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Abstract
Clustering as a major task in data mining is responsible for discovering hidden patterns in unlabeled datasets. Finding the 
best clustering is also considered as one of the most challenging problems in data mining. Due to the problem complexity 
and the weaknesses of primary clustering algorithm, a large part of research has been directed toward ensemble clustering 
methods. Ensemble clustering aggregates a pool of base clusterings and produces an output clustering that is also named 
consensus clustering. The consensus clustering is usually better clustering than the output clusterings of the basic clustering 
algorithms. However, lack of quality in base clusterings makes their consensus clustering weak. In spite of some researches 
in selection of a subset of high quality base clusterings based on a clustering assessment metric, cluster-level selection has 
been always ignored. In this paper, a new clustering ensemble framework has been proposed based on cluster-level weighting. 
The certainty amount that the given ensemble has about a cluster is considered as the reliability of that cluster. The certainty 
amount that the given ensemble has about a cluster is computed by the accretion amount of that cluster by the ensemble. 
Then by selecting the best clusters and assigning a weight to each selected cluster based on its reliability, the final ensemble 
is created. After that, the paper proposes cluster-level weighting co-association matrix instead of traditional co-association 
matrix. Then, two consensus functions have been introduced and used for production of the consensus partition. The proposed 
framework completely overshadows the state-of-the-art clustering ensemble methods experimentally.

Keywords Data clustering · Clustering ensemble · Consensus function · Weighting

1 Introduction

Main idea of data clustering is the separation of data samples 
from each other and placing them into the similar groups; 
it means that data samples similar to each other should be 
placed into a same group and should have maximum dis-
similarity with the samples of other group(s) [16, 29, 35]. 

Each group in the above definition is usually referred to as 
a cluster. All clusters together are named a clustering. It is a 
very traditional task in any field for us to intend to group a 
host of data points. It can be due to lack of any insight into 
dataset. So, a first grouping in data that there is no primary 
insight can provide us with a good initial understanding and 
insight. Because of its utility, clustering has emerged as one 
of the leading methods of multivariate analysis. It has been 
shown that cluster analysis (CA) is among the most versatile 
concepts for analyzing datasets with many (more than three) 
features [68].

Indeed, data clustering is a necessary tool for finding 
groups (or clusters) in unlabeled datasets [45, 48, 50, 52, 
53, 58]. One of the most important objective functions in 
data clustering is maximization of intra-cluster similarity 
simultaneous with minimization of inter-cluster similarity. 
In other words, data clustering objective functions usually 
intend to maximize inter-cluster variance and minimize 
intra-cluster variance. It is worthy to be mentioned that there 
is not any supervision during data clustering to guide the 
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clusterer. It is considered as a subfield in statistical pattern 
recognition (SPR), machine learning (ML), and data min-
ing (DM) fields. Two main tasks in learning [46, 49, 72] are 
considered as data classification [6, 64] and data cluster-
ing [2, 17, 19, 56]. Data clustering is an interesting topic, 
and it has diverse applications [47, 50, 54, 55, 59]. There are 
many reasons why data clustering has many applications. 
Generally data clustering is used for two aims: (a) receiving 
a primary understanding of a huge amount of raw data and 
(b) reducing the size of a huge amount of raw data.

Based on Kleinberg’s theorem, there is no base clustering 
method that is able to learn any dataset [37]. It means that 
each basic clustering algorithm is suitable for some datasets 
having a shared special feature. So we need a new approach 
that combines basic clustering algorithms in such a way that 
surpasses the basic clustering algorithms. Due to the lack 
of supervision in data clustering, choosing a special basic 
clustering algorithm for an unknown dataset is an impos-
sible and incorrect topic. The lack of a unique clustering 
assessment metric is also an additive reason to make us be 
unable to select an absolutely superior clustering algorithm 
even out of a set of two basic clustering algorithms. Because 
choosing any objective function for data clustering, it is 
sometimes desired to find a data clustering algorithm that 
produces a robust output or even a stable output [7, 10, 27, 
30, 61]. Reaching a robust clustering algorithm or a stable 
clustering algorithm is very hard with simple data clustering 
algorithms and is easier by ensemble-based data clustering 
algorithms.

Lack of a guideline for selecting the best data clustering 
algorithm for a given dataset can be considered as one of the 
most important delicacies in this field. Indeed, there is no 
automatic organized method for selection of the most suit-
able data clustering algorithm for an unknown given dataset.

One of the most important steps in pattern recognition is 
feature selection. In a more general manner, feature selec-
tion can be viewed as feature weighting. Both of them are 
frequently are considered during data classification, but they 
are usually hard to be considered during data clustering. It 
can be very challenging to consider any weighting mecha-
nism in data clustering algorithms. In this paper, a weighting 
mechanism has been used in data clustering framework, but 
with the help of ensemble concept.

Data clustering with the help of an ensemble of clus-
terers is named clustering ensemble. The main aim of 
clustering ensemble is to search a better and more stable 
result with the aggregation of the information extracted 
from a set of base data clusterings. The better and more 
stable result that is extracted from the set of base data 
clusterings (also called clusterings pool) is named con-
sensus partition or consensus clustering [22, 62, 63]. 
There are many researches that have been accomplished 
in classifier ensemble [1, 36, 57, 54, 55]. Inspired by 

classifier ensemble success during past researches, clus-
tering ensemble have emerged as a new concept in pat-
tern recognition communities recently. It has been shown 
that clustering ensemble can be better in terms of both 
clustering quality and clustering stability. It is worthy 
to be mentioned that their parallelization ability is suit-
able for distributed data mining. Clustering ensemble can 
produce consensus partitions that are more robust, more 
novel, more stable, and more flexible than the clusterings 
produced by the base data clustering algorithms [8, 22, 
25, 65].

