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Abstract This work presents an approach based on the

kernelized discriminant analysis to classify symbolic

interval data in nonlinearly separable problems. It is known

that the use of kernels allows to map implicitly data into a

high-dimensional space, called feature space; computing

projections in this feature space results in a nonlinear

separation in the input space that is equivalent to linear

separating function in the feature space. In this work, the

kernel matrix is obtained based on kernelized interval inner

product. Experiments with synthetic interval data sets and

an application with a Brazilian thermographic breast

database demonstrate the usefulness of this approach.

Keywords Symbolic data analysis � Supervised
classification � Kernel � Linear discriminant analysis

1 Introduction

With the increasing demand to storage and analyze huge

data sets and in order to be able to manage them, it is

essential to be able to summarize them while still main-

taining as much knowledge inherent to the entire data set as

possible. One direct consequence of this problem is that the

data may no longer be formatted as single values such as is

the case for classical data, but may be represented by lists,

intervals, distributions, and the like instead. These sum-

marized data are examples of symbolic data types. Table 1

shows part of a symbolic data set described by intervals.

The breast temperature interval data set was previously

considered in [1]. In order to evaluate the feasibility of

breast temperature abnormalities (malignant, benign and

cyst) and detect breast cancer, they proposed a three-stage

feature extraction approach in which breast interval data

are extracted from a breast thermography data set, trans-

formed into continuous features and then are used as input

data for a classification task. It is composed by 50 breast

thermograms of patients aged[35 years with a suspected

mass, whose diagnoses were confirmed by clinical exami-

nation and followed by ultrasound, mammographic and

biopsy exams. Here, the data set is scattered into two

classes of different sizes: 14 elements of malignant masses

class and 31 elements of non-malignant masses class

(composed by elements belonging to benign masses and

elements belonging to of cyst masses). Each patient is

described by four interval variables that represent the

temperature intervals obtained from the left breast (X1) and

the right breast, (X2) the join between left and right breasts

(X3) and an interval obtained from a morphological pro-

cessing with both breasts (X4) as described in [1].

Symbolic data types were defined in symbolic data

analysis (SDA) [2]. SDA aims to provide a set of
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suitable methods (clustering, factorial techniques, decision

trees, etc.) for managing aggregated data described through

many types of variables whose values can be sets of cat-

egories, intervals or probability distributions in the cells of

a data table [2]. A symbolic variable is defined according to

its type of domain, i.e., an interval variable takes, for its

object, an interval of R (the set of real numbers). A sym-

bolic modal one takes, for its object, a nonnegative mea-

sure (a frequency or a probability distribution or a system

of weights). If this measure is specified in terms of a his-

togram, the modal variable is called histogram variable.

Several supervised classification tools have been

extended to handle interval data: Ichino et al. [3] intro-

duced a symbolic classifier as a region-oriented approach

for multi-valued data. In this approach, the classes of

examples are described by a region (or set of regions)

obtained through the use of an approximation of a mutual

neighborhood graph (MNG) and a symbolic join operator.

Souza et al. [4] proposed a MNG approximation to reduce

the complexity of the learning step without losing the

classifier performance in terms of prediction accuracy.

D’Oliveira et al. [5] presented a region-oriented approach

in which each region is defined by the convex hull of the

objects belonging to a class.

Ciampi et al. [6] introduced a generalization of binary

decision trees to predict the class membership of symbolic

data. Rossi and Conan-guez [7] have generalized multi-

perceptrons to work with interval data. Mali and Mitra [8]

extended the fuzzy radial basis function network to work in

the domain of symbolic data. Appice et al. [9] introduced a

lazy-learning approach (labeled Symbolic Objects Nearest

Neighbor) that extends a traditional distance weighted

k-nearest neighbor classification algorithm to interval and

modal data. Silva and Brito [10] proposed three approaches

to the multivariate analysis of interval data, focusing on

linear discriminant analysis and Souza et al. [11] intro-

duced four pattern classifiers based on logistic regression

methodology in which these classifiers differ on the way

they represent each interval variable.

However, these classification methods for symbolic data

were not developed to solve nonlinearly separable prob-

lems, that is, problems where elements belonging to one

class cannot be separated from elements belonging to

another class by a hyperplane, and thus, another approach

is needed to solve this family of problems when data are

interval-valued. Generalized discriminant analysis [12]

(GDA) is a generalization of the classical linear discrimi-

nant analysis (LDA) that obtains nonlinear discriminants

through kernel functions. This is achieved by formulation

as an eigenvalue resolution problem and applies kernel

functions to find a feature vector space where the input data

becomes linearly separable, similar to the underlying the-

ory on Support Vector Machines.

