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1  Introduction

Nowadays, computational anatomy has become an important 
tool for medical diagnosis. Among different organs of the 
body, the liver is one of the most diagnosed targets as it plays 
an important role in vital functions such as detoxification 
and synthesis. Demanding medical tasks like lesion detec-
tion and surgery planning with regard to the liver routinely 
require the identification and extraction of the volume from 
medical images. Consequently, accurate liver segmentation 
is vital for the success of surgical operations. However, man-
ual segmentation is no small undertaking and is very much 
dependent on the aptitude and experience of the radiologist.

In recent years, in order to forgo these limitations, a num-
ber of different automatic segmentation techniques for com-
puted tomography (CT) [28] and from magnetic resonance 
images (MRI) have been suggested [6, 8, 9, 11, 27]. The 
process of automatic segmentation is complicated by the 
presence of image artifacts (for example intensity inhomo-
geneities) and the fact that the surrounding organs have the 
same tissue contrast. It is for this reason that information, 
such as the shape and specific location within the body, may 
be useful in carrying out the segmentation task. It is worth 
noting that lack of contrast is a more severe problem when 
the intensity of the magnetic field and/or the acquisition time 
decreases, which is precisely the case in the type of images 
used in this study, perfusion MR images. This is because 
they have to be acquired fast, at the same time as a contrast 
is diffusing through the circulatory system of the liver.

Algorithm segmentation can be guided by priori data, 
which may be provided by atlases. Atlas-based segmentation 
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algorithms use the spacial concurrence between the atlas and 
the image to produce a segmentation of the target image by 
knowing the segmentation of the atlas image. Aside from the 
majority of research that has been carried out on the brain 
[3] and the heart [18, 21], there has also been some attention 
shown to the liver (see [24, 39].

In contrast to previous works, a new method that depends 
on a segmentation algorithm will be proposed in this work. 
This method is based on mathematical morphology. Also, 
it uses prior information in the form of a probabilistic atlas, 
which supplies information regarding the probability of 
belonging to the liver, which is especially useful near the 
contours. Within the framework of computational anatomy, 
a probabilistic atlas is a probability encoded map of anatomi-
cal variability of the anatomical structure that is of interest 
to us.

This paper is structured in five parts: Sect. 2 explains the 
foundation of our method to build the probabilistic atlas. 
Section 3 presents the methodology. Sections 4 and 5 discuss 
the results and conclusions, respectively.

2 � Atlas construction

In this study, we focus on the use of a probabilistic atlas, a 
3D volume indicating the probability of each voxel belong-
ing to a prototype shape, the liver in this case. Some segmen-
tation algorithms can interpret this as an a priori probability 
and use Bayesian methods to update it using the values of 
the signal at that voxel or neighboring ones as new informa-
tion [31]. Other algorithms can interpret it as a probability 
of belonging to a set of voxels that constitute the relevant 
structure and rely on fuzzy techniques [29], and, finally, oth-
ers can use the values as initial function to apply level-set 
techniques [16]. This section explains how our probabilistic 
atlas has been built together with the applied improvement 
to get a more accurate result.

Currently, the most used approach for the construction of 
a probabilistic atlas directly applies the estimation of prob-
ability from a sample as the number of hits with respect 
to the number of cases. In this context, this involves two 
steps: firstly, registering the binary shapes in the sample with 
respect to one of them using the chosen registration algo-
rithm, and then looking at each voxel to see how many of the 
samples it belongs to. This number, divided by the sample 
size, is the probability assigned to that voxel. This is used 
for example in Park et al. [32]. In this work, this has been 
formalized as the coverage function.

Other possibilities for building probabilistic atlases use 
the distance function and transformations of it. Intuitively, 
the distance function associated with a binary shape is a 
function from the 3D space to the real numbers, and it meas-
ures how far each point is from the shape. There are two 

variants: the unsigned distance function, for which all the 
points of the shape get a null value and those outside get 
the distance to the closest point of the shape; and the signed 
distance function, for which the outer points also get the dis-
tance to the closest point of the shape, and the inner points 
get the value of their distance to the closest border with an 
opposite (negative) sign. There are a few approaches that use 
the distance function to build atlases; a relevant one is the 
work of Pohl et al. [35] that, using a logistic link function, 
transforms a signed distance map into a log-odds map.

