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Abstract
Developing effective machine learning methods for multimedia data modeling continues to challenge computer vision scien-
tists. The capability of providing effective learning models can have significant impact on various applications. In this work, 
we propose a nonparametric Bayesian approach to address simultaneously two fundamental problems, namely clustering 
and feature selection. The approach is based on infinite generalized Dirichlet (GD) mixture models constructed through the 
framework of Dirichlet process and learned using an accelerated variational algorithm that we have developed. Furthermore, 
we extend the proposed approach using another nonparametric Bayesian prior, namely Pitman–Yor process, to construct the 
infinite generalized Dirichlet mixture model. Our experiments, which were conducted through synthetic data sets, the clus-
tering analysis of real-world data sets and a challenging application, namely automatic human action recognition, indicate 
that the proposed framework provides good modeling and generalization capabilities.

Keywords Infinite mixtures · Variational Bayes · Generalized Dirichlet · Feature selection · Human action recognition

1 Introduction

With the rapid development of digital technologies, pro-
viding approaches that can model visual data is more and 
more pressing. Several data mining and machine learning 
techniques have been proposed [4, 5]. Mixture models have 
received a particular attention among these techniques dur-
ing the past decade [19]. Mixture models suppose that data 
are generated by a collection of populations where each pop-
ulation can be modeled using a probability density function. 
These models are widely used in many pattern recognition, 
image processing and computer vision applications [6]. The 
Gaussian mixture model has received particular attention in 
the computer vision and pattern recognition literature [1]. 

However, we have shown recently that other models such 
as the infinite generalized Dirichlet (GD) mixture [7], that 
we will consider in this paper, may provide better modeling 
capabilities thanks to its flexibility.

The main advantage of the Dirichlet process mixture of 
GD model (also known as the infinite GD mixture model) is 
that it allows explicit use of prior information, thereby giving 
insights into problems where classic frequentist techniques 
fail. This prior information is introduced via Dirichlet process 
that has gained a lot of spotlights recently [11, 21, 28, 29, 31, 
32]. A crucial problem when using these kinds of models is 
feature selection. Feature selection helps to prevent overfit-
ting and provides meaningful interpretation of the data. Many 
approaches in use are mainly stepwise selection techniques 
which ignore data uncertainty and the strong dependency 
between model and feature selection problems. An approach 
that handles simultaneously parameters estimation, model and 
feature selection problems, in the case of infinite GD mix-
tures, has been proposed in [10]. This approach can be con-
sidered as an infinite extension of the unsupervised feature 
selection framework previously proposed in [8]. A related 
model has been proposed in [10] in which a variational Bayes 
method is adopted for model learning. One major limitation 
of the approach in [10] is that it cannot extend to large-scale 
problems directly. To tackle this problem, we may adopt an 
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accelerated variational Bayes algorithm [15] which is origi-
nally designed for learning Gaussian mixture models . How-
ever, the original accelerated variational Bayes algorithm is not 
able to discriminate the significance of each feature. Thus, it is 
crucial to design a model that can perform fast clustering and 
feature selection simultaneously for high-dimensional large-
scale data sets.

The major contributions of this work can be summarized as 
follows: Firstly, we develop an efficient nonparametric model 
for both clustering and feature selection based on the Dirichlet 
process mixture model with GD distributions, and is learnt 
by an accelerated variational Bayes algorithm; secondly, we 
extend the Dirichlet process mixture model of GD distributions 
with feature selection using another nonparametric Bayesian 
prior, namely the Pitman–Yor process mixture model. Simi-
lar to the Dirichlet process mixture model, the Pitman–Yor 
process mixture can also be considered as an infinite mixture 
model but with a power-law behavior, which makes it more 
appropriate for modeling data describing natural phenom-
ena than the Dirichlet process mixture model does; lastly, the 
resulting statistical framework performance is assessed based 
on synthetic data sets, the clustering analysis of real-world data 
sets and a challenging application that concerns human action 
recognition which has been drawing growing interest because 
of its importance in surveillance and content-based research 
tasks [14, 25, 33].

The remaining parts of this paper are organized as follows. 
In Sect. 2, we briefly introduce the infinite GD mixture model 
together with an unsupervised feature selection scheme. In 
Sect. 3, an accelerated variational framework is developed to 
learn the parameters of the corresponding model. In Sect. 4, 
we propose an extension to the proposed approach by introduc-
ing the Pitman–Yor process mixture model. Section 5 dem-
onstrates the experimental results. Lastly, the conclusion and 
future work are presented in Sect. 6.

2  Dirichlet process mixture model of GD 
distributions with feature selection

In this part, we briefly present the infinite generalized Dir-
ichlet (GD) mixture model with unsupervised feature selec-
tion, which is based on a Bayesian nonparametric framework, 
namely Dirichlet process [13, 20]. In our case, a stick-break-
ing representation [23] of the Dirichlet process framework is 
adopted due to its intuitive representation and intrinsic cluster-
ing property. Assume that a random distribution G follows a 
Dirichlet process G ∼ DP(�,H) , with concentration parameter 
� and base distribution H. Its stick-breaking representation is 
then given by

where ��j represents the Dirac delta measure centered at �j , 
and � is a positive real number. The variables {�j} denote the 
mixing weights where 

∑∞

j=1
�j = 1.

