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Abstract This paper addresses learning in complex sce-

narios involving imbalance and overlap. We propose a

novel measure, the Augmented R-value, for estimating the

level of overlap in the data. It improves an existing model-

based measure, by including the data imbalance in the

estimation process. We provide both a theoretical demon-

stration and empirical validations of the new metric’s

efficacy in estimating the overlap level. Another contri-

bution of the present paper is to propose a collection of

meta-features to be used in conjunction with a meta-

learning strategy for predicting the most suitable classifier

for a given problem. The evaluations performed on a well-

known collection of benchmark problems have shown that

the meta-learning approach achieves superior results to the

manual classifier selection process normally carried out by

data scientists. The analysis of the results obtained by the

meta-feature selection step has confirmed the power of the

Augmented R-value in predicting the expected perfor-

mance of classifiers in such complex classification sce-

narios. Also, we found that the overlap is a more serious

factor affecting the performance of classifiers than

imbalance.

Keywords Imbalance � Overlap � Augmented R-value �
Meta-classification

1 Introduction

One of the current important challenges in data mining

research is classification under an imbalanced data distri-

bution. This issue appears when a classifier has to identify a

rare, but important case. Domains in which class imbalance

is prevalent include fraud or intrusion detection, medical

diagnosis, risk management, text classification and infor-

mation retrieval [9]. In such domains, all traditional clas-

sifiers fail to achieve a satisfactory performance level, due

to several causes, such as the use of an inappropriate

optimization criterion, which favors the identification of

the majority cases, or the co-occurrence of other data-re-

lated factors/phenomena, which in conjunction with the

data imbalance accelerate the performance drop beyond

levels which could be reached by their combination, where

these phenomena are independent. One such data-related

factor is the overlap of the class boundaries. Recent studies

[11, 13] attempt to characterize the joint expected effect of

data imbalance and overlap. Their findings suggest that, in

isolation, overlap degrades performance more severely

than imbalance. However, when the two co-occur, their

joint impact on performance is more serious than expected.

If the imbalance problem has been extensively studied

within the scientific community, the overlap problem has

received comparatively less attention.

This paper focuses on providing a meta-learning-based

solution to the challenging classification scenario involving

imbalance and overlap. We propose a minimal set of meta-

features which capture important dataset characteristics,

such as imbalance, overlap and complexity, and enhance
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the correct choice of the best classifier for the specific

problem. We propose a novel overlap metric, which adapts

a previous general metric to imbalanced scenarios. We

show that the newly proposed metric captures the severity

of the problem better than the initial formulation. We

perform an extensive experimental evaluation of the pro-

posed meta-learning approach, both with and without a

prominent preprocessing strategy for imbalanced learning

problems—SMOTE [9]. Our results indicate that the meta-

learner is able to correctly identify the most appropriate

classifier. Also, we attempt to validate the proposed feature

set empirically and find that the overlap and the com-

plexity-related measures are the most important, while the

imbalance ratio is the least significant.

The rest of the paper is organized as follows: the next

section briefly presents the problem we address in the

paper: the joint occurrence of the data imbalance and

overlap. Section 3 introduces a new metric for estimating

data overlap in imbalanced problems, which extends and

improves an existing overlap measure. Section 4 presents a

meta-learning-based strategy we consider for handling

complex real scenarios involving data imbalance and

overlap. Section 5 describes the experimental evaluations

performed on the new overlap metric and the meta-learning

strategy and discusses the results obtained. Section 6 pre-

sents several important aspects related to imbalanced

classification and briefly presents the meta-learning-driven

classifier selection problem; it is intended as an overview

of the domain for readers less acquainted with it. Section 7

presents the concluding remarks.

2 Imbalance and overlap

A classification problem is imbalanced if, in the available

data, a certain class is represented by a very small number

of instances compared to the other classes [18]. In prac-

tice, the problem is generally addressed with two-class

problems, multi-class problems being transformed into

binary. As the minority instances are of greater interest,

they are referred to as positive instances (positive class);

the majority class is referred to as the negative class.

Imbalanced problems constitute a challenge due to the

fact that most traditional classifiers are affected by the

class imbalance problem to some extent [18, 35]. More-

over, since classifiers possess separate biases, they

respond differently to different data imbalance-related

factors.

Initial efforts to study the loss of performance in

imbalance scenarios focused on characterizing the skewed

data distribution, via the imbalance ratio (IR), defined as

the ratio between the number of cases of the majority and

the minority of cases. Also, the role of training set size and

concept complexity in imbalance scenarios has been rela-

tively early acknowledged [19], and a meta-feature which

attempts to estimate their joint occurrence has been pro-

posed in [20]. More recently, the focus has started to shift

toward the analysis of several data intrinsic characteristics,

which, although do not form a canonical set of data-related

issues, have been shown to bear an important role in the

level of performance which can be achieved by the clas-

sifiers [24].

Overlapping of the class separation boundaries is such a

data characteristic. It appears when regions of the data

contain similar quantities of training data from every class.

Consequently, classifiers have difficulties distinguishing

between the two classes in such areas. Experiments per-

formed on artificial datasets have indicated that the

imbalance ratio in the overlapping area has a greater

influence on performance than the size of the overlapping

area [13]. Also, in [11] the authors analyze the SVM

behavior in scenarios considering imbalance, small sample

size and overlap. Their results reveal that overlap is a more

serious problem than the imbalance. However, when the

two co-occur, the SVM performance degrades significantly

(more than the accumulated effect of the individual

factors).