The main idea presented in this paper with regard to atlas 
construction is the combination of both approaches, the cov-
erage function and the distance function, using a generalized 
linear model (GLM). The formalization uses concepts of 
random sets. Intuitively, a random set is a statistical distribu-
tion whose realizations are n-dimensional sets of points. Let 
� be a random compact set whose realizations are binary 
shapes: compact (but not necessarily convex) sets of points 
of ℝ2 or ℝ3 (in general, ℝd). Given any fixed shape S, and for 
any point x ∈ ℝ

d, 1S(x), will denote the set indicator func-
tion, i.e.,

In any random compact set, the value 1S(x) is a random vari-
able that takes values in the binary set {0, 1}. Now, let us 
consider a random sample of �, i.e., a collection of inde-
pendent and identically distributed (as �) random compact 
sets (�1,… ,�n), (�1,… ,�n) being the corresponding reali-
zations. Having these data, an unbiased estimator for the 
coverage function c(x) is:

which has a clear intuitive meaning: the number of shapes in 
the sample to which a point x belongs. The coverage func-
tion offers a way to calculate an unbiased estimator for the 
probability p(x):

p(x) corresponds to the classical probability as the number 
of hits over the total number of cases. Its threshold below 
0.5 is related with the concept of mean shape, and indeed it 
is a particular case of the so-called Vorobev mean [36]. But 
this definition for p(x) has some drawbacks mainly related 
to the fact of estimating the probability at each point in iso-
lation, as if the random variable that is the coverage at that 
point was independent of all other points. This assumption 
of independence means that spatially close points can get 

1S(x) =

{
1 if x ∈ S

0 if x ∉ S

ĉ(x) =

n∑
i1

1𝜑i
(x)

p̂(x) =

n∑
i1

1𝜑i
(x)

n
.
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different probability values due to noise or imperfect co-
registration, which in turns makes the shapes resulting from 
probability thresholding rougher than would be expected of 
a summary shape, which is supposed to have a smooth limit-
ing surface. A feasible alternative to solve this problem con-
sists of using the distance function; to be precise, on finding 
a sensible relationship between the probability and the value 
of the distance function at a given point or at some related 
points. The formal definitions are as follow: given a binary 
shape, S, dS(x) will be the distance function to S:

where d(x, y) is the Euclidean distance between x and y, �S 
the boundary of S and int(S) the interior of the set S. In a 
similar way, d� can be defined not for a fixed set but for a 
random set �. In this case, d� is a random variable. Since 
1𝛷(x) = 0 ⟺ d(x) > 0 and 1�(x) = 1 ⟺ d(x) ≤ 0, d(x) 
univocally determines 1�(x). Let

where E is the expectation over all sets in �. From here the 
mean distance function d∗

�
(x) is defined as

In practice, the mean distance function is estimated for a 
collection of samples (�1,… ,�n) as

Similar to the mean coverage, the threshold below some 
value of the mean distance function gives a binary shape 
that can also be considered as a mean shape, this time with 
0 being the natural threshold (a definition derived from 
the so-called Baddeley–Molchanov mean [1]. The mean 
distance function is smooth, so its thresholds are smoother 
than those of the mean coverage function. This is why the 
function p(x) will be estimated using information about 
the mean distance function.

Our hypothesis assumes that p(x) = f (d∗(x)) (i.e., the 
probability is directly linked to the mean distance func-
tion) and the link between them must be found. Since 
d∗(x) can be positive or negative, the natural link in 
the context of general linear models consists of using a 
cumulative distribution function (c.d.f.), which is a non-
decreasing function F ∶ ℝ → [0..1]. The value d∗(x) is 
commonly transformed using a basis of functions denoted 
as �(x) = (1, v1(d

∗(x)), .., vp−1(d
∗(x)))�, �′ being the transpose 

of any vector �. The model to be assumed is:

dS(x) =

⎧
⎪⎨⎪⎩

miny∈�S d(x, y) if x ∉ S

0 if x ∈ �S

−miny∈�S d(x, y) if x ∈ int(S),

p(x) = E(1�(x)) = P(x ∈ �)

d∗
�
(x) = E(d(x,�)).

d̂∗
𝛷
(x) =

n∑
i=1

d𝛷i
(x)

n
.

