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Abstract
During the last few decades, speech signal enhancement has been one of the wide-spreading research topics. Numerous 
algorithms are being proposed to enhance the perceptibility and the quality of speech signal. These algorithms are often 
formulated to recover the clear signal from the signals that are ruined by noise. Usually, short-time Fourier transform and 
wavelet transform are widely used to process the speech signal. This paper attempts to overcome the regular drawbacks of the 
speech enhancement algorithms. As the frequency domain has good noise-removing ability, the short-time Fourier domain is 
also aimed to enhance the speech. Additionally, this paper introduces a decomposition model, named diminished empirical 
mean curve decomposition, to adaptively tune the Wiener filtering process and to accomplish effective speech enhancement. 
The performances of the proposed method and the conventional methods are compared, and it is observed that the proposed 
method is superior to the conventional methods.
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1  Introduction

Generally, speech enhancement implies the processing of 
noisy speech signals, so as to improve the signal percep-
tion through better decoding by systems or human beings 
[1–3]. A number of speech enhancement procedures are 
being formulated to recover the performance of a system, 
when the input given is a noise-ruined speech signal. Still, 
it is a tedious process to retain the denoised signal by reduc-
ing the noise. Hence, some limitations may be attained in 
the performance, compromising noise reduction and speech 
distortion [4–6]. Moreover, there are two categories of dis-
torting speech signal based on medium to high SNR and low 
SNR. Under the first category, the objective is reducing the 
noise level to produce the natural signal. In contrast, in the 
second category, the objective is dropping the noise level, 
while preserving the intelligibility. Generally, the major fac-
tor that causes degradation in the speech’s intelligibility and 
quality is the background noise. Further, the noise can be 
stationary or non-stationary and it is assumed as additive and 

uncorrelated with the speech signal [7]. More commonly, 
the entire speech enhancement approaches are intended at 
suppressing the background noise and they rely on one way 
or the other on the assessment of background noise. If the 
background noise gets modified at a rate that is much slower 
than the speech, that is, if the noise is more stationary than 
the speech, it is simple to assess the noise during the pauses 
in the speech.

More particularly, the speech enhancement approaches 
are broadly categorized as the temporal processing method 
and the spectral processing method. In case of the tempo-
ral processing method, the degraded speech is processed in 
time domain. On the contrary, the processing is achieved 
in the frequency domain for the spectral processing meth-
ods [8]. Spectral subtraction is one of the oldest proce-
dures, which was proposed for reducing the background 
noise, and it is popular for its easy implementation and 
minimal complexity. The process of this technique is 
reducing or subtracting the average magnitude of the noise 
spectrum from the noisy speech spectrum. However, the 
estimation of the average magnitude of noise spectrum is 
carried out from the frames of speech absence. Mostly, in 
case of the stationary noise condition, initial frames are 
chosen for estimation. But, for the non-stationary noise 
condition, the noise estimation is formulated, whenever 
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the characteristics of noise are changed. Therefore, the 
spectral subtraction algorithm becomes inefficient for cor-
rupted speech with non-stationary noise [8–11].

Effective reduction of noise in the noisy speech sig-
nal allows the efficiency of speech-related applications 
to be improved [12, 13]. Various algorithms have been 
introduced currently to enhance the perceptibility and the 
quality of the speech signal. Those compensation methods 
are broadly classified into two, which include the multi-
channel algorithms and the single-channel algorithms 
[14]. In most applications, the users are bound to the 
single-channel algorithm, since only one input channel is 
available. The statistical model-based techniques [15, 16] 
and spectral subtractions [17–19] are few modern single-
channel algorithms, which usually use short-time Fourier 
transform (STFT) for processing the speech signal. The 
performance efficiency of the speech signal is improved, 
in case of the presence of little preservative noise. But, it 
is reversed, in case of the additive noise. Recently, wave-
let transform (WT) is widely focused, when compared to 
STFT, because it uses large-sized windows at low fre-
quency and small-sized windows at high frequency. It is 
different from STFT, since STFT uses the function of fixed 
window size. The variable size windows of WT result in 
low resolution and high resolution for high-frequency 
band and low-frequency band, respectively [20]. Thus, 
for all the frequency bands of speech signal, the time–fre-
quency domain resolutions are highly improved. Mostly, 
high quantity of noisy speech is available in the real-time 
scenario [21–24]. Hence, the sub-band division methods 
effectively enhance the performance by making a better 
estimation of noise. Furthermore, WT works beneficially 
to build the approximation-based model from the esti-
mated speech signal, even under adverse conditions [25].

Contribution In [26], a single-channel supervised speech 
enhancement algorithm on the basis of regularized NMF is 
implemented. In addition, a priori magnitude spectral dis-
tributions are modeled by the Gaussian mixtures. The work 
focuses on speech enhancement in the STFT domain. As the 
frequency domain is known for its noise removal ability, the 
adoption of the short-time Fourier domain further enhances 
the speech. A decomposition model, called the D-EMCD, 
is introduced here to remove the undesired signal. Further, 
the Wiener filtering process is adopted to accomplish speech 
enhancement and this paper is the improved version of [26]. 
This paper claims the following contributions in the speech 
enhancement method:

•	 An adaptive tuning factor is proposed to enhance the 
operation of Wiener filtering

•	 D-EMCD, which is a variant of EMCD, is proposed to 
decompose the signal, through which the tuning factor is 
defined.

•	 A sophisticated procedure is proposed to define the 
enhancement process, and so, the speech is enhanced 
under different noise conditions.

The proposed technique first estimates the noise spectrum 
and identifies the clean speech spectrum for achieving the 
unity tuning factor using Wiener filtering. The resultant sig-
nal is decomposed using D-EMCD. The bark frequency of 
the decomposed signal is determined, and then, it is used in 
the network. The network, in turn, predicts the tuning ratio. 
By using this tuning ratio, the second-stage Wiener filtering 
is carried out on the actual noisy signal. Subsequently, the 
resultant signal is decomposed for extracting the enhanced 
speech.

The rest of the paper is organized as follows: Sect. 2 
reviews the literature work, and Sect. 3 describes the pro-
posed speech enhancement algorithm. Moreover, Sect. 4 
discusses the results and Sect. 5 concludes the paper.

2 � Literature review

In 2017, Pejman et al. [27] have proposed an amplitude 
and phase estimator (ijMAP) and iterative joint maximum 
a posteriori (MAP) that assume a non-uniform phase distri-
bution. The experimental outcomes proved the efficiency 
of the proposed method in improving both the phase and 
the amplitude of noise. The results were also justified using 
the instrumental measures like speech intelligibility, per-
ceived quality and phase assessment error. Additionally, the 
approach enabled joint improvement in the perceived excel-
lence. The speech intelligibility and the phase-blind joint 
MAP estimator exhibited comparable performance with the 
complex MMSE estimator.

In 2017, Sonay and Mohammad [28] have presented a 
novel unsupervised speech improvement method, project-
ing both the speech spectrogram and its temporal gradi-
ent as sparse. The sparse assumption was true because of 
the quasi-harmonic nature of the speech signals. In the 
approach, speech improvement was made by decreasing the 
suitable objective function, which was composed of a data 
fidelity term and a sparsity-imposing regularization term. 
Further, alternating direction scheme of multipliers (ADSM) 
was modified to determine the proposed methodology and 
a well-organized iterative procedure was established for 
carrying out the speech enhancement. Later, wide experi-
ments showed that the proposed method outperformed the 
other competing schemes, in relation to varied performance 
assessment metrics.