This work addresses a way in which GDA is generalized

for interval data. It changes the inner product used on the

core matrix of GDA to the inner product for interval data

and then introduces kernelized inner product, allowing the

interval-valued data to be kept as intervals while still

performing the nonlinear mapping into a feature space. In

addition, the proposed approach is applied to a breast

temperature abnormality classification problem regarding

malignant versus non-malignant classes. Section 2

describes the proposed kernelized discriminant approach

for interval data. Section 3 shows the synthetic data sets

considered in this work. Section 4 presents the experi-

mental evaluation regarding the synthetic data sets and the

Brazilian’s thermography breast database displayed in

Table 1. Section 5 gives the conclusions.

2 Proposed model

In this section, we present an extension of the GDA [12] to

treat interval data, called here Interval Kernel Discriminant

Analysis (IKDA). The main idea is to obtain a classifier for

interval data that should be able to solve classification

problems for classes not linearly separable.

According to the GDA classifier, the IKDA one mainly

consists of obtaining a kernel matrix whose elements are

composed by the inner product between elements of each

class against each other and then incorporates this matrix to

the classical linear discriminant analysis, formulating it as

an eigenvector problem, then data are projected into a

space in which each test data point can be allocated.

Let X ¼ fxi; yig; i ¼ 1; . . .;N be a set of training sym-

bolic objects. Each object i of X is described by a set of p

symbolic interval variables and a categorical discrete

variable. A symbolic interval variable [2] is a

Table 1 Breast temperature interval data set

X1 X2 X3 X4 Class

Interval temperature variables

31:38; 33:81½ � 31:09; 34:03½ � 31:09; 34:03½ � 0:98; 1:1½ � 1

31:5; 35:24½ � 30:95; 34:75½ � 30:95; 35:24½ � 0:69; 1:14½ � 1

32:38; 35:93½ � 33:11; 36:05½ � 32:38; 36:05½ � 0:48; 0:59½ � 1

..

. � � � ..
.

34:09; 35:61½ � 33:63; 35:57½ � 33:63; 35:61½ � 0:44; 0:53½ � 2

33:21; 35:45½ � 32:84; 35:34½ � 32:84; 35:45½ � 0:9; 1:08½ � 2

32:05; 33:35½ � 31:65; 33:62½ � 31:65; 33:62½ � 0:42; 0:54½ � 2

..

. � � � ..
.

30:97; 34:36½ � 30:54; 34:43½ � 30:54; 34:43½ � 1:63; 2:79½ � 2

32:86; 35:15½ � 32:85; 34:76½ � 32:85; 35:15½ � 0:65; 1:05½ � 2

31:45; 33:8½ � 31:49; 33:72½ � 31:45; 33:8½ � 0:49; 0:75½ � 2
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correspondence I ! R such that each pattern i is repre-

sented by an interval ½a; b� � I where I ¼ f½a; b� : a; b 2
R; a� bg is an interval. Here, the N training symbolic

patterns ðxi; yiÞ have xi ¼ ðxi1 ¼ ½ai1; bi1�; . . .; xip ¼
½aip; bip�Þ as a vector of interval covariates and yi as

response variable which contains C class labels.

Let K be a C � C symmetric block matrix defined over

the classes of the training set, whose elements are defined

as being matrices themselves:

kgh ¼ ðkghÞlm
g; h 2 f1; . . .;Cg;
l 2 f1; . . .; ngg;m 2 f1; . . .; nhg

ð1Þ

in which ng is the number of elements in class g and nh is

the number of elements in class h. In order to propose a

kernel matrix regarding p-dimensional interval data space,

each pattern is split in p parts and p kernel functions are

defined for these parts. Suppose that any point w over the

interval ½aj; bj� for dimension j can be mapped from input

data space to a high-dimensional feature space F through a

nonlinear function /ðwÞ:

/ : X ! F

½a; b� ! /ð½a; b�Þ
ð2Þ

Consider / as a monotonic nonlinear function defined

on real numbers that compose the interval ½aj; bj�. For all
w; r � ½aj; bj� such that w� r, / preserves or reverses the

order (/ðwÞ�/ðrÞ or /ðwÞ�/ðrÞ, respectively), and thus,
we do not need to apply / to all real numbers inside the

interval, only to its boundaries. Here, aj � bj so

/ðajÞ�/ðbjÞ or /ðajÞ�/ðbjÞ.
The main ways in which symbolic interval data arise are

aggregation of large data sets. For example, in a breast

temperatures matrix, the main interest is to evaluate the

feasibility of temperature abnormalities for each breast. All

temperature values for each breast are aggregated and their

characteristics combined into a single object. In this way,

all points inside of the interval ½aj; bj� can be mapped using

the / function. As / is monotonic, interval structure can be

preserved. Then, applying this function to the lower and

upper bounds of the interval domain still remains in a

nonlinear space. An interval in feature space can be defined

as:

½aj; bj� ¼ ½/ðajÞ;/ðbjÞ� if / is monotonically nondecreasing

½aj; bj�/ ¼ ½/ðbjÞ;/ðajÞ� if / is monotonically nonincreasing

2.1 Kernelized inner product for interval data

For data points, this nonlinear mapping is often replaced by

an inner-product kernel to obtain the corresponding points

in the transformed space. Here, for interval data, we

consider to kernelize the interval inner product and to

achieve a similar result to the original GDA.

According to [13], given any interval-valued variables

xr ¼ ð½ar1; br1�; . . .; ½arp; brp�Þ and xs ¼ ð½as1;
bs1�; . . .; ½asp; bsp�Þ, the inner product for interval data is

given by:

hxr; xsi ¼

1

4

Xp

j¼1
ðarj þ brjÞðasj þ bsjÞ; if xr 6¼ xs

1

3

Xp

j¼1
ða2rj þ arjbrj þ b2rjÞ; if xr ¼ xs

8
>>><

>>>:

ð3Þ

Using the Eq. (3) the kernelized inner product can be

defined as

hxr; xsi/ ¼

1

4

Xp

j¼1
f/ðarjÞ � /ðasjÞ þ /ðarjÞ � /ðbsjÞ

þ/ðbrjÞ � /ðasjÞ þ /ðbrjÞ � /ðbsjÞg

1

3

Xp

i¼1
f/ðarjÞ � /ðarjÞ þ /ðarjÞ � /ðbrjÞ

þ/ðbrjÞ � /ðbrjÞg

8
>>>>>>>><

>>>>>>>>:

ð4Þ

under the same restrictions as Eq. (3), that is: if xr 6¼ xs and

xr ¼ xs, respectively.

Regarding the properties that the sum of kernel func-

tions under the same points input space is a kernel function

[14], we can say that hxr; xsi/ is a valid kernel.

If arj ¼ brj and asj ¼ bsj, we have a particular case

hxr; xsi/ ¼

Pp
i¼1 /ðarjÞ � /ðasjÞ; if xr 6¼ xs

Pp
i¼1 /ðarjÞ � /ðarjÞ; if xr ¼ xs

8
><

>:
ð5Þ

The kernel model hxr; xsi/ in Eq. (5) is the sum of

univariate kernels as a combined kernel for point data.

Thus, the kernel model hxr; xsi/ in Eq. (4) allows to gen-

eralize the traditional kernel to treat interval data

kgh ¼ ðkghÞlm ¼ hxlðgÞ; xmðhÞi/
g; h 2 f1; . . .;Cg;

l 2 f1; . . .; ngg;m 2 f1; . . .; nhg:
ð6Þ

2.2 Optimization problem

The kernel operator K allows the construction of nonlinear

separating function in the input space that is equivalent to

linear separating function in the feature space F. The

construction of this function is formulated by maximizing

the inter-classes inertia and minimizing the intra-classes

inertia.
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According to [12], the formulation of this optimizing

problem is to need to find eigenvalues k and eigenvectors

v, which are the solutions of the equation:

kVv ¼ Bv ð7Þ

The largest eigenvalue of the previous equation gives

the maximum of the following quotient of inertia:

k ¼ vtBv

vtVv
ð8Þ

where V and B represent the total and inter-classes inertia

matrices, respectively, in the feature space F.