� = (�0, �1, .., �p−1) being a vector of coefficients to be deter-
mined. In GLM the common choices for the link function 
F are the c.d.f. of either the standard logistic distribution 
or of the standard normal distribution. The first one will be 
used, i.e.,

For any given point x0, it is expected that p(x) will be a 
smooth function so it can be assumed that p(x) takes a con-
stant value in a ball centered at x0,B(x0, h) with a sufficiently 
small radius h. Let (xj, 1�i

(xj)) with j = 1, .., J be the points 
within B(x0, h). In this way the local pseudo-likelihood func-
tion for the i-th realization is given by

using a w-function w(x, x0) = K(∥ x − x0 ∥ ∕h) with K a ker-
nel function modulated by a bandwidth h. Accordingly, the 
whole likelihood function for a complete random sample of 
� will be:

and its log-likelihood will be:

This global likelihood will be maximized by a vector of 
parameters that will be denoted by �̂(x0), i.e.,

Determination of �̂ is done by the optimization methods pro-
vided by the package locfit Loader [25] of the R language. 
The final estimator proposed for the probability function 
p(x) is:

Its value at location x0 is our probabilistic atlas.
With regard to atlases, there is one important aspect to 

point out. The initial raw data are examples of correctly 

p(x) = F(��
�(x))

p(x) =
e�

�
�(x)

1 + e�
�
�(x)

.

J∏
j=1

w(xj, x0)p(xj)
1�i

(xj)(1 − p(xj))
1−1�i

(xj),

L(�) =

n∏
i=1

J∏
j=1

w(xj, x0)p(xj)
1�i

(xj)(1 − p(xj))
1−1�i

(xj),

(1)

l(�) = log L(�)

=

n∑
i=1

J∑
j=1

(
log(w(xj, xo)) + 1�i

(xj) log(p(xj))

+ (1 − 1�i
(xj)) log(1 − p(xj))

)
.

�̂(x0) = argmax
�

l(�).

p̂(x0) =
e�̂(x0)

�
�(x)

1 + e�̂(x0)
��(x)

.
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segmented binary shapes. The procedure of segmentation 
is of crucial importance to obtain a good atlas, so manual 
or assisted segmentation should be used. This is the rea-
son why manually segmented data performed by an expert 
have been used in this work.

3 � Methodology

To segment the liver, the proposed method is based on par-
tial segmentation by slices, an idea also used for example in 
Göçeri et al. [13] or in Linguraru et al. [24], where each slice 
relates to the closest, previously segmented slice. Similarly 
to Linguraru et al [24], it makes use of a probabilistic atlas, 
but, in contrast to these two approaches, the segmentation of 
each slice uses mathematical morphology, namely viscous 
reconstruction, and does not use level-set-based methods.

The initial slice is selected as one of the central slices of 
the liver (from the lowest-higher order, in accordance with 
radiological convention). This slice then uses anatomical 
information provided by the probabilistic atlas and a previ-
ously made, approximate segmentation. From this central 
slice the process then advances upwards and then down-
wards, aided by the MR image, the probabilistic atlas and 
the result of the nearest segmented slice.

The most crucial parts of the global process are shown in 
Fig. 1 and are as follows:

•	 An initial approximate 3D segmentation is carried out 
which starts with a point seed simply by intensity-based 
region growing. The initial condition for the addition of 
points to the growing region is based on current standard 
deviation of the signal level with the aim of being rather 
restrictive. This gives a quite strict under-segmentation. 
This is used solely as a seed for each slice and for atlas 
registration.

