, 1),… , (8, 7) ã8,0, ã8,1,… , ã8,7

9 0,1,2,3,4,5,6,7,8 (9, 0), (9, 1),… , (9, 8) ã9,0, ã9,1,… , ã9,8

10 0,1,2,3,4,5,6,7,8,9 (10, 0), (10, 1),… , (10, 9) ã10,0, ã10,1,… , ã10,9

11 0,1,2,3,4,5,6,7,8,9,10 (11, 0), (11, 1),… , (11, 10) ã11,0, ã11,1,… , ã11,10

12 0,1,2,3,4,5,6,7,8,9,10,11 (12, 0), (12, 1),… , (12, 11) ã12,0, ã12,1,… , ã12,11
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As explained in Sect. 3.2.1, the standardization of sam-
ples is mandatory in the current model. Since the standard 
deviation of standardized random variables is always equal 
to 1 [25], the numerical values of the cited parameters, in our 
model, are independent of � (see the footnote of Table 1).

Moreover, the numerical value of the parameter of T
(period) is a subset of the natural numbers and the param-
eter of k(phase difference) is a subset of nonnegative integer 
numbers and always k < T .

4.3  A numerical example

This subsection reviews the procedure of the proposed 
model for recognition and interpretation of unnatural pat-
terns in S2 control chart as a numerical example.

To control the variability of a qualitative characteristic, 
12 samples (each sample including 5 independent observa-
tions) have been selected, randomly (Table 3, row 2)

The documentaries of the production process indicate 
�2

P
= 25 unit. To calculate the upper and lower control lim-

its, �� = 0.05 has been assumed. Thus, UCL, CL and LCL 
of corresponding S2 control chart are equal to 69.65, 25.00 
and 3.03, respectively.

Figure 6 (Part A) shows the scattered samples in S2 con-
trol chart. As illustrated, all samples are between control 
limits and apparently the process variability is under-control.

Now, the occurrence of the significant patterns is con-
trolled, according to the proposed model procedure:

In the first step, the samples are standardized. In S2 
control chart, the samples and the natural variations have 
Gamma distribution function with parameters of m−1

2
 (abbre-

viated as � ) and 2�
2

P

m−1
 (abbreviated as � ) [18]; since the aver-

age and variance of Gamma distribution function are �.� and 
�.�2 , respectively [25]; therefore:

Table 3 (row 3) and Fig. 6 (Part B) indicate the standard-
ized samples values and standardized control box.

(15)�S2 = E(S2) = �2

P

(16)�2

S2
= Var(S2) =

2.�4

P

(m − 1)

In the next step, the fitted line’s equation of the standard-
ized samples is calculated. The intercept and slope of this 
line are − 0.29 and 0.06, respectively. With respect to the 
determined sensitivity levels in Table 1, the analysis of these 
values alarms the appearance of upward Tr. pattern. The 
slope of the fitted line (i.e., Tr. pattern parameter) is greater 
than 0.05. On the other hand, the intercept of the fitted line 
(i.e., Sh. pattern parameter) is greater than -0.5, so the occur-
rence of downward Sh. pattern is not confirmed.

The elimination of the effects of Sh. and Tr. patterns from 
samples of the control vector is necessary, even if the values 
of their corresponding parameters are less than the deter-
mined sensitivity levels. Therefore, according to Eq. (8), the 
components of control vector are normalized (see Table 3, 
row 4).

In the final step, the fitted cosine curve of the normalized 
samples is calculated and interpreted, via the proposed algo-
rithm. Since the algorithm outputs are ah = 0.704 , Th = 9 
and kh = 1 , the formation of Cyc. pattern with the cited 
parameters is confirmed.

Thus, the primary conclusion is rejected by the study of 
the significant patterns. Concurrent occurrence of upward Tr. 
pattern ( s = 0.06 ) and Cyc. pattern ( a = 0.704, T = 9, k = 1 ) 
reflects out-of-control situations.

In this time, the quality control department specifies 
the causative roots of the formation of these patterns and 
performs the improvement plans. Then the process control 
continues via new samplings and replacement of 12 new 
samples with the current samples.