In 2017, Hanwook et al. [26] have introduced a speech 
enhancement algorithm, named as the single-channel super-
vised speech enhancement algorithm. It was formulated on 
the basis of regularized nonnegative matrix factorization 
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(RNMF). The regularization in the NMF cost functions 
considered the log-likelihood functions of the spectrum of 
both the clean and the noisy speech signals, on the basis 
of the Gaussian mixture models. With the use of projected 
regularization as a priori information in the enhancement 
stage, the algebraic possessions of both the clean speech 
and the noise signals were exploited. The masking model of 
the human auditory system was also combined to improve 
the speech quality. Investigational upshots of source-to-dis-
tortion ratio (SDR), perceptual evaluation of speech quality 
(PESQ) and segmental signal-to-noise ratio (SNR) showed 
that their proposed speech enhancement algorithms offered 
improved performance in speech enhancement than the other 
benchmark algorithms.

In 2016, Ruwei et al. [29] have adopted a new filtering 
process, called improved least mean square adaptive filter-
ing (ILMSAF). It was a speech enhancement algorithm with 
deep neural network (DNN) as well as noise classification. 
An adaptive coefficient of the filter’s parameters was pre-
sented into the existing least mean square adaptive filtering 
algorithm (LMSAF). Initially, the authors have assessed 
the adaptive coefficient of the filter parameters using the 
deep belief network (DBN). Later, the enhanced speech was 
obtained by ILMSAF. Additionally, they presented a new 
classification method that was based on DNN to make the 
existing method as appropriate for several types of noise 
environments. In accordance with the consequence of noise 
classification, the ILMSAF model was nominated in the 
improvement process. The test results gave efficient results 
for the proposed model, under ITU-TG.160. Their method 
attained significant developments, in correspondence with 
varied subjective and objective quality measures of speech.

In 2016, Yanping et al. [30] have proposed a new pro-
cedure for the reduction of storage space and running time 
by utilizing low-rank estimate in a copying kernel Hilbert 
space, with tiny presentation loss in the enhanced speech. 
They also examined the root-mean-square error that was 
bound among the improved vectors, which were got by the 
approximation kernel matrix and the full kernel matrix. Fur-
ther, it was observed that the method improved the speed of 
computation of the algorithm with the estimated presenta-
tion, while comparing with the full kernel matrix.

In 2016, Yang et al. [31] have developed the extension of 
gamma tone filter bank for speech enhancement by eliminat-
ing both the belongings of reverberation and noise through 
reinstating the appropriate amplitude and phase. Impartial 
and personal trials were carried out under numerous noisy 
reverberant circumstances to assess the delay efficiency 
of the proposed system. The signal-to-error ratio (SER), 
correlation, PESQ and SNR loss were also utilized in the 
objective assessments. The normalized mean preference 
score and the correctness in modified rhyme test (MRT) 
were utilized in the subjective evaluations. The results of 

all the estimations exposed that the proposed arrangement 
could effectively recover the quality and the intelligibility of 
speech signals under noisy reverberant situations.

In 2016, Sun et al. [32] have introduced a deep autoen-
coder (DAE) to represent the residual part, which was 
obtained by subtracting the valued fresh speech spectrum 
from the noisy speech spectrum. The enhanced speech sig-
nal was, therefore, found by transforming the valued clear 
speech spectrum back into the time domain. The overhead 
proposed method was known as separable deep autoencoder 
(SDAE). The under-determined nature of the above optimi-
zation problem was given, and the clear speech reconstruc-
tion was confined in the convex hull spanned by a pre-trained 
speech dictionary. New learning algorithms were investi-
gated to value the nonnegativity of the parameters in the 
SDAE. Investigational results on TIMIT with 20 noise types, 
at various noise levels, demonstrated the dominance of the 
proposed technique over the conventional baselines.

In 2016, Chazan et al. [33] have presented a single-micro-
phone speech enhancement algorithm. A hybrid approach 
was proposed by merging the generative mixture of Gauss-
ians (MoG) model and the discriminative deep neural net-
work (DNN). The proposed algorithm was executed in two 
phases, the training and the testing phases. First, the noise-
free speech log power spectral density (PSD) was modeled 
as a MoG, representing the phoneme-based diversity in the 
speech signal. A DNN was then trained with the phoneme-
labeled database of the clean speech signals for phoneme 
classification with mel-frequency cepstral coefficients 
(MFCC) as the input features. In the test phase, a noisy utter-
ance of an untrained speech was processed. Lastly, they ana-
lyzed the contribution of all the components of the proposed 
process, indicating their combined importance.

In 2016, Wang et al. [34] have introduced the DWPT and 
NMF. Briefly, the DWPT remained chiefly practical in split-
ting a time-domain speech signal into a series of sub-band 
signals, without the introduction of any distortion. Then, 
they used NMF to emphasize the speech component for 
each sub-band. At last, the improved sub-band signals were 
combined through the inverse DWPT to rebuild a noise-
abridged signal in the time domain. Further, they evaluated 
the proposed DWPT-NMF-based speech enhancement tech-
nique on the Mandarin hearing in noise test (MHINT) task. 
Investigational grades showed that this new way acted very 
well in encouraging the speech excellence and lucidity and 
outperformed the conservative STFT-NMF (Table 1). 

3 � Proposed speech enhancement algorithm

The architecture of the proposed speech enhancement algo-
rithm is demonstrated in Fig. 1.
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Step 1: Let S(n) be the clear signal. When the noise N is 
added to the clear signal, it becomes a noisy signal S̄(n) , which 
is given as the input to the NMF process. This results in two 
spectrums, namely noise spectrum Ns and signal spectrum N̄s.

Step 2: The resultant spectrums, Ns and N̄s , are then fil-
tered under Wiener filtering process, and this results in the 
filtered signal S̄f(n).

Step 3: S̄f(n) is then decomposed under the D-EMCD pro-
cess, and this results in the bark frequency b′

(
f ′
)
 , which is 

utilized to train the NN classifier.
Step 4: The resultant ‘tuned � ’ from the NN classifier and 

the spectrums, i.e., [ Ns and N̄s ], are given as the inputs to 
the adaptive Wiener filtering process to filter the input signal 
S̄(n) , resulting in the filtered signal Sf(n).

Step 5: Finally, the resultant Sf(n) is again decomposed 
using the D-EMCD process, and the decomposed signal is 
produced as the denoised signal SD(n).

The description of the adopted processes is as follows:
NMF The NMF is a dimensionality-lessening tool that 

decomposes the input signal into spectrums with nonnega-
tive element constraints. The resultant spectrums are the 
noise spectrum and the signal spectrum.

Wiener filter The Wiener filter is a filter, which grants the 
assessment of the target random process with linear time-
invariant (LTI) filtering of the additional noise. This filter 
reduces the mean square error among the assessed random 
process and the desired process.

D-EMCD The EMCD—empirical mean curve decom-
position—decomposes a signal by smoothening its peaks. 
First, the maximal and the minimal points from the signals 
are extracted. Then, they are interpolated and the average 
is taken. The average signal is subtracted from the original 
signal to find the residue. The residue and the average sig-
nals are checked for their similarity with the original signal. 
Till it is smoothened, the process is repeated. In D-EMCD, 
the iteration is diminished and so, the first average signal is 
used for the further steps because the speech signal requires 
no loss on maxima and minima.

The D-EMCD is a signal decomposition process that has 
the similar process of EMCD. The only difference is that 
the D-EMCD does the decomposition without any iteration, 
whereas the existing EMCD is an iterative process.

NN This is a machine learning approach inspired by the 
brain’s performance. The NN organization is associated with 
the learning algorithm, which is used for training purposes.