Because the eigenvectors are linear combinations of

elements in F, there exist coefficients agqðg ¼ 1; . . .;CÞ
and ðq ¼ 1; . . .; ngÞ such that:

v ¼
XC

g¼1

Xng

q¼1

agq /ðxgðqÞÞ ð9Þ

The general coefficient vector a ¼ ðagqÞ can be written

as a = (agÞg2f1;...;Cg where ag ¼ ðagqÞq¼1;...;ng
; ag is the

coefficient vector of the class g into v.

From Appendix B of [12], the Eq. (8) is equivalent to

k ¼ atKWKa

atKKa
ð10Þ

in which W is a block diagonal matrix where each one of

its elements Wg is square ng � ng matrices with terms all

equal to 1=ng ðg 2 f1; . . .;CgÞ.
The elements of the matrix K are centered in the feature

space according to [12], and the solution of the system in

Eq. (10) is given using the eigenvectors decomposition of

the matrix K

K ¼ UCUt ð11Þ

where C is the diagonal matrix of nonzero eigenvalues and

U the matrix of normalized eigenvectors associated to C.

Substituting K in Eq. (10)

k ¼ atUCUtWUCUta

atUCUtUCUta
¼ ðCUtaÞtUtWUðCUtaÞ

ðCUtaÞtUtUðCUtaÞ
ð12Þ

Consider b ¼ CUta. So, the Eq. (12) can be rewritten as

kb ¼ UtWUb ð13Þ

For a given b, there is at least one a satisfying b ¼ CUta

in the form:

a ¼ UðCÞ�1
b:

The coefficients a are normalized by requiring that the

corresponding vectors v be normalized vtv ¼ 1 in F. So,

a ¼ affiffiffiffiffiffiffiffiffiffi
atKa

p ð14Þ

Given the normalized eigenvectors v, we can obtain the

projection vector of an element represented by x on v as

zðxÞ ¼ vt/ðxÞ ¼
XC

g¼1

Xng

l¼1

agl hxlðgÞ; xi/: ð15Þ

2.2.1 The algorithm

The IKDA algorithm is summarized as follows:

3 Three synthetic interval data sets

In this section, three different data sets are presented: two

synthetic interval data sets with synthetic seeds and one

synthetic data set with real data seeds.

3.1 Two synthetic interval data sets with synthetic

seeds

The procedure to generate synthetic interval data sets based

on synthetic seeds consists of two steps:

• To obtain a seed data set with classical variables.

• To consider variability for seed data in order to

generate a synthetic interval data set.

To obtain these synthetic interval data set, two standard

synthetic quantitative data sets are generated and used as

seeds to obtain the synthetic interval data sets. With regard

to the two standard synthetic quantitative data sets, both are

734 Pattern Anal Applic (2018) 21:731–740
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generated in R, and therefore, they have two standard

continuous quantitative variables.

The first data set has 100 points scattered among two

classes. Each class is a defined as an upper and lower

halves of a circumference generated from data in the same

uniform distribution plus Gaussian noise, then the upper

class was shifted to increase the proximity between classes.

The second data set has 150 points distributed in two

classes of unequal sizes, the first class has 100 points, and

the second has 50. Both classes were designed as circum-

ferences with the same origin, but each class has a different

radius and is generated from data in an independent uni-

form distribution with Gaussian noise.

The quantitative data set 1 is generated by the following

parameters:

Class 1 X1 	Uð5; 25Þ

X2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100� ðX1 � 15Þ2

q
þ 20

noise 	Nð0; 1Þ
SX1

¼ 10

SX2
¼ �3

Class 2 X1 	Uð5; 25Þ

X2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100� ðX1 � 15Þ2

q
þ 20

noise 	Nð0; 1Þ

The quantitative data set 2 is generated by the following

parameters:

Class 1 X1 	Uð0; 40Þ

X2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
400� ðX1 � 20Þ2

q
þ 20

noise 	Nð0; 1Þ
Class 2 X1 	Uð15; 25Þ

X2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� ðX1 � 20Þ2

q
þ 20

noise 	Nð0; 1Þ

X1 is the first coordinate, X2 is given by the circle

equation, SX1
and SX2

are the values added to each coor-

dinate to force class 1 closer to class 2 and noise is a value

added to the X2 coordinate. Now to generate symbolic data

sets from these two standard quantitative data sets, a pro-

cedure where each variable is expanded to form an interval

is used.