We believe the co-occurrence of imbalance and overlap

to be an important problem for several reasons: first, most

real-world problems possess a certain level of class

boundary overlap and imbalance; secondly, their co-oc-

currence seriously affects classification performance, as

revealed by numerous research papers; third, we believe

this phenomenon can be characterized quantitatively; and

thus, the behavior of classifiers can be improved in such

scenarios. A broader discussion on the imbalance problem

and other intrinsic data characteristics is presented in

Sect. 6.

3 Augmented R-value

One of the important results of the current research is the

proposal of an overlap measure which characterizes the

level of overlap present in an imbalanced problem. Our

proposed measure—the Augmented R-value—adapts the

existing R-value overlap measure, introduced in [26]. We

present a formal proof, as well as an intuitive motivation of

its efficacy. The experiments performed in Sect. 5 on both

artificially generated and benchmark datasets further sup-

port the validity of the metric.

The original R-value is based on the intuition that:

Definition 1 An instance from class c belongs to an

overlapping region if out of its k nearest neighbors, at least

hþ 1 belong to a class other than c.
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The R-value of a class is estimated as the portion of its

instances belonging to overlapping regions, an example of

which is represented in Fig. 1 by the gray band. The

evaluations performed in [26] indicate that the R-value

correlates quite well with classifier accuracy.

In order to introduce the formal definitions for R-value

and the Augmented R-value, we introduce the following

notations:

• n the number of classes

• Ci the set of instances belonging to class i

• U the set of all instances, U ¼ C1 [ C2 [ . . . [ Cn

• Pi;m the m-th instance of class i

• kðxÞ ¼ 1; if x[ 0

0; otherwise

�

• kNN(P, S) the subset of k nearest neighbors of instance

P that belong to the set of instances S

• h threshold value on the number of different class

neighbors for considering an instance as belonging to

an overlap region

The R-value of a class i is defined in Eq. (1) and can be

interpreted as the portion of instances belonging to class i

which fulfill the condition in 1.

RðCiÞ ¼
1

Cij j
XCij j

m¼1

k kNNðPi;m;U � CiÞ
�� ��� h
� �

ð1Þ

The R-value of a dataset f is defined in Eq. (2) and captures

the portion of instances belonging to all classes, which

fulfill the condition presented in 1.

Rðf Þ ¼ 1

Uj j
Xn

i¼1

XCij j

m¼1

kðjkNNðPi;m;U � CiÞj � hÞ ð2Þ

It follows that, for estimating the level of overlap using the

R-value, two main parameters have to be set: k, the number

of the nearest neighbors to consider and h, defined above.

The authors of [26] recommend to set the value for h within

the range [0, k / 2]. According to [26], in all our further

experiments, we employ k ¼ 7 and h ¼ 3, i.e., an instance

be considered to belong to an overlap region if at least 4

out of its 7 nearest neighbors belong to another class.

We have calculated the R-value for several imbalanced

binary classification problems from the KEEL repository

[2]. Table 1 presents the values obtained for four datasets.

We have also recorded the AUC value of a decision tree

classifier and the imbalance ratio of the dataset. One can

observe that 1 � Rðf Þ is almost constant for these imbal-

anced datasets, whereas the performance drops as the IR

increases.

We assert that the imbalance should also be considered

when estimating the degree of overlap. Thus, if we con-

sider that the positive class is the minority class and U ¼
Cneg [ Cpos and Cneg \ Cpos ¼ £, the R-value of a dataset

becomes:

Rðf Þ ¼ 1

Cneg

�� ��þ Cpos

�� ��

�
XCposj j

m¼1

kðjkNNðPpos;m;CnegÞj � hÞ

0
@

þ
XCnegj j

m¼1

kðjkNNðPneg;m;CposÞj � hÞ

1
A ð3Þ

which is equivalent to:

Rðf Þ ¼ 1

Cneg

�� ��þ Cpos

�� �� Cneg

�� ��RðCnegÞ þ Cpos

�� ��RðCposÞ
� �

ð4Þ

Provided that Cpos

�� �� 6¼ 0, we can simplify the equation by

Cpos

�� �� and use the definition of the imbalance ratio,

IR ¼ jCnegj
jCposj:

Rðf Þ ¼ 1

IR þ 1
IR � RðCnegÞ þ RðCposÞ
� �

ð5Þ

As the imbalance increases, the R-value of the majority

class possesses an increasingly larger weight than the R-

value of the minority class (Eq. 5). Thus, for large

Fig. 1 Non-overlapping and

overlapping areas, together with

decision boundaries of a

DTREE
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imbalance ratios, the R-value of a dataset remains almost

constant, since the few minority cases contribute very little

to its value:

lim
IR!1

Rðf Þ ¼ RðCnegÞ ð6Þ

This phenomenon is captured in the results presented in

Table 1: as IR increases, the R-value changes very little,

whereas the performance drops significantly. Intuitively,

for binary classification, the contribution of the majority

class overlap to the overall overlap should not be directly

proportional to the number of negative instances, since the

majority of its instances are not located in the overlap

region with a high probability. An analogous reasoning can

be applied to the contribution of the minority class overlap.

