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1 Introduction

Fault detection and isolation (FDI) is an important issue in 
many applications, such as chemical plants [1, 2], power 
plants [3, 4], to ensure the reliability, safety and efficient 
operation as well as higher performance of the whole sys-
tem. A fault is defined as an unallowable deviation of a vari-
able or parameter of the system from the normal condition 
[5]. The FDI problem is the task of responding to abnormal 
events in a process and consists of three steps, indicating 
if there is a fault, determining the location and estimating 
the size and nature of the fault [6]. Toward these end, a set 
of residuals are generated which are sensitive to faults and 
insensitive to disturbances and modeling errors. These resid-
uals should be zero mean in the normal conditions. Then, the 
residuals are used to make decisions on the occurrence of a 
fault and on the type of the fault occurred.

An extensive research on FDI methods has already been 
reported in the literature which can be classified into two 
general categories, model-free [7–9] and model-based 
methods. Model-based methods are divided into quantita-
tive methods, such as observer-based or Kalman filter-based 
methods, qualitative (knowledge-based) methods, such as 
fuzzy methods, and data-driven methods, such as neural net-
work-based methods. Venkatasubramanian et al. have sum-
marized a collection of these methods in a three-part review 
paper [10–12] with applications in process chemical engi-
neering. Hwang et al. [13] have written a survey paper that 
focuses mainly on the quantitative model-based approach for 
FDI. Parity relation method is another quantitative model-
based method which has been used by some researchers [14, 
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15]. Kalman filter (KF) is a well-known recursive technique 
for state and parameter estimation. Using the extended 
Kalman filtering (EKF) for fault detection and diagnosis in 
chemical processes has been demonstrated in [16, 17]. In 
[18], a KF has been proposed for FDI in a continuous stirred 
tank reactor (CSTR) to cope with external disturbances and 
unpredictable faults. Saravanakumar et al. [19] has also used 
a bank of KFs for detecting and isolating incipient additive 
faults in Wind Turbine Generators DFIG and PMSM under 
possible changes in the reference/disturbance as well as 
modeling/parametric uncertainties. In [20], a method based 
on the EKF has been proposed for sensor FDI in interior 
permanent-magnet synchronous motors (IPMSMs).

On the other hand, knowledge-based and data-driven 
approaches have received considerable attention in the 
recent years [21, 22]. Soft computing techniques such as 
fuzzy inference systems (FISs) and neural networks (NNs) 
are able to approximate smooth nonlinear functions with 
arbitrary accuracy and are important in developing intelli-
gent FDI techniques for nonlinear systems. Neural networks 
due to their fast and robust implementation, their perfor-
mance in learning any nonlinear mappings and their ability 
for pattern recognition have been effectively used for FDI 
purposes. A survey paper by Angeli et al. [23] focuses on 
numerical and artificial intelligence FDI methods. Various 
applications of FIS and NN methods in FDI can be found 
in [24–28]. Simani et al. [29] proposed a fault diagnosis 
scheme based on the identification of fuzzy model, in order 
to detect and isolate the faults in a wind turbine simulator. 
Garci [30] has applied parameter estimation to devise non-
linear FDI techniques using multi-layer perceptron neural 
network (MLPN) as functional approximator. Benkouider 
et al. [31] presented a diagnosis algorithm in batch and semi-
batch reactor using the EKF for estimating the heat transfer 
coefficient of the reactor and a probabilistic NN for fault 
classification.

FDI schemes were developed for nonlinear systems 
based on neuro-fuzzy networks (NFN) [32–34] by merg-
ing FIS and NN, which utilize the transparency property 
derived from FIS and the learning ability from NN. Viha-
ros et al. [35] provided a survey on the application of 
neuro-fuzzy systems for technical diagnostics and meas-
urement. Khireddine et al. [36] presented a scheme for FDI 
via artificial neural networks and fuzzy logic to deal with 
sensors and actuator fault of a three links SCARA robot. 
In [37], a NFN-based scheme for FDI of a steam generator 
is presented. First, a NFN of Takagi–Sugeno model trained 
using locally linear model tree (LOLIMOT) algorithm is 
used for residual generation and then a NFN of Mamdani 
model is employed for decision making. The most widely 
used type of NFNs is referred to as adaptive neuro-fuzzy 
inference system (ANFIS) by Jang [38]. Banu et al. [39] 
have used ANFIS-based dedicated observers for sensor 

fault detection in a CSTR. In [40], an ANFIS-based fault 
detection and diagnosis of pneumatic valve used in cooler 
water spray system in cement industry has been developed.