By exploiting the framework of Dirichlet process, if a 
D-dimensional random vector � = (Y1,… , YD) is distributed 
according to a GD mixture model which contains an infinite 
number of mixture components, we have

where � denotes the mixing weights. GD(�|�j, � j) is the GD 
distribution that belongs to class j with positive parameters 
�j = (�j1,… , �jD) and � j = (�j1,… , �jD) and is given as

where 0 < Yl < 1 and 
∑D

l=1
Yl < 1 for l = 1,… ,D ; 

�jl = �jl − �jl+1 − �jl+1 for l = 1,… ,D − 1 ; �jD = �jD − 1 . 
� (⋅) is the gamma function.

Feature selection is a common technique in high-dimen-
sional data modeling to improve the learning performance 
by selecting a subset of most relevant features. In this work, 
we incorporate a feature selection technique with the infinite 
GD mixture model by following a mathematical transfor-
mation of the GD distribution which is described in [8]. 
Specifically, the original data points are transformed into a 
new D-dimensional space with independent features. Then, 
the infinite GD mixture model as shown in Eq. (2) can be 
rewritten in terms of Beta distributions as

where X1 = Y1 and Xl =
Yl

(1−
∑l−1

k=1
Yk)

 , for l > 1 . Beta(Xl|�jl, �jl) 
is a Beta distribution associated with parameters �jl and �jl . 
As a result, in contrast to previous unsupervised feature 
selection approaches with Gaussian mixture models [9, 18], 
the independency between all features in the new data space 
becomes a fact instead of an assumption.

(1)
G =

∞∑

j=1

�j��j , �j = �j

j−1∏

s=1

(1 − �s),

�j ∼ Beta(1, �), �j ∼ H,

(2)p(�|�, �,�) =
∞∑

j=1

�jGD(�|�j, � j),

(3)

GD(�|�j, � j) =

D∏

l=1

� (�jl + �jl)

� (�jl)� (�jl)
Y
�jl−1

l

(
1 −

l∑

k=1

Yk

)�jl

,

(4)p(�|�,�, �) =
∞∑

j=1

�j

D∏

l=1

Beta(Xl|�jl, �jl),
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Here, we integrate the method of unsupervised feature 
selection introduced in [18] with the infinite GD mixture 
model. The main idea is that if the lth feature is independ-
ent of the hidden label Z (i.e., it is distributed according to 
a common density), it is considered as an irrelevant feature. 
Consequently, we can define the infinite GD mixture model 
with unsupervised feature selection method as

where � = (�1,… ,�D) is the feature relevance indicator and 
�l = {0, 1} . When �l = 0 , it denotes that the lth feature is 
irrelevant and has the probability distribution Beta(Xl|��

l
, ��

l
) . 

By contrast, when �l = 1 , it indicates that feature l is rel-
evant and is distributed according to Beta(Xl|�jl, �jl) . The 
prior distribution of � has the following form

where p(�l = 1) = �l1 and p(�l = 0) = �l2 . Vector � denotes 
the probabilities that the data features are relevant and we 
have �l = (�l1 , �l2) and �l1 + �l2 = 1 . Thus, � can also be con-
sidered as the ’feature saliency.’

Next, for the observed data set (�1,… ,�N) , we introduce a 
variable � = (Z1,… , ZN) , where Zi is an integer. When Zi = j , 
it means that �i is drawn from component j. The conditional 
probability of Z given �j is given by

where �[⋅] equals 1 when Zi = j ; otherwise, �[⋅] takes the 
value of 0. Moreover, according to the stick-breaking rep-
resentation shown in Eq. (1), p(�) can also be defined by

The prior distribution of � is a specific Beta distribution 
given in Eq. (1) and is explicitly defined by

Furthermore, in our Bayesian framework, we need to place 
priors over the Beta parameters �, �,�′ and �′ . Since these 
parameters have to be positive, Gamma distributions are 
adopted as their priors

(5)p(�|�, �,��, ��,�,�) =

∞∑

j=1

�j

D∏

l=1

[
Beta(Xl|�jl, �jl)

]�l
[
Beta(Xl|��

l
, ��

l
)
]1−�l ,

(6)p(�|�) =
D∏

l=1

�
�l

l1
�
1−�l

l2
,

(7)p(�|�) =
N∏

i=1

∞∏

j=1

�
�[Zi=j]

j
,

(8)p(�) =

∞∏

j=1

N∏

i=1

[
�j

j−1∏

s=1

(1 − �s)

]�[Zi=j]

.

(9)p(�|�) =
∞∏

j=1

Beta(�j, �j) =

∞∏

j=1

�j(1 − �j)
�j−1.

where the associated hyperparameters � , � , � , � , �′ , �′ , �′ 
and �′ are positive.

3  Accelerated variational Bayes model 
learning

According to recent studies, infinite GD mixture models can 
be learned using either Markov chain Monte Carlo (MCMC) 
techniques or variational Bayes methods [7, 10]. However, 
the performance of these approaches is significantly limited 
when dealing with large amount of data (e.g., millions of 
data instances). In order to efficiently handle large-scale data 
set, we may follow the idea of an accelerated version of vari-
ational Bayes inference method as proposed in [15]. In this 
part, we develop an accelerated variational Bayes method 
based on kd-tree structure in order to learn infinite GD mix-
ture models with unsupervised feature selection.