Consequently, we introduce the Augmented R-value of a

dataset, by weighting the R-value of a class by jU � Cij
instead of jCij:

Raugðf Þ ¼
1

Cneg

�� ��þ Cpos

�� ��
� Cpos

�� ��RðCnegÞ þ Cneg

�� ��RðCposÞ
� �

ð7Þ

which simplified by jCposj results in:

Raugðf Þ ¼
1

IR þ 1
RðCnegÞ þ IR � RðCposÞ
� �

ð8Þ

For IR ¼ 1, the Augmented R-value is equal to the R-value

of a dataset. For large imbalance datasets, the Augmented

R-value gets close to the R-value of the positive class:

lim
IR!1

Raugðf Þ ¼ RðCposÞ ð9Þ

In Fig. 2 several artificially generated datasets have been

plotted together with their R-value, Augmented R-value

and imbalance ratio. The datasets on the first row try to

capture the behavior for changing values of IR, whereas the

datasets on the second row have the same IR and varying

levels of overlap.

In the generation process of the datasets, only two

numerical features were considered: X (horizontal axis) and

Y (vertical axis). For generating the datasets on the first

row, X and Y were randomly drawn from a uniform dis-

tribution of [0, 10) and the imbalance ratio was gradually

reduced from 10 to 1. For the datasets on the second row,

the imbalance ratio was kept constant at 6. Let Nðl; r2Þ be

the normal distribution with mean l and scale r. The

feature values of the majority class were drawn from

Nð5; 4Þ. The X values of the minority class were drawn

from Nðl; 1Þ, with l gradually increasing, while the values

of Y were drawn from Nð5; 1Þ.
If we look at the scatter plots in Fig. 2 we can observe

that the R-value exhibits little variation to the different

generation scenarios, whereas the Augmented R-value

changes appropriately, according to the ‘‘intuitive’’ degree

of overlap. It can also be observed that for higher imbal-

ance values the Augmented R-value places a larger weight

on false-negative errors, but also takes into consideration

the false-positive rate.

Since it is based on kNN, the Augmented R-value of a

dataset is directly proportional to the portion of the

minority instances that would be incorrectly classified by

the kNN classifier. Thus, it is expected that 1 � Raugðf Þ has

a strong positive correlation with the performance of the

kNN classifier.

4 Proposed meta-learning approach

Considering that there is no best-suited preprocessing

strategy or best imbalance-specific classifier, which

achieves good performance on any imbalanced problem,

we believe that extracting a relevant set of meta-features

and employing them within a meta-learning framework

could provide a more valuable solution to issues arising

from the imbalance and other data-related factors. Conse-

quently, this section presents the meta-features we propose,

which focus specifically on capturing the imbalance, the

overlap and the complexity of the problem and we briefly

describe the overall meta-learning approach. Last, we

present the feature selection strategy we employed in the

next section to validate our feature set empirically. How-

ever, we begin with a brief overview of the selected base

classifiers, since several meta-features are based on them.

4.1 Base classifiers

1. Support vector machine [10] with a polynomial kernel

of degree 1 hereafter referred to as SVM1.

2. Support vector machine with a polynomial kernel of

degree 3 hereafter referred to as SVM3.

3. C4.5 Decision tree [29] pruned, with a confidence level

of 0.25, hereafter referred to as DTREE.

The choice of SVM1 and DTREE can be motivated by the

fact that they represent two of the most utilized traditional

classification methods, their behavior being extensively

Table 1 AUC, imbalance ratio, 1-R for 4 imbalanced datasets

AUC IR 1-R

Ecoli1 0.860 3.363 0.913

Ecoli3 0.727 8.6 0.931

Glass4 0.792 15.461 0.953

Yeast4 0.595 28.098 0.964
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studied in imbalance scenarios as well. The SVM3 classi-

fier earned its place among the selected classifiers, because

it can identify more complex decision surfaces than SVM1.

4.2 Meta-features

This section describes the pool of proposed meta-features.

They can be divided into three classes, each focusing on a

specific problem characteristic:

• imbalance imbalance ratio

• overlap Augmented R-value, Fisher’s maximum dis-

criminant ratio

• complexity instances per attributes ratio, number of

support vectors generated by SVM1, number of support

vectors generated by SVM3, number of leaves of

DTREE

The imbalance ratio (IR) is defined as the ratio between the

number of instances of the majority class and the number

of instances of the minority class. If the positive class is the

minority class, then:

IR ¼ jCnegj
jCposj

ð10Þ

Even if previous studies suggest that there is little corre-

lation between the imbalance ratio and the expected clas-

sifier performance [24, 25], we have included it in the

meta-features pool, as the representative metric for quan-

tifying the level of imbalance in a dataset.

Fisher’s discriminant ratio [25] for feature i is defined

as:

fi ¼
ðli;1 � li;2Þ2

r2
i;1 þ r2

i;2

ð11Þ

where li;1, li;2, ri;1, ri;2 are the means and variances of

feature i belonging to class 1 and 2, respectively.

The authors in [25] justify that it is enough to consider

Fisher’s maximum discriminant ratio:

F1 ¼ maxðf1; f2; . . .; fkÞ ð12Þ

where k is the number of features, since in multiple

dimensions one discriminating feature is enough to

increase the separability of classes.

The instances per attributes ratio (IAR) is defined as the

ratio between the number of instances (N) and the number

of features (|A|) [20]:

IAR ¼ N

jAj ð13Þ

It tries to provide a simple, straightforward measure for the

complexity of a dataset. The evaluations performed in [20]

indicate that classifier performance improves at larger IAR

values.

The number of support vectors is another estimate we

consider for the complexity of the dataset. Intuitively, if

their number is high, i.e., we have many data points close

the decision surface, the classes are hard to separate. We

compute this feature for both SVM1 and SVM3.