In summary, clustering ensemble composes of the follow-
ing two steps [22, 62]:

Ensemble generation step: in this step a set of base data 
clusterings should be produced. These base data clusterings 
should have two fundamental features to be considered as a 
suitable ensemble: quality and diversity. It is widely known 
as an effective approach to produce a large set of base data 
clusterings and then select a diverse subset of those base 
data clusterings with the highest qualities [3, 4, 58].

Aggregation of base data clusterings step: in this step all 
base data clusterings produced in the previous step should be 
aggregated. The aggregation mechanism is named ensemble 
consensus function (ECF).

Assigning weights to voter based on their qualities can 
be an effective mechanism to improve an ensemble. The 
process of weighting to basic learners in an ensemble of 
learners can be optimally set if accuracy of each base learner 
is known [38]. But if the learners are of type clusterers, the 
accuracy for learner is meaningless [29]. So, quality of each 
quality clusterer can be used as its approximation for its 
accuracy. Fred and Lourenco [25] have proposed a cluster-
ing ensemble based on selection of a subset of the base data 
clusterings with the highest qualities. They first assessed 
base clusterings then selected those with the most qualities. 
They finally employed an ECF named evidence accumula-
tion clustering (EAC). They ignored the diversity of the base 
data clusterings (indeed they consider it implicitly).

Alizadeh et al. [4] have proposed a similar work in the 
cluster level. They have first produced an ensemble, and then 
they have transformed the ensemble into a cluster represen-
tation. After that, they have attached a quality value to each 
cluster based on its stability in a reference set. Finally, they 
have selected the clusters with the most qualities. They have 
improved their previous work by introducing a new metric 
[3]. Like the previous work of Fred and Lourenco [25], their 
proposed frameworks also ignored the diversity of the base 
data clusterings.

In general, applying weighting in clustering has been dis-
cussed recently and rarely. As the first and the most complete 
methods that used weighting mechanism, we can refer to a 
paper by Gullo et al. [29], and another paper by Domeniconi 
and Al-Razgan [14]. These methods are Weighted Similarity 
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Partitioning Algorithm (WSPA) [29] and Weighted Bipartite 
Partitioning Algorithm (WBPA) [14] where the WBPA is 
the better one.

In all previous researches, both diversity and clustering 
weighting have not considered simultaneously. They have 
dealt with either weighting primary data clusterings based 
on their qualities or selecting of a subset of the primary 
data clusterings based on their diversity. But diversity and 
quality have been rarely considered simultaneously. They 
are considered simultaneously in some works by Parvin and 
Minaei-Bidgoli [52] and Parvin and Minaei-Bidgoli [53], 
but they are considered only implicitly. Also in some works, 
Alizadeh et al. [3] and Alizadeh et al. [4] have considered 
both of them explicitly and simultaneously, but they have 
done it in the level of clustering. Also they only used binary 
weighting. It means that they first have selected a subset of 
clusterings with the best quality values and have named it 
the high quality clusterings. Then they have selected a subset 
of diverse clusterings among the high quality clusterings. 
Seeking to tackle the abovementioned issue, in this paper, an 
original data clustering ensemble method has been proposed. 
So, in the present paper we assign a weight to each cluster 
based on their quality value. Then, the most diverse subset 
of clusters is selected into the final ensemble. To reach the 
final consensus results, a new function termed cluster-level 
weighting evidence accumulation clustering ( CLWEAC ). 
Using the model of CLWEAC , consensus clustering is 
finally produced by an agglomerative hierarchical clustering 
algorithm. Figure 1 illustrates the diagram of the proposed 
method. We make use of the diversity concept at the cluster 
level and incorporate the cluster quality into a weighting 
structure for boosting the consensus clustering. 

To emphasize the main contributions of the paper, they 
are briefly listed here:

• A new metric has been proposed to assess quality of a 
cluster based on coherence in its data points. It is worthy 
to be mentioned that the metric don not need the original 
features of the given dataset.

• A weighting framework has been introduced to weight 
up the better clusters (clusters with higher qualities).

• A new novel consensus function that considers the cluster 
quality and diversity has been introduced.

• A large number of experimentations have been performed 
on many real standard benchmarks showing the proposed 
clustering ensemble performs better than the state-of-the-
art clustering ensembles.

This manuscript is arranged as follows. Section 2 contains 
the related work. Section 3 explains the proposed cluster-
ing ensemble approach. Section 4 presents the experimental 
study. Finally, conclusion will be presented in Sect. 5.

2  Related work

Clustering is the problem of putting a set of data samples 
into similar categories (widely named as clusters) where 
similarity can be calculated based on Euclidean distance. In 
clustering, the algorithm aims at two objectives: (a) Groups 
have maximal intra-cluster similarities (or data samples in 
a same group have minimal Euclidean distances with each 
other or with cluster center) and (b) different groups have 
minimal inter-cluster similarities (it can be interpreted either 
as “each pair of data samples belonging to two different clus-
ters has maximal Euclidean distances” or as “cluster centers 
of different clusters have maximal Euclidean distances with 
each other”) [38]. So, clustering means the separating data 
into a number of groups in such a way that all pairs of the 
samples in a same group have the least possible dissimilari-
ties from (or the most possible similarities with) each other, 
and all pairs of the samples assigned to different groups have 
the least possible similarities with each other.

In some application, we need a robust clustering (RC); 
for example if the clustering mechanism is employed in a 
preliminary stage of a classification algorithm (to find and 
omit outliers). Another reason to desire a RC is hidden in 
the strong relationship between the CA and Robust Statistics 
(RS) [60]. RC methods are discussed in detail by García-
Escudero et al. [27]. Coretto and Hennig [10] have shown 
experimentally that the RIMLE method, their previously 
proposed method, can be recommended as optimal in some 
situations and acceptable in all situations.