3.1  Conventional variational Bayes model learning

In conventional variational Bayes model learning, the 
main goal is to discover a suitable approximation q(�) 
to the original posterior distribution p(�|) , where 
� = {�,�, �,��, ��,�,�} represents the unknown param-
eters in our model. In our case, we factorize q(�) into 
the product of disjoint factors based on the mean-field 
assumption

Instead of dealing with an infinite number of classes directly, 
a common trick in learning infinite mixture model is to use 
the truncation technique [3, 10], to truncate the number of 
mixture components of variational posteriors into a finite 
value. Nevertheless, a disadvantage of the truncation tech-
nique is that it may cause undesirable consequence that the 
approximating variational families are not nested [15]. We 
may address this issue by considering the idea proposed in 
[15] where the number of mixture components of variational 
posteriors remains infinite, but the variational parameters 
of all models are tied after a particular level M. That is, 
if a component is associated with the index j > M , then 
q(�j) is set to its prior. Using the parameter tying assump-
tion for j > M , the approximated posterior q(�) can then be 

(10)

p(�) = Gamma(�|�, �), p(�) = Gamma(�|�, �),
p(��) = Gamma(��|��, ��), p(��) = Gamma(��|��, ��).

(11)q(�) = q(�)q(�)q(��)q(��)q(�)q(�)q(�)
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calculated through the minimization of the following free 
energy

(12)

F =

N∑

i=1

[⟨
ln

q(Zi)

p(Zi|�)p(�i|�)

⟩
+

D∑

l=1

⟨
ln

q(�il)

p(�il)

⟩]

+

M∑

j=1

[
D∑

l=1

⟨
ln

q(�jl)

p(�jl)

⟩
+

⟨
ln

q(�jl)

p(�jl)

⟩
+

⟨
ln

q(�j)

p(�j)

⟩]

+

D∑

l=1

[⟨
ln

q(��
l
)

p(��
l
)

⟩
+

⟨
ln

q(��
l
)

p(��
l
)

⟩]

where associated hyperparameters are calculated by

(19)
q(��) =

D∏

l=1

Gamma(𝛽�
l
|g̃�

l
, h̃�

l
)

(20)rij =
exp(�ij)

∑∞

j=1
exp(�ij)

(21)fil =
exp(̃fil)

exp(̃fil) + exp(̂fil)

(22)𝜌ij =

D�

l=1

⟨𝜙il⟩
�
(�̄�jl − 1) lnXil + (𝛽jl − 1) ln(1 − Xil) +

�
ln

𝛤 (𝛼jl + 𝛽jl)

𝛤 (𝛼jl)𝛤 (𝛽jl)

��
+

j−1�

s=1

⟨ln(1 − 𝜆s)⟩ + ⟨ln 𝜆j⟩

(23)�fil =

M�

j=1

⟨Zi = j⟩
�
(�̄�jl − 1) lnXil + (𝛽jl − 1) ln(1 − Xil) +

�
ln

𝛤 (𝛼jl + 𝛽jl)

𝛤 (𝛼jl)𝛤 (𝛽jl)

��
+ ln 𝜖l1

(24)

�fil =

⟨
ln

𝛤 (𝛼�
l
+ 𝛽�

l
)

𝛤 (𝛼�
l
)𝛤 (𝛽�

l
)

⟩
+ (𝛽�

l
− 1) ln(1 − Xil) + (�̄��

l
− 1) lnXil + ln 𝜖l2

(25)

ũjl =ujl +

N�

i=1

⟨Zi = j⟩�̄�jl⟨𝜙il⟩
�
𝜓(�̄�jl + 𝛽jl) − 𝜓(�̄�jl) + 𝛽jl𝜓

�(�̄�jl + 𝛽jl)

× (⟨ln 𝛽jl⟩ − ln 𝛽jl)
�

(26)

g̃jl =gjl +

N�

i=1

⟨Zi = j⟩𝛽jl⟨𝜙il⟩[𝜓(�̄�jl + 𝛽jl) − 𝜓(𝛽jl) + �̄�jl𝜓
�(�̄�jl + 𝛽jl)

× (⟨ln 𝛼jl⟩ − ln �̄�jl)]

(27)ṽjl = vjl −

N�

i=1

⟨𝜙il⟩⟨Zi = j⟩ lnXil

(28)h̃jl = hjl −

N�

i=1

⟨𝜙il⟩
�
Zi = j⟩ ln(1 − Xil)

(29)aj = 1 +

N∑

i=1

⟨
Zi = j

⟩

where � = {�,�, �,��, ��,�} ; ⟨⋅⟩ represents the correspond-
ing expected value. Then, the variational solutions to each 
factor can be calculated by

(13)q(�) =

N∏

i=1

M∏

j=1

r
�[Zi=j]

ij

(14)q(�) =

M∏

j=1

Beta(�j|aj, bj)

(15)q(�) =

N∏

i=1

D∏

l=1

f
�il

il
(1 − fil)

(1−�il)