•	 Selection of the first slice is made, and 2D segmentation 
of it is carried out (a detailed explanation of slice selec-
tion and segmentation will be discussed later)

•	 Using, again, the corresponding slice of the initial under-
segmentation as the seed, the process continues upwards 
to the closest slice and starts its segmentation. Here the 
same procedure is used as with the central slice, the only 
difference being that region reconstruction has limita-
tions set by a modified contour produced from the previ-
ously segmented slice.

•	 When we no longer have an under-segmentation, the 
inner most part of the formally segmented slice is used 
as the seed. The process comes to an end when the area 
of the new slice is sufficiently low, at which time the 
process begins again at the central slice, except now it 
goes downwards.

•	 When the segmentation has finished, the result is used 
again in a second pass as the new initial segmentation, so 

Fig. 1   Main steps of the seg-
mentation procedure
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the algorithm learns from the previous result. The atlas 
is then realigned to the new current initial segmentation.

In the first of the above-mentioned steps, a seed must be 
selected for each slice. That seed will come from an initial 
under-segmentation (i.e., a segmentation that misses ample 
areas from the liver, but which has high confidence in the 
retained points). From that seed, the segmentation will 
increase to reach the limits of the shape at that slice. Other 
works make use of a level-set-based method in order to allow 
the curve to be modified in discrete time steps. Contrary to 
this, this work uses viscous reconstruction, a morphological 
technique first introduced by Hanbury et al. [15]. Viscous 
binary reconstruction needs a seed image (it could be just 
one point inside the shape) and a marker image, which is a 
set of points that are fairly evenly spaced along the contour. 
Then an iterative procedure is carried out: a morphological 
dilation is applied to the seed, followed by an intersection 
with the negated markers, concluding with a morphological 
closing. Iterations cease when the shape stops growing. This 
process is advantageous compared to simple hole filling in 
that it is not necessary for the limit contour (the markers) 
to be closed, so even if a complete border is not found, the 
method will still finish appropriately. It is an improvement 
over level-set methods because of its simplicity, and the low 
requirement of free parameters (only dilation and closing 
radius, which also have an intuitive physical meaning).

In the next subsection, a detailed explanation of each of 
the steps outlined in Fig. 1 is provided.

3.1 � Initial under‑segmentation

The method starts with the selection of a seed point in the 
central area of the liver. This is carried out by taking into 
account the image dimensions and approximate knowledge 
of the typical liver position. The actual point selected is 
not of great importance, as long as it is appropriately deep 
enough inside the liver. To test this, a spherical region with 
a radius of 2 cm centered on the prospective seed is evalu-
ated to see whether its mean signal level is within reason-
able limits, and has a low standard deviation of the signal 
level. If it is not appropriate, another seed is chosen close 
by. There is also the option of allowing the user to select 
the seed point manually, but this was not needed. From this 
seed point a basic region growing algorithm expands the 
region by not allowing the inclusion of points which would 
increase the current region variance by more than 30%. Nev-
ertheless, even with such strict parameters the initial region 
still, on occasion, grows along the aorta and can even end 
up including parts of the heart if the particular image was 
taken during a phase of contrast diffusion. To avoid this, an 
erosion is performed, followed the by the removal of any 

connected parts other than the largest, and finally a dilation 
is carried out.

The first part of the process produces a shape that is com-
pletely contained inside the liver but does not come close to 
its limits, neither does it touch any part of the left lobe, as 
can be seen in Fig. 2 where we can see the initial segmenta-
tion highlighted in red, surrounded by the limit of the real 
shape cut by a vertical plane. There are two reasons for pro-
ducing this initial under-segmentation: to serve as the initial 
seed for the next step (2D slice segmentation) and to give a 
concrete location to register the probabilistic atlas.

The probabilistic atlas is registered with binary shape 
registration. In order to do this, a probability threshold is 
selected to allow the volume occupied by points with a 
probability higher than this threshold to match as closely as 
possible with the volume of the initial segmentation. This 
yields a binary cut of the atlas used to determine an affine 3D 
transformation of the initial segmented shape. An estimation 
of the transformation is achieved by minimizing the mean 
surface-to-surface distance. This geometrical transforma-
tion is later applied to the real-valued image which is the 
probabilistic atlas.