In summary, quantitative approaches use an analytical 
model of the system for FDI purposes. One of the major 
advantages of these approaches is having control over the 
behavior of the residuals. Also, the model parameters have 
physical meaning that can be used for fault isolation and 
the variables status may be an index for the magnitude 
of the occurred fault. On the other hand, qualitative and 
data-driven approaches such as NN-based and NFN-based 
techniques are powerful techniques for developing mod-
els with arbitrary accuracy, but they lead to “black-box” 
and “gray-box” models, respectively. Therefore, they do 
not give reasonable physical interpretation to the process 
dynamics. Meanwhile, these methods need larger com-
putational facilities and memory for large-scale systems, 
resulting in more hardware and software efforts. This 
issue is considered as the basic challenge for using these 
approaches in industries. Nevertheless, these methods 
are capable of accommodating human knowledge in the 
decision-making process of FDI to increase the reliability 
of the fault diagnostic system.

The major motivation of this work is to combine the 
advantages of the aforementioned FDI approaches in order 
to develop a new method to overcome the drawbacks of pre-
vious methods. There are similar techniques in the litera-
ture for some applications [41, 42]. In [41], a fault detection 
and isolation scheme for a dual spool gas turbine engine 
is developed. A dynamic neural network-based multiple-
model scheme is proposed in which a bank of dynamic neu-
ral networks acts as an estimator of the various faulty modes. 
Tong et al. [42] combined data-driven and observer-design 
methodology for FDI in hybrid process systems by inte-
grating Gaussian mixture models (GMM), subspace model 
identification (SMI), and unknown input observer (UIO) 
theory. In this paper, an approach based on the combination 
of EKF and NFN is proposed for both actuator and sensor 
fault detection and identification (FDI). Firstly, an EKF is 
designed to estimate the system output and to generate accu-
rate residuals by a mathematical model of the process. Then, 
the generated residuals are fed to a classifier network which 
is a NFN. This NFN maps the patterns from the mean value 
of the residual space into a decision space. The mean of the 
residuals, as a valuable feature, is a useful tool for detecting 
various faults of the system. By averaging the residual over a 
period of time, the false alarm due to spike-like disturbances 
can be avoided. On the other hand, since the residuals have 
physical interpretation, they can be directly used for gener-
ating NFN rules. We will use LOLIMOT algorithm to train 
the NFN. This network assigns a locally linear model to 
each faulty mode of the system in which the validity of each 
model is determined based on the fuzzy rules.
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This paper is organized as follows. Next section pre-
sents the proposed FDI method, which is based on the EKF 
approach for residual generation and NFN approach for 
decision making. In Sect. 3, the overall model of the CSTR 
process is described to be used for case study. The simula-
tion results of the implementation of the proposed method 
on the CSTR model are presented in Sect. 4. Finally, the 
conclusions are given in Sect. 5.

2  The proposed FDI method

A remarkable point in the model-based and data-driven 
methods is that each one gives an approach completely inde-
pendent of the other. For instance, model-based methods 
try to model all conditions of the system and to consider a 
distinct model for each faulty mode. Indeed, many of these 
methods use a bank of observers, each one responsible for 
detecting a special fault leading to high computational com-
plexity in the fault diagnosis problem.

 On the other hand, data-driven methods do not require 
a detailed mathematical model of the system, leading to a 
large amount of features without physical interpretations. 
Thus, one has to select some features without knowing 
much about them. This will increase the computational 
burden of the problem and makes it improper for real-time 
applications.

In this paper, we introduce a technique for FDI which 
is based on a combination of model-based and data-driven 
methods and employs the benefits of each method to result 
in an efficient FDI method.