Table 1   Features and challenges of speech enhancement processes

References Adopted methodology Features Challenges

Pejman et al. [27] Maximum a posteriori More accurate phase-aware amplitude 
estimate

Less speech distortion and more noise 
reduction

Prone to certain errors
Less consistent statistical model fitting

Sonay and Mohammad [28] Iterative algorithm Advanced SDR and PESQ
Higher SNR and lower LLR
Lower SD and higher short-time objec-

tive intelligibility (STOI)

Bi-level characteristics of the algorithm 
introduced computational complexity

Each phase of an iteration was rigid with 
no overlaps

Hanwook et al. [26] Weiner filter Enhanced speech quality
Less effect on noise

Occurrence of blurred results
Spatially invariant

Ruwei et al. [29] Deep belief network Enhancement of subjective and objec-
tive quality of speech

Suited for low SNR environments

Increased the complexity of testing or 
running time

Yanping et al. [30] Kernel Hilbert space High computational speed
Reduced the storage space

Quantified the function complexity

Yang et al. [31] Kalman filtering Improved the quality and lucidity of 
speech signals

Good performance under noisy rever-
berant conditions

High computational complexity
Not realistic in real-time situations

Sun et al. [32] Deep learning neural network Good performance under different 
noise conditions

Minimized the total reconstruction 
error

Required a large amount of data
Computationally expensive to train
Lack of theoretical foundation

Chazan et al. [33] Neural network Preserved the speech smoothness
Fast adaptation to noise
Required less formal statistical training

Greater computational burden
Proneness to overfitting

Wang et al. [34] Discrete wavelet transform Behaved very well in promoting the 
speech quality and intelligibility

Computationally intensive
The discrete wavelet transform was less 

efficient and natural
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Adaptive Wiener filter This is a filter that processes with the 
concept of Wiener filter, but the fact is that the filter process 
also incurs tuned � , which is the output of NN.

Training library The training library of NN is constructed 
by giving the known inputs (bark frequency) and its tar-
get � . With the knowledge of this, the unknown values are 
formulated.

Offline and online process The training process is consid-
ered as the offline process, and the testing process is termed 
as the online process, in which the testing is carried out on 
the trained system. Offline process means identifying appro-
priate tuning factor for different noise variances and training 
the neural network [35]. Online process implies the actual 
enhancement process, where the trained network is used for 
determining the tuning factor.

Learning algorithm In this work, the NN approach is 
trained using the Levenberg–Marquardt algorithm [36].

3.1 � Noise estimation using STFT‑minimum statistics

The minima are tracked from the noisy signal by the noise 
power spectral density estimator, which is based on mini-
mum statistics.

where W(�, b) denotes the STFT coefficient of the frame � , 
b represents the frequency bin and �(�, b) denotes the fre-
quency- and time-dependent smoothing parameters. A bias 
compensation factor is applied to observe the mean power. 
Moreover, Fmin represents the bias compensation factor, 
which defines the function of the length of minimum search 
interval and var{W(�, b)} denotes the variance estimator 
of the smoothened power spectral density. The variance of 
W(�, b) is estimated, while fixing the search interval length 
for the algorithm. The variance estimator for frequency bin 
b at � frame is defined as:

where W̄(𝛼, b) and W2(�, b) denote the mean smoothened 
periodograms and a first-order recursive average of smooth-
ened periodograms, respectively.

In this paper, we describe about the short-time Fourier 
transform (STFT)-based noise estimation. Figure 2 illus-
trates the noise power spectrum of the actual signal, the 
noise estimated signal by FFT and the noise estimated 

(1)
W(�, b) = �(�, b)W(� − 1, b) + (1 − �(�, b))|W(�, b)|2

(2)∧
var {W(𝛼, b)} = W2(𝛼, b) − W̄2(𝛼, b)

Fig. 1   Proposed architecture for speech enhancement
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signal by STFT. Basically, STFT is used to determine the 
phase content and the sine wave frequency of a signal 
that changes over time. Practically, we can say that the 
longer time signals are divided into equal shorter length 
segments and the Fourier transform is applied separately 
on each segment. Moreover, the STFT can also be inter-
preted as a filtering operation. More particularly, there 
are two properties which satisfy the estimation strategy 
(i.e., shift invariance property that is based on magnitude 
and the properties of linear time–frequency distribution).

In Fig. 2, the power spectrum of the noisy speech, 
which is obtained from FFT and STFT-minimum sta-
tistics, is presented. There is a significant difference 
between them that the magnitude of the frequency compo-
nent is presented well. Figure 3 actually describes that the 
D-EMCD decomposed signal correlates with the actual 
signal, but neglects the undesired spikes and surges. How-
ever, the EMCD signal loses huge information from the 
actual signal. For the reference, the maximum and the 
minimum peaks are also presented.

3.2 � Adaptive Wiener tuning ratio

The role of tuning ratio is highly substantiated in [26]. This paper 
proposes neural network (NN) to estimate the tuning ratio, based 
on the bark frequency b′

(
f ′
)
 of the NMF-based filtered D-EMCD 

signal, i.e., S̄D(n) . The logical expression of the mapping function 
from f ′ frequency to the bark frequency is given as: 

where f ′ is the frequency of the S̄D(n) . The basis function a′
j
 

is formulated, as defined in Eq. (4):

where W I represents the weight between the input and the 
jth hidden neuron,Nh’ denotes the number of hidden neurons 
in the NN network and W0

j
 is the weight of the jth bias neu-

ron. Consequently, the activation function â′
j
 is formulated 

for limiting the amplitude, as represented in Eq. (5).

The network output � is defined as given in Eq. (6), where 
WH denotes the weight between the jth hidden neuron and the 
output neuron and WH0 represents the weight of the bias.

3.3 � Spectrum estimation using NMF

For speech signal enhancement, the noisy signal S̄(n) is voiced 
in time–frequency (�, b) domain through STFT, as given in 
Eq. (7).

(3)b�
(
f �
)
= 13 arctan

(
0.76f �

)
+ 3.5 arctan

[(
0.33f �

)2]

(4)a�
j
=
(
WI

j
b�
(
f �
))

+W0
j
; j = 1,…Nh�

(5)â�
j
= 𝜙

(
aj
)
=

1

1 + exp
(
−a�

j

)

(6)𝜂 =

Nh’∑

j=1

WH
j
â�j +WH0

(7)S̄(b, 𝛼) = S(b, 𝛼) + N(b, 𝛼)

Fig. 2   Noise power spectrum 
a estimated by FFT and b 
estimated by STFT—minimum 
statistics

(a) (b)

Fig. 3   EMCD versus D-EMCD: information-preserving characteris-
tics of D-EMCD
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where S(b, �),S̄(b, 𝛼),N(b, �) present the STFT of the 
clear speech, noisy speech and noise, respectively, for 
the bth frequency bin of � frame. The approximation 
of the noisy speech’s magnitude spectrum is defined as 
|S̄(b, 𝛼)| = |S(b, 𝛼) + |N(b, 𝛼)| . This is the widely used 
assumption in the processing of NMF-based speech and 
audio signals.

The magnitude spectrum matrices of varied signals are 
denoted as:

where v′
b�

 represents the magnitude spectral value for the 
bth bin of � frame, whereas B and T  denote the number of 
frequency bins and time frames, respectively.

(8)V � =
[
v�
b�

]
∈ RB×T

+

Generally, NMF-based speech enhancement processes are 
comprised of two stages, namely the training stage and the 
enhancement stage. In the training stage, Eq. (9) is separately 
applied to the training data V �

S
∈ R

B×TS
+  and V �

N
∈ R

B×TN
+  , and 

this results in the basis matrices of both clear speech and 
noise, W �

S
=
[
w

�S
Bm�

]
∈ R

B×M�
S

+  and W �
N
=
[
w

�N
Bm�

]
∈ R

B×M�
N

+  , 
respectively. Here, M′ represents the number of basis 
vectors:

(9)
W �

← W � ⊗
(V �∕W �H�)H�

ΨH�

H�
← H� ⊗

W �(V �∕W �H�)
W �T

�
Ψ

Fig. 4   Temporal analysis of 
denoising performance: noisy 
and denoised signal of various 
noise types: a airport noise, b 
exhibition noise, c restaurant 
noise, d station noise, e street 
noise and f babble noise
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where �  is a B × T  matrix with entries equal to one and T ′ 
represents the matrix transpose.