3.2 � Initial slice segmentation

From here a slice is taken for every voxel plane in the 
MR image along the inferior–superior direction. Attempts 
were also made in lateral and anterior–posterior directions, 
but with worse results. The selection of the initial slice is 
carried out according to the following criteria: the sum 

Fig. 2   Initial segmentation (in red) into real liver (in gray, cut by a 
vertical plane) (color figure online)
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(integral) of the probability map extended to the initially 
segmented points of that slice is calculated, using the 
probabilistic map previously registered. The slice with the 
highest value of this measure is chosen. It is assumed that 
this accounts for the central and promising slices since it 
takes account of both the size and the approximate proper 
placing of the slice. This slice is then extracted from the 
three inputs: the MRI image, the initial binary segmen-
tation slice and the real-valued probabilistic atlas slice. 
These steps are followed by 2D segmentation, and the 
results for a typical slice are shown in Fig. 3, where sub-
figure (a) is the original MRI image. The steps used for 
this central slice are as follows:

1.	 A curvature anisotropic diffusion image filter [34] 
is applied to the MRI slice (Fig. 3a). The purpose of 
this filter is to smooth out near-constant areas of the 
image while keeping the borders unaltered as much as 
possible. The result, depicted in Fig. 3b, will be called 
Is. The rationale behind using this as the first step is 
explained by the next steps: the algorithm is based on a 
region growing from a seed where the expansion will be 
stopped by the borders. Therefore, it vitally important to 
have a smooth image inside the region to be segmented, 
but also continuous and well-defined limits (borders) for 
such a region.

2.	 The gradient value of the formerly smoothed image is 
taken and transformed by a sigmoidal function. This 
result will be called Sg = Sig(∣ ∇Is ∣), Sig(v) being a sig-
moidal transform, i.e., a continuous monotonic increas-
ing real-valued function with limv→−∞ Sig(v) = 0 and 
limv→∞ Sig(v) = 1. Sg is depicted in Fig. 3c and as can 
be seen, it delineates the borders very well, based on pre-
viously explained purpose, but it also contains borders 
which are inside and outside the liver.

3.	 Next, a filter is applied to the former result, which takes 
into account not only the obtained image value, but also 
the probability given by the atlas. The mean (�Sg) and 
standard deviation (�Sg) of Sg in the area of the initial 
segmentation provides band limits. A point x is excluded 
if the value Sg(x) is outside the interval �Sg ± 2.5�Sg. In 
addition to this, we make use of anatomical information 
provided by the atlas P, so point x will be discarded, 
too, if its probability P(x) is smaller than the threshold 
(0.35). The resulting image will be called PSg, and it is 
shown in Fig. 3d.

4.	 The thresholding of PSg will contain points that belong 
to the inner or outer borders of the liver; this threshold 
will be called PSgt and is depicted in Fig. 3e. A con-
servative threshold assures that all points kept in PSgt 
are true borders, but unfortunately in most cases they do 
not form a closed single limit and therefore cannot be 
used to stop either a viscous reconstruction, or a curve 

evolution resulting from a level-set method. Closing the 
outer border is the objective of the next step.

5.	 A Canny detector [4] is applied to the smoothed image Is.  
The obtained edges help to find well-delineated limits, 
especially in clear slices such as the central areas, but 
again they are not closed and, irrespective of the bor-
der detector parameters chosen, a substantial amount of 
spurious borders are found. The solution to this comes 
from the combination of the Canny edges with the previ-
ous step, PSgt. Such a combination consists of isolating 
each border segment and removing all those that do not 
extend up to or very close to the edge points in PSgt, for 
at least half of its length. The union of these border seg-
ments with PSgt gives the result shown in Fig. 3f, that 
will be called Il (for limit image).

6.	 Figure 3g displays the corresponding slice of the ini-
tial 3D under-segmentation (see Sect. 3.1), that we will 
call Iseed. Here we can clearly see the need to get a very 
restrictive initial segmentation so that we can be sure 
that all shapes in the slices of Iseed are well within the 
real limits marked by Il. If this was not attained, viscous 
reconstruction would flood out of the shape.