Given a nonlinear system model, the EKF is designed to 
estimate the state variables of the system. The difference 
between the actual system output and the output estimated 
by EKF is considered as the residuals. Then, the obtained 
residuals are used for training NFN. A unique feature of the 
residuals is that they have a physical interpretation and are 
limited to the number of the system outputs. Unlike model-
based methods, in which there exist a lot of features, the 
number of features is limited in the proposed method.

In normal conditions, the mean of the residuals remains 
close to zero, but when a fault occurs, correlation between 
the normal condition model and the actual system is 

disturbed, causing some of these residuals to be nonzero. 
However, a challenge in employing the residuals as features 
is that they may change dynamically when a fault occurs. 
These dynamic changes can reduce the performance of the 
neural network. So, these dynamic features must somehow 
be converted into static and fixed characteristics for each 
fault.

In the proposed FDI method, we assume that the mathe-
matical model of the system and the residuals of the Kalman 
filter in various faulty modes are available. With these 
assumptions, the algorithm of the proposed fault diagnosis 
method using an EKF and NFN is introduced as follows:

a. The EKF is designed according to the mathematical 
model of the system.

b. Residuals of the various faulty modes are collected as 
data, and the mean of each residual in different and dis-
tinct time window are considered as the features.

c. If the features have severe dynamic changes, the static 
features should be extracted from the dynamic ones. 
“Severe dynamic change” may refer to a big gradient in 
the residuals.

d. NFN rules are obtained by some qualitative analysis on 
the extracted features.

e. Output layer parameters are obtained from the extracted 
features using least squared error (LSE) method.

In the next sections, these steps are described in detail. 
Figure 1 shows a general schematic diagram of the intro-
duced fault diagnosis system.

2.1  Extended Kalman filter (EKF)

The KF is an optimal state estimator which is applied to 
stochastic dynamic systems. Information of the states (which 
is expressed by the covariance matrix) is corrected at each 
step using the previous estimations and the new data. The 
EKF is a generalization of the KF for nonlinear system in 
which the system is linearized around the last estimation of 
the filter. The EKF algorithm for continuous-time systems 
is summarized as follows [43]:

1. Consider the system equations as:

Fig. 1  Structure of fault 
diagnosis system using EKF 
and NFN
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where t is the time, x is the state vector, u is the plant 
input vector, y is the output vector, and w and v are 
zero mean normally distributed process and measure-
ment noise vectors with covariance matrices Q and R, 
respectively.

2. Obtain the matrices of the system linearized around the 
estimated variables of the KF (x̂):

3. Calculate the corresponding covariance matrices:

4. Execute the following KF equations recursively:

where K is the Kalman gain, P is the error covariance 
matrix, and x̂(0) and P(0) are the initial values of the 
estimated states and covariance matrix. The idea of uti-
lizing the KF in FDI systems is based on the fact that 
the residuals in stochastic linear systems are white noise 
with zero mean, as long as the KF is fully compliant 
with the model of the system. For using the KF for fault 
diagnosis purposes, it must be set based on the normal 
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condition of the system. In this case, when a fault is 
occurred, the mean of the residuals will be nonzero. 
The idea of multiple-model KF (MMKF) approach in 
the model-based FDI methods includes designing a bank 
of KF, each one sensitive to a certain fault [44, 45]. The 
FDI system based on multiple-model EKF (MMEKF), 
as shown in Fig. 2, consists of a bank of parallel EKF. 
A normal EKF model provides with the best estimation 
of the system under its normal operating condition, but 
other filters are designed for faulty modes, each filter 
for a specific fault. As can be seen in Fig. 2, the EKF is 
getting feedback from the residuals. What is important 
for the EKF is the accurate estimate of the original sys-
tem state variables, in both the normal and faulty con-
ditions. Therefore, an intelligent KF is a filter that can 
match with various operating conditions of the system 
and modify its parameters for accurate estimation of the 
system state variables in each circumstance.

