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Abstract The encoding step in full-search fractal image

compression is time intensive because a sequential search

through a massive domain pool has to be executed to find

the best-matched domain for every range block. To afford

a fair encoding time, immaterial domain–range block

comparisons should be prevented. In this paper, a new

local binary feature resemble to local binary patterns

method is introduced. This single local feature is robust to

noise and can exploit the general structure of the block.

Concerning similarity between range–domain blocks, a

criterion is allocated dynamically by measuring the pixel

diversity among the range block pixels. To avoid redun-

dant calculations, the distance of the general pattern is

assessed by the Hamming distance utilizing a pre-com-

puted table. Experimental results show that the presented

approach can make FIC a lot faster as opposed to the full-

search method and outperform some other identical

methods while preserving the quality of the decoded

images. Indeed, the proposed method can be utilized

inside identical applications that want a specific block size

or blocks comparing.

Keywords Fractal image compression � Local features �
Hamming distance � Local binary pattern � Adaptive
thresholding

1 Introduction

The reduction of data storage requirements is the main

outcome of data compression methods. Furthermore,

compression offers an attractive approach to decrease the

communication cost while transferring substantial volumes

of data through links via a relatively high effective uti-

lization of the bandwidth of the available links. Due to the

reduction in the data rate, the cost of communication can

significantly make use of these methods.

The fractal image compression (FIC) algorithm has

received considerable attention not only as a powerful image

compression technique [1] but also for applications to dif-

ferent areas such as image restoration, medical image clas-

sification, watermarking, shape recognition, and face

recognition [2–6]. Furthermore, the decoding of fractal

encoded images is straightforward, fast, and very easy to

implement. Besides, the resolution-free decoding property is

another advantage of FIC, which means that the decoder can

retrieve compressed images in different zooming scales.

Microsoft Multimedia Encyclopedia (Microsoft Encarta),

for example, used FIC to compress a large number of images,

which practically shows that the properties of FIC make it

suitable for multimedia applications [1].

The original idea of FIC was proposed by Barnsley [7] in

which a considerable amount of redundancy existing in the

images could be explored. To eliminate redundancies, Jac-

quin [8] proposed a partitioned iterated function system

(PIFS) that contains contractive transformations for each

image that together have a fixed point similar to that of the

original image. This implies that by applying the transforms

iteratively on an arbitrary initial image, the output imagewill

converge to a fixed point similar to that of the original image.

As such, storing these transformations means less space, and

this can be considered an effective compression method [9].

& Keyvan Jaferzadeh

kjaferzadeh@chosun.kr

1 Department of Computer Engineering, Chosun University,

309 Pilmun-daero, Dong-gu, Gwangju 501-759, South Korea

123

Pattern Anal Applic (2017) 20:1119–1128

DOI 10.1007/s10044-016-0551-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-016-0551-1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-016-0551-1&amp;domain=pdf


1.1 Brief review of previous efforts

Since the largest computation cost lies in the sequential

search through the domain blocks, efforts toward reducing

the range–domain block matching, eliminating unfitted

domain blocks, and classifying domain blocks into similar

subsets have centered on making the search faster [10, 11].

Since standard deviation (STD) is one of the important

mathematic tools used in measuring the dispersion degree

of a data set, previous efforts using STD showed advan-

tages in accelerating encoding time in FIC [12–14]. Hybrid

techniques like genetic algorithm and spatial correlation

method [15], DCT coefficients and applying fuzzy clus-

tering [16] can enhance encoding time significantly. To

facilitate a high-speed domain pool search, binary match-

ing technique [17], entropy-based encoding [18], and

diagonal domain scaling while domain construction [19]

are proposed. In addition to the previous efforts for the

restriction of the search space, some ‘‘no search methods’’

have also been proposed [20–22], which are very fast for

real-time applications. While ‘‘no search methods’’ are

very fast, the reconstruction image quality is not suffi-

ciently good, particularly for small images.

In this paper, a new local binary feature extractor much

like local binary patterns is introduced. Considering this local

feature, the proposed method can calculate dissimilarity

between range and domain blocks by utilizing the simple,

quickly, and efficient Hamming distance method as opposed

to the costly least-square method. Similarity criterion is

adaptively issued in line with the pixel dispersion degree

calculated by STD value of each corresponding range block.