In the enhancement stage, the basis matrices are fixed as 
W �

Ŝ
=
[
W �

S
W �

N

]
∈ R

B×(M�
S
+M�

N)
+  and the estimation of activation 

matrix H�

S̄
=
[
H

�T �

S
H

�T �

N

]T �

∈ R
(M�

S
+M�

N)×TS̄
+  of noisy speech is 

done by applying the NMF activation update on V �

S̄
∈ R

B×TS̄
+  . 

After getting the activation matrix of the speech signal, the 
estimation of clear speech spectrum is done with the aid of 
the Wiener filter (WF), as given in Eq. (10):

where P�
S
=
[
P�
S
(b, �)

]
 and P�

N
=
[
P�
N
(b, 𝛼)

]
∈ R

B×TS̄
+  repre-

sent the estimated power spectral density (PSD) matrices 

(10)S� =
P�
S

P�
S
+ P�

N

⊗ S̄

of the clear speech and the noise, respectively. The latter is 
obtained through the temporal smoothing of periodograms, 
as defined in Eqs. (11) and (12), respectively:

where �S and �N denote the temporal smoothing factors for 
speech and noise, respectively.

3.4 � D‑EMCD‑based Wiener filtering

The Wiener filtering process is based on the proposed 
D-EMCD decomposition process. It is an iterative 

(11)P�
S
(b, �) = �SP

�
S
(b, � − 1) +

(
1 − �S

)([
W �

S
H�

S

]
b�

)2

(12)P�
N
(b, �) = �NP

�
N
(b, � − 1) +

(
1 − �N

)([
W �

N
H�

N

]
b�

)2

Fig. 5   Spectral analysis of 
denoising performance: noisy 
and denoised signal of various 
noise types: a airport noise, b 
exhibition noise, c restaurant 
noise, d station noise, e street 
noise and f babble noise

(a) (b)

(c) (d)

(e) (f) 
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decomposition process, and the initial step is the extrac-
tion of both the minima and the maxima. Figure 3 illus-
trates the information-preserving characteristics of 
D-EMCD. Let S̄max(n) ∶

{(
Pi, S

(
Pi

))
, i = 1,…Nmax

}
 be 

the maxima signal of S̄(n) with N-element signal, where 
Pi denotes the time index and Nmax represents the number 
of maxima. Let the minima signal of actual signal S̄(n) be 
S̄min(n) ∶

{(
Qi, S

(
Qi

))
, i = 1,…Nmin

}
 , where Qi is the time 

index and Nmin denotes the number of minima.
Furthermore, B-spline interpolation is used to interpolate 

both the maxima and the minima signal and they are defined 
below:

⌢

𝛿k(n) is defined as follows:

Moreover, the minimum and the maximum of 
⌢

𝛿(n) are 
also defined as given in Eqs. (16) and (17). Similarly,

⌢

Sk(n) 
and S̄max−min

k
 are also represented as shown in Eqs. (18) and 

(13)S̄I−max(n) = B
{(

Pi, y
(
Pi

))
, S̄max(n)

}
; n = 1,…N

(14)S̄I−min(n) = B
{(

Qi, y
(
Qi

))
, S̄min(n)

}
n = 1,…N

(15)
⌢

𝛿k(n) = min|S̄k(n) − S̄I−max
k

(n)|

Fig. 6   Time–frequency analysis 
of denoising performance: noisy 
and denoised signal of various 
noise types: a airport noise, b 
exhibition noise, c restaurant 
noise, d station noise, e street 
noise and f babble noise



188	 Pattern Analysis and Applications (2020) 23:179–198

1 3

(19), respectively. The resultant signal from the filtering pro-
cess is the denoised signal.

(16)𝛿max
k

(n) = |S̄k(n) − S̄I−max
k

(n)|

(17)𝛿min
k

(n) = |S̄k(n) − S̄I−min
k

(n)|

(18)

⌢

Sk(n) =

{
S̄k(n); if

⌢

𝛿k(n) > 𝛿T
S̄max−min

k
(n); otherwise

(19)
S̄max−min
k

(n) =

{
S̄I−max
k

(n); if 𝛿max
k

(n) < 𝛿min
k

(n)

S̄I−min
k

(n); otherwise

}

4 � Results and discussion

4.1 � Dataset and experiments

The speech signal enhancement experimentation is con-
ducted using MATLAB 2015a. The database including the 
speech signals is downloaded from the URL http://ecs.utdal​
las.edu/loizo​u/speec​h/noize​us/. The LRA [30] and ILMSAF 
[29] are the public databases, whereas the Vuvuzela [37], 
OMLSA [38], TSNR [39], HRNR [40] and RNMF [26] are 
the private databases. The experimentation is carried out 

Table 2   Airport noise at different intensity levels

Bold values indicated the best resulted value. Mostly the proposed model has shown superior value. But, in some cases other models too show 
best results when compared to that of proposed model

Methods SDR PESQ SNR RMSE Correlation ESTOI STOI CSED

Airport noise at SNR 0 dB
LRA [30] − 10.4180 0.8024 26.8415 2.2741 0.1806 0.02439 0.5310 17,265.0321
ILMSAF [29] − 43.1867 0.542019 28.2433 0.04294 − 0.0000027 0.000795 1 7169.128
Vuvuzela [37] − 8.80113 0.549925 28.1619 0.043961 − 0.00318 0.137855 0.3948 4923.255
OMLSA [38] − 23.1074 1.287055 5.5178 0.555896 0.069244 0.359471 0.578349 4930.989
TSNR [39] − 7.40889 1.413942 27.0352 0.04818 0.011206 0.343843 0.553239 3410.615
HRNR [40] − 7.42242 1.38407 27.1862 0.047539 0.011357 0.315499 0.557241 3352.881
RNMF [26] 5.824237 1.93443 30.9863 0.031407 0.803629 0.476359 0.675044 0
Prop 4.830108 1.946733 34.0685 0.023947 0.833765 0.509891 0.715761 1870.349
Airport noise at SNR 5 dB
LRA [30] − 10.5173 0.8024 27.1485 2.2607 0.1776 0.02332 0.5303 17,225.476
ILMSAF [29] − 43.245 0.534249 28.2452 0.042914 − 0.0000043 0.000566 1 7952.943
Vuvuzela [37] − 7.70199 0.818841 28.1042 0.04383 − 0.00492 0.197686 0.466444 4530.937
OMLSA [38] − 22.6598 1.319643 5.5211 0.555559 0.075779 0.483455 0.671198 4754.392
TSNR [39] − 6.77054 1.858997 26.9794 0.047592 0.018492 0.459935 0.659213 3215.675
HRNR [40] − 6.81255 1.847263 27.0671 0.047161 0.018756 0.4399 0.664296 3161.433
RNMF [26] 8.227952 2.313639 32.1356 0.028369 0.867131 0.610264 0.764791 2999.043
Prop 9.257039 2.361946 36.9993 0.016827 0.924949 0.644831 0.80974 1606.895
Airport noise at SNR 10 dB
LRA [30] − 10.3620 0.7985 26.9106 2.2302 0.1826 0.0255 0.5291 17,126.674
ILMSAF [29] − 45.513 0.451885 28.2478 0.042901 0.0000328 − 0.000062 1 9049.059
Vuvuzela [37] − 7.45629 0.986987 28.0929 0.043998 − 0.00225 0.250451 0.522101 4275.661
OMLSA [38] − 22.4185 1.46885 5.52273 0.555438 0.079178 0.594816 0.738666 4621.661
TSNR [39] − 6.69568 2.280759 26.9317 0.047647 0.021737 0.594022 0.750943 3032.308
HRNR [40] − 6.7336 2.30853 26.9818 0.047317 0.021952 0.58603 0.754258 3016.927
RNMF [26] 9.362473 2.534341 33.3167 0.02575 0.889264 0.705761 0.817231 2761.073
Prop 12.45125 2.690384 40.5341 0.013011 0.957877 0.771515 0.878077 1392.467
Airport noise at SNR 15 dB
LRA [30] − 10.3510 0.79992 26.5577 2.20896 0.1833 0.02876 0.52820 17,057.300
ILMSAF [29] − 47.0965 0.637249 28.2483 0.042896 0.000017 0.000061 1 10,306.93
Vuvuzela [37] − 7.49411 1.071891 28.0770 0.044129 − 0.00439 0.271151 0.53806 4136.205
OMLSA [38] − 22.2604 1.665314 5.52358 0.55539 0.081069 0.662475 0.773733 4562.333
TSNR [39] − 6.751 2.753715 26.9760 0.047724 0.02114 0.688655 0.802001 2940.364
HRNR [40] − 6.77787 2.796623 27.01398 0.047493 0.021105 0.679954 0.798071 2928.979
RNMF [26] 9.953762 2.722153 33.71583 0.024022 0.90362 0.755009 0.83849 0
Prop 14.20475 2.9743 42.5818 0.011197 0.96908 0.836507 0.90994 1303.649