Residuals of the various faulty modes are generated from 
the EKF, and the mean of the residuals is collected as the 
features. These features are employed to make decisions 
on the occurrence of a fault and on the type of the fault 
occurred. Toward this end, a NFN is designed.

2.2  Neuro‑fuzzy structure design by the extracted 
features from the residuals

In this section, a NFN is designed for FDI using the fea-
tures obtained from the residuals. What is notable about this 
method and distinguishes it from other methods is simulta-
neous utilization of model-based and data-driven techniques. 
The main advantage of using the model is to provide the 
residuals which have physical interpretation from system 
behavior. The residuals behavior is zero mean in the normal 
condition, but the mean of all residuals or some of them 

Fig. 2  FDI system based on the 
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will exceed from zero in the faulty condition. So, the mean 
of the residuals contain useful information from the faulty 
condition.

Now suppose that the system has p outputs and con-
sequently p residuals. The mean of these p residuals over 
a period of time will be as the inputs of the NFN. The 

averaging interval is selected by experience and is depend-
ant to the system dynamics. If the averaging interval be very 
small, the calculated mean value is not really a mean and 
the fault amplitude may be obtained incorrectly, and if it be 
very large, the occurrence of some transient faults may not 
be diagnosed.

Fig. 3  NFN proposed for fault 
diagnosis
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According to the above description, it can be seen that the 
number of the locally linear model (N) is calculated to be:

3  Description of the CSTR process

In order to demonstrate the proposed method, a model of 
CSTR process is developed in which an irreversible and exo-
thermic reaction takes place and run in a liquid–gas phase. 
Figure 4 shows the schematic diagram of the CSTR process. 
A feeding flow of reactant enters into the reactor, resulting in 
an exothermic reaction with the catalyst therein. A stirring 
system mixes the fluid perfectly and a product with uniform 
concentration leaves the reactor. A jacket is fitted around the 
reactor, and a coolant flows through it. This jacket has the task 
of removing the heat from the reactor.

This process has been completely investigated by Luyben, 
and its differential equations have been well expressed [46]. 
Various CSTRs have been employed in the literatures which 
differ in their control valves location. In this work, we have 
used the model studied by Luyben.

This model consists of three control valves for process 
control. One of these valves has been designed in order to 
control the pressure of the gas generated in the reactor by 
controlling the output flow of this gas. The second valve 

(8)N =

k
∑

j=1

n(j)

Let’s consider k different types of the faults (faulty modes). 
The network should be trained by various values of each fault. 
Usually this is performed using small, medium and large quan-
tities of the faults. Thus, for the jth faulty mode, commensurate 
with its importance or possession of the data, there exist n(j) 
different categories, each one representing a different ampli-
tude of this fault, in which n is a function that determines the 
number of data categories corresponding to each faulty mode. 
A linear model is obtained for each category, and in fact, dif-
ferent amplitudes of the fault are identified using locally linear 
models. The validity of each model is determined based on 
its associated fuzzy rule. Figure 3 shows the structure of this 
NFN. As can be seen, the inputs of the blocks are not required 
to be the same for modeling different types of faults. This 
allows the designer to remove unnecessary inputs according 
to available information and experiences from the system. This 
network has k outputs (the same number as the various faulty 
modes), each one of which estimates the amplitude of a certain 
fault. At the following, the relations of this network are given 
for a system with two outputs 

{

x1, x2
}

, whose residual are the 
inputs of the network.

The rules corresponding to normal condition:

Here, the features are considered as the inputs of locally 
linear models and are denoted by X. Also, F0,X0,�0 are 
outputs, inputs and parameters of the locally linear models 
in the normal condition, respectively. The parameter “NCI” 
(normal condition index) is an index indicating the normal 
condition of the system, which is 1 in normal condition and 
close to 0 in faulty condition. It is used in order to recognize 
an unknown fault occurrence.

The rules corresponding to the jth faulty mode:

where Xji represents the features of the ith category of the 
jth faulty mode, and Aji and Bji are the membership func-
tions associated to these features. Also, Fji is the output cor-
responding to the ith category of the jth faulty mode. yj is 
the total output corresponding to the jth faulty mode. These 
membership functions are chosen according to their corre-
sponding feature amplitudes in each faulty mode illustrated 
in the next sections.