(16)q(�) =

M∏

j=1

D∏

l=1

Gamma(𝛼jl|ũjl, ṽjl)

(17)q(�) =

M∏

j=1

D∏

l=1

Gamma(𝛽jl|g̃jl, h̃jl)

(18)q(��) =

D∏

l=1

Gamma(𝛼�
l
|ũ�

l
, ṽ�

l
)
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where �(⋅) in the above equations represents the digamma 
function. We can calculate the updating equations for hyper-
parameters of �′ and �′ similar to Eqs. (25)–(28). Please 
notice that 

∑∞

s=j+1
⟨Zi = s⟩ in Eq. (30) can be obtained using 

(31) based on the parameter tying assumption that we pre-
viously discussed for j > M . The expectations in the above 
equations can be calculated by

Since there are no closed form solutions to 
⟨
ln

� (�jl+�jl)

� (�jl)� (�jl)

⟩
 and 

⟨
ln

� (��
l
+��

l
)

� (��
l
)� (��

l
)

⟩
 in Eqs. (22)–(24), their lower bound approxi-

mations were obtained by the second-order Taylor 
expansion.

The feature saliencies can then be estimated by minimizing 
free energy F in Eq. (12) by making the derivative of F with 
respect to �l equal to zero

3.2  Accelerated variational Bayes model learning

In this subsection, the conventional variational Bayes learn-
ing process is extended into an accelerate version based on 
the idea as proposed in [15] through a kd-tree structure [2]. 
Assume that the data set  is stored in a kd-tree with the 
assumption that all instances in the outer node T will have 
the same responsibility [i.e., q(Zi) ≡ q(ZT ) ]. Following this 
constraint, the variational solutions with kd-tree structure are 
calculated as

(30)
bj = �j +

N∑

i=1

∞∑

s=j+1

⟨
Zi = s

⟩

(31)
∞∑

j=M+1

exp(�ij) =
exp(�i,M+1)

1 − exp[�(�j) − �(1 + �j)]

(32)
⟨
Zi = j

⟩
= rij,

⟨
�il

⟩
= fil

(33)�̄�jl = ⟨𝛼jl⟩ =
ũjl

ṽjl
, 𝛽jl = ⟨𝛽jl⟩ =

g̃jl

h̃jl

(34)
⟨ln 𝛼jl⟩ = 𝜓(ũjl) − ln ṽjl, ⟨ln 𝛽jl⟩ = 𝜓(g̃jl) − ln h̃jl

(35)
⟨ln(1 − �j)⟩ =�(bj) − �(aj + bj), ⟨ln �j⟩ = �(aj) − �(aj + bj)

(36)�l =

∑N

i=1

�
�il

�

N
.

(37)
�
ZT = j

�
=

exp(�Tj)
∑∞

j=1
exp(�Tj)

where ⟨Xl⟩T represents the average value of all instances 
contained in node T, |nT | represents the total number of 
instances stored in node T. The feature saliencies are 
obtained as �l =

1

�nT �
∑

T fTl.
Inspired from [15], the setting of our learning algo-

rithm is described as follows: We reorder the components 
in each update round and expand the kd-tree in every 
three rounds. It is also noteworthy that the free energy F 

(38)
fTl =

exp(̃fTl)

exp(̃fTl) + exp(̂fTl)

(39)

𝜌Tj =

D�

l=1

⟨𝜙il⟩[ln⟨Xl⟩T (�̄�jl − 1) + ln(1 − ⟨Xl⟩T )(𝛽jl − 1)

+

�
ln

𝛤 (𝛼jl + 𝛽jl)

𝛤 (𝛼jl)𝛤 (𝛽jl)

�
+

j−1�

s=1

⟨ln(1 − 𝜆s)⟩ + ⟨ln 𝜆j⟩

(40)

�fTl = ln 𝜖l1 +

M�

j=1

�
ZT = j

��
(�̄�jl − 1) ln⟨Xl⟩T + (𝛽jl − 1) ln(1 − ⟨Xl⟩T )

+

�
ln

𝛤 (𝛼jl + 𝛽jl)

𝛤 (𝛼jl)𝛤 (𝛽jl)

��

(41)

�fTl =

�
ln

𝛤 (𝛼�
l
+ 𝛽�

l
)

𝛤 (𝛼�
l
)𝛤 (𝛽�

l
)

�
+ ln 𝜖l2 + ln(1 − ⟨Xl⟩T )(𝛽�l − 1)

+ ln⟨Xl⟩T (�̄��
l
− 1)

(42)

ũjl =ujl +
�

T

�nT �⟨𝜙Tl⟩�̄�jl⟨ZT = j⟩[𝜓(𝛽jl + �̄�jl) − 𝜓(�̄�jl) + 𝛽jl(⟨ln 𝛽jl⟩

− ln 𝛽jl)𝜓
�(�̄�jl + 𝛽jl)]

(43)

g̃jl =gjl +
�

T

�nT �⟨𝜙Tl⟩⟨ZT = j⟩𝛽jl[𝜓(𝛽jl + �̄�jl) − 𝜓(𝛽jl) + �̄�jl(
�
ln 𝛼jl

�

− ln �̄�jl)𝜓
�(�̄�jl + 𝛽jl)]