http://ecs.utdallas.edu/loizou/speech/noizeus/
http://ecs.utdallas.edu/loizou/speech/noizeus/
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on about 30 speech signals. The number of hidden units is 
10. Six noise types, namely airport noise, exhibition noise, 
restaurant noise, station noise, street noise and babble noise, 
are added to the speech signals. In addition, the investigation 
is carried out with different SNR dB levels, which include 
0 dB, 5 dB, 10 dB and 15 dB.

The speech data are subjected to NMF decomposition, 
which estimates the signal spectrum as well as the noise 

spectrum of similar length. The decomposition is performed 
at different noise levels, so that diverse decomposition effect 
can be obtained via NMF. The Wiener filtering is applied on 
the decomposed signal of dimension 513 × 86, followed by 
D-EMCD. The resultant signal is subjected to feature extrac-
tion using bark frequency, and hence, the training library is 
constructed in the dimension of 1x30. The training data are 
obtained for different speech qualities, and the respective 

Table 3   Exhibition noise at different intensity levels

Bold values indicated the best resulted value. Mostly the proposed model has shown superior value. But, in some cases other models too show 
best results when compared to that of proposed model

Methods SDR PESQ SNR RMSE Correlation ESTOI STOI CSED

Exhibition noise 
at SNR 0 dB

LRA [30] − 10.3437 0.8099 26.7835 2.2973 0.1841 0.02654 0.5324 17,315.887
ILMSAF [29] − 41.6579 0.425503 28.2423 0.042925 − 0.000029 − 0.000091 1 6885.197
Vuvuzela [37] − 9.7762 0.433939 28.1086 0.044531 − 0.0056 0.153763 0.397682 4998.421
OMLSA [38] − 23.2058 1.153355 5.51202 0.555904 0.068713 0.430344 0.607923 5203.767
TSNR [39] − 7.3184 1.243383 26.8617 0.048168 0.01497 0.432529 0.612161 3570.904
HRNR [40] − 7.35267 1.21477 26.9480 0.047504 0.014563 0.421413 0.616776 3523.669
RNMF [26] 6.22385 1.853652 31.41849 0.031333 0.794168 0.528068 0.691038 4126.974
Prop 5.259774 1.884774 32.856 0.024258 0.831848 0.556889 0.727769 2406.215
Exhibition noise at SNR 5 dB
LRA [30] − 10.4051 0.7938 26.6512 2.19833 0.1818 0.02693 0.5263 17,014.009
ILMSAF [29] − 46.4092 0.604895 28.2467 0.042905 0.0000145 0.000222 1 7163.531
Vuvuzela [37] − 8.63867 0.715995 28.0074 0.044112 − 0.00404 0.206777 0.463506 4555.987
OMLSA [38] − 22.6404 1.344596 5.52152 0.555568 0.075976 0.530204 0.685579 4956.877
TSNR [39] − 6.90206 1.789926 26.9364 0.047941 0.019204 0.542492 0.701599 3218.206
HRNR [40] − 6.93887 1.795809 26.9788 0.047558 0.018696 0.544629 0.709576 3178.957
RNMF [26] 8.688553 2.192665 32.5005 0.027868 0.86214 0.63504 0.772684 3873.355
Prop 9.365253 2.245781 37.4415 0.017025 0.92303 0.676195 0.819646 2048.487
Exhibition noise at SNR 10 dB
LRA [30] − 10.3808 0.79589 26.6526 2.2156 0.1828 0.0251 0.5276 17,090.679
ILMSAF [29] − 47.8363 0.394362 28.2481 0.042898 − 0.000014 0.000995 1 8363.914
Vuvuzela [37] − 7.66609 0.921928 28.07225 0.044039 − 0.0057 0.245008 0.506356 4502.93
OMLSA [38] − 22.3901 1.491871 5.52280 0.555434 0.079361 0.606982 0.737645 4761.913
TSNR [39] − 6.69004 2.250223 26.9636 0.047792 0.020464 0.619061 0.760259 3168.486
HRNR [40] − 6.73292 2.262972 26.9889 0.047516 0.02038 0.619909 0.764679 3094.55
RNMF [26] 10.2548 2.480936 33.7476 0.024995 0.889274 0.719885 0.825086 0
Prop 12.54993 2.578956 40.61842 0.013242 0.955032 0.770816 0.876053 1812.882
Exhibition noise at SNR 15 dB
LRA [30] − 10.3828 0.7962 26.67419 2.2242 0.1817 0.0258 0.5285 17,121.4615
ILMSAF [29] − 47.882 0.453097 28.2485 0.042897 0.000023 0.000552 1 9176.933
Vuvuzela [37] − 7.51761 1.03181 28.0735 0.044154 − 0.00476 0.271344 0.536531 4272.38
OMLSA [38] − 22.2591 1.617731 5.5235 0.555388 0.081044 0.672514 0.7742 4637.631
TSNR [39] − 6.72701 2.652039 26.9625 0.047795 0.020428 0.688293 0.801937 3036.825
HRNR [40] − 6.75953 2.666548 26.9868 0.047597 0.020457 0.687408 0.802052 2974.568
RNMF [26] 11.13144 2.718365 34.4738 0.022931 0.905955 0.784248 0.857782 3443.665
Prop 15.02555 2.880454 43.7957 0.010931 0.970195 0.84481 0.915692 1666.868
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tuning ratio of the Wiener filter is set as the target for the 
respective noise intensities. The training is performed using 
the Levenberg–Marquardt training algorithm. Given a cor-
rupted test speech, the noise intensity is estimated and it is 
followed by the estimation of tuning ratio. Based on the esti-
mated tuning ratio, the Wiener filtering is applied to enhance 
the corrupted speech signal.

4.2 � Qualitative analysis

The quality of the selected speech signals is studied in this 
section. Moreover, the analysis such as temporal analysis, 
spectral analysis and time–frequency analysis for denoising 
performance is also observed for six noise types, namely 
airport noise, exhibition noise, restaurant noise, station 
noise, street noise and babble noise, which are added to the 
speech signals. Figure 4a–f illustrates the temporal analysis 

Table 4   Restaurant noise at different intensity levels

Bold values indicated the best resulted value. Mostly the proposed model has shown superior value. But, in some cases other models too show 
best results when compared to that of proposed model