A third measure for the complexity of a dataset is the

number of leaves of a decision tree model. This meta-

feature is frequently employed in the literature, as a model-

based meta-feature [30]. In [18] the authors estimate

Fig. 2 Plots of datasets with R, Raug and IR
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dataset complexity as log L, where L is the number of

leaves generated by an unpruned decision tree. In order to

keep the magnitude of this feature comparable to the

number of support vectors and since the decision tree

algorithm we used performs pruning (as default setting),

we used the actual number of leaves as meta-feature.

4.3 Meta-learning strategy

The objective of the meta-classification strategy is twofold:

• to demonstrate that it is possible to select best

classifiers based on meta-features for datasets and the

average performance competes with the usual strategy

of classifier selection based on cross-validation

• to prove the efficacy of the Augmented R-value as a

meta-feature

Arguably, the goal of a meta-learning strategy is generally

to indicate the most appropriate classifier for a new prob-

lem without having to run computationally intensive cross-

validation experiments. Although this objective is realistic,

our primary goal is to increase classification performance

on any given problem which exhibits both imbalance and

overlap. We employ several meta-features which imply

training the classifiers on the datasets, such as the number

of support vectors and number of nodes in the decision tree,

and the two metrics for estimating overlap—the R-value

and the Augmented R-value.

The different phases of the process are presented in

Fig. 3. In the meta-training set generation phase, the col-

lection of available training datasets is evaluated. For each

dataset, the meta-features and the classifier achieving the

highest AUC score among the classifiers presented in

Sect. 4.1 are retained. The collected meta-features together

with the best classifier as the nominal class label form the

training set for the meta-classifier. The meta-classifier is a

logistic regression classifier model. The motivation behind

selecting this classifier is that it is simple and robust against

overfitting.

During the meta-model building phase, we introduced a

feature selection step. We employed classifier subset

evaluation [17], which evaluates the feature subset on the

training data and utilizes logistic regression to estimate the

merit of a feature subset in conjunction with linear forward

selection search method [16]. This process is repeated,

varying the threshold for the maximal number of selected

features between 2 and 7. During each iteration, the merit

of a feature subset is estimated as the average AUC value

obtained via tenfold cross-validation. The threshold value

achieving the highest AUC is then used for training the

final classifier. The feature selection process is illustrated in

listing 1.

Even though this attribute selection method is slow in

general, we employ a maximum of 7 meta-features; the

meta-classification strategy achieves good performance

even with a small number of meta-features. Also, it can be

reasonably assumed that the number of meta-instances is

small. Therefore, the running time of the meta-classifier is

dominated by training the logistic regression on small

dataset multiple times. The training time of logistic

regression is actually independent of the sample sizes of

the original datasets.

5 Experimental evaluation

The experimental evaluation considers two different

objectives. The first one is to study comparatively the R-

value and the Augmented R-value metrics, on both

benchmark and artificially generated data. We take this

opportunity to study also the influence of IR on the per-

formance of classifiers. The second objective is to evaluate

the performance of the meta-learning strategy for recom-

mending the most appropriate classifier, given the proposed

collection of meta-features. This evaluation is conducted

on benchmark data. We also perform an analysis of the

importance of each meta-feature as resulted from the fea-

ture selection step applied in the meta-learning strategy.

The results indicate the importance of the Augmented R-

value in the performance of the meta-learning strategy.

Throughout our evaluation, we use the area under the

ROC curve [5] for measuring classifier performance.

Besides the motivation presented in Sect. 5 for the appro-

priateness of AUC for imbalanced classification, by mea-

suring classifier performance with AUC we obtain results

that are comparable to the findings presented in [24], where

the same metric is used. The benchmark data consist of a

relatively well-known collection of 66 datasets for imbal-

anced classification, obtained from the KEEL repository.

This collection has been more recently employed in [24],

and we wish to be able to compare our results with the

results presented there. Each dataset is prepared for fivefold

386 Pattern Anal Applic (2018) 21:381–395
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cross-validation—5 train and test pairs—maintaining the

original class distribution. The datasets are presented in

Table 2.

5.1 Evaluation of the Augmented R-value

The first experiment was conducted to evaluate compara-

tively the Raug, R and IR metrics in a controlled manner,

using artificially generated datasets with various levels of

imbalance and overlap. The datasets represent binary

problems having two numeric attributes each (X and Y). In

the Y dimension, the values for both classes are sampled

uniformly from [0, 1). In the X dimension, the values for

negative class instances are sampled from [0, 0.5), whereas

the values for the positive class are sampled from

½0:5 � x; 1 � xÞ, both uniformly. This generation process

allows us to define an absolute overlap measure, which is

exactly 200x, since x controls the overlap percentage of the

two bands along the X direction.

The set of artificial datasets was obtained by varying

both the overlap and imbalance. The overlap percentage

generator function is fOðnÞ ¼ 2n for n ¼ 0; 1; :::; 49,

whereas the imbalance ratio generator function is fIRðnÞ ¼
n3=2 for n ¼ 1; 2; :::; 20. During the generation process the

number of instances was kept constant. Thus, 1000 datasets

were obtained, three of them being illustrated in Fig. 4. As

evaluation metric we have employed the Pearson correla-

tion coefficient between the values of each of these metrics

and the performance of the classifiers measured with AUC.