The parameters of each model are obtained using the 
least squared error (LSE) method applied to the train data 
as follows:

(5)
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Table 1  Parameters of the CSTR

Parameter Description Value

F Outlet flow rate 40 ft3/h
Fvg Vent flow rate 10.6137 lb mol/h
Fi Inlet feed flow rate 40 ft3/h
CAi Inlet reactant conc. 0.50 lb mol of A/ft3
Fc Coolant flow rate 56.626 ft3/h
Ti Inlet feed temp. 530° R
Vj Volume of jacket 3.85 ft3
k0 Frequency factor 7.08 × 1010 h−1

Cd Catalyst activity 1
E Activation energy 29 900 btu/lb mol
R Universal gas constant 1.99 btu/lb mol° R
U Heat transfer coeff. 150 btu/h ft2° R
A Heat transfer area 150 ft2
Tci Inlet coolant temp. 530° R
∆H Heat of reaction −30 000 btu/lb mol
Cp Heat capacity (process side) 0.75 btu/lbm° R
Cpj Heat capacity (coolant side) 1.0 btu/lbm° R
ρ Density of process mixture 50 lbm/ft3
ρj Density of coolant 62.3 lbm/ft3
Vg Volume of the vapor space 16 ft3



365Pattern Anal Applic (2019) 22:359–373 

1 3

controls the level of the product in the reactor using the out-
put flow of the product, and the third one controls the tem-
perature within the reactor and consequently the temperature 
of the product using the coolant flow. The goal of this process 
is to produce a product with a desired concentration and tem-
perature after entering a feeding reactant with a certain con-
centration and specific temperature into the reaction vessel.

The measurable outputs of this process are the level (L), 
the temperature (T) and concentration (CA) of final product, 
the coolant temperature (Tc), and the pressure within the ves-
sel (P). The equations describing this process are as follows:

where the last equation is known as the reaction kinetic law. 
The parameters of this process are given in Table 1.

4  Simulation results

4.1  Designing FDI system

To evaluate the proposed FDI algorithm, we simulate and 
apply it on the CSTR process for sensor and actuator fault 
diagnosis. Two types of sensor faults and two types of actua-
tor faults are studied here. Hence, the designed diagnosis 
system has 4 outputs whose magnitudes demonstrate the 
magnitude of the fault identified by the NFN. The data cor-
responding to the fault of different parts are obtained by 

(9)
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Table 2  Train data set

Location Fault 
ampli-
tude

Normal condition – – 0
Faulty mode 1 Level actuator Small 1

Medium 4
Large 10

Faulty mode 2 Temperature actuator Small 1
Medium 4
Large 10

Faulty mode 3 Level sensor Very Small 0.5
Small 1
Medium 2
Large 5

Faulty mode 4 Temperature sensor Very Small 6
Small 12
Medium 30
Large 60

Fig. 5  Mean of the residuals in 
the various faulty modes
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simulating the system in MATLAB/Simulink. The faults 
selected for this study are listed in Table 2. Different mag-
nitudes of each fault are considered for training the network. 
In order to design a fault diagnosis system, the algorithm 
presented in the previous section will be run step by step.

Step 1 Design the EKF

The state variables of the system are X =
[

V CA T Tc n
]

.  
The Jacobian matrices A and C required in the EKF and also, 
the initial values of the matrices P, Q and R are as follows:

(10)

� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢
⎣

0 0 0 0 0

Fi
(CA−CAi)

V2
−

Fi

V
− Cdk0e

−E∕RT −CdCAk0Ee
−E∕RT

RT2
0 0

Fi
(T−Ti)

V2
+ UA

(T−Tc)