Methods SDR PESQ SNR RMSE Correlation ESTOI STOI CSED

Restaurant noise 
at SNR 0 dB

LRA [30] − 10.411 0.8014 26.8545 2.272 0.1806 0.02190 0.5306 17,267.3618
ILMSAF [29] − 44.8462 0.472523 28.2273 0.042936 − 0.000012 0.000107 1 6974.248
Vuvuzela [37] − 9.14382 0.551319 28.1195 0.043784 − 0.00264 0.134361 0.370427 4852.803
OMLSA [38] − 23.0271 1.367484 5.509799 0.556031 0.070911 0.372362 0.581629 4977.075
TSNR [39] − 7.69256 1.374338 26.90630 0.048442 0.00607 0.337645 0.544972 3560.089
eSHRNR [40] − 7.70968 1.350633 27.030 0.047764 0.005206 0.318896 0.553293 3537.96
RNMF [26] 5.194129 1.849504 30.97360 0.032143 0.783563 0.487437 0.661691 3378.811
Prop 3.76254 1.92735 32.02981 0.025676 0.809011 0.509527 0.699553 1964.05
Restaurant noise at SNR 5 dB
LRA [30] − 10.4433 0.79964 26.6245 2.2156 0.1796 0.0257 0.5276 17,096.7325
ILMSAF [29] − 41.9114 0.547673 28.24716 0.042908 − 0.0000081 − 0.00016 1 8276.524
Vuvuzela [37] − 7.90071 0.800465 28.10527 0.043901 − 0.00466 0.196542 0.458998 4413.882
OMLSA [38] − 22.5559 1.306641 5.520834 0.555606 0.077011 0.486875 0.671337 4773.834
TSNR [39] − 7.05857 1.841138 26.93318 0.048077 0.016885 0.488268 0.675045 3129.462
HRNR [40] − 7.08685 1.84633 26.99694 0.047649 0.016611 0.477135 0.679056 3100.808
RNMF [26] 7.956189 2.187008 31.806648 0.028782 0.855729 0.617525 0.764193 0
Prop 8.698332 2.268126 36.07842 0.017556 0.915883 0.65133 0.809497 1729.632
Restaurant noise at SNR 10 dB
LRA [30] − 10.4429 0.7995 26.5665 2.20698 0.17990 0.0247 0.5279 17,066.5855
ILMSAF [29] − 44.5729 0.48295 28.24830 0.042899 − 0.000007 0.0004 1 9166.868
Vuvuzela [37] − 7.57176 0.964362 28.09070 0.044012 − 0.00406 0.24772 0.517621 4297.485
OMLSA [38] − 22.3793 1.486634 5.52273 0.555447 0.079563 0.594998 0.736039 4650.964
TSNR [39] − 6.72913 2.241367 26.98552 0.047656 0.022435 0.591289 0.751859 3098.7
HRNR [40] − 6.75711 2.264289 27.031751 0.047326 0.022294 0.583314 0.752648 3050.421
RNMF [26] 9.310854 2.451338 32.75409 0.026238 0.88414 0.705571 0.811554 2974.847
Prop 11.8937 2.659263 39.28692 0.013656 0.953861 0.765353 0.873405 1532.681
Restaurant noise at SNR 15 dB
LRA [30] − 10.4461 0.7942 26.6383 2.2139 0.1803 0.02634 0.52721 17,083.1356
ILMSAF [29] − 45.9102 0.499356 28.2485 0.042896 0.0000344 0.001954 1 10,499.8
Vuvuzela [37] − 7.44252 1.052113 28.0778 0.044116 − 0.00527 0.277397 0.539848 4145.347
OMLSA [38] − 22.2584 1.592738 5.52345 0.555395 0.081084 0.662682 0.775123 4573.293
TSNR [39] − 6.7375 2.624678 26.9696 0.047729 0.02078 0.681692 0.801552 2944.466
HRNR [40] − 6.76414 2.659293 26.9976 0.047516 0.020522 0.675716 0.799488 2923.681
RNMF [26] 9.769551 2.619633 33.08000 0.024631 0.897358 0.765587 0.836966 2747.786
Prop 13.81539 2.907064 42.65285 0.01171 0.967353 0.84411 0.912251 1375.572
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of the denoising performance, in which the noisy and the 
denoised signals of various noise types and the performance 
of the proposed methodology are proved for their efficiency 
in denoising the signal are shown in Figs. 7, 8, 9, 10, 11, 12. 
Figure 5 illustrates the spectral analysis of the denoising 
performance for various noise types, which include airport 
noise, exhibition noise, restaurant noise, station noise, street 
noise and babble noise. Here, the noisy and the denoised 
signals are shown and it is found that the performance rate 
of the proposed method is high by ultimate reduction of the 

noise from the noisy signal. Further, Fig. 6 illustrates the 
time–frequency analysis of the denoising performance, in 
which the noisy and the denoised signals of various noise 
types are shown. The superior noise-removing ability of the 
proposed method is precisely understood from this figure.  

4.3 � Quantitative analysis

The proposed speech enhancement algorithm is compared 
to the state-of-the-art methods like low-rank approximation 

Table 5   Station noise at different intensity levels

Bold values indicated the best resulted value. Mostly the proposed model has shown superior value. But, in some cases other models too show 
best results when compared to that of proposed model

Methods SDR PESQ SNR RMSE Correlation ESTOI STOI CSED

Station noise at SNR 0 dB
LRA [30] − 10.4298 0.8029 26.8864 2.2302 0.18068 0.0242 0.5289 17,134.7076
ILMSAF [29] − 43.0395 0.516516 28.2350 0.042933 − 0.000018 0.000365 1 7277.851
Vuvuzela [37] − 8.78239 0.599902 28.16731 0.043788 − 0.00688 0.12826 0.405335 5326.739
OMLSA [38] − 23.609 1.136879 5.516967 0.555847 0.064141 0.331076 0.554855 5066.86
TSNR [39] − 6.96222 1.407002 27.28262 0.047271 0.015467 0.3204 0.547674 3502.536
HRNR [40] − 7.02212 1.308554 27.41390 0.046677 0.015591 0.277251 0.546833 3433.749
RNMF [26] 6.671867 1.992645 30.79072 0.032156 0.817177 0.452036 0.665938 0
Prop 6.114214 2.014777 33.91242 0.023215 0.858347 0.474452 0.697443 2117.406
Station noise at SNR 5 dB
LRA [30] − 10.3866 0.79468 26.5786 2.2127 0.1828 0.0259 0.5275 17,062.6255
ILMSAF [29] − 43.0508 0.579121 28.2460 0.04291 0.0000135 0.001277 1 7636.656
Vuvuzela [37] − 7.59672 0.861347 28.1401 0.043798 − 0.0025 0.194482 0.48034 4981.494
OMLSA [38] − 22.8765 1.371561 5.52194 0.555557 0.073565 0.465456 0.656106 4827.331
TSNR [39] − 6.69946 1.959304 27.07713 0.047543 0.021207 0.456918 0.658742 3293.792
HRNR [40] − 6.74983 1.887786 27.1635 0.047094 0.021118 0.424697 0.65947 3211.321
RNMF [26] 8.343678 2.334204 31.82070 0.029265 0.865977 0.601457 0.765671 3494.473
Prop 9.903879 2.446756 38.29393 0.016576 0.931048 0.645581 0.810262 1770.943
Station noise at SNR 10 dB
LRA [30] − 10.4142 0.8069 26.8453 2.2576 0.1809 0.0246 0.5308 17,237.252
ILMSAF [29] − 48.8073 0.531978 28.24765 0.0429 0.0000319 − 0.00112 1 8473.772
Vuvuzela [37] − 7.48921 0.99167 28.09044 0.043997 − 0.00472 0.239015 0.516205 4366.422
OMLSA [38] − 22.4691 1.495268 5.52299 0.555429 0.07843 0.587385 0.731867 4668.752
TSNR [39] − 6.67067 2.347521 26.95910 0.047692 0.020162 0.600952 0.752588 3066.506
HRNR [40] − 6.71314 2.338328 27.01854 0.047359 0.020229 0.589183 0.754907 3048.834
RNMF [26] 9.524805 2.546329 32.89604 0.02591 0.894694 0.701516 0.81523 0
Prop 12.53183 2.725255 40.88445 0.012982 0.959115 0.759757 0.870494 1534.63
Station noise at SNR 15 dB
LRA [30] − 10.3658 0.79406 26.70513 2.2224 0.1835 0.02792 0.52893 17,097.2573
ILMSAF [29] − 45.754 0.549845 28.2482 0.042896 − 0.0000096 − 0.00099 1 10,002.46
Vuvuzela [37] − 7.41393 1.069357 28.07887 0.044107 − 0.0033 0.262964 0.536423 4170.249
OMLSA [38] − 22.289 1.636335 5.523403 0.555392 0.080706 0.660804 0.771335 4586.93
TSNR [39] − 6.70273 2.807841 26.9491 0.047756 0.021589 0.678983 0.799672 2963.738
HRNR [40] − 6.73479 2.787415 26.98597 0.047498 0.021414 0.666929 0.795567 2947.717
RNMF [26] 9.960434 2.706672 33.70012 0.024279 0.902648 0.760993 0.842388 2838.799
Prop 14.03563 3.006517 41.28067 0.011652 0.966707 0.835726 0.910228 1437.081
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(LRA) [30], ILMSAF [29], Vuvuzela [37], optimal modi-
fied minimum mean square error log-spectral amplitude 
(OMLSA) [38], two-step noise reduction (TSNR) [39], har-
monic regeneration noise reduction (HRNR) [40] and regu-
larized nonnegative matrix factorization RNMF [26]. The 
quality of the input speech signals is studied with different 
measures like PESQ, SNR, root-mean-square error (RMSE), 
correlation, STOI, extended STOI (ESTOI), SDR and cumu-
lative squared Euclidean distance (CSED). Further, the inves-
tigation is proceeded with different SNR dB levels such as 