5  Evaluation of the proposed model

This section presents the statistical details of the perfor-
mance of the proposed model in recognition and analysis of 
process control charts patterns. The simulated vectors have 
been applied to evaluate the performance of the proposed 
model. The model’s outputs have been compared with the 
expected results. The main indices to evaluate the proposed 
model are “accurate recognition of pattern type” and “pre-
cise estimation of pattern parameter(s)”.

Table 3  Samples values and the calculations of the numerical example

Sample number 1 2 3 4 5 6 7 8 9 10 11 12

Sample value 23.476 12.713 32.267 6.556 16.068 34.815 49.591 10.284 64.640 36.340 30.665 9.061
Standardized sample − 0.086 − 0.695 0.411 − 1.043 − 0.505 0.555 1.391 − 0.832 2.242 0.642 0.320 − 0.902
Normalization 

of standardized 
sample

0.136 − 0.536 0.507 − 1.010 − 0.535 0.462 1.235 − 1.052 1.960 0.296 − 0.089 − 1.374
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5.1  Performance of fitted line in recognition 
and analysis of Sh. and Tr. patterns

The proposed model monitors the occurrence of Sh. and Tr. 
patterns via calculation of the fitted line’s equation of the 
standardized samples and analysis of its elements (i.e., fitted 
line’s intercept and slope).

The fitted line’ elements alarm the appearance of Sh. and 
Tr. patterns (singly or concurrently) accurately and estimate 
their corresponding parameters precisely. Tables 4 and 5 rep-
resent these abilities at different levels of sensitivity [21].

5.2  Performance of fitted cosine curve 
in recognition and analysis of Sys. and Cyc. 
patterns

The proposed model monitors the formation of the periodic 
patterns (i.e., Sys. and Cyc. patterns) via calculation of the 

fitted cosine curve of the normalized samples and interpreta-
tion of its corresponding algorithm outputs.

The capabilities of the proposed model in periodic pat-
terns recognition and estimation of their parameters, at dif-
ferent levels of sensitivity, have been tested by 5940 simu-
lated vectors. The results are shown in Table 6.

6  Comparative studies

This section compares the performance of the proposed 
model with the previous models.

6.1  Comparison of performance of the proposed 
model with the developed models based 
on neural networks

As mentioned in the literature, the previous models have 
studied misclassification problem, but they often face with 

Fig. 6  Control boxes of the numerical example
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patterns misclassification error when high level of sensi-
tivity is desired for unnatural patterns identification. Most 
of the presented works have utilized neural networks as 
recognition tool. According to the results of these mod-
els, the neural networks have uncertain reliability, when 
the sensitivity of processes to the occurrence of unnatural 
patterns is high. Moreover, the architectures of the neural 
networks are difficult and their learning algorithms are 
time-consuming.

The proposed model in this paper develops the samples’ 
fitted line and the samples’ fitted cosine curves for more 
accurate classification of patterns and more precise estima-
tion of their corresponding parameters at different levels of 

sensitivity. These tools have decreased feedback time of the 
model.

Two main indices have compared the performance of the 
proposed model with the developed models based on neural 
networks:

6.1.1  Patterns misclassification error

To evaluate the performance of the proposed model in pat-
terns classification, the results of our model have been com-
pared with the developed models of [18] and [21]. Table 7 
shows the average of patterns misclassification error (along-
side corresponding recognition tools) in the proposed model 

Table 4  Performance of fitted 
line in Sh. pattern recognition 
and estimation of its parameter

Pattern Given value 
of parameter

Estimated value of param-
eter (average of fitted line’s 
intercept)

Pattern recogni-
tion accuracy (%)

Upward shift 0.5 0.59 91
1 0.99 93
1.5 1.48 95
2 2.01 97
2.5 2.53 100
3 3.03 100

Average of pattern recognition accuracy 96
Downward shift − 0.5 − 0.57 90

− 1 − 1.02 94
− 1.5 − 1.49 96
− 2 − 2.08 99
− 2.5 − 2.5 99
− 3 − 2.98 100

Average of pattern recognition accuracy 96.33

Table 5  Performance of fitted 
line in Tr. pattern recognition 
and estimation of its parameter