The results of this first experiment can be found in

Table 3. We included the absolute overlap metric also as a

column, to conclude that Raug has a stronger correlation

with the absolute overlap than R, but even so, the corre-

lation moderate. This actually expected, since both R and

Raug are model-based metrics, not data based. However, we

expected that the Raug possesses strong correlation with

performance classifier, better than R, which is confirmed by

the results. Even more, Raug is better correlated with the

performance of the SVM classifiers than the absolute

overlap value; for the DTREE classifier the situation is the

opposite. The motivation for this behavior could be found

in the data generation process, which varies the overlap

Fig. 3 The phases of meta-classifier
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Table 2 Datasets from the

KEEL repository
Name #Inst. #Attrs IR Name #Inst. #Atts. IR

Glass1 214 9 1.82 Glass04vs5 92 9 9.22

Ecoli0vs1 220 7 1.86 Ecoli0346vs5 205 7 9.25

Wisconsin 683 9 1.86 Ecoli0347vs56 257 7 9.28

Pima 768 8 1.9 Yeast05679vs4 528 8 9.35

Iris0 150 4 2 Ecoli067vs5 220 6 10

Glass0 214 9 2.06 Vowel0 988 13 10.1

Yeast1 1484 8 2.46 Glass016vs2 192 9 10.29

Vehicle1 846 18 2.52 Glass2 214 9 10.39

Vehicle2 846 18 2.52 Ecoli0147vs2356 336 7 10.59

Vehicle3 846 18 2.52 Led7digit02456789vs1 443 7 10.97

Haberman 306 3 2.68 Glass06vs5 108 9 11

Glass0123vs456 214 9 3.19 Ecoli01vs5 240 6 11

Vehicle0 846 18 3.23 Glass0146vs2 205 9 11.06

Ecoli1 336 7 3.36 Ecoli0147vs56 332 6 12.28

New-thyroid2 215 5 4.92 Cleveland0vs4 177 13 12.62

New-thyroid1 215 5 5.14 Ecoli0146vs5 280 6 13

Ecoli2 336 7 5.46 Ecoli4 336 7 13.84

Segment0 2308 19 6.01 Yeast1vs7 459 8 13.87

Glass6 214 9 6.38 Shuttle0vs4 1829 9 13.87

Yeast3 1484 8 8.11 Glass4 214 9 15.47

Ecoli3 336 7 8.19 Page-blocks13vs2 472 10 15.85

Page-blocks0 5472 10 8.77 Abalone9vs18 731 8 16.68

Ecoli034vs5 200 7 9 Glass016vs5 184 9 19.44

Yeast2vs4 514 8 9.08 Shuttle2vs4 129 9 20.5

Ecoli067vs35 222 7 9.09 Yeast1458vs7 693 8 22.1

Ecoli0234vs5 202 7 9.1 Glass5 214 9 22.81

Glass015vs2 172 9 9.12 Yeast2vs8 482 8 23.1

Yeast0359vs78 506 8 9.12 Yeast4 1484 8 28.41

Yeast02579vs368 1004 8 9.14 Yeast1289vs7 947 8 30.56

Yeast0256vs3789 1004 8 9.14 Yeast5 1484 8 32.78

Ecoli046vs5 203 6 9.15 Ecoli0137vs26 281 7 39.15

Ecoli01vs235 244 7 9.17 Yeast6 1484 8 39.15

Ecoli0267vs35 224 7 9.18 Abalone19 4174 8 128.87

Fig. 4 Plots of synthetic datasets with various degrees of overlap and imbalance
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level, while keeping other factors which might affect

classifier learning constant (e.g., data distribution).

We have also performed an analysis on the efficacy of

the Augmented R-value in comparison with R-value and

the other meta-features on the 66 KEEL benchmark data-

sets. We employed the same evaluation strategy as before.

The results are presented in Table 4. Raug possesses the

highest correlation out of the three meta-features for all

three classifiers considered. Its absolute value indicates a

moderate to strong negative correlation with the perfor-

mance of classifiers. The correlation of IR with classifier

performance can be labeled as weak negative, confirming

that the imbalance is not necessarily the only factor

affecting performance. We believe the results validate that

Raug is more appropriate as overlap metric in imbalanced

scenarios than R.

5.2 Evaluation of the meta-classification strategy

The second set of experiments focuses on assessing the

performance of the meta-classification strategy and pro-

vides an analysis of the efficacy of the proposed meta-

features, highlighting the importance of the Augmented R-

value. The evaluation of the meta-classifier was performed

in two steps. First, we assessed the performance of the

meta-classifier in predicting the best base classifier (i.e.,

SVM1, SVM3 or DTREE). We included SMOTE in these

evaluations as well, to investigate whether the meta-

learning strategy is affected by the application of prepro-

cessing methods. Therefore, we generated balanced distri-

bution versions for all the datasets. Thus, we ended up with

a collection of 132 datasets, each having 5 train–test cross-

validation pairs. Each dataset was then represented by the

meta-features as an instance in the meta-classifier’s train-

ing set having the best performing classifier as class label.

We performed a 11-fold cross-validation on this set, and

we also reported the performance on the training set, to

check for potential overfitting behavior. Table 5 presents

the results obtained for this evaluation. The results indicate

there seems to be no overfitting, and the meta-classifier

achieves a 0.765 average AUC value on the three-class

problem of predicting the best classifier.

However, in practical situations, the goal is to have a

good performance on a given dataset and reduce the risk of

selecting an inappropriate classifier for the new problem.

Therefore, in the second step, we evaluated the actual

average performance achieved by the base classifiers pre-

dicted by the meta-classifier and reported the average of

their AUC score. To perform a fair evaluation at this step,

we defined 11 dataset folds. When predicting for a dataset

in fold ftest, the meta-classifier was trained on training data

formed by all meta-instances of the datasets belonging to

other folds than ftest. We have compared this performance

to the average performance of the base classifiers, the

baseline performance and the maximum achievable per-

formance. The maximum achievable performance is the

average of the AUC scores of the best classifiers for each

dataset, which is equivalent to the predictions of a perfect

meta-classifier. The baseline performance is obtained by

selecting the classifier which achieves the highest average

AUC score in the fivefold cross-validation process per-

formed on the training sets.