�CpV
2
−

ΔH

�Cp

Cdk0e
−E∕RT −

Fi

V
−

UA

V�Cp

−
CdCAk0Ee

−E∕RT

RT2
×

ΔH

�Cp

UA

V�Cp

0

0 0
UA

Vj�jCpj

−
Fc

Vj

−
UA

Vj�jCpj

0

rA VCdk0e
−E∕RT VCdCAk0Ee

−E∕RT

RT2
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥
⎦

� =

⎡

⎢

⎢

⎢

⎢
⎣

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0
nR

Vg

0
RT

Vg

⎤

⎥

⎥

⎥

⎥
⎦

, � = 10
− 4 ×

⎡

⎢

⎢

⎢

⎢

⎢
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0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤
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⎢

⎢
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⎤

⎥

⎥
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Step 2 Extracting fault features using the mean of the 
residuals

In this step, the features are extracted from the residu-
als generated from the difference of the actual system 
output and the output estimated by EKF. The primary 
feature is obtained by averaging the original data over a 
period of time. An averaging window with the length of 
100 data is selected for this reason. Using the “primary” 
term is because that the mean of some residuals may have 
dynamic behavior. An example of the dynamic changes in 

Fig. 6  Static features of the 
residuals in the trained data sets
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the mean behavior of the residual of the state variable V 
is shown in Fig. 5.

Step 3 Extracting static features from dynamic ones

As it is shown in Fig. 5, the residual of the state variable V 
in the faulty mode 1 has linear dynamic behavior. This dynamic 
behavior occurs, while the fault amplitude is constant during the 
corresponding period. This issue affects the performance of the 
NFN assigning a static linear model to the fault behavior in each 
section. On the other hand, if one wants to consider the dynamic 
in the linear model, the history of the residuals should be used 
as input to the model. This not only increases the computational 
costs, but also some tests are required to determine length of 
the historical data, complicating the design procedure. In such 

Fig. 7  Fault amplitude cor-
responding to the various faulty 
modes in the trained data sets
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Fig. 8  Membership functions 
of “V” in faulty mode 3
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Table 3  Test data set information

Location Test number Fault 
ampli-
tude

Normal condition – – 0
Faulty condition 1 Level actuator 1 3

2 7
Faulty condition 2 Temperature actuator 3 3

4 7
Faulty condition 3 Level sensor 5 1.5

6 3
Faulty condition 4 Temperature sensor 7 8

8 20
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a condition, the method introduced in [47] makes the procedure 
simple and effective. Here, the slope of the residual of the state 
variable V, which is approximately constant, is employed as 
the static feature. Figure 6 shows the results of this conversion, 
and Fig. 7 represents the fault amplitude corresponding to the 
various faulty modes.

Step 4 Determining NFN rules from the extracted features

Now, using the extracted features from the residuals, the NFN 
rules are determined. The number of the rules required for design-
ing fault diagnosis system is at least equal to the number of the 
various faulty modes which in this case study is equal to 15. How-
ever, the traditional NFN with 5 inputs and 4 membership function 
for each input will need to  45 = 1024 fuzzy rules. As mentioned 
before, this reduction in the number of rules is a result of employ-
ing the residuals as the features. These residuals have physical 
interpretation and allow one to analyze simply the system status. 
The rules in each operating condition of the system are as follows.

The rules corresponding to the normal condition:

The rules corresponding to the first faulty mode:

The rules corresponding to the second faulty mode:

The rules corresponding to the third faulty mode:

The rules corresponding to the fourth faulty mode:

(11)If
(

V ∈ A0

)

and (Ca ∈ B0) and
(

T ∈ C0

)

and
(

Tc ∈ D0

)

and
(

P ∈ E0

)

, then F0 = X0�0

�0 = min
(

A0(V), B0

(

Ca

)

,C0(T),D0

(

Tc
)

,E0(P)
)

, NCI = �0F0

(12)
If
(

V ∈ A1i

)

and (Ca ∈ B1) and
(

T ∈ C1

)

and
(

Tc ∈ D1

)

and
(

P ∈ E1

)

, then F1i = X1i�1i i = 1, 2, 3

�1i = min
(

A1i(V),B1

(

Ca

)

,C1(T),D1

(

Tc
)

,E1(P)
)

, y1 =

3
∑

i=1

�1iF1i

(13)
If
(

V ∈ A2

)

and (Ca ∈ B2) and
(

T ∈ C2i

)

and
(

Tc ∈ D2i

)

and
(

P ∈ E2i

)