Each data point (x1, x2) of each one of these synthetic

quantitative data sets is a seed for a vector of intervals

(rectangle) through the following procedure:

ð½x1 � c1=2; x1 þ c1=2�; ½x2 � c2=2; x2 þ c2=2�Þ

where these parameters c1 and c2 are randomly selected

from a predefined interval 1; 5½ �; 1; 10½ � or 1; 15½ �.
Therefore, from each element in the standard data set, we

generate an interval element on the synthetic interval data

set. Figure 1 presents an example of the generation of the

symbolic data sets described in this section, on the left side,

synthetic data set 1 and its corresponding symbolic coun-

terpart, on the right side, synthetic data set 2 and its corre-

sponding symbolic counterpart. These examples were

generated by choosing both c1 and c2 from the 1; 5½ � interval.

3.2 A synthetic interval data set with real seeds:

interval Iris data

As a different study case for our method, we analyze Fisher’s

Iris flower data set which is a typical test case used by the

machine learning community. This classical data set consists

of 3 classes described by 4 continuous variables that corre-

spond to the sepal and petal length and width of each element.

Given the different nature of data our classifier is sup-

posed to address, we subject the database to the same

procedure used to generate synthetic interval-valued data in

previous subsection.

That is, the original Iris data set is subjected to the same

procedure as the synthetic data sets 1 and 2 to generate a

symbolic Iris data set, whose variables are interval vari-

ables. The generation parameters c1 and c2 were chosen

from the same intervals used on the synthetic data sets.

Table 2 shows partially the resulting data set.

4 Experimental evaluation

In this section, the experimental evaluation is presented.

The proposed classifier (IKDA) is evaluated and compared

against three other classifiers:

5 10 15 20 25 30 35

10
15

20
25

X1

X
2

5 10 15 20 25 30 35

10
15

20
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30

X1

X
2

0 10 20 30 40

0
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30

40

X1

X
2

0 10 20 30 40

0
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40
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Fig. 1 Quantitative data sets 1 and 2 and their correspondent

Symbolic data sets
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• Logistic Regression classifier (LOGIT) where two

regressions are adjusted for each class, one regarding

the lower bounds of the interval variables and another

regarding the upper bounds of the interval variables,

allocation is given by the average of the response

obtained by each regression.

• Linear Discriminant Analysis for Interval Data (ILDA),

using the distributional approach with either definitions

A or B found in [10] and Hausdorff distance for interval

data (ILDA-A refers to ILDA using definition A and

ILDA-B refers to ILDA using definition B).

In our experiments with IKDA proposed method, the

following elements were considered:

• Polynomial kernel with degree d ¼ 1; 2; 3; 4; 5 and

Gaussian kernel with width r ¼ 0:5; 1; 3; 5; 7.

• Euclidean distance in the allocation step.

Prediction accuracy is measured by the error rate of

classification which is estimated by a Monte Carlo simula-

tion for the simulated data set with 500 replications, through

a tenfold cross-validation for the synthetic data set with real

seed and through the leave-one-out method for the real data

sets. On the framework of a Monte Carlo simulation, test

and learning sets are randomly selected from each synthetic

interval data set. The learning set corresponds to 75% of the

original data, and the test data set corresponds to 25%.

4.1 Synthetic data sets with synthetic seeds

Tables 3 and 4 present the average and standard deviation

(in parenthesis) of the error rate for IKDA method and

interval data set 1 and Tables 5 and 6 for IKDA method and

interval data set 2. Table 7 shows error rate averages for

LOGIT and ILDA methods. From the results in these

tables, some remarks are listed.

• For interval data set 1, it can also be seen that the small

increase in the value of the parameters did not cause an

increase in performance when the polynomial kernel

was used; however, it was the opposite when the

Gaussian kernel was used.

• For interval data set 1, the best result regarding

polynomial kernel is with d ¼ 1 and the best result

Table 2 Interval iris data set

from original variables
X1 X2 X3 X4 Class

Iris data set

[3.3857, 6.8143] [1.6483, 5.3517] [0.6034, 2.1966] ½�3:1042; 3:5042� setosa

[2.0835, 7.7165] ½�0:3997; 6:3997� [0.0071, 2.7929] ½�0:7503; 1:1503� setosa

[0.0586, 9.3414] ½�0:4843; 6:8843� [0.1645, 2.4355] ½�0:8342; 1:2342� setosa

[3.392, 5.808] [1.5703, 4.6297] ½�0:0466; 3:0466� ½�2:7881; 3:1881� setosa

[2.0601, 7.9399] [0.5454, 6.6546] ½�2:2488; 5:0488� ½�3:8565; 4:2565� setosa

[3.2657, 7.5343] ½�0:2905; 8:0905� [0.0098, 3.3902] ½�1:581; 2:381� setosa

[3.5732, 5.6268] ½�0:6209; 7:4209� ½�2:0674; 4:8674� ½�2:626; 3:226� setosa

[0.8362, 9.1638] ½�0:8858; 7:6858� ½�3:249; 6:249� ½�1:8626; 2:2626� setosa

..