Finding the best clustering for a given dataset is almost 
impossible [37]; the lack of a totally acceptable criterion to 

Input: The base data clusterings

Cluster quality evaluator

Assign a weight to each cluster based on its quality and select a subset of them

Obtaining CLWCAM considering weights of clusters

Consensus functions

CLWEAC CLWGC

Output: the consensus clustering

Fig. 1  Flow diagram of the proposed approach
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assess the quality of a clustering is the main reason. It means 
that the measurement is subjective and so the best is also 
sensitive to that measurement. One of the most challenging 
tasks in CA is discovery of a mechanism how the stability 
of a clustering is obtained. Hennig [30] acclaimed that this 
problem is mainly due to the fact that robustness and sta-
bility in CA are not only data dependent, but even cluster 
dependent. Therefore, some researchers consider stability as 
the measurement to find which clustering algorithm is the 
best. It means that if clustering algorithm A is producing 
more stable results than clustering algorithm B, then we can 
assume that clustering algorithm B is better than cluster-
ing algorithm A. To find stable clustering algorithms, the 
clustering ensemble methods have emerged. They attempt 
to find a better and more stable clustering solution by fusing 
information from several primary data clusterings [3, 4].

The transfer distance (TD) between clusterings [9, 12] is 
defined as the minimum number of data points that should 
be moved from one cluster to another (possibly empty) to 
turn one clustering into another. This distance has been stud-
ied under the name of “partition-distance”. Based on the 
concept of the TD between clusterings, a consensus cluster-
ing has been proposed by Guénoche [28]. Given a host of 
primary clusterings over a dataset, Guénoche [28] has pro-
posed a consensus clustering containing a maximum number 
of joined or separated pairs in the given dataset that are also 
joined or separated in the primary clusterings. To do so, he 
has defined a utility function mapping a clustering to score 
value. He first transforms the problem to a graph cluster-
ing. Then, using some mathematical tricks converts it to an 
integer linear programming optimization. Finally, he seeks 
for a partition that maximizes the score. The score can be 
maximized by an integer linear programming only in cer-
tain cases. He has shown that in those certain cases that the 
method converges to a solution the method produces a con-
sensus partition that is very close to the optimum. Although 
the method is a very simple and clear one, it fails in many 
real-world cases as the author mentions it.

Although some researchers have tried to find the best con-
sensus clustering out of an ensemble of base data cluster-
ings, it is widely believed that all ensembles do not perform 
well. It has been shown that an ensemble needs two elements 
to be considered as good ensemble. Diversity among the 
members of an ensemble is one of the most fundamental 
factors in the ensemble. It means that an ensemble will fail 
if the diversity among its members is not high. While the 
diversity is important, the qualities of primary clusterings 
are also important, so both of them are recently considered 
by the researchers. But rarely both of them are dealt with in 
an integrated approach. A new algorithm for choosing a sub-
set of many primary clusters is proposed in this paper where 
it simultaneously considers both of them. A good selection 
is very decisive. The selection of some base clusterings (or 

some base clusters) can be done by a heuristic algorithm. 
To do this, a criterion to evaluate a cluster is necessary. To 
evaluate a cluster, normalized mutual information (NMI), a 
metric based on information theory, can be employed [21]. 
Alternatively to evaluate a cluster, edited normalized mutual 
information, ENMI, can be employed [3].

To preserve the diversity, some researchers [23] have sug-
gested a clustering ensemble approach which selects a subset 
of base data clusterings. They form a smaller but better-
performing clustering ensemble than using all primary clus-
terings. The ensemble selection method is designed based on 
quality and diversity, the two factors that have been shown 
to influence cluster ensemble performance. Their method 
attempts to select a subset of primary clusterings which 
simultaneously has both the highest quality and diversity. 
The Sum of Normalized Mutual Information, SNMI [22, 24, 
70], is used to measure the quality of an individual partition 
with respect to other partitions. Also, the NMI is employed 
to measure the diversity among clusterings. Although the 
ensemble size in this method is relatively small, this method 
achieves significant performance improvement over full 
ensembles.

Inspiring by bagging and boosting algorithms in classifi-
cation, Parvin et al. [58] have proposed boosting clustering 
ensemble. They have proposed a subsampling with and with-
out replacement bagging and boosting methods. They have 
examined the effect of ensemble size, sampling size, and 
cluster number over quality of consensus clustering. Then, 
they have proposed a weighted locally adaptive clustering 
ensemble [53].

Law et al. [40] have proposed a multi-objective data clus-
tering method based on the selection of individual clusters 
produced by several clustering algorithms through an opti-
mization procedure. This technique chooses the best set of 
objective functions for different parts of the feature space 
from the results of base clustering algorithms.

Fred and Jain [24] have offered a new clustering ensem-
ble technique which learns the pair-wise similarity between 
points in order to facilitate a proper clustering of the data 
without the a priori information of the number of clusters 
and of the nature of the clusters. This method which is based 
on cluster stability assesses the principal clustering results 
instead of final clustering.

The current article proposes a new clustering ensem-
ble attitude in that it is tried to choose a subset of clusters 
instead of a subset of clusterings. Also here NMI is utilized 
to assess a cluster. A scheme introduced by Alizadeh et al. 
[3] is employed to match two clusters based on which two 
clusterings are created that they are used in cluster-based 
NMI calculation.

To make the consensus clustering, a technique based 
on co-association matrix ( CAM ) is employed. The results 
are reported on a variety of experimentations. Extensive 



137Pattern Analysis and Applications (2019) 22:133–145 

1 3

experiments on a variety of real-world datasets have shown 
that our approach exhibits significant advantages in clus-
tering accuracy and efficiency over the state-of-the-art 
approaches. Experimental results are reported on some real 
standard dataset from UCI repository [51], and they prove 
the efficacy of the proposed technique.