Pattern Given value 
of parameter

Estimated value of parameter 
(average of fitted line’s slope)

Pattern recogni-
tion accuracy (%)

Upward trend 0.05 0.055 92
0.1 0.102 95
0.15 0.148 98
0.2 0.201 99
0.25 0.255 100
0.3 0.297 100

Average of pattern recognition accuracy 97.33
Downward trend − 0.05 − 0.061 90

− 0.1 − 0.099 93
− 0.15 − 0.153 95
− 0.2 − 0.203 98
− 0.25 − 0.256 100
− 0.3 − 0.301 100

Average of pattern recognition accuracy 96
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Table 6  Results of performance 
of fitted cosine curve in 
recognition of Sys. and Cyc. 
patterns and estimation of their 
corresponding parameters

Pattern Given value of parameter Estimated values of parameters (aver-
age of parameters in fitted cosine 
curve)

Pattern recogni-
tion accuracy 
(%)

a T k ah Th kh

Systematic 0.5 2 0 0.57 2.14 0.100 93
1 2 0 1.05 2.10 0.067 95
1.5 2 0 1.49 1.96 0.067 98
2 2 0 2.01 2.00 0.033 100
2.5 2 0 2.51 2.00 0.033 100
3 2 0 2.98 2.00 0.000 100

Average of pattern recognition accuracy 97.67
Systematic 0.5 2 1 0.56 1.88 0.900 94

1 2 1 1.06 2.10 0.933 95
1.5 2 1 1.53 2.04 0.933 98
2 2 1 1.96 2.00 0.967 100
2.5 2 1 2.52 2.00 0.967 100
3 2 1 2.94 2.00 1.000 100

Average of pattern recognition accuracy 97.83
Cycle 0.5 8 0 0.55 8.40 0.180 95

1 8 0 1.02 7.76 0.120 97
1.5 8 0 1.59 7.84 0.090 98
2 8 0 1.96 7.92 0.060 99
2.5 8 0 2.54 8.00 0.030 100
3 8 0 2.98 8.00 0.030 100

Average of pattern recognition accuracy 98.17
Cycle 0.5 8 1 0.59 8.56 1.217 93

1 8 1 1.04 7.60 1.163 95
1.5 8 1 1.55 8.24 1.109 97
2 8 1 2.03 8.08 1.054 99
2.5 8 1 2.51 8.00 1.027 100
3 8 1 3.03 8.00 1.000 100

Average of pattern recognition accuracy 97.33
Cycle 0.5 8 2 0.61 7.60 2.129 95

1 8 2 0.91 8.40 2.107 95
1.5 8 2 1.47 8.24 2.086 97
2 8 2 2.02 8.00 2.064 100
2.5 8 2 2.53 8.00 2.043 100
3 8 2 3.01 8.00 2.021 100

Average of pattern recognition accuracy 97.83
Cycle 0.5 8 3 0.59 8.32 3.064 96

1 8 3 1.06 7.84 3.039 98
1.5 8 3 1.53 7.92 3.026 99
2 8 3 1.97 8.00 3.013 100
2.5 8 3 2.49 8.00 3.013 100
3 8 3 2.98 8.00 3.000 100

Average of pattern recognition accuracy 98.83
Cycle 0.5 8 4 0.62 7.60 4.036 95

1 8 4 1.06 8.32 4.034 96
1.5 8 4 1.46 8.16 4.031 98
2 8 4 2.01 7.92 4.029 99
2.5 8 4 2.52 8.00 4.014 100
3 8 4 3.02 8.00 4.007 100
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Table 6  (continued) Pattern Given value of parameter Estimated values of parameters (aver-
age of parameters in fitted cosine 
curve)

Pattern recogni-
tion accuracy 
(%)

a T k ah Th kh

Average of pattern recognition accuracy 98
Cycle 0.5 8 5 0.60 8.40 4.679 95

1 8 5 1.04 8.24 4.704 97
1.5 8 5 1.53 7.92 4.730 99
2 8 5 2.04 8.00 4.859 100
2.5 8 5 2.45 8.00 4.923 100
3 8 5 3.01 8.00 4.987 100