7.	 Lastly, Fig. 3h shows the result of the viscous recon-
struction, VR(Iseed, Il) which uses Iseed as the seed and the 
negated of Il as the image of limit markers.

3.3 � Slice segmentation using the closest segmented slice 
and stopping criterion

This process is very successful when applied to central slices 
for which the borders of the liver are adequately well-defined 
so that, even if border points are passed, there are a sufficient 
number of them to halt the growth of the seed. Unfortu-
nately, in the outside regions of the liver the proximity of the 
spleen and the heart makes the border detection task much 
more difficult. In addition, the limits of the left lobe, and the 
narrowest part in particular, are normally very diffuse. This 
initiates flooding of the viscous reconstruction outside the 
expected (but scarcely visible) limits. In order to prevent 
this, data concerning the previous closest segmented slice 
are introduced. Specifically: after step (5) of those described 
in Sect. 3.2 borders are completed, in the same fashion as 
the Canny edges, except this time a modified version of the 
previous slice is used. The differences consist of the addi-
tion of the contour of either a dilation or an erosion to the 
markers. To decide which one, we measure which of the two 
contours is closer to the borders of this particular slice. From 
this it can be seen whether the slice will be larger or smaller 
than the previous one, and the anatomical consistency can 
be verified.

The segmentation begins with the first slice, which is 
selected as shown at the beginning of Sect. 3.2, and contin-
ues initially toward the head, and when completed, it starts 
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Fig. 3   Main steps for a single 
2D slice segmentation
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again from the initial slice in the opposite direction. The pro-
cess stops at each side when we have obtained a segmented 
slice with a negligible area (smaller than 5% of the area of 
the initial slice).

Another problem presents itself in relation to seed ini-
tialization at some slices. Figure 3g shows the cut of the 
initial segmentation at the initial slice, but as can be seen in 
Fig. 2, advancing upwards and also downwards there will 
be two limit slices from which the initial segmentation will 
no longer be present. Behind these two slices, a seed is used 
which is obtained from the previously selected slice: it is 
given a signed distance function, and the inner pixels (ones 
with the greatest negative value of the distance function) 
make up the new seed. The threshold on the distance func-
tion is applied so that the area of the new seed is about half 
the area of the former slice.

The final step, at a global level, is to establish a crite-
rion for complete finalization (i.e., the cessation of feedback 
cycles). This is achieved when a sufficiently small volume 
variation (with respect to the previous step) is obtained (less 
than 1%). In the majority of cases that were analyzed, only 
one iteration was performed and never more than two.

4 � Results

This work makes use of anatomical shapes which are binary 
shapes of manually segmented livers. The original images 
are dynamic perfusion MR images of the abdominal cavity. 
There were 39 explorations in total among 21 patients, 13 
men and 8 women aged between 15 and 73. All volumes 
have been taken under the same conditions. The scanner 
was produced by Philips Medical Systems and worked in 

enhanced T1 high-resolution isotropic volume excitation 
mode. The patients were oriented in a supine, head first posi-
tion and were required to breathe as little as was possible 
during the acquisition. Image resolution was 256 × 256 pix-
els per slice and 133 slices per volume, slices being orthogo-
nal to the machine displacement axis which was the axial 
(transverse) axis of the patient’s body. Each voxel has a real 
dimension of 1.46 × 1.46 × 1.5 mm, where 1.5 is the separa-
tion between consecutive slices. There were 17 patients with 
two or three explorations, which correspond to different time 
instants of the contrast diffusion. An example of this with 
coronal, sagittal and axial sections of one case is shown in 
Fig. 4.

The atlas was built according to the procedure explained 
in Sect. 2 using manually segmented shapes. In short, the 
idea is to build and keep a single atlas made with a suf-
ficiently abundant sample. Since the number of manually 
segmented cases available to us is still limited, we have built 
different atlases using, for each of them, all available seg-
mentations except those belonging to the patient being ana-
lyzed. One axial section of one of the probabilistic atlases 
used in these experiments is shown in Fig. 5. The figure 
shows the probability level (blue indicating lower probability 
and red higher) as well as the binary shape obtained by a 
threshold at a probability of 0.5.