The pair-wise co-occurrence-based approaches typi-
cally construct a CAM by considering how many times two 
objects occur in the same cluster among the multiple base 
clusterings [22]. By exploiting the CAM as the similarity 
matrix, the conventional clustering techniques, such as the 
agglomerative clustering methods [44], can be exploited to 
build the final clustering result. Fred and Jain [22] for the 
first time presented the concept of CAM and proposed the 
evidence accumulation clustering (EAC) method. Wang 
et al. [68] extended the EAC method by taking the sizes 
of clusters into consideration and proposed the probabil-
ity accumulation method. Iam-On et al. [34] refined the 
CAM by considering the shared neighbors between clusters 
to improve the consensus results. Wang [67] introduced a 
dendrogram-like hierarchical data structure termed CA-tree 
to facilitate the co-association-based ensemble clustering 
process.

The graph partitioning-based approaches [18, 63] address 
the ensemble clustering problem by constructing a graph 
model to reflect the ensemble information. The consensus 
clustering is then obtained by partitioning the graph into a 
certain number of segments. Strehl and Ghosh [63] proposed 
three graph partitioning-based ensemble clustering algo-
rithms, i.e., cluster-based similarity partitioning algorithm 
(CSPA), hypergraph partitioning algorithm (HGPA), and 
meta-clustering algorithm (MCLA). Fern and Brodley [18] 
constructed a bipartite graph for the clustering ensemble by 
treating both clusters and objects as graph nodes and obtain 
the consensus clustering by partitioning the bipartite graph.

The median partition-based approaches [11, 20] formu-
late the ensemble clustering problem into an optimization 
problem, which aims to find a median partition (or clus-
tering) by maximizing the similarity between this cluster-
ing and the multiple base clusterings. The median partition 
problem is NP hard [66]. Finding the globally optimal solu-
tion in the huge space of all possible clusterings is computa-
tionally infeasible for large datasets. Cristofor and Simovici 
[11] proposed to obtain an approximate solution using the 
genetic algorithm, where clusterings are treated as chromo-
somes. Topchy et al. [66] cast the median partition prob-
lem into a maximum likelihood problem and approximately 
solve it by the EM algorithm. Franek and Jiang [20] cast the 
median partition problem into an Euclidean median prob-
lem by clustering embedding in vector spaces. The median 
vector is found by the Weiszfeld algorithm [69] and then 
transformed into a clustering again, which is treated as the 
consensus clustering.

Although all approaches have tried to find the solution of 
the ensemble clustering problem in different perspectives 
[13, 31, 39], they have a shared limitation that they generally 
look at all local clusters in the ensemble equally and possibly 
encounter low-quality clusters. In some of previous published 
works, this challenge has been discussed [26, 32, 42, 66, 68, 
71]. In these papers, a weight is assigned to each base data 
clustering, but weighting is considered at the clustering level 
not in cluster level.

3  Proposed clustering ensemble

3.1  Notations

Consider a dataset with N data instances. Let us assume we 
have an ensemble of the basic data clusterings denoted by � . 
The ensemble size is denoted by � , i.e., � =

{
�1,… ,��

}
 . The 

� is set to 30 in this paper throughout all experimentations. 
Each base data clustering is defined as �i =

{
�i
1
,… ,�i

ni

}
 

where 
ni⋃
j=1

�i
j
= {1, 2,… ,N} and ni is the number of clusters 

in the i th base data clustering and is greater than or equal to 2 
and less than or equal to 4k where k is the real number of 
clusters in the given dataset. The j th cluster the i th base data 
clustering is denoted by �i

j
 where 𝜑i

j
⊂ {1, 2,… ,N} , �i

j
≠ ∅ , 

and for all p ≠ q the term �i
p
∩ �i

q
= � is hold. So 

N =
∑ni

j=1

����i
j

��� where |Q| is the cardinality of a set Q . We 

denote the number of all base clusters, i.e., 
∑�

i=1
ni , by B . 

While it may be assumed that the consensus function needs 
the original data features of dataset as inputs along with the 
base clusterings [73], the proposed consensus function does 
not need the original features of dataset as it is widely an ordi-
nary approach [3, 4, 7, 10, 14, 27, 29, 30, 58, 61, 63].

3.2  Backgrounds

In this study, it is illustrated that the diverse clusters in the 
ensemble can play a role as an indicator for evaluating the reli-
ability of each individual cluster. Next, the conventional CAM 
is revised into a weighted co-association matrix ( WCAM ). 
First, we introduce CAM as a function where its input is an 
ensemble of data clusterings � and its output is a matrix of size 
N × N . The (i, j) th element of CAM is denoted by CAM(�)ij 
and defined by Eq. (1).

where �(a) is defined by Eq. (2).

(1)CAM(𝜑)ij =
1

𝛽

𝛽∑
q=1

nq∑
p=1

𝜋

(
{i, j} ⊆ 𝜑q

p

)
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Let us assume Q is a subset of data points (or a cluster), 
i.e., Q ⊆ {1, 2,… ,N} . Now, we define 

Q
� as projection of a 

clustering ensemble on the given cluster Q . The projection 
of the clustering �i on cluster Q is defined according to 
Eq. (3).