Average of pattern recognition accuracy 98.5
Cycle 0.5 8 6 0.67 8.32 5.280 96

1 8 6 1.05 7.68 5.340 96
1.5 8 6 1.54 8.08 5.550 99
2 8 6 1.99 8.00 5.700 100
2.5 8 6 2.46 8.00 5.880 100
3 8 6 2.92 8.00 5.970 100

Average of pattern recognition accuracy 98.5
Cycle 0.5 8 7 0.63 8.40 6.125 95

1 8 7 1.02 8.24 6.265 97
1.5 8 7 1.58 7.92 6.355 99
2 8 7 2.01 7.92 6.455 99
2.5 8 7 2.47 8.00 6.775 100
3 8 7 2.98 8.00 6.950 100

Average of pattern recognition accuracy 98.33
Cycle 0.5 12 0 0.57 12.48 0.840 96

1 12 0 1.01 11.76 0.720 98
1.5 12 0 1.52 11.88 0.660 99
2 12 0 2.03 12.12 0.540 99
2.5 12 0 2.43 12.00 0.420 100
3 12 0 2.95 12.00 0.120 100

Average of pattern recognition accuracy 98.67
Cycle 0.5 12 1 0.61 11.52 1.687 96

1 12 1 0.99 12.24 1.589 98
1.5 12 1 1.58 11.76 1.540 98
2 12 1 1.94 12.00 1.491 100
2.5 12 1 2.42 12.00 1.245 100
3 12 1 3.04 12.00 1.049 100

Average of pattern recognition accuracy 98.67
Cycle 0.5 12 2 0.53 12.48 2.535 96

1 12 2 1.08 12.36 2.496 97
1.5 12 2 1.55 11.88 2.420 99
2 12 2 1.94 12.00 2.382 100
2.5 12 2 2.43 12.00 2.191 100
3 12 2 2.94 12.00 2.038 100

Average of pattern recognition accuracy 98.67
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Table 6  (continued) Pattern Given value of parameter Estimated values of parameters (aver-
age of parameters in fitted cosine 
curve)

Pattern recogni-
tion accuracy 
(%)

a T k ah Th kh

Cycle 0.5 12 3 0.70 11.40 3.409 95
1 12 3 1.03 12.48 3.382 96
1.5 12 3 1.56 11.76 3.327 98
2 12 3 2.03 12.00 3.273 100
2.5 12 3 2.47 12.00 3.136 100
3 12 3 2.98 12.00 3.027 100

Average of pattern recognition accuracy 98.17
Cycle 0.5 12 4 0.67 12.60 4.245 95

1 12 4 1.05 12.12 4.180 99
1.5 12 4 1.56 11.88 4.164 99
2 12 4 1.99 12.00 4.123 100
2.5 12 4 2.47 12.00 4.082 100
3 12 4 3.02 12.00 4.008 100

Average of pattern recognition accuracy 98.83
Cycle 0.5 12 5 0.60 11.28 5.142 94

1 12 5 1.04 12.48 5.131 96
1.5 12 5 1.55 11.88 5.115 99
2 12 5 2.03 12.12 5.060 99
2.5 12 5 2.48 12.00 5.027 100
3 12 5 2.97 12.00 5.005 100

Average of pattern recognition accuracy 98
Cycle 0.5 12 6 0.63 11.64 5.875 97

1 12 6 1.03 12.24 5.880 98
1.5 12 6 1.57 11.76 5.885 98
2 12 6 2.01 11.88 5.896 99
2.5 12 6 2.49 12.00 5.951 100
3 12 6 2.96 12.00 5.973 100

Average of pattern recognition accuracy 98.67
Cycle 0.5 12 7 0.57 11.28 6.575 94

1 12 7 0.99 12.60 6.591 95
1.5 12 7 1.58 12.24 6.640 98
2 12 7 2.04 12.00 6.836 100
2.5 12 7 2.51 12.00 6.918 100
3 12 7 2.99 12.00 6.984 100

Average of pattern recognition accuracy 97.83
Cycle 0.5 12 8 0.60 11.52 7.345 96

1 12 8 1.04 11.76 7.400 98
1.5 12 8 1.56 12.12 7.427 99
2 12 8 2.02 12.12 7.536 99
2.5 12 8 2.47 12.00 7.727 100
3 12 8 2.93 12.00 7.891 100

Average of pattern recognition accuracy 98.67
Cycle 0.5 12 9 0.58 11.40 8.427 95

1 12 9 1.03 11.64 8.504 97
1.5 12 9 1.52 12.24 8.542 98
2 12 9 1.97 11.88 8.580 99
2.5 12 9 2.44 12.00 8.809 100
3 12 9 2.96 12.00 8.962 100
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and two cited models. As shown, for common patterns in 
three models, the average of patterns misclassification error 
in the proposed model has decreased, considerably.