Visual examples of segmentation for two of the analyzed 
cases are shown in Fig. 6. This figure depicts the initial 
under-segmented shape, the results of the first iteration and 
that of the second (in these cases, final) iteration.

The algorithm for the described segmentation was applied 
to ten cases. Visual results for three of these are displayed in 
Fig. 7, which makes a comparison between manual (ground 
truth data, right column) and automatic (left column).

Fig. 4   Example of original 
images, as captured by the MRI 
scanner
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The result of comparing the automatic and manual seg-
mentation produces numerical results in terms of five popular 
measures: volume overlapping (VO), dice coefficient (DC), 
volume error rate (VER), sensitivity (Se) and volume overlap-
ping error (VOE). The definitions of these can be seen below, 
and also found in Klein et al. [20], where V(S) is the volume 
of any shape S, M is the manually segmented shape, and A is 
the automatically segmented one.

DC =
2(V(M ∩ A))

V(M) + V(A)

VO =
V(M ∩ A)

V(M) + V(A) − (V(M ∪ A))

VER =
∣ V(M) − V(A) ∣

V(M)

Se =
V(M ∩ A)

V(M ∩ A) + V(M ⧵ A)

VOE = 1 −
V(M ∩ A)

V(M ∪ A)
,

Fig. 5   An axial cut of  
the probabilistic GLM atlas  
and its cut at p = 0.5. Red 
means higher value of  
probability, blue lower values 
(color figure online)

Fig. 6   Graphical comparison of initial segmentation (left), first global iteration (middle) and last iteration (right) for two cases (upper and lower 
row, respectively
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Fig. 7   Graphical comparison of results for three of the cases. (left: manual; right: automatic)
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∩ being the set-intersection, ∪ the set-union and ⧵ the 
set-difference. Notice that V(M ∩ A) is the number of true-
positive voxels (points correctly given as liver), V(A ⧵M) 
is the number of false-positives (points segmented as liver 
which are not) and V(M ⧵ A) is the number of false-negatives 
(points not segmented as liver, but which are part of it).

In Table 1 we can see the DC, VO, VER, Se and VOE for 
each case; also their means and standard deviation are dis-
played. All quantities are within the [0, 1] interval, and the 
segmentation quality is better for values of DC, VO and Se 
that are close to 1 and for VER and VOE values close to 0.

Dice coefficient, the measure used most frequently, gives 
a mean value of 0.88, which may be thought to be enough 
to consider these results acceptable for most real clinical 
practice and comparable for example with Christ et al. [7] in 
MRI images; it is for this reason that the method proposed 
should be looked upon as preliminary, yet still a very good 
starting point for further manual refinement.

A comparison with other approaches to liver segmen-
tation is shown in Table 2. Results of other methods are 
in general slightly better. Nevertheless, direct comparison 
is not possible as is, since the other works use mostly CT 
and only in three cases ordinary MR images, but not perfu-
sion MR ones. The difference lies in the fact that perfusion 
images must be taken in a shorter time period, since they 
have to capture the location of the contrast agent at a precise 
instant, and obtain a complete series before the contrast has 
ended its diffusion. This in turn generates images with a 
lower-dynamic range and less contrast than their CT or MR 
counterparts.

The experiments were carried out on a modern computer 
with a Pentium Xeon running at 1.9 GHz and equipped with 
64 Gb of RAM. Most of the computation time is spent build-
ing the atlas, especially calculating the distance function 
for each manually segmented shape and estimating the liner 

model, all of which may take up to 50 min. Nevertheless, 
the atlas or atlases used are built off-line and are valid for 
every new case. The real time spent segmenting a new shape 
is between 4 and 5 min per iteration, the worst case being 
that of two iterations. Nevertheless, the convergence is not 
theoretically guaranteed, even intuitively it seems reasonable 
since the shape of the thresholded atlas, and that of the cur-
rently segmented shape, become more similar as segmenta-
tion proceeds; this means that the atlas almost immediately 
adopts a stable position and orientation. But to prevent a 
lack of convergence, a limit has been set at four algorithm 
iterations, and a warning has been added to advise the user 
that results might be suboptimal.