, then F2i = X2i�2i i = 1, 2, 3

�2i = min
(

A2(V),B2

(

Ca

)

,C2i(T),D2i

(

Tc
)

,E2i(P)
)

, y2 =

3
∑

i=1

�2iF2i

(14)
If
(

V ∈ A3i

)

and (Ca ∈ B3) and
(

T ∈ C3

)

and
(

Tc ∈ D3

)

and
(

P ∈ E3

)

, then F3i = X3i�3i i = 1, 2, 3, 4

�3i = min
(

A3i(V),B3

(

Ca

)

,C3(T),D3

(

Tc
)

,E3(P)
)

, y3 =

4
∑

i=1

�3iF3i

(15)
If
(

V ∈ A4

)

and (Ca ∈ B4) and
(

T ∈ C4i

)

and
(

Tc ∈ D4

)

and
(

P ∈ E4

)

, then F4i = X4i�4i i = 1, 2, 3, 4
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(

A4(V),B4

(

Ca

)

,C4i(T),D4

(

Tc
)

,E4(P)
)

, y4 =

4
∑

i=1

�4iF4i

The above membership functions are selected so as to 
be related to the features in each faulty mode (see Fig. 6). 
For example, the membership functions of the input vari-
able “V” in faulty mode 3 are shown in Fig. 8. Because 
there are four different amplitudes for this feature, four 
membership functions have been chosen whose horizon-
tal axis’ values are equivalent to the amplitudes of the 
features.

Step 5 Obtaining output layer parameters

The NFN consists of some locally linear model, each 
one of which takes the task of modeling a faulty mode. The 
fuzzy rules in such a system are to determine the validity 
of each local model. This is performed by using the super-
position of fuzzy membership functions. The parameters 
of each model are obtained using LSE method as in (7). 
Since 15 different conditions have been considered for this 
system, 15 locally linear models are required for designing 
NFN.
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4.2  Results analysis

In this section, we first train the designed network. Toward 
this end, 15 different feature sets are used, each one of which 
representing one situation of the system, as shown in Figs. 6 
and 7. These feature sets have been obtained from the mean 
of the residuals or its derivative along with a data window 
corresponding to each situation. Then, the trained NFN is 
evaluated using the test data. In these tests, the performance 
of the designed system is investigated on 8 different data sets 

which have different values of the trained data. In each test 
data set, the system is initially in the normal mode and then, 
a specific fault takes place in the system at arbitrary moment. 
This is exactly consistent with reality. Besides, the EKF is 
a model-based estimator and works based on the dynamic 
equation of the system, which can be easily implemented on 
a microcontroller. Also, the proposed NFN is composed of 
some locally linear models and a few numbers of fuzzy rules, 
and thus, its implementation on a microcontroller is not very 
difficult. These demonstrate the possibility and feasibility 

Fig. 9  Extracted features of the 
residuals in test data sets
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Fig. 10  Fault amplitude cor-
responding to the various faulty 
modes in the test data sets

0 50 100 150 200 250 300 350

Sample

0

5

10

15

20

25

Fa
ul

t A
m

pl
itu

de

Fault Mode 1

Fault Mode 2

Fault Mode 3

Fault Mode 4



370 Pattern Anal Applic (2019) 22:359–373

1 3

of online implementation of the proposed method. Table 3 
shows the various modes of the test data in the order of their 
occurrence. For each faulty mode, two different amplitudes 
are chosen to verify the effectiveness of the proposed FDI 
method in detection and identification of different types of 
the faults with different amplitudes. The extracted features of 
the test data residuals and the fault amplitude corresponding 

to the various faulty modes are depicted in Figs. 9 and 10, 
respectively.

Table 4 shows the mean squared error (MSE) criterion 
for NFN train and test data. Each column of this table cor-
responds to a specific faulty mode. As can be seen, for each 
test, only the column associated with that faulty mode has a 
nonzero value and the others are zero or close to zero. The 
correlation between fault mode 1 and 3 is because of their 
dependence to the input variable V. As can be seen from 
Fig. 9, this input has a significant correlation with the first 
and third faulty modes. Table 5 demonstrates the maximum 
correlation between different faulty modes. To compensate 
the errors introduced by the correlations in the outputs, the 
fuzzy membership functions in different faulty modes have 
been chosen so that the NFN can isolate the faults with 
correlation.