The performance of the meta-classifier should be better

than the one achieved by the baseline recommender. This

would validate the idea that making an informed decision

on which classifier to use for a new dataset, by inspecting

the dataset characteristics, is better than selecting the best

average performer indicated by a cross-validation process

performed on the dataset.

Upon collecting the predictions for each dataset, we

evaluated the classifiers indicated by the predictions and

measured their average AUC. We have done this both on

the ‘‘raw’’ datasets and their modified versions obtained by

applying the SMOTE over-sampling method. Table 6

presents these results. The average AUC values achieved

by SVM1 and DTREE are comparable with the values

Table 3 The correlations between overlap, IR, R measures and

classifier AUC on synthetic data

Abs. overlap SVM1 SVM3 DTREE

Abs. overlap -0.490 -0.752 -0.870

IR -0.489 -0.321 -0.166

R 0.27 0.149 0.019 -0.138

Raug 0.462 -0.903 -0.782 -0.527

Table 4 The correlations between metrics and AUCs on benchmark

data

SVM1 SVM3 DTREE

IR -0.259 -0.338 -0.3133

R -0.360 -0.330 -0.289

Raug -0.663 -0.697 -0.540

Table 5 Weighted AUC, precision and recall for the 3-class meta-

classification problem

AUC Precision Recall

Train 0.850 0.721 0.719

11-Fold CV 0.765 0.634 0.636
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reported in [24]. These results indicate that the meta-clas-

sification method is indeed successful at predicting the

most appropriate classifier for a specific problem; it

achieves superior performance to all the individual classi-

fiers it considers and to the baseline meta-classifier—both

on non-processed datasets and when SMOTE is applied.

We have also analyzed the suitability of the meta-fea-

tures considered, by looking at the subsets generated in the

feature selection step. For each feature, we computed a

score based on the number of times it was selected as being

part of the best resulting subset during the experiments.

The maximum achievable score is 132, i.e., 11 runs, 6 test

datasets in each run, with 2 versions of dataset—without

preprocessing and over-sampled with SMOTE. The Aug-

mented R-value is the only feature to reach the maximal

value. The second most selected feature was F1 (score =

124), and the third was the number of support vectors for

SVM3 (score = 122). IR achieved the lowest score value

(44). This confirms yet again the superiority of the Aug-

mented R-value over R-value in capturing the overlap level

in imbalanced scenarios, and the fact that the imbalance is

actually a poor indicator of expected classifier

performance.

We repeat the latter experiment with three base meta-

feature sets. The first feature set consists of all the features

defined in 4.2, except for the Augmented R-value; we

denote this set by S1. In the second set we add the original

R-value to the base set, and in the third, the Augmented R-

value, respectively. Thus, S2 ¼ S1 [ fRvalg and

S3 ¼ S1 [ fAugRvalg. The results are shown in Table 7;

they indicate that the addition of the Augmented R-value to

the base feature set produces a performance boost, signif-

icantly higher than that produced by the R-value. These

results in conjunction with Table 6 also show that the

Augmented R-value produces significant performance

improvements to the meta-learning strategy.

Since the meta-classifier uses logistic regression, it is

possible to rank the classifiers based on posterior class

distributions. The ideal ranking consists of ranking the

classifiers based on their best AUC scores, as defined in the

previous section. The normalized discounted cumulative

gain (NDCG) metric is the ratio between the ranking

generated by a classifier (DCG) to the ideal ranking

(IDCG):

DCG ¼
Xk

i¼1

2reli � 1

log2ði þ 1Þ ð14Þ

NDCG ¼ DCG

IDCG
ð15Þ

where reli is the relevance measure value for classifier at

position i. In our case k ¼ 3, since we recommend three

classifiers and the relevance measure is the AUC score. If

we calculate this measure for each dataset and take the

average, we get an empirical estimate of the ranking per-

formance of our proposed method. Table 8 presents the

NDCG values achieved by the previously defined feature

sets S1, S2 and S3. The results indicate once again that the

Augmented R-value contributes to achieving an almost

perfect ranking.

6 Current state in imbalanced classification

This section reviews the most relevant aspects related to

the class imbalance problem—classifier evaluation, strate-

gies for alleviating the imbalance and other data charac-

teristics which affect classifier performance in conjunction

with the imbalance. Also, the last subsection briefly pre-

sents the main idea behind meta-learning.

6.1 Evaluating performance

Establishing how to assess performance of classifiers is a

sensitive task in imbalanced problems. The selection of an

inappropriate evaluation measure may lead to unexpected

predictions, which are not in agreement with the actual

problem goals. Consider, for example, a classifier con-

structed on a training set consisting of a positive example

Table 6 Average AUC values obtained via the different classification

and meta-classification schemes

SVM1 SVM3 C4.5 Max Baseline Meta

No preproc. 0.689 0.759 0.788 0.820 0.790 0.796

SMOTE 0.850 0.866 0.835 0.878 0.854 0.868

Table 7 Average AUC values for meta-classification using different

meta-feature sets

Meta S1 Meta S2 Meta S3

No preproc. 0.791 0.758 0.796

SMOTE 0.843 0.865 0.868

Table 8 NDCG values for the meta-classifier using different base

feature sets

Meta S1 Meta S2 Meta S3

No preproc. 0.990 0.971 0.991

SMOTE 0.989 0.996 0.996
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and 99 negative examples. If it classifies all examples as

negative, it will have an accuracy of 99 % on that set;

however, such a model is actually useless. Even if they do

not explicitly consider accuracy as optimization criterion,

most classifiers employ loss functions which generalize

relatively well to accuracy.