(44)
ṽjl = vjl −

�

T

�nT �
�
ZT = j

��
𝜙Tl

�
ln⟨Xl⟩T

(45)h̃jl = hjl −
�

T

�nT �
�
ZT = j

��
𝜙Tl⟩ ln(1 − ⟨Xl⟩T )

(46)aj = 1 +
∑

T

|nT |
⟨
ZT = j

⟩

(47)bj = �j +
∑

T

|nT |
∞∑

s=j+1

⟨
ZT = s

⟩
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4  Pitman–Yor process mixture model of GD 
distributions with feature selection

Rather than using the Dirichlet process framework, the 
proposed infinite GD mixture model may be constructed 
based on another nonparametric Bayesian prior, namely Pit-
man–Yor process, which is a generalization of the Dirichlet 
processes, with heavier-tailed power-law prior distributions 
[27]. Recently, the Pitman–Yor process has shown its flex-
ibility and better performance in modeling complex real-life 
data sets than the Dirichlet process does [24, 26, 27].

contains a power-law behavior when 0 < 𝜑 < 1 [22] which 
makes it more suitable for modeling data describing natural 
phenomena. Similar to the Dirichlet process mixture model, 
the Pitman–Yor process mixture can also be considered as 
an infinite mixture model via a stick-breaking construction:

(49)

G =

∞∑

j=1

��
j
��j , ��

j
= �j

j−1∏

s=1

(1 − �s),

�j ∼ Beta(1 − �, � + j�), �j ∼ H,

is always decreasing when refining the tree. The compu-
tational cost to learn infinite GD mixture together with 
unsupervised feature selection requires O(MD|T|) for 
each update cycle using the variational inference with kd-
tree structure, which is much more efficient than the one 
without using kd-tree structure (requires O(MDN)). The 
complete learning process with kd-tree structure is sum-
marized in Algorithm 1.

If a random distribution G is distributed according to a 
Pitman–Yor process, we have

where 0 ≤ 𝜑 < 1 represents the discount parameter, 𝛾 > −𝜑 
denotes the concentration parameter, and H is the corre-
sponding base distribution. Please notice that when � = 0 , 
we obtain a Dirichlet process with concentration parameter 
� . In contrast with the Dirichlet process, Pitman–Yor process 

(48)G ∼ PY(�, � ,H),

Table 1  Parameters of the 
generated synthetic data sets

Nj denotes the number of data points in cluster j

j Nj (million) �j1 �j1 �j2 �j2 �j

Data set 1 1 0.5 12 17 20 15 0.50
2 0.5 22 20 36 43 0.50

Data set 2 1 1.0 12 17 20 15 0.25
2 1.0 22 20 36 43 0.25
3 2.0 15 30 15 20 0.50

Algorithm 1
1: Input: A data set X which is saved using the kd-tree data structure
2: Output: Hyperparameters, l, M
3: {Initialization}
4: Set M = 1. Initialize the expansion of the kd-tree to a initial level (such as five)
5: Based on the size T |nT | ZT = c , draw several ‘candidate’ components c
6: for each potential component c do
7: Expand the outer nodes of the kd-tree by one level deeper which assign the highest

responsibility ZT = c to the component c among all components.
8: According to the bisector of the corresponding principal component, divide compo-

nent c into c1 and c2, to form two new components. The responsibilities ZT = c1
and ZT = c2 are initialized

9: Update variational factors for new components c1 and c2 using Eqs. (37)∼(47)
10: end for
11: Update variational factors for all j ≤ M + 1, as well as expand the kd-tree and reorder

the components
12: Evaluate feature saliencies l

13: if FM − FM+1 < threshold then
14: Stop
15: else
16: set M = M + 1 and go to step 5
17: end if
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where ��j is an atom at �j . The variables �′
j
 represent the mix-

ing weights where 
∑∞

j=1
��
j
= 1.

By adopting the Pitman–Yor process mixture model with 
stick-breaking construction, the infinite GD mixture model 
with unsupervised feature selection method can be defined 
as

This model can also be learned using the accelerated vari-
ational Bayes approach as proposed in Sect. 3.2.

5  Experimental results

In this section, we illustrate the utility of the infinite GD 
mixture with unsupervised feature selection that is learned 
using accelerated variational Bayes (referred to as InGD-Fs) 
using both synthetic data sets and real-world applications 
with high-dimensional data. We start our experiments by 
validating the proposed InGD-Fs on two synthetic data sets 
with different settings of parameters. Then, we test our algo-
rithm on several real data sets with different characteristics 

(50)p(�|�, �,��, ��,��,�) =

∞∑

j=1

��
j

D∏

l=1

[
Beta(Xl|�jl, �jl)

]�l
[
Beta(Xl|��

l
, ��

l
)
]1−�l .

from the UCI Machine Learning Repository.1 Lastly, we 
apply our algorithm on a challenging application concerns 
human action recognition using bag-of-visual words repre-
sentation. For the real-world data sets and the application 
of human action recognition, we also apply the infinite GD 
mixture with unsupervised feature selection that is con-
structed using Pitman–Yor process mixture model (referred 

to as InGD-FsPY) as presented in Sect. 4. The initializa-
tion of the proposed InGD-Fs is summarized as follows: 
(ujl, vjl, gjl, hjl, u

�
l
, v�

l
, g�

l
, h�

l
, �j) = (1, 0.05, 1, 0.05, 0.5, 0.01,

0.5, 0.01, 0.1).