. ..
. ..

. ..
. ..

.

[4.2421, 9.7579] [0.7487, 5.6513] [3.8281, 5.5719] ½�2:675; 5:475� versicolor

[4.4519, 8.3481] ½�1:219; 7:619� [2.4064, 6.5936] ½�1:1289; 4:1289� versicolor

[3.2846, 10.5154] [1.3495, 4.8505] [1.4284, 8.3716] [0.4523, 2.5477] versicolor

[3.1032, 7.8968] ½�1:9712; 6:5712� [1.6533, 6.3467] [0.5772, 2.0228] versicolor

[4.668, 8.332] ½�1:2205; 6:8205� [1.6073, 7.5927] ½�3:3725; 6:3725� versicolor

[2.9017, 8.4983] [1.1164, 4.4836] [0.943, 8.057] [0.1527, 2.4473] versicolor

[1.7103, 10.8897] [1.4133, 5.1867] [0.7691, 8.6309] ½�2:4553; 5:6553� versicolor

[3.2687, 6.5313] ½�0:5674; 5:3674� [1.4328, 5.1672] ½�0:4272; 2:4272� versicolor

..

. ..
. ..

. ..
. ..

.

[2.6082, 10.9918] [1.8836, 4.5164] [2.6022, 9.1978] [1.6735, 2.9265] virginica

[3.9923, 9.4077] [2.7687, 3.8313] [2.404, 8.996] [1.7886, 3.2114] virginica

[4.2811, 9.1189] ½�1:4358; 7:4358� [2.4587, 7.9413] ½�0:856; 5:456� virginica

[3.6448, 8.9552] ½�1:2468; 6:2468� [3.0853, 6.9147] ½�1:7393; 5:5393� virginica

[5.6545, 7.3455] ½�1:8079; 7:8079� [4.0121, 6.3879] ½�0:3619; 4:3619� virginica

[4.6869, 7.7131] [0.207, 6.593] [2.7139, 8.0861] [1.7564, 2.8436] virginica

[4.7226, 7.0774] ½�0:1174; 6:1174� [2.4278, 7.7722] [0.4576, 3.1424] virginica
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regarding Gaussian kernel is with r ¼ 7. Under these

conditions the Gaussian kernel is slightly superior

polynomial kernel. This is expected since the interval

data set 1 has weak nonlinear separation when

compared to interval data set 2.

• For interval data set 2, which shows a greater degree of

nonlinear separation than that of the interval data set 1,

the Gaussian kernel is superior to the polynomial kernel

for any value of r 2 f0:5; 1; 3; 5; 7g.
• The linear classifiers obtained bad performance, overall

only comparable with the worse results from the

nonlinear classifiers.

4.2 Synthetic data sets with real seeds

Tables 8 and 9 present the average and standard deviation

of the error rate for the IKDA classifier regarding the

synthetic interval data set with real seeds using for c the

intervals [1, 5], [1, 10] and [1, 15]. Table 10 shows the

average and standard deviation of the error rate for LOGIT,

ILDA-A and ILDA-B classifiers.

The results in these tables show that the IKDA method

with polynomial kernel had better performance than

Gaussian kernel for parameter d ¼ 1 for each interval of

uncertainty introduced in the data set; however, despite the

polynomial kernel obtaining the best results, overall the

Gaussian kernel was more successful. This effect can be

due to the fact that the original iris data set has linearly

separable classes and the polynomial kernel is similar to a

linear model, being well adjusted for the parameters cho-

sen. The linear classifiers had overall lower accuracy than

both methods using kernels.

4.3 Real breast temperature interval data set

As stated in [15], ‘‘Most work on the analysis of breast

thermal images provide classification results using the

accuracy, specificity and sensitivity measures or/and also

present the corresponding ROC curves of their methods,’’

this is mostly due to a type I error approach, that is, most

works are interested in classifying correctly malignant

abnormalities class more than other classes (also reflected

in our representation of this problem as a binary problem).