The results of the system performance for the test data 
sets are displayed in Fig. 11. This figure shows that the 
proposed FDI method is able to detect, isolate and identify 
various sensor and actuator faults with different amplitudes. 
The major advantages of the proposed method are listed as:

a. Possible to be implemented online.
b. No need to a bank of observers for fault diagnosis.
c. No need to model the faults.
d. Acceptable accuracy in the estimation of sensor and 

actuator fault.
e. Using the physical inference of various conditions of the 

state variables in extracting features of the residuals for 
generating NFN rules which lead to a reduction in FIS 
rules.

Fig. 11  Result of fault detec-
tion and identification for test 
data sets
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Table 4  MSE of test and train

Y1 Y2 Y3 Y4

Train 9.4e−4 0.006 3.9e−8 1.8e−8
Test1 0.337 0 0.051 0
Test2 1.945 0 0.302 0
Test3 0 0.2467 0 0
Test4 0 0.1075 0 0
Test5 0 0 0.1534e−7 0
Test6 0 0 0.1645e−3 0
Test7 0 0 0 0.1763e−3
Test8 0 0 0 4.0905

Table 5  Correlation between different fault types

FC1 FC2 FC3 FC4

FC1 1 0.088 0.8321 0.0925
FC2 0.088 1 0.1287 0.6962
FC3 0.8321 0.1287 1 0.0775
FC4 0.0925 0.6962 0.0775 1
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For better evaluation of the performance of the proposed 
method, the relative error and mean error of the estimation 
in different faulty modes in the test are depicted in Fig. 12. 
As can be seen, the maximum mean error is devoted to the 
level actuator fault which is about 10%. Large error in the 
faulty mode 1 and 2 may be related to the dynamic features 
therein (see Fig. 9). Meanwhile, this fault diagnosis method 
can estimate sensor fault better than the actuator fault.

Comparison with other FDI methods is an alternative 
approach for evaluating the performance of the proposed 
EKF-NFN method. Figure 13 shows the result of the EKF-
NFN method in comparison with the EKF method (proposed 
in [17]) for different fault types. As can be seen, the pro-
posed method has better performance than the EKF method. 
Also, the MSE criterion for EKF-NFN is equal to 0.196, 

while for EKF is 0.343. These results demonstrate the effec-
tiveness of the proposed FDI approach.

5  Conclusions

In this paper, a fault detection and identification (FDI) 
method has been proposed for nonlinear systems based on 
EKF and NFN. This method uses the capabilities of both 
model-based and data-driven approaches. It is shown that 
the mean of the residuals can be used for FDI as a valu-
able feature which possess the fault information. The major 
advantages of using the residuals in designing the NFN are 
firstly limitation of their number to the number of outputs 
(hence, the number of the used features are not too many) 
and secondly the physical interpretation that helps with 
determination of fuzzy rules. This leads to a significant 
decrease in the required fuzzy rules in the proposed method 
over other methods. In the NFN developed in this work, a 
locally linear model is assigned to each faulty mode of the 
system in which the validity of each model is determined 
based on the corresponding fuzzy rules. Finally, a fault 
diagnosis system is designed and tested on the CSTR plant. 
Its results demonstrate the acceptable performance of the 
presented algorithm in detecting, isolating and identifying 
various sensor and actuator faults with different amplitudes. 
The main advantages of the proposed method are: no need to 
a bank of observers, no need to the fault modeling and also 
reduction in the fuzzy rules because of using the residuals. 
The dependence on the mathematical model of the system 
can be mentioned as the major disadvantage of the proposed 
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Fig. 12  Accuracy of the estimation of different faults in the test

Fig. 13  Comparison of the 
proposed method with EKF 
method
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approach which is an unavoidable property of the model-
based methods.
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