5.1  Synthetic data sets

In this section, we validate the effectiveness of the proposed 
accelerated variational Bayes algorithm for learning InGD-
Fs through synthetic data sets. Another target of this section 
is to demonstrate the advantages of accelerated variational 
Bayes for learning large-scale data sets by comparing it with 
the conventional variational Bayes learning algorithm.

Table 2  Estimated parameters 
of the generated data sets by the 
proposed InGD-Fs 

j Nj (million) �̂�j1 𝛽j1 �̂�j2 𝛽j2 �̂�j

Data set 1 1 0.5 11.59 17.83 19.27 15.51 0.492
2 0.5 22.94 20.36 35.05 44.17 0.508

Data set 2 1 1.0 12.38 16.85 20.37 15.33 0.254
2 1.0 22.63 20.62 34.91 42.18 0.252
3 2.0 14.87 31.11 15.21 20.64 0.494
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Fig. 1  Average feature saliences using InGD-Fs on the first synthetic 
data set over 10 runs
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Fig. 2  Average feature saliences using InGD-Fs on the second syn-
thetic data set over 10 runs

1 http://archi ve.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/
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First, we evaluate the performance of the InGD-Fs on 
two ten-dimensional (two relevant features and eight irrel-
evant ones) synthetic data sets. We generate the relevant 
features in the transformed space from mixtures of Beta 
distributions with well-separated components as described 
in Sect. 2. The parameters for generating these two data 
sets with relevant features can be viewed in Table 1. Irrel-
evant features are generated from one common Beta distri-
bution Beta(1, 2) . Table 2 shows the estimated parameters 
of the distributions representing the relevant features for 
each data set using the proposed InGD-Fs. Based on the 
results shown in this table, for each synthetic data set, the 
parameters representing relevant features of this model, 
and its mixing coefficients can be accurately estimated by 
InGD-Fs. Figures 1 and  2 demonstrate the results of the 
saliencies of all 10 features for the synthetic data sets over 
ten runs. Clearly, for each data set, features 1 and 2 are 
considered as relevant features in terms of high degree 
of relevance ( 𝜖l > 0.9 ), whereas features from 3 to 10 are 
recognized as irrelevant features due to low values of sali-
ency ( 𝜖l < 0.1 ), which is consistent with the true setting.

Moreover, in order to demonstrate the advantages of the 
developed accelerated variational Bayes algorithm, we com-
pare it with the conventional variational Bayes algorithm for 
learning the infinite GD mixture model with feature selec-
tion (referred to as varInGD-Fs), in terms of computational 
runtime. The corresponding results are shown in Table 3. It 
is clear that, for each synthetic data set, the proposed InGD-
Fs requires less computational time than varInGD-Fs.

5.2  Real‑world data sets

In this experiment, the proposed InGD-Fs and InGD-FsPY 
were tested on clustering four real-world data sets with dif-
ferent properties from the UCI Machine Learning Reposi-
tory: (1) The wine (WI) data set: This data set is collected 
from a chemical analysis of wines grown in the same region 
in Italy but derived from three different cultivars. It con-
tains 178 data instances, including 3 types of wines with 
13 constituents found in each type; (2) The statlog (ST) 
data set: It consists of the multi-spectral values of pixels in 
3 × 3 neighborhoods in a satellite image, and the classifica-
tion associated with the central pixel in each neighborhood. 
In total, there are 6435 36-dimensional vectors from six 
classes: read soil, cotton crop, gray soil, damp gray soil, soil 
with vegetation stubble and very damp gray soil. The goal is 
to predict this classification, given the multi-spectral values; 
(3) the image segmentation (IS) data set: It contains 2310 
data instances collected from a database of 7 outdoor image 
classes: brickface, sky, foliage, cement, window, path and 
grass. Each instance is a 3 × 3 region with 19 features; (4) 
The handwritten digits (HD) data set: This data set has 
5620 data instances in total with 64 features from 10 classes: 
‘0’ to ‘9.’ Features in this data set are integers in the range 
0–16. The properties of aforementioned data sets are sum-
marized in Table 4.

It is noteworthy that since we were performing clus-
tering analysis, the class labels were not involved in this 
experiment. Moreover, all features in those data sets were 
normalized into the range of [0,1] as a preprocessing step. 