6.1.2  Parameters estimation error

Table 8 compares the average and standard deviation of 
estimation error of the periodic patterns parameters in the 
proposed model with reference of [21]. The results show 
that our model has decreased the aggregated average and 
standard deviation of the parameters estimation error, in all 
formation phases.

6.2  Support of all formation modes of Cyc. and Sys. 
patterns

The proposed model has applied the improved generating 
function of Cyc. and Sys. patterns, according to Eq. (4), 
practically (see Tables 6, 7, 8). This equation considers the 
modification expression and also the virtual parameter of 
phase difference (in the starting point of these patterns) and 
therefore covers all formation modes of Cyc. and Sys. pat-
terns. The previous models have introduced incomplete 

expressions of 
[
a. sin

(
2�.t

T

)]
 (such as references of [8, 

10–12, 15–17, 20, 23, 24]) and 
[
a. cos

(
2�.t

T
+

2�.k

T

)]
 (refer-

ence of [18]) as generating function for Cyc. pattern and 
incomplete expression of 

[
a.(−1)t

]
 (such as references [11, 

15, 17, 23, 24]) as generating function for Sys. pattern.
Although the reference of [22] has considered the phase 

difference for the generating functions of Cyc. and Sys. pat-
terns, this paper has not reported the statistical results of the 
study of their various formation modes.

6.3  Recognition and analysis of concurrent patterns

The proposed model can alert the concurrent occurrence of 
two or three unnatural patterns and estimate correspond-
ing parameters to appeared patterns, separately. Indeed, the 
analysis of fitted line’s elements and then the interpretation 
of fitted cosine curve’s elements make this capability acces-
sible. The reviewed models in the literature (except reference 
of [21]) have not such capability.

Table 6  (continued) Pattern Given value of parameter Estimated values of parameters (aver-
age of parameters in fitted cosine 
curve)

Pattern recogni-
tion accuracy 
(%)

a T k ah Th kh

Average of pattern recognition accuracy 98.17
Cycle 0.5 12 10 0.61 11.52 9.313 96

1 12 10 1.03 12.24 9.411 98
1.5 12 10 1.46 11.88 9.460 99
2 12 10 2.02 12.00 9.509 100
2.5 12 10 2.46 12.00 9.755 100
3 12 10 3.04 12.00 9.951 100

Average of pattern recognition accuracy 98.83
Cycle 0.5 12 11 0.57 12.72 10.460 94

1 12 11 0.96 12.60 10.700 95
1.5 12 11 1.53 11.76 10.880 98
2 12 11 2.02 12.24 10.910 98
2.5 12 11 2.51 12.00 10.940 100
3 12 11 2.97 12.00 10.970 100

Average of pattern recognition accuracy 97.5
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7  Conclusions and suggestion for future 
research

Unnatural patterns recognition and analysis in process con-
trol charts is necessary, since the traditional rules cannot 
assure access to real under-control situations.

The proposed model in the current paper was designed 
to recognize and analyze the significant patterns in process 
control charts. To achieve these purposes, this model devel-
oped the fitted line of samples (calculated by least squares 
method) and the fitted cosine curve of samples (calculated 
by a heuristic optimization method). To implement the pro-
cedure of the proposed model, S2 control chart was selected 
as a case study.

The results indicated that the samples’ fitted line analyzes 
the patterns of Sh. and Tr., accurately, and also the samples’ 
fitted cosine curve interprets the patterns of Cyc. and Sys., 
precisely.