0 dB, 5 dB, 10 dB and 15 dB. Table 2 shows the performance 
investigation of the proposed method against the existing 
methods for the airport noise at various dB levels. Similarly, 
Tables 3, 4, 5, 6 and 7 show the performance investigation of 
the proposed method, for exhibition noise, restaurant noise, 
station noise, street noise and babble noise, at different dB 
levels, respectively. From Table 2, while comparing the con-
ventional methods, the proposed method leads position for 
airport noise at SNR = 5 dB with 9.26 SDR, 2.36 PSEQ, 8.23 
SNR, 0.017 RMSE, 0.92 correlation, 0.64 ESTOI, 0.81 STOI 

Table 6   Street noise at different intensity levels

Bold values indicated the best resulted value. Mostly the proposed model has shown superior value. But, in some cases other models too show 
best results when compared to that of proposed model

Methods SDR PESQ SNR RMSE Correlation ESTOI STOI CSED

Street noise at SNR 0 dB
LRA [30] − 10.3508 0.8069 26.8003 2.2545 0.1830 0.02434 0.5299 17,206.0324
ILMSAF [29] − 29.0713 0.386485 28.24517 0.041198 − 0.0000012 − 0.00303 1 6669.757
Vuvuzela [37] − 8.79086 0.693556 28.16884 0.041617 − 0.01414 0.111887 0.385911 7117.692
OMLSA [38] − 23.3815 1.297848 5.518987 0.481817 0.071972 0.32705 0.576932 5198.124
TSNR [39] − 6.35935 1.226439 27.29515 0.044753 − 0.05652 0.23802 0.495741 4264.394
eSHRNR [40] − 6.37398 1.113361 27.40063 0.044295 − 0.05983 0.200118 0.502984 4264.492
RNMF [26] 7.202237 2.085 31.48721 0.031483 0.826486 0.496823 0.682608 4175.865
Prop 6.505504 2.04939 35.09585 0.022436 0.863687 0.509153 0.71288 2275.803
Street noise at SNR 5 dB
LRA [30] − 10.4028 0.7997 26.6633 2.2208 0.18210 0.02640 0.5280 17,090.374
ILMSAF [29] − 41.1891 0.347932 28.2475 0.041166 0.0000203 − 0.00299 1 7176.363
Vuvuzela [37] − 8.46669 0.835758 28.1020 0.041951 − 0.00917 0.212747 0.466567 5217.142
OMLSA [38] − 21.993 1.502347 5.52068 0.481596 0.08801 0.494314 0.674252 4858.855
TSNR [39] − 7.06186 1.881626 26.9478 0.046547 − 0.01488 0.44168 0.668866 3119.174
HRNR [40] − 7.0982 1.897935 27.00894 0.046256 − 0.01304 0.420817 0.684409 3073.434
RNMF [26] 8.622569 2.370913 32.41061 0.028934 0.864937 0.60159 0.757201 3934.027
Prop 10.48717 2.414182 37.92920 0.016037 0.934853 0.635419 0.79669 1964.252
Street noise at SNR 10 dB
LRA [30] − 10.3086 0.8105 26.69456 2.2415 0.1847 0.03025 0.5315 17,153.806
ILMSAF [29] − 39.1995 0.416146 28.2473 0.04116 − 0.000025 0.000222 1 8980.504
Vuvuzela [37] − 8.34898 1.020207 28.09422 0.041953 − 0.00577 0.233092 0.502643 4747.651
OMLSA [38] − 21.7346 1.7324 5.522853 0.481429 0.092094 0.635414 0.789033 4659.472
TSNR [39] − 6.68444 2.24976 27.03556 0.046285 − 0.0188 0.571822 0.771147 3031.058
HRNR [40] − 6.71648 2.286572 27.09301 0.046066 − 0.01835 0.56431 0.776018 3009.596
RNMF [26] 10.0503 2.651448 33.17159 0.02482 0.902525 0.700434 0.818501 0
Prop 13.45219 2.769417 40.28013 0.012185 0.964429 0.756369 0.871417 1766.508
Street noise at SNR 15 dB
LRA [30] − 10.4688 0.7959 26.67656 2.2268 0.17930 0.02352 0.5283 17,122.543
ILMSAF [29] − 43.0316 0.504134 28.24852 0.041157 0.0000757 0.002941 1 9153.841
Vuvuzela [37] − 8.45853 1.103083 28.06584 0.04207 − 0.00851 0.273837 0.535553 4621.293
OMLSA [38] − 21.553 1.854615 5.523514 0.481373 0.093912 0.727654 0.83191 4601.213
TSNR [39] − 6.64125 2.593716 26.95361 0.046455 − 0.02291 0.652852 0.818702 2978.182
HRNR [40] − 6.66462 2.573333 26.98725 0.046301 − 0.02283 0.645521 0.819777 2931.21
RNMF [26] 10.5605 2.754843 34.25164 0.023246 0.907395 0.750891 0.834912 3281.504
Prop 14.97509 2.977879 43.37776 0.010818 0.971795 0.821248 0.898608 1597.327
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and 1606.895 CSED. Table 3 shows the proposed method, 
for the case of exhibition noise, with high SDR, PSEQ, SNR, 
correlation, ESTOI and STOI of 5.26, 1.88, 5.16, 0.83, 0.557 
and 0.73, at 0 dB results. Subsequently, the RMSE and the 
CSED values of the proposed method are found to reduce 
gradually as 0.024 and 2406.215, respectively.     