Global misclassification/accuracy alone analyzes the

overall correctness of classification, but cannot identify if

the class of interest has a good detection rate, which jus-

tifies other measures being calculated and presented toge-

ther with accuracy/misclassification values. Researchers in

the medical field value sensitivity [16–18] because classi-

fying wrongly patients that should be allocated to the

malignant abnormalities class may lead directly to their

death.

Therefore, in our analysis we prioritize sensitivity fol-

lowed by global misclassification rate in this specific order.

Table 11 presents confusion matrices for the IKDA pro-

posed method using polynomial kernel with parameter

d ¼ 1, d ¼ 2, d ¼ 3, d ¼ 4 and d ¼ 5 and Table 12 pre-

sents confusion matrices for the IKDA proposed method

using Gaussian kernel with r ¼ 0:5, r ¼ 1, r ¼ 3, r ¼ 5

Table 3 Average (in %) and standard deviation of the error rate for

IKDA approach, synthetic data set 1 and polynomial kernel

Chosen c d ¼ 1 d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5

[1, 5] 3.33 5.56 6.14 6.36 7.42

(3.26) (3.67) (4.38) (4.41) (4.47)

[1, 10] 2.00 4.00 4.62 7.45 8.67

(2.56) (3.36) (3.80) (4.49) (4.59)

[1, 15] 2.14 3.49 5.38 6.15 7.03

(2.63) (3.14) (4.07) (4.19) (4.50)

Table 4 Average (in %) and standard deviation of the error rate for

IKDA approach, synthetic data set 1 and Gaussian kernel

Chosen c r ¼ 0:5 r ¼ 1 r ¼ 3 r ¼ 5 r ¼ 7

[1, 5] 4.28 3.79 2.32 2.09 2.29

(3.69) (3.48) (2.79) (2.67) (2.68)

[1, 10] 4.45 4.62 1.37 0.90 0.48

(3.78) (3.93) (2.61) (2.39) (1.74)

[1, 15] 9.21 7.80 3.00 2.50 2.45

(5.20) (4.99) (3.33) (2.85) (2.77)

Table 5 Average (in %) and standard deviation of the error rate for

IKDA approach, synthetic data set 2 and polynomial kernel

Chosen c d ¼ 1 d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5

[1, 5] 50.22 35.97 32.52 33.28 33.09

(9.04) (6.26) (5.90) (5.72) (5.96)

[1, 10] 49.60 35.40 31.76 31.62 31.65

(9.03) (6.40) (5.54) (5.78) (5.96)

[1, 15] 51.39 17.07 13.54 13.70 13.93

(4.83) (2.87) (2.44) (2.47) (2.55)

Table 6 Average (in %) and standard deviation of the error rate for

IKDA approach, synthetic data set 2 and Gaussian kernel

Chosen c r ¼ 0:5 r ¼ 1 r ¼ 3 r ¼ 5 r ¼ 7

[1, 5] 7.37 4.87 2.71 2.71 2.43

(4.01) (3.73) (2.90) (2.84) (2.63)

[1, 10] 15.27 10.56 5.48 3.14 2.28

(5.68) (5.21) (3.74) (3.12) (2.80)

[1, 15] 8.01 7.62 4.85 3.78 3.27

(2.40) (2.33) (2.11) (1.80) (1.71)
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and r ¼ 7, respectively. The best performances of the

IKDA method are achieved with d ¼ 1 and r ¼ 5 and 7 for

polynomial and Gaussian kernels, respectively.

Table 13 displays the confusion matrices for the LOGIT,

ILDA-A and ILDA-B classifiers. The LOGIT method is

inferior to the ILDA-A and ILDA-B ones in terms of correct

predicted classifications of malign abnormalities class, but

superior in terms of overall correct predicted classifications.

The global misclassification rate and sensitivity index

are computed from the previous tables. Sensitivity index

represents the proportion of actual positives samples which

are correctly identified as such and plays an important role

in medical field as it related to the ratio between the true

positive and true negative observations. The sensitivity can

be calculated as

SenðiÞ ¼ TPi

TPi þ FNi

ð16Þ

where TPi = True positive for class i and FNi = False

Negative for class i.