One of the main goals of the current model was con-
siderable decrease in patterns misclassification error. When 
sensitivity of the processes to unnatural patterns formation is 
high, fitted line and fitted cosine curve enhance the capabil-
ity of the model in classification of the significant patterns 
and estimation of their corresponding parameters.

This paper applied the improved generating function 
of Cyc. and Sys. patterns and considered the modification 
expression and the phase differences, practically. Indeed, this 
improved generating function covers all formation modes 

Table 7  Comparison of patterns misclassification error

- : These modes have not been considered in the model of Ref. [18]

Pattern Average (%) of misclassification in 
the proposed model (recognition tool)

Average (%) of misclassification in the 
model of Ref. [18] (recognition tool)

Average (%) of misclassification in 
the model of Ref. [21] (recognition 
tool)

Upward shift 4.00 (fitted line) 7.22 (neural networks) 4.00 (fitted line)
Downward shift 3.67 (fitted line) 5.56 (neural networks) 3.67 (fitted line)
Upward trend 2.67 (fitted line) 13.92 (neural networks) 2.67 (fitted line)
Downward trend 4.00 (fitted line) 15.11 (neural networks) 4.00 (fitted line)
Sys. (k = 0) 2.33 (fitted cosine curve) 4.44 (neural networks) 4.00 (neural networks)
Sys. (k = 1) 2.17 (fitted cosine curve) 3.72 (neural networks) 2.50 (neural networks)
Cyc. (T = 8, k = 0) 1.83 (fitted cosine curve) – 3.50 (neural networks)
Cyc. (T = 8, k = 1) 2.67 (fitted cosine curve) – 3.33 (neural networks)
Cyc. (T = 8, k = 2) 2.17 (fitted cosine curve) – 2.50 (neural networks)
Cyc. (T = 8, k = 3) 1.17 (fitted cosine curve) – 4.33 (neural networks)
Cyc. (T = 8, k = 4) 2.00 (fitted cosine curve) 5.63 (neural networks) 5.17 (neural networks)
Cyc. (T = 8, k = 5) 1.5 (fitted cosine curve) – 3.17 (neural networks)
Cyc. (T = 8, k = 6) 1.5 (fitted cosine curve) – 5.50 (neural networks)
Cyc. (T = 8, k = 7) 1.67 (fitted cosine curve) – 4.17 (neural networks)
Cyc. (T = 12, k = 0) 1.33 (fitted cosine curve) 6.89 (neural networks) 3.17 (neural networks)
Cyc. (T = 12, k = 1) 1.33 (fitted cosine curve) – 4.00 (neural networks)
Cyc. (T = 12, k = 2) 1.33 (fitted cosine curve) – 5.00 (neural networks)
Cyc. (T = 12, k = 3) 1.83 (fitted cosine curve) – 4.33 (neural networks)
Cyc. (T = 12, k = 4) 1.17 (fitted cosine curve) – 4.17 (neural networks)
Cyc. (T = 12, k = 5) 2.00 (fitted cosine curve) – 4.50 (neural networks)
Cyc. (T = 12, k = 6) 1.33 (fitted cosine curve) – 4.17 (neural networks)
Cyc. (T = 12, k = 7) 2.17 (fitted cosine curve) – 3.17 (neural networks)
Cyc. (T = 12, k = 8) 1.33 (fitted cosine curve) – 3.83 (neural networks)
Cyc. (T = 12, k = 9) 1.83 (fitted cosine curve) – 3.83 (neural networks)
Cyc. (T = 12, k = 10) 1.17 (fitted cosine curve) – 4.17 (neural networks)
Cyc. (T = 12, k = 11) 2.50 (fitted cosine curve) – 4.17 (neural networks)



764 Pattern Analysis and Applications (2019) 22:747–765

1 3

of Cyc. and Sys. patterns and increases the flexibility of the 
proposed model in patterns recognition.

The proposed model had reliable performance during the 
concurrent occurrence of the basic patterns. The control of 
these situations is very important, since apparent views do 
not reflect the simultaneous formation of unnatural patterns 
and therefore patterns recognition and analysis are more 
difficult.

The implementation of the proposed model procedure for 
recognition and analysis of the unnatural patterns in other 
process control charts is suggested for future researches.
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