In the same way, for the other noise types such as res-
taurant noise, station noise, street noise and babble noise at 
varied dB levels, the proposed method outperforms, with 
respect to the performance rate. Further, it is observed that 
the measures like PESQ, SNR, correlation, STOI, ESTOI 

Table 7   Babble noise at different intensity levels

Bold values indicated the best resulted value. Mostly the proposed model has shown superior value. But, in some cases other models too show 
best results when compared to that of proposed model

Methods SDR PESQ SNR RMSE Correlation ESTOI STOI CSED

Babble noise at SNR 0 dB
LRA [30] − 29.3206 1.2492 10.0762 0.6066 0.0119 0.3452 0.5686 6700.345
ILMSAF [29] − 44.5177 0.350636 3.705896 0.034231 0.000071 0.000541 1 6302.352
Vuvuzela [37] − 10.538 0.291167 29.31127 0.034416 0.017666 0.123171 0.268919 5652.945
OMLSA [38] − 28.5134 1.01435 29.26486 0.598757 0.043366 0.286956 0.465407 5825.889
TSNR [39] − 4.03642 1.174523 4.454985 0.039327 − 0.15688 0.291666 0.51614 4372.283
HRNR [40] − 4.04488 1.097431 28.10611 0.038533 − 0.15801 0.246216 0.508015 4083.372
RNMF [26] 6.906372 1.722543 28.28328 0.026349 0.76644 0.319191 0.574315 3844.686
Prop 6.20913 1.902121 31.64638 0.02233 0.818016 0.366412 0.595346 3072.769
Babble noise at SNR 5 dB
LRA [30] − 28.2115 1.538 10.0059 0.606 0.0250 0.5807 0.7842 6257.3161
ILMSAF [29] − 47.873 0.489815 5.52662 0.034219 − 0.0000024 0.000364 1 7012.314
Vuvuzela [37] − 7.38911 0.612969 29.31455 0.035107 − 0.00749 0.207169 0.40774 4042.433
OMLSA [38] − 27.1359 1.18378 29.0921 0.598583 0.052134 0.478167 0.647879 5622
TSNR [39] − 5.37797 1.771651 4.45750 0.04101 − 0.13546 0.513049 0.681794 3176.579
HRNR [40] − 5.50824 1.875257 27.74213 0.040561 − 0.13215 0.515815 0.705963 3140.937
RNMF [26] 8.91804 2.012063 27.83780 0.022675 0.839892 0.548873 0.726988 3704.015
Prop 9.446117 2.132058 32.83511 0.018107 0.889465 0.586192 0.745457 2728.421
Babble noise at SNR 10 dB
LRA [30] − 27.9044 1.7605 10.0211 0.6066 0.02603 0.65721 0.8603 6123.426
ILMSAF [29] − 39.8411 0.455403 10.2810 0.034216 − 0.00017 0.000155 1 8728.255
Vuvuzela [37] − 11.4098 0.699444 29.3157 0.034655 0.002222 0.19033 0.361669 4409.774
OMLSA [38] − 26.8735 1.327771 29.20465 0.59855 0.054035 0.547575 0.713626 5502.45
TSNR [39] − 5.15497 2.164079 4.457990 0.040664 − 0.14 0.54818 0.733701 3104.883
HRNR [40] − 5.28808 2.260716 27.81573 0.04033 − 0.13742 0.54411 0.750874 3057.119
RNMF [26] 11.04823 2.480265 27.8873 0.020863 0.874637 0.635716 0.805794 3624.103
Prop 13.20129 2.647154 33.35560 0.010474 0.961372 0.705626 0.857672 1806.428
Babble noise at SNR 15 dB
LRA [30] − 27.7785 1.8918 10.0199 0.6066 0.02623 0.7474 0.9175 6098.077
ILMSAF [29] − 39.8866 0.431535 11.20955 0.034213 − 0.0000058 0.000603 1 9848.481
Vuvuzela [37] − 11.0845 0.789693 29.31616 0.034699 0.001369 0.20085 0.409755 4444.612
OMLSA [38] − 26.7349 1.381456 29.19357 0.598537 0.055002 0.615176 0.756076 5480.147
TSNR [39] − 5.21817 2.55182 4.45817 0.040696 − 0.14384 0.661409 0.807145 3089.656
HRNR [40] − 5.29458 2.595153 27.80901 0.04048 − 0.14214 0.652382 0.809342 3013.952
RNMF [26] 10.57615 2.54707 27.85519 0.020398 0.870586 0.744149 0.839639 2960.952
Prop 14.2091 2.760114 33.92268 0.009413 0.968986 0.794852 0.892859 1502.005

Table 8   Computational time for denoising a speech signal

Methods Time in seconds

LRA [30] 2.8346
ILMSAF [29] 1.2425
Vuvuzela [37] 0.28791
OMLSA [38] 1.0881
TSNR [39] 0.61697
HRNR [40] 0.51269
RNMF [26] 2.0361
Prop 2.7934
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and SDR of the proposed method are abundantly increased, 
whereas the existing methods showed poor performance with 
low values. Similarly, the measures like RMSE and CSED 
of the proposed method are decreased. But, the existing 
methods show increased values of RMSE and CSED, lead-
ing to the performance excellence of the proposed method. 
Apart from this, Table 8 demonstrates the computational 
time required for denoising the speech signal by the pro-
posed methodology and the other existing methods. During 

comparison, it is observed that the proposed method requires 
2.7934 s to denoise a speech signal. Even though the com-
putational time is higher, the proposed method dominates 
all the existing methods in terms of speech enhancement.

4.4 � Impact of D‑EMCD thresholding

In this paper, the threshold value of the D-EMCD is 
fixed as 0.5e−4. The analysis is performed by varying the 

Fig. 7   Performance analysis for mitigating the airport noise (with varying threshold): a SDR, b PESQ, c SNR, d RMSE, e correlation, f ESTOI, 
g STOI and h CSED

Fig. 8   Performance analysis for mitigating the exhibition noise (with varying threshold): a SDR, b PESQ, c SNR, d RMSE, e correlation, f 
ESTOI, g STOI and h CSED
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threshold �t values as 0.5, 0.01, 0.05, 0.005 and 0.0005, 
for all noise types with varied dB levels like 0, 5, 10, 15. 
Figure 7 illustrates the performance of varied measures 
like (a) SDR, (b) PESQ, (c) SNR, (d) RMSE, (e) corre-
lation, (f) ESTOI, (g) STOI, (h) CSED of airport noise 
with different threshold values. As the value of threshold 
decreases, the performance of SDR, PESQ, SNR, cor-
relation, ESTOI and STOI increases, in a sense that the 
mentioned measures exhibited a drastic improvement with 
the threshold �t value of 0.0005. Similarly, the measures 

like RMSE and CSED gradually decrease at the same 
�t value. The same analysis is observed for all the noise 
types like exhibition noise, restaurant noise, station noise, 
street noise and babble noise. Figures 8, 9, 10, 11 and 12 
demonstrate the analysis of power spectrum estimation 
for the denoised signal of all the six noise types. These 
figures clearly characterize the frequency content of the 
denoised signals with varied threshold �t values such as 
0.5, 0.01, 0.05, 0.005 and 0.0005. Threshold decides the 

Fig. 9   Performance analysis for mitigating the restaurant noise (with varying threshold): a SDR, b PESQ, c SNR, d RMSE, e correlation, f 
ESTOI, g STOI and h CSED

Fig. 10   Performance analysis for mitigating the station noise (with varying threshold): a SDR, b PESQ, c SNR, d RMSE, e correlation, f 
ESTOI, g STOI and h CSED
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quality of D-EMCD, and it can be set based on trial and 
error (Fig. 13).

The impact of the threshold on the D-EMCD performance 
is high, but the relationship between the threshold and the 
performance remains unknown. Hence, the analysis is per-
formed by varying the threshold. The results have revealed 
that minimum threshold leads to improved performance.

5 � Conclusion

In this paper, a speech enhancement algorithm using short-
time Fourier domain has been presented to overcome the 
regular drawbacks of the conventional speech enhancement 
algorithms. Further, a decomposition model, named dimin-
ished empirical mean curve decomposition (D-EMCD), has 
also been introduced to remove the undesired signals. Further, 

Fig. 11   Performance analysis for mitigating the street noise (with varying threshold): a SDR, b PESQ, c SNR, d RMSE, e correlation, f ESTOI, 
g STOI and h CSED

Fig. 12   Performance analysis for mitigating the babble noise (with varying threshold): a SDR, b PESQ, c SNR, d RMSE, e correlation, f 
ESTOI, g STOI and h CSED
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the Wiener filtering process has been adopted to accomplish 
an effective speech enhancement. The proposed methodology 
has been developed in MATLAB, and the performance of the 
proposed method has been analyzed with various measures. 
Moreover, the proposed method has been compared with the 
existing methods for proving its superiority.
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