Moreover, data imbalance problems usually come with

an associated requirement: the recognition of minority

cases is more important than that of majority cases. For

example, in cancer diagnostic problems, positive cases are

relatively less common than negative cases. As a conse-

quence, in the available data, the number of patients

diagnosed with cancer is smaller than negative diagnosis

cases. However, failing to identify a positive case is sig-

nificantly more serious than misdiagnosing a negative as

positive (arguably, both errors are serious, but the former

possesses more severe implications on human life).

Table 9 depicts the confusion matrix for a two-class

problem. The accuracy is defined as:

Accuracy ¼ TP þ TN

TP þ FP þ FN þ TN
ð16Þ

It is widely acknowledged within the scientific community

that it is an improper metric for imbalanced problems,

since it considers the total number of correctly classified

instances and it is less sensitive to the recognition errors of

the minority class [24, 33].

A widely accepted metric for imbalanced scenarios is

the area under the ROC curve [5], which captures the trade-

off between the true-positive rate and the false-positive rate

(17) into one single measure. ROC curves are generated by

varying the score threshold for the classifiers’ prediction

probability and obtaining pairs of ðFPrate;TPrateÞ points. An

ideal classifier would have FPrate ¼ 0, TPrate ¼ 1, and thus

AUC ¼ 1, whereas AUC ¼ 0:5 is the expected value of a

random classifier. Since it is insensitive to the ratio

between positive and negative instances, the AUC is not

affected by the class skew, and therefore, it is an objective

performance criterion for imbalanced problems.

TPrate ¼
TP

TP þ FN
; FPrate ¼

FP

FP þ TN
ð17Þ

The first bisector in Fig. 5 represents the ROC curve of

the random classifier, whereas the other two dashed and

solid curves represent the ROC curves of SVM classifiers,

with polynomial kernel of degree 1 and 2, respectively. The

area under the solid ROC curve is larger, which indicates

that the latter classifier has a better performance.

The scientific community has also suggested other

composite metrics, also derived from the confusion matrix,

for evaluating the performance in imbalanced problems:

the geometric mean (GM) [4], the balanced accuracy

(BAcc) [6], the F-measure [7, 15] and its generalization—

the Fb-measure which provides a trade-off between the

correct identification of the positive class and the cost of

false alarms (in number of false-positive errors).

6.2 Factors affecting the performance of classifiers

Another category of factors affecting the performance of

classifiers in imbalanced problems encompass a series of

data-related characteristics co-occurring with the imbal-

ance, or as independent phenomena, but which in con-

junction with the data imbalance produce a significantly

larger drop in performance than taken individually. Besides

the overlapping of the class boundaries, which was dis-

cussed in Sect. 2, the authors of [24] identify the following

data intrinsic characteristics as being relevant to the

expected performance of classifiers in imbalanced

scenarios:

• The lack of density, or the small sample size issue, is

related to the insufficient data quantity to allow learning

algorithms to generalize separation boundaries cor-

rectly. It is known that as the number of features

increases, the number of training samples needed to

achieve the same performance grows exponentially.

When the training data are also imbalanced, classifier

overfitting becomes even more severe [24]. In high-

dimensional feature spaces feature selection has been

shown to alleviate this effect [36].

Table 9 Confusion matrix

Predicted positive Predicted negative

Actual positive True positives (TP) False negative (FN)

Actual negative False positives (FP) True negatives (TN)
Fig. 5 ROC curves
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• The small disjuncts problem occurs when subconcepts

are represented in small clusters in the training data,

which makes it difficult for a classifier to separate

between actual information and noise. This issue may

appear as a consequence of the lack of density problem,

but it may also arise independently. [37] proposes

several strategies to deal with the small disjuncts

problem. An important conclusion of the study is

related to the fact that there exists a best marginal

distribution for learning, which is not necessarily the

balanced or the naturally occurring distribution (even

though the two achieve reasonable results on average).

• Dataset shift refers to the difference between train and

test distributions. Classifiers are generally able to

handle mild distribution shifts, which is inherent in

most real-world applications. In imbalanced classifica-

tion scenarios, this issue becomes accentuated due to

the increased importance of the poorly represented

minority instances [24].

• The existence of noise in the available training data

possesses a stronger effect on learning performance

than the imbalance [31]. However, as the imbalance

becomes more severe, it plays an increasingly signif-

icant role in classifier performance. Naı̈ve Bayes and

support vector machines seem to be the most robust to

noise, while the performance of the C4.5 classifier

degrades more rapidly with increasing noise levels.

6.3 Strategies for alleviating the effect

of the imbalance on classifier performance

Several different strategies for improving the behavior of

classifiers in imbalanced domains have been reported in the

scientific community. Broadly, the approaches for dealing

with imbalanced problems can be split into data-centered,

algorithm-centered and hybrid solutions.

• Data-centered techniques focus on altering the distri-

bution of the training data: either randomly or by

making an informed decision on which instances to

eliminate or add (by multiplying existing ones, or

artificially generating new cases). Under this category

we find random over- and under-sampling, or more

elaborated approaches, the prominent approach in this

category being Synthetic Minority Over-sampling

Technique [9]. SMOTE performs over-sampling on

the minority class, by randomly generating synthetic

new instances on the vectors connecting two original

instances lying in the kNN neighborhood of each other.