Table 7 Average (in %) and

standard deviation of the error

rate for LOGIT and ILDA

classifiers and synthetic data

sets 1 and 2

Chosen c Synthetic data set 1 Synthetic data set 2

LOGIT ILDA-A ILDA-B LOGIT ILDA-A ILDA-B

[1, 5] 50.00 50.00 50.00 32.45 66.65 66.23

(0.00) (0.00) (0.00) (0.38) (5.59) (6.72)

[1, 10] 50.00 50.00 50.00 32.49 64.26 63.28

(0.00) (0.00) (0.00) (0.87) (10.26) (11.51)

[1, 15] 50.00 50.00 50.00 71.27 28.73 31.37

(0.00) (0.00) (0.00) (0.20) (0.00) (10.26)

Table 8 Average (in %) and standard deviation of the error rate for

IKDA approach, synthetic interval data set with real seeds and

polynomial kernel

Chosen c d ¼ 1 d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5

[1, 5] 6.46 10.53 11.86 15.93 19.80

(5.48) (7.68) (7.14) (8.17) (10.56)

[1, 10] 4.06 29.26 27.73 38.13 35.46

(5.43) (11.25) (11.70) (13.19) (12.89)

[1, 15] 6.46 50.26 33.40 50.00 40.20

(5.48) (13.49) (11.01) (10.93) (11.03)

Table 9 Average (in %) and standard deviation of the error rate for

IKDA approach, synthetic interval data set with real seeds and

Gaussian kernel

Chosen c r ¼ 0:5 r ¼ 1 r ¼ 3 r ¼ 5 r ¼ 7

[1, 5] 24.20 21.86 16.80 14.80 13.60

(6.96) (7.45) (7.17) (7.42) (7.54)

[1, 10] 17.40 11.80 9.86 9.80 8.93

(9.14) (8.16) (7.91) (7.13) (7.58)

[1, 15] 18.26 14.46 9.40 8.86 9.20

(9.44) (7.70) (6.38) (6.18) (6.21)

Table 10 Average (in %) and standard deviation of the error rate for

LOGIT and ILDA classifiers and synthetic interval data set with real

seeds

Chosen c LOGIT ILDA-A ILDA-B

[1, 5] 65.20 66.67 66.67

(3.21) (0.00) (0.00)

[1, 10] 66.67 66.67 66.67

(0.00) (0.00) (0.00)

[1, 15] 66.67 66.67 66.67

(0.00) (0.00) (0.00)

Table 11 Confusion matrix for the IKDA classifier with polynomial

kernel

Class Predict Total

Non-malign Malign

d = 1

Non-malign 26 10 36

Malign 4 10 14

Total 30 20 50

d = 2

Non-malign 27 9 36

Malign 6 8 14

Total 33 17 50

d = 3

Non-malign 27 9 36

Malign 6 8 14

Total 33 17 50

d = 4

Non-malign 27 9 36

Malign 6 8 14

Total 33 17 50

d = 5

Non-malign 26 10 36

Malign 5 9 14

Total 31 19 50
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The overall misclassification rate and sensitivity index

for the malignant class and IKDA, LOGIT, ILDA-A and

ILDA-B methods are presented in Table 14. The results

show that the best value of sensitivity index, which is

extremely important for medical studies, is achieved with

the IKDA method using Gaussian kernel (r ¼ 5 and r ¼ 7)

and ILDA-A and ILDA-B models. Among these three

methods, the IKDA one had the best overall misclassifi-

cation rate.

5 Conclusions

This work introduced a kernelized classifier for interval-

valued data. It was based on the generalized discriminant

analysis (GDA) for its ability to solve nonlinearly separa-

ble problems. Here, the inner product for interval is ker-

nelized as a resulting summation of multiple identical

kernel functions applied to different bounds of each inter-

val-valued variable. The proposed method is a general-

ization of the GDA to treat symbolic interval data

regarding nonlinearly separable classes.

Two types of kernel functions were used to evaluate the

behavior of the proposed classifier. Its performance was

assessed by the global error rate based on different con-

figurations of synthetic interval data sets. An application

with a Brazilian’s thermography breast database was con-

sidered, and the performance was assessed by the sensi-

tivity index, which is extremely important for medical

studies and global misclassification rate. The study of

performance analysis allowed to confirm the usefulness of

the proposed method in regard to interval data in nonlin-

early separable class problems when compared with other

classifiers of the symbolic data analysis literature.
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