So it means 
Q
�i
j
= �i

j
∩ Q . It can be inferred that the term 

ni⋃
j=1

Q
�i
j
= Q holds for any i ∈ {1, 2,… , �} . The average 

(2)�(a) =

{
1 if a == true

0 if a == false

(3)Q
�i = �i ∩ Q

3.3  Proposed CLWCAM

Although it is a widely versatile approach to use the CAM in 
solving the ensemble clustering problem [3, 4, 23, 22, 58], 
it considers the entire clusters and also the entire primary 
clusterings in the ensemble in the same way. So it is unable 
to weight the ensemble members based on their depend-
ability. Huang et al. [32] have utilized the NCAI index to 
weigh the base clusterings and thereby build a weighted co-
association matrix ( WCAM ). On the other hand, it only con-
siders the dependability of primary clusterings and still pays 
no attention to the cluster-level quality. Now we introduce 
a revised version of CAM , called CLWEAC and denoted by 
cluster-level weighted co-association matrix ( CLWCAM ). 
The (i, j) th element of the mentioned matrix denoted by 
CLWCAM(�)ij is defined by Eq. (7).

(7)CLWCAM(𝜑)ij =

∑𝛽

p=1

∑np

q=1
𝜋
�
Reliability

�
𝜑
p
q,𝜑

�
> MR

�
× Reliability

�
𝜑
p
q,𝜑

�
× CAM

�
𝜑
p
q

�
ij∑𝛽

p=1

∑np

q=1
𝜋
�
Reliability

�
𝜑
p
q,𝜑

�
> MR

�
× CAM

�
𝜑
p
q

�
ij

CAM of a clustering ensemble is denoted by ACAM(�) , and 
it is defined according to Eq. (4).

The average CAM of the projection of a clustering ensem-
ble on the given cluster Q , i.e., 

Q
� , is denoted by 

ACAM
(
Q
�

)
 , and it is defined as an extension of ACAM(�) . 

It is defined based on Eq. (5).

If ACAM
(
Q
�

)
 hits its maximum at one, the cluster Q can 

be considered as the most reliable cluster for the given 
ensemble � . If ACAM

(
Q
�

)
 hits its minimum at 1

|Q| , the clus-

ter Q can be considered as the least reliable cluster for the 
given ensemble � . So the reliability of a cluster in an ensem-
ble � is defined as follows in Eq. (6).

The traditional CAM proposed first by Fred and Jain [22] 
is a N × N matrix whose (i, j) th element reflects how many 
times the i th data object is put into the same cluster with the 
j th data object in the base data clusterings of the ensemble.

(4)ACAM(�) =
1

N2

N∑
i=1

N∑
j=1

CAM(�)ij

(5)ACAM
(
Q
�

)
=

1

|Q|2
∑
i∈Q

∑
j∈Q

CAM
(
Q
�

)
ij

(6)Reliability(Q,�) =

|Q| × ACAM
(
Q
�

)
− 1

|Q| − 1

where MR is the median of the base clusters’ reliabilities (or 
even a less value as later will be explained) and CAM

(
�
p
q

)
 

is co-association matrix of the base cluster �p
q . The (i, j) th 

element of CAM
(
�
p
q

)
 is denoted by CAM

(
�
p
q

)
ij
 and defined 

by Eq. (8).

Using the following example, the proposed method has 
been illustrated. Assume we have a dataset with 14 samples. 
Also assume we have produced an ensemble � with eight 
base data clusterings on those data. Each clustering contains 
three clusters except base data clustering �5 , �7 and �8 each 
of which contains 2 clusters.

The reliabilities of clusters have been computed based 
on the proposed method, and then, they are shown in 
Table 1.

(8)CAM
(
𝜑p
q

)
ij
= 𝜋

(
{i, j} ⊆ 𝜑q

p

)

(9)

� =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�
�1

1
= {1, 2, 3, 8, 9, 10, 12},�1

2
= {4, 5, 6, 7},�1
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1
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⎫
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After computing the reliabilities of clusters, the proposed 
method has selected the half most reliable base clusters as 
shown in Table 1. Indeed, MR is first set to median of the 
sorted vector of the base clusters’ reliabilities, i.e., 0.51, so 
the selected base clusters are as mentioned in Table 1. Then, 
CLWCAM(�) of our example is computed in Table 2. About 
this matrix, any value in the main diagonal should at least 
be a positive value indicating that any data point should be 
appeared in at least one base selected cluster. If there exists 
at least one data point whose corresponding value in the 

main diagonal is zero, we will select the subsequent most 
reliable base cluster; i.e., MR will be equal to the subsequent 
smaller value in the sorted vector of the base clusters’ reli-
abilities. After that CLWCAM(�) is computed, and again 
if there exists at least one data point whose corresponding 
value in the main diagonal is zero, we will select the sub-
sequent most reliable base cluster i.e., MR will be equal to 
the subsequent smaller value in the sorted vector of the base 
clusters’ reliabilities. This procedure is continued until there 
is no zero in the main diagonal.

After determining MR , we compute CLWCAM(�) . As 
you can expect the most value of i th row (or i th column) 
must be in i th column (in i th row) in CLWCAM(�) . But it 
does not hold in Table 2 (it is simple to show why it hap-
pens). So the value of major diagonal in each row is first 
replaced with the most value possible, i.e., 1. Next, we trans-
form the matrix into a distance matrix ( DisM ). To do so, we 
compute the distance matrix based on Eq. (10).

It is worthy to be mentioned that the major diagonal of 
DisM is zero.

3.4  Consensus functions

The cluster reliability has been first introduced in this study. 
Then, based on cluster reliability, we select a subset of the 
most reliable clusters. Finally by employing a cluster-level 
weighting approach, 2 novel consensus functions have been 
introduced: (a) cluster-level weighting evidence accumula-
tion clustering (CLWEAC) and (b) cluster-level weighting 
graph clustering (CLWGC).

Cluster-level weighting evidence accumulation clustering 
We first transform an ensemble into a CLWCAM(�) . Then 
DisM(�) is computed and using a hierarchical agglomera-
tive clustering, the final consensus clustering is produced. 
The metric of cluster similarity is “average linkage” method. 
This method is abbreviated as CLWEAC.