The process of generating synthetic samples is briefly

described below:

• let P be an instance from the minority class and P

its feature vector

• let Q be another instance from the minority class,

being in the kNN neighborhood of P, and Q its

feature vector

• the new synthetic instance is M described by its

feature vector M ¼ P þ kðQ � PÞ, where k is a

random number, k 2 ð0; 1Þ
According to the results presented in [24], SMOTE is

the de facto method to apply in imbalanced scenarios,

due to its inherent simplicity and efficiency in reducing

the effect of the imbalance. Sampling methods can be

employed as preprocessing techniques. This may come

as an advantage, since the computational effort to

prepare the data is needed only once. However, most

methods require the analyst to set the amount of re-

sampling needed, and this is not always easy to

establish.

• Algorithm-centered techniques, also known as internal

approaches, refer to strategies which adapt the induc-

tive bias of classifiers, or specific strategies to adapt the

general methodology for tackling the imbalance. Such

strategies have been devised for decision trees [28, 40],

classification rule learners [14, 22], instance-based

learners [23], logistic regression [38] or SVMs

[21, 39]. Their main disadvantage is the fact that they

are restricted to the specific learning algorithm (Fig. 6).

• Hybrid approaches combine data- and algorithm-cen-

tered strategies. A number of approaches in this

category consist of ensembles built via boosting, which

also employ replication on minority class instances to

second the weight update mechanism, in the attempt to

focus on the hard examples. Also, the base classifiers

Fig. 6 Synthetic instance generation in SMOTE
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may be modified to tackle imbalanced data. Such

approaches include SMOTEBoost [8], DataBoost-IM

[15] and a complex SVM ensemble [34]. Another

hybrid strategy which may prove beneficial in imbal-

anced problems is the one employed in cost-sensitive

problems, to bias the learning process according to the

different costs of the errors involved [12, 32, 41].

Since classifiers have different biases due to their

diverse learning strategies, they are affected differently by

the imbalance and the associated characteristics of the

training data. Preprocessing strategies have been shown to

generally alleviate the performance drop related to the

presence of several data-related factors within the context

of imbalanced problems, with SMOTE being seemingly the

best solution on average. However, to maximize their

effect in a specific imbalanced problem, sampling methods

need to be paired with the most appropriate learning

algorithm—activity which requires time and an experi-

enced analyst. Algorithm-based strategies on the other

hand are restricted to a specific algorithm category. If the

learning bias of the algorithm does not match the problem

characteristics, it will not provide the best solution for the

specific imbalanced problem. Hybrid techniques are more

general, but they come with additional complexity issues

(e.g., time, model interpretability, setting the cost matrix).

Thus, when faced with a new imbalanced problem, with

different specific characteristics (e.g., overlap level, complex-

ity or sample size) one cannot establish which learning strategy

will prove to be the most robust. Consequently, provided that

the analyst possesses an appropriate set of meta-features which

can capture the different data-related aspects, a meta-learning

approach could solve the difficult task of achieving a good

performance level for any imbalanced problem.

6.4 Meta-learning

Automatic selection of a suitable classifier for a given

problem has been investigated for some time now, early

approaches focusing on deriving interpretable selection

rules [1, 3]:

[25] presents a thorough analysis of data complexity

measures and their effect on classification, providing also a

set of empirically determined rules for classifier behavior.

Instead of generating empirical rules, the best classifier for a

problem can also be determined by relying on a set of data

characteristics or meta-features. [30] presents such a method

and proposes various types of meta-features, including

simple, statistical, information-theoretical, model-based and

landmarking ones. A collection of problems is established,

the meta-features are calculated, and the classifiers are

evaluated on each of these datasets. Feature selection is

performed to reduce the number of meta-features. In the

prediction step, the meta-features are computed for the new

problem, and based on their value\s the meta-classifier rec-

ommends the most suitable base classifier for the new

problem. The authors of [27] propose an instance-based

meta-learning strategy for generating ranked classifier pre-

dictions. They rely on data-based meta-characteristics and

explore several alternatives for distance computation,

neighbor selection and prediction combination.

7 Conclusions

This paper presented a meta-learning-based approach for

dealing with complex scenarios involving imbalance and

overlap. We proposed a new overlap metric, the Aug-

mented R-value, by extending an existing measure, R-

value. We provide a theoretical proof as well as qualitative

and quantitative evaluations to demonstrate the superiority

of the new metric over the initial R-value. Also, confirming

previous results, we found that the influence of imbalance

alone on the performance of classifiers is limited. However,

the level of overlap influences the performance of all

classifiers considered and the newly proposed Augmented

R-value measure presents a stronger correlation with the

performance of classifiers than the original R-value.

Another contribution of the current work is that it pro-

poses a collection of model-based meta-features which

capture several data characteristics and to provide a meta-

learning strategy for predicting the most suitable classifier

for a given dataset. The approach was evaluated on a well-

known collection of benchmark datasets for imbalanced

problems, yielding superior results to all the base classifiers

considered and to the baseline performance, which reflects

the ‘‘manual’’ classifier selection process normally per-

formed by data scientists. The analysis performed on the

results of the feature selection process considered in the

meta-training flow suggests that overlap measures are the

best indicators for expected classifier performance, fol-

lowed by complexity measures, while the imbalance is the

weakest predictor meta-feature.

References

1. Aha DW (1992) Generalizing from case studies: a case study. In:

Proceedings of the ninth international conference on machine

learning, Morgan Kaufmann, pp 1–10

Pattern Anal Applic (2018) 21:381–395 393

123
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