Table 3  The average computational runtime (in seconds) for each 
tested algorithm over 10 runs

The numbers in parentheses are the standard deviation of the corre-
sponding quantities

Algorithm Data set 1 Data set 2

InGD-Fs 463.32 (4.18) 1537.25 (3.22)
varInGD-Fs 2879.51 (3.52) 9943.65 (2.56)

Table 4  The four real-world data sets

N, D and M denote the numbers of instances, features and classes, 
respectively

Data set N D M

Wine (WI) 178 13 3
Statlog (ST) 6435 36 6
Image segmentation (IS) 2310 19 7
Handwritten digits (HD) 5620 64 10

Table 5  The average error rates (%) using different algorithms over 
30 random runs

The numbers in parentheses are the standard deviation of the corre-
sponding quantities

Method WI ST IS HD

Kurihara 
et al. [15]

8.73 (0.97) 11.26 (1.05) 19.75 (1.23) 16.45 (1.18)

Fan et al. 
[10]

4.56 (0.58) 8.81 (0.85) 14.33 (1.75) 10.01 (1.21)

InGD-Fs 4.49 (0.82) 8.15 (1.12) 13.87 (1.46) 9.73 (1.63)
InGD-FsPY 4.41 (0.76) 8.04 (0.96) 10.09 (1.51) 9.69 (1.34)

Table 6  The average computational runtime (in seconds) for each 
tested algorithm over 30 runs

Method WI ST IS HD

Kurihara et al. [15] 2.46 19.52 10.19 18.36
Fan et al. [10] 7.39 61.41 28.67 56.71
InGD-Fs 2.68 22.34 11.95 20.15
InGD-FsPY 2.77 24.03 12.23 21.26
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We randomly partitioned each data set into two parts: one 
for training, another one for testing. The evaluation of the 
proposed InGD-Fs and InGD-FsPY was performed based 
on 30 runs. The advantages of the proposed algorithms were 
demonstrated by comparing them with two other state-of-
the-art mixture modeling approaches: the infinite Gaussian 
mixture model with kd-tree structure as proposed in [15], 
the infinite GD mixture model with feature selection through 
conventional variational Bayes learning as proposed in [10].

The average results are summarized in Table 5 in terms of 
error rates. Based on the results shown in this table, we can 
observe that for all data sets the infinite Gaussian mixture 
model as proposed in [15] has obtained the worst perfor-
mance in terms of the highest error rate among all tested 
algorithms. This fact illustrates the merits of using feature 
selection technique, as well as the advantages of using the 
GD mixture models over Gaussian ones in modeling propor-
tional data. Furthermore, for data sets WI, ST and HD, the 
proposed InGD-Fs and InGD-FsPY can provide comparable 
performance to the one obtained by the infinite GD mixture 
model with feature selection as proposed in [10]. According 
to Student’s t-tests, with 95 percent confidence, the differ-
ences in performance among those three approaches are not 
statistically significant (i.e., for the WI, ST and HD data 
sets, we have obtained p-values between 0.176 and 0.349 for 
different runs). In this case, InGD-Fs and InGD-FsPY are 
preferred since they are based on the accelerated variational 
Bayes and are significantly faster than the approach of [10] 
as shown in Table 6. Another important observation from 
Table 5 is that, for the IS data set, InGD-FsPY achieved the 
best performance in terms of the lowest error rate (10.09%), 
and the difference between the InGD-FsPY and the other 
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Fig. 3  Average feature saliences using InGD-Fs on the wine data set 
over 30 runs
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Fig. 4  Average feature saliences using InGD-Fs on the statlog data 
set over 30 runs
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Fig. 5  Average feature saliences using InGD-Fs on the image seg-
mentation data set over 30 runs
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Fig. 6  Average feature saliences using InGD-Fs on the handwritten 
digits data set over 30 runs
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approaches is statistically significant (p-values between 
0.025 and 0.043). This can be explained by the fact that the 
frequencies of observed objects in each image segmentation 
follow power-law distributions [26], and thus can be bet-
ter modeled using the Pitman–Yor process framework than 
using the Dirichlet process.

We illustrate the features saliencies obtained by the pro-
posed InGD-Fs for each tested data sets in Figs. 3, 4, 5 and 
6. As shown in these figures, it is obvious that different fea-
tures do not contribute equally in the clustering analysis due 
to different associated relevance degrees. More specifically, 
for the wine data set, two features (features number 4, 5, 7 
and 13) have the highest relevance degrees where the feature 
saliencies are greater than 0.8. By contrast, there are two 
features (feature number 2 and 9) that have saliencies lower 
than 0.5, and therefore contribute less to clustering. For the 
statlog data set, we have obtained twelve features (features 
number 1, 3, 4, 7, 9, 12, 15, 16, 20, 24, 25, 27, 30, 31 and 
36) that have higher degree of relevance (feature saliencies 
are greater than 0.8), while five features (feature number 
5, 13, 18, 21 and 28) that have saliencies lower than 0.5. 
For the image segmentation and handwritten data sets, we 
have obtained three (feature number 4, 12 and 18) and nine 
irrelevant features (feature number 1, 12, 13, 22, 33, 41, 
43, 50 and 63), respectively, which have feature saliencies 
lower than 0.5.

5.3  Experimental on human action recognition

In this experiment, we apply the proposed algorithms on 
a challenging task in the filed of computer vision, namely 
human action videos recognition. Our goal is to develop 
a statistical approach for recognizing human action videos 

using InGD-Fs or InGD-FsPY and local spatiotemporal fea-
tures using bag-of-visual words representation.