(10)DisM(�) = 1 − CLWCAM(�)

Table 1  Computed reliabilities of clusters of Eq.  (9) and selected 
clusters for the final ensemble

Clusters Reliability scores Order of selection

�1

1
0.48 Discard

�1

2
0.58 6

�1

3
0.67 3

�2

1
0.60 4

�2

2
0.51 Discard

�2

3
0.56 8

�3

1
0.57 7

�3

2
0.55 9

�3

3
0.75 1

�4

1
0.54 11

�4

2
0.40 Discard

�4

3
0.67 2

�5

1
0.46 Discard

�5

2
0.59 5

�6

1
0.54 10

�6

2
0.51 Discard

�6

3
0.46 Discard

�7

1
0.42 Discard

�7

2
0.39 Discard

�8

1
0.40 Discard

�8

2
0.43 Discard

Table 2  Computed 
CLWCAM(�) of the ensemble 
presented in Eq. (9)

0.56 0.58 0.58 0.61 0.58 0.57 0.64 0.52 0.52 0.48 0.46 0.48 0.46 0.50
0.58 0.59 0.59 0.61 0.59 0.58 0.64 0.54 0.54 0.49 0.00 0.49 0.00 0.53
0.58 0.59 0.59 0.61 0.59 0.58 0.64 0.54 0.54 0.49 0.00 0.49 0.00 0.53
0.61 0.61 0.61 0.59 0.61 0.63 0.60 0.00 0.00 0.42 0.00 0.42 0.00 0.53
0.58 0.59 0.59 0.61 0.61 0.61 0.64 0.60 0.60 0.00 0.00 0.00 0.00 0.53
0.57 0.58 0.58 0.63 0.61 0.58 0.59 0.56 0.56 0.49 0.00 0.49 0.00 0.00
0.64 0.64 0.64 0.60 0.64 0.59 0.59 0.53 0.53 0.42 0.00 0.42 0.00 0.00
0.52 0.54 0.54 0.00 0.60 0.56 0.53 0.55 0.55 0.52 0.53 0.52 0.46 0.46
0.52 0.54 0.54 0.00 0.60 0.56 0.53 0.55 0.55 0.52 0.53 0.52 0.46 0.46
0.48 0.49 0.49 0.42 0.00 0.49 0.42 0.52 0.52 0.55 0.60 0.55 0.60 0.55
0.46 0.00 0.00 0.00 0.00 0.00 0.00 0.53 0.53 0.60 0.66 0.60 0.67 0.66
0.48 0.49 0.49 0.42 0.00 0.49 0.42 0.52 0.52 0.55 0.60 0.55 0.60 0.55
0.46 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.46 0.60 0.67 0.60 0.70 0.70
0.50 0.53 0.53 0.53 0.53 0.00 0.00 0.46 0.46 0.55 0.66 0.55 0.70 0.67
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Cluster-level weighting graph clustering We first trans-
form an ensemble into a bipartite graph. Each base cluster 
and each data point are considered as a node. The links are 
defined as follows. (1) There is no link between any pair of 
data points. (2) There is no link between any pair of base 
clusters. (3) There is a link between any pair of nodes when 
one node is a data point and the other is a base cluster; the 
weight of the link is the reliability of that cluster. So the 
graph G(�) = (V(�),E(�)) is defined as follows. V(�) is 
defined as a vector whose first N  members are dedicated 
to the N data points of dataset and the last members are the 
selected base clusters. E(�) is defined based on Eq. (11).

This method is abbreviated as CLWGC. After building 
the CLWGC based on Eq. (11), the graph is partitioned 
through the TCUT method where it is a fast method for 
bipartite graphs [43]. The data points located in each parti-
tion are considered as a consensus cluster.

In our example, the consensus partition or clus-
ter ing obtained by CLWEAC and CLWGC is 
{{11, 12, 13, 14}, {8, 9, 10}, {1, 2, 3, 4, 5, 6, 7}}  .  B u t  
the consensus cluster ing obtained by EAC is 
{{11, 13, 14}, {8, 9, 10, 12}, {1, 2, 3, 4, 5, 6, 7}} . It is clear 
that the consensus partition obtained by CLWEAC and 
CLWGC is better than the one obtained by EAC.

4  Experimentations

The proposed CLWEAC and CLWGC have been assessed in 
the current section. Also the state-of-the-art ensemble cluster-
ing methods have been evaluated comparatively. The experi-
mentations have been done a number of standard datasets.

4.1  Datasets and evaluation metric

In our experiments, 10 real benchmark datasets have been 
utilized: Semeion (with 1593 data points, 256 features, and 
10 classes), multiple features (MF) (with 2000 data points, 
649 features, and 10 classes), image segmentation (IS) 
(with 2310 data points, 19 features, and 7 classes), Forest-
Cover-Type (FCT) (with 3780 data points, 54 features, and 
7 classes), MNIST(with 5000 data points, 784 features, and 
10 classes), optical digit recognition (ODR) (with 5620 data 
points, 64 features, and 10 classes), Landsat Satellite (LS) 
(with 6435 data points, 36 features, and 6 classes), ISOLET 
(with 7797 data points, 617 features, and 26 classes), USPS 

(11)E(�)ij =

⎧
⎪⎨⎪⎩

Reliability
�
Vi,�

�
Vi ∈

�
�
q
p
���Reliability

�
�
q
p

��
MR

�
∧ Vj = {1,… ,N} ∧ Vj ∈ Vi

Reliability
�
Vj,�

�
Vj ∈

�
�
q
p
���Reliability

�
�
q
p

��
MR

�
∧ Vi = {1,… ,N} ∧ Vi ∈ Vj

0 else

(with 11,000 data points, 256 features, and 10 classes), and 
letter recognition (LR) (with 20,000 data points, 16 features, 
and 26 classes). Except the MNIST benchmark dataset [41] 
and the USPS benchmark dataset [15], the other eight data-
set benchmarks have been from the UCI machine learning 
repository [51].