At present, it takes about 10 min for an expert radiologist 
to correct the segmentation; this must be added to the either 
5 or 10 min (depending on the number of iterations). The 
total time employed would therefore be less than 20 min. 
This is still far less time than the 90–120 min that it takes 
to perform a manual segmentation of the roughly 130 slices 
that compose each exploration.

The most significant source of errors in the results is due 
to the deficient segmentation of the terminal part of the left 
lobe of the liver. A particularly interesting case is that shown 
as a second example in Fig. 7. The absence of 2D or 3D bor-
ders in the MR images, because of the reduced contrast of 
perfusion MRI and its close proximity to the spleen, makes 

Table 1   Results of the proposed measures of discrepancy between 
manual and automatic segmentation

Case DC VO VER Se VOE

c01 0.889 0.800 0.015 0.895 0.200
c02 0.892 0.804 0.029 0.905 0.320
c03 0.932 0.873 0.002 0.933 0.196
c04 0.892 0.804 0.029 0.905 0.277
c05 0.828 0.707 0.014 0.822 0.214
c06 0.711 0.552 0.362 0.582 0.384
c07 0.880 0.786 0.073 0.913 0.231
c08 0.896 0.811 0.100 0.851 0.267
c09 0.941 0.889 0.022 0.931 0.181
c10 0.933 0.874 0.008 0.929 0.201
� 0.879 0.790 0.065 0.866 0.247
� 0.067 0.099 0.108 0.106 0.065

Table 2   Results of other liver segmentation methods

Modality: MRI magnetic resonance image, CT computer tomography, 
SPIR spectral presaturation with inversion recovery, Lc CT low con-
trast CT, Ce CT contrast enhanced CT

References Image modality DC Se VOE

Christ et al. [7] CT 0.943 0.107
MRI 0.890 0.230

Liao et al. [23] CT 0.055
Göçeri et al. [13] SPIR 0.758
Göçeri [11] SPIR 0.967
Esfandiarkhani and 

Foruzan [10]
Lc CT 0.104

Lu et al. [26] CT 0.059
Sun et al. [37] Ce CT 0.081
Zheng et al. [38] CT 0.078
Göçeri [14] SPIR 0.873
Ben-Cohen et al. [2] CT 0.890 0.860
Göçeri [12] SPIR 0.920
Mostafa et al [30] MRI 0.025
Chartrand et al [5] CT 0.068

MRI 0.093
Li et al. [22] CT 0.091
Ji et al. [19] CT 0.083
Heimann et al. [17] CT 0.061
Peng et al [33] CT 0.055
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its segmentation extremely difficult, and this is usually the 
area where manual corrections have to be applied.

5 � Conclusion

A new technique has been developed that segments the liver 
automatically in perfusion MR images for which there are 
ongoing tests and refinements in a wider database of clinical 
cases. Although other methods have been presented in the 
past, they do not use perfusion images directly, a major char-
acteristic of which is that they have less contrast, since they 
have to be taken faster. For this reason, the results are not 
yet comparable with these methods, with Dice coefficients 
in the order of 0.90–0.94. However, the primary interest is in 
investigating the possibility of working with diffuse borders, 
by making inferences about border presence in close slices 
and integrating data about the borders from different sources 
(curvature anisotropic filter and Canny edges) together with 
anatomical information provided by a probabilistic atlas and 
learning based on the results of a previous step. It is our 
opinion that precise detection of the limits of the liver tis-
sue at each slice may be of benefit to algorithms based on 
viscous reconstruction, such as ours, but also for those based 
on level sets which need a criterion to stop the evolution of 
a curve.

For the future, more extensive work needs to be done to 
find reliable limits for the free parameters of the algorithm 
and to ascertain its sensitivity. Also, a specific method for 
left-lobe segmentation in these low contrast images is being 
developed. Routines have already been programmed that 
determine a small spacial area where the left lobe can be 
found with a high certainty.
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