5.3.1  Methodology and data set

We summarize our methodology for recognizing human 
actions in videos as follows. (1) By calculating space–time 
interest points, local spatiotemporal features were calculated 
from each video. In this work, the Harris3D detector [16] 
is applied to obtain the HOG/HOF feature descriptors [17]. 
(2) we apply the K-means algorithm to quantize the obtained 
HOG/HOF features in to visual words via the paradigm of 
bag-of-visual words. As a result, each video sequence can 
then be considered as a histogram over visual words. In our 
experiments, we obtained the optimal recognition perfor-
mance when the size of the visual vocabulary is about 1000 
by investigating different sizes (300–1200). (3) The proba-
bilistic latent semantic analysis model is then applied [12] on 

Fig. 7  Sample frames from the HMDB51 human action database

Table 7  The average recognition rate and runtime with the standard 
deviations by different algorithms in 30 runs

The numbers in parenthesis are the standard deviation of the corre-
sponding quantities

Method Rec. rate (%) Runtime (s)

Zhang et al. [33] 25.17 (1.28) 63.52
Song et al. [25] 23.79 (1.51) 59.31
Kuehne et al. [14] 22.13 (1.86) 49.65
Kurihara et al. [15] 24.49 (1.15) 27.16
Fan et al. [10] 29.77 (1.07) 70.34
InGD-Fs 29.83 (1.54) 29.51
InGD-FsPY 30.21 (1.13) 31.29
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the acquired histograms. Consequently, each video sequence 
is now represented as a proportional vector that the corre-
sponding dimensionality may be considered as the number 
of latent aspects. In this work, the optimal performance was 
acquired when 70 aspects was considered.

Our recognition approach is developed based on a clas-
sifier. The inputs to the classifier are the 70-dimensional 
vectors extracted from the different action categories. These 
vectors are divided into two sets: the training set (50 vectors 
were randomly taken for training from each action category), 
whose class is known, and the testing set, whose class is 
unknown (i.e., unlabeled). The training set is used to adapt 
the classifier to each possible action category before the 
unknown set is submitted to the classifier. Then, we apply 
our algorithms, presented in Sects. 3 and 4, to the training 
vectors in each category. After this step, each action cat-
egory in the data set is represented by an infinite GD mixture 
model. Finally, in the classification step, each testing vector 
(without labels) is assigned to the category that increases 
more its log-likelihood.

Our experiments were tested through one of the largest 
human action databases available nowadays known as the 
HMDB51 database [14],2 which was collected from various 
sources (e.g., YouTube, movies, or Google videos). This 
database has 6849 video clips which can be classified into 
51 action categories. Each category includes at least 101 
video clips. Some examples of motion frames can be viewed 
in Fig. 7.

5.3.2  Results

We report the experimental results of the proposed InGD-
Fs and InGD-FsPY based on 30 runs of our approach. For 
comparison, except the applications of the infinite Gaussian 

mixture model with kd-tree structure as proposed in [15] 
and the infinite GD mixture model proposed in [10], we also 
apply three other state-of-the-art approaches: the approach 
that is based on a boosted multi-class semi-supervised learn-
ing algorithm [33], the approach that is based on a local-
ized, continuous and probabilistic video representation for 
human action recognition [25], and the action recognition 
approach as described in [14] where SVM with the RBF ker-
nel is used for recognition. The average performance and the 
computational cost (in terms of computational runtime) are 
demonstrated in Table 7 for each approach. As shown in this 
table, both the proposed InGD-Fs and InGD-FsPY outper-
formed the other approaches with higher recognition rates. 
It is noteworthy that the approach of [10] performed slightly 
worse than the proposed two approaches, and its result was 
not significantly different from the proposed two approaches 
based on the Student’s t-test. Specifically, with 95 percent 
confidence, we obtained p-values between 0.189 and 0.282 
for different runs. Therefore, the InGD-Fs and InGD-FsPY 
were preferred in this case since they were significantly 
faster than the approach of [10] based on the results shown 
in Table 7, thanks to the accelerated variational learning 
with kd-tree structure.

We also evaluate the feature saliencies corresponding to 
the 70-dimensional aspects using InGD-Fs and present this 
result in Fig. 8. As shown in this figure, we have obtained 
different feature saliencies for different features. More spe-
cifically, 15 features were considered with high relevance 
degree since their feature saliencies were larger than 0.9. 
However, 12 features were considered having less contribu-
tion in recognition, since the resulted feature saliencies were 
smaller than 0.5.

6  Conclusion

In this paper, the Dirichlet process prior was used to provide 
nonparametric Bayesian estimates for generalized Dirichlet 
mixtures when used for simultaneous clustering and feature 
selection. This goal was achieved by providing an acceler-
ated variational approach for model learning. Moreover, we 
have also proposed a construction of the infinite generalized 
Dirichlet mixture model using the framework of Pitman–Yor 
process, which can be considered as an extension to the infi-
nite generalized Dirichlet mixture that is built through Dir-
ichlet process mixture model. The experiments were based 
on the clustering analysis of several real-world data sets and 
the application of human activities recognition. The obtained 
results have shown the merits of our approach. Future works 
may include the extension of the proposed model to online 
settings. Another potential future work may be the inclusion 
of audio information, as done in [30], to improve distin-
guishing confusing human activities in videos.
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Fig. 8  Average feature saliences using InGD-Fs over 30 runs

2 http://serre -lab.clps.brown .edu/resou rce/hmdb-a-large -human 
-motio n-datab ase.

http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
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