We apply the normalized mutual information (NMI) [22, 
62, 63] to assess the quality of any clustering. The NMI 
measure indicates the information shared between a pair of 
clusterings. It has been one of the most widespread evalu-
ation metrics to analyze a data clustering. The bigger the 
NMI, the higher the clustering quality.

The base clusterings are produced by k-means and fuzzy 
c-means clustering algorithms. It is worthy to be mentioned that 
clusters produced by the fuzzy c-means clustering algorithm are 
first transformed into crisp clusters. Then in following, the all 
process for both base clustering algorithms is the same.

The number of clusters in each base clustering is ran-
domly chosen from range [2, 4k] . Each result is average of 30 
independent runs. For each run of the algorithm, an ensem-
ble of size 30 is produced. After computing the consensus 
clustering over the ensemble of size 30 with a clustering 
method, the NMI between the consensus clustering and the 
ground-truth labels is stored. After repeating the process for 
30 independent runs, 30 NMI values are stored. The average 
of these 30 NMI values is reported as the performance of the 
clustering method over that dataset.

4.2  Simple clustering algorithms

It is widely acceptable in SPR communities that the clus-
tering ensembles outperform the simple base clusterings in 
terms of quality and robustness. The performance of the 
proposed CLWGC with the k-means and fuzzy c-means clus-
tering algorithms as its simple basic clusterer is compared 
with the ones of the k-means and fuzzy c-means cluster-
ing algorithms in terms of NMI in Table 3. Each result is 
an averaged NMI over 30 independent runs. The proposed 
CLWGC clearly outperforms the simple k-means and fuzzy 
c-means clustering algorithms on all benchmark datasets.

4.3  State‑of‑the‑art clustering algorithms

The proposed CLWEAC and CLWGC methods with the 
k-means and fuzzy c-means clustering algorithms as its 
simple basic clusterer are evaluated, and their results have 
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been compared to 12 state-of-the-art ensemble clustering 
methods, that is, CSPA [63], HGPA [63], MCLA [63], 
hybrid bipartite graph formulation (HBGF) [18], SimRank 
similarity-based method (SRS) [33], weighted connected 
triple-based method (WCT) [34], cluster selection evidence 
accumulation clustering (CSEAC) [4], weighted evidence 
accumulation clustering (WEAC) [32], Wisdom of Crowds 
Ensemble (WCE) [5], graph partitioning with multi-granu-
larity link analysis (GPMGLA) [32], and two-level co-asso-
ciation matrix ensemble (TME) [73], elite cluster selection 
evidence accumulation clustering (ECSEAC) [53].

Each method is executed 30 independent trials for a data-
set. So, each of the reported results are the averaged value 
on 30 independent trials. Table 4 reports the results of the 
proposed CLWEAC and CLWGC methods with the k-means 
and fuzzy c-means clustering algorithms as its simple basic 

Table 3  Performance comparison of the base clustering algorithms 
with CLWGC when k-means and fuzzy c-means are used as its base 
clustering algorithm

Dataset k-means Fuzzy c-means CLWGC with 
k-means

CLWGC with 
fuzzy c-means

Semeion 48.34 49.97 66.81 66.43
MF 50.60 52.41 68.89 69.13
IS 49.49 49.34 67.05 67.26
FCT 19.30 20.13 23.31 23.38
MNIST 44.41 44.67 65.26 64.16
ODR 57.71 57.91 83.12 82.57
LS 38.17 38.73 63.28 61.42
ISOLET 64.96 66.05 76.38 75.51
USPS 41.65 43.57 65.68 65.56
LR 38.16 40.09 41.47 41.69

Table 4  Performances of the proposed CLWEAC and CLWGC methods with the k-means and fuzzy c-means clustering algorithms as its simple 
basic clusterer compared with 12 state-of-the-art ensemble clustering methods

Dataset CSPA HGPA MCLA HBGF CSEAC SRS WCT WEAC GPMGLA TME ECSEAC WCE CLWEAC CLWGC 

Semeion
Fcm 0.531 0.485 0.577 0.619 0.619 0.630 0.635 0.624 0.622 0.585 0.619 0.616 0.645 0.640
K-means 0.539 0.454 0.574 0.623 0.618 0.634 0.630 0.630 0.625 0.577 0.624 0.617 0.657 0.644
MF
Fcm 0.607 0.520 0.635 0.640 0.614 0.632 0.632 0.620 0.642 0.683 0.652 0.650 0.681 0.677
K-means 0.619 0.481 0.629 0.638 0.599 0.621 0.616 0.611 0.640 0.689 0.638 0.649 0.661 0.684
IS
Fcm 0.593 0.483 0.614 0.609 0.602 0.606 0.612 0.601 0.618 0.556 0.609 0.618 0.629 0.646
K-means 0.612 0.448 0.623 0.611 0.601 0.606 0.605 0.602 0.621 0.478 0.602 0.606 0.623 0.631
FCT
Fcm 0.202 0.154 0.214 0.215 0.211 0.212 0.219 0.214 0.219 0.210 0.218 0.217 0.229 0.226
K-means 0.209 0.220 0.220 0.190 0.205 0.211 0.213 0.208 0.201 0.201 0.220 0.205 0.232 0.202
MNIST
Fcm 0.509 0.408 0.556 0.600 0.593 0.602 0.616 0.605 0.610 0.566 0.552 0.597 0.537 0.628
K-means 0.523 0.298 0.556 0.609 0.594 0.605 0.615 0.617 0.618 0.555 0.604 0.598 0.648 0.637
ODR
Fcm 0.723 0.603 0.774 0.801 0.789 0.798 0.804 0.802 0.807 0.796 0.795 0.791 0.820 0.813
K-means 0.738 0.409 0.775 0.810 0.781 0.799 0.798 0.801 0.813 0.794 0.790 0.784 0.829 0.816
LS
Fcm 0.502 0.366 0.527 0.610 0.577 0.582 0.602 0.593 0.609 0.501 0.579 0.587 0.612 0.628
K-means 0.485 0.312 0.518 0.618 0.559 0.569 0.602 0.601 0.619 0.510 0.578 0.592 0.616 0.644
ISOLET
Fcm 0.650 0.617 0.699 0.729 0.729 0.733 0.735 0.729 0.727 0.692 0.720 0.717 0.736 0.729
K-means 0.629 0.486 0.665 0.742 0.730 0.726 0.719 0.734 0.740 0.691 0.716 0.715 0.745 0.743
USPS
Fcm 0.493 0.353 0.533 0.577 0.562 0.576 0.584 0.582 0.589 0.581 0.592 0.587 0.641 0.630
K-means 0.501 0.120 0.531 0.581 0.555 0.568 0.579 0.583 0.597 0.573 0.576 0.566 0.633 0.614
LR
Fcm 0.327 0.339 0.384 0.420 0.411 0.410 0.414 0.415 0.420 0.407 0.410 0.411 0.426 0.428
K-means 0.282 0.176 0.353 0.387 0.367 0.373 0.386 0.386 0.394 0.355 0.382 0.379 0.418 0.413
Average
Fcm 0.514 0.433 0.551 0.582 0.571 0.578 0.585 0.579 0.586 0.558 0.575 0.579 0.596 0.605
K-means 0.514 0.34 0.544 0.581 0.561 0.571 0.576 0.577 0.587 0.542 0.573 0.571 0.606 0.603
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clusterer along with those of the state-of-the-art ensemble 
clustering methods.

According to Table  4, the proposed CLWEAC and 
CLWGC methods outperform all the state-of-the-art ensem-
ble clustering methods irrespective to the simple basic clus-
terer (it should be either the k-means clustering algorithm 
or the fuzzy c-means clustering algorithm). Table 5 sum-
marizes Table 4. According to Table 5, both of the proposed 
CLWEAC and CLWGC methods are always the best two 
methods among all of the state-of-the-art ensemble cluster-
ing methods.

4.4  Robustness analysis

The performances of the proposed CLWEAC and CLWGC 
methods and the state-of-the-art ensemble clustering meth-
ods have been evaluated on all dataset with different ensem-
ble sizes, i.e., � . For each dataset, for each method, and for 
each ensemble size, the experiment has been done 30 times 
and the averaged performance has been considered to make 
our results reliable. Then the average NMIs over all datasets 
are depicted in Fig. 2 when the k-means clustering algorithm 
is considered as its simple basic clusterer. The same results 
are repeated in Fig. 3 when the fuzzy c-means clustering 
algorithm is employed as its simple basic clusterer.

According to Figs. 2 and 3, in terms of the average NMI 
scores over all 10 benchmark datasets with different � , the 

proposed CLWEAC and CLWGC methods have the best 
consensus performances. They are also robust to ensemble 
size.

4.5  Complexity analysis

In this section, the run time of multiple ensemble clustering 
methods varying data sizes is compared. The experiments 
are yielded on various subsets of the LR dataset made up 
of totally 20,000 data objects. Different methods are exe-
cuted on randomly selected subsets of N′ objects from the 
LR dataset to evaluate their run time. As depicted in Fig. 4, 
the MCLA method and the proposed CLWGC method 
are, respectively, the fastest methods to process the entire 
LR dataset. So, CLWGC method is superior to CLWEAC 
method, both in terms of output clustering quality and time 
complexity.

5  Conclusion and future works

This study has proposed a new clustering ensemble frame-
work based on cluster-level weighting. The paper has con-
sidered the certainty amount the given ensemble has about a 
cluster as the reliability of that cluster. The certainty amount 
the given ensemble has about a cluster has been computed by 
the accretion amount of that cluster by the ensemble. Then 

Table 5  Summary of the results presented in Table 4

CSPA HGPA MCLA HBGF CSEAC SRS WCT WEAC GPMGLA TME ECSEAC WCE CLWEAC CLWGC 

#Times being ranked in top 2
Fcm 0 0 0 0 0 0 2 0 0 1 0 0 9 8
K-means 0 0 0 0 0 0 0 0 1 1 1 0 8 9
Overall average NMI
Fcm 0.514 0.433 0.551 0.582 0.571 0.578 0.585 0.579 0.586 0.558 0.575 0.579 0.596 0.605
K-means 0.514 0.34 0.544 0.581 0.561 0.571 0.576 0.577 0.587 0.542 0.573 0.571 0.606 0.603

Fig. 2  Effect of different 
ensemble sizes on different 
clustering methods when the 
k-means clustering algorithm is 
considered as their simple basic 
clusterer. NMI values of the dif-
ferent clustering methods with 
varying ensemble sizes
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by selecting the best clusters and assigning a weight to each 
selected cluster based on its reliability, the final ensemble 
has been created. At the next step, the paper has proposed 
CLWCAM instead of traditional CAM. Then, two consen-
sus functions have been introduced and used for production 
of the consensus partition. The proposed framework com-
pletely overshadows the state-of-the-art clustering ensemble 
methods experimentally.

For the future work, one can explore more diversity-
oriented reliability metrics. Using optimization methods to 
select an optimized subset of clusters can be also explored. 
For example, the most diverse subset can be sought while 
considering cluster-level weighting.
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