Experimental results show that the adaptive criterion strategy

not just excludes unnecessary domain–range block matching

but preserves the quality of the decoded images. Addition-

ally, to avoid redundant calculations, Hamming distances are

stored in a pre-computed table with two entries.

Our key contributions are summarized as follows.

• We introduce a new operator resemble to local binary

patterns (LBP) method to exploit local features. This

operator can minimize noise by constructing a super-

pixel using averaging technique.

• We introduce a new scanning method to enhance

pattern discrimination by increasing the number of

pixels. It turns out that the following scanning method

can improve quality of the decoded images.

• Instead of measuring similarity between two features,

we are interested in measuring degree of dissimilarity

between two patterns by applying simple and fast

Hamming distance technique.

• We introduce a dynamic weight assigning while pattern

matching according to the pixel diversity within each

range block.

• A pre-computed table can facilitate and accelerate

measuring Hamming distances between two corre-

sponding patterns of range and domain block.

The rest of this paper is organized as follows: In Sect. 2,

a review of the basic FIC algorithm is presented. Section 3

describes the proposed approach and the similarities and

differences between the proposed method and the standard

local binary patterns. The scheme of proposed algorithm is

described in Sect. 4. Experimental results and discussions

are presented in Sect. 5, and finally, we conclude this paper

with a brief summary in Sect. 6.

2 Review of full-search FIC algorithm

First, the original image f with size N � N should be

divided into non-overlapping range blocks and overlapping

domain blocks, which comprise the domain pool Q; the

size of the former is C � C and that of the latter is B� B.

In general, domain blocks could be of any size larger than

the size of a range block, but in this study, it is double the

size of the range block. Each such domain block must be

spatially contracted (or decimated) before it is matched to

one of the range blocks. All the range and domain blocks

can be obtained by a sliding window method. The sliding

window method is that two windows of C � C and B� B

slide through the image f along the horizontal and vertical

axes to partition the image f into range and domain blocks.

Figure 1 shows the arrangement of range and domain

blocks, and step length of sliding windows. Finally, for

each range block Rið1� i�N � N=ðC � CÞÞ, the algo-

rithm searches Q to get the best similar domain block Dj

and a contractive affine transformation Ti, which must

assure that TiðDjÞ has the maximum similarity (minimum

distance) to Ri. Finally, we will obtain a set of contractive

affine transformations T ¼ Ti; 1� i�N � N=ðC � CÞf g.
For a set of transformations, considering the collage the-

orem [7], the union of transformations is contractive and

Fig. 1 Arrangement of range and domain blocks
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the distance between their fixed point and the original

image is arbitrarily small if each transformation is con-

tractive. The position of domain block Dj and the param-

eters of transformation Ti constitute the fractal code of the

range block Ri, and the fractal codes of all range blocks

constitute the PIFS of the original image f . The decoding

procedure is a simple iterative process, starting with

any arbitrary initial image and iteratively applying

inverse contractive affine transforms T ¼ Ti; 1� i�N�f
N=ðC � CÞg to the best-matched domain blocks. Because

of the nature of fractal images, the union of inverse

transformations can produce the original image from the

compressed image [7–9]. The most time-consuming step of

the encoding process is the searching for a domain block

among Q, because every range block must be compared to

all domain blocks to find the best one. But these range–

domain block comparisons require a computationally

expensive least-square measure (Eq. 1), which makes FIC

infeasible for real-time applications.

ErrorðRi;DjÞ ¼ siDj þ oiI � Ri

�
�

�
�
2
; ð1Þ

where si and oi denote the optimal affine parameters

obtained by the following:

si ¼
hRi � rI;Dj � dIi

Dj � dI
�
�

�
�
2

; ð2Þ

oi ¼ �r � sid; ð3Þ

where �r and �d denote the mean of range block Ri and that

of domain block Dj, respectively.

3 Feature extraction

In image processing, the main goal of feature extraction is to

obtain the most relevant information from the original image

and represent it in a lower dimension. To say that, there are

times that input data should be transformed into a reduced

representation set of feature(s) since the input data to an

algorithm are too large for further processing. This trans-

formation from the input image into the set of features is so-

called feature extraction. It is expected that the set of features

can contain the relevant information from the input image if

the extracted features are carefully chosen. There are previ-

ous efforts for dimension reduction in application of image

processing and image understanding. Zecaho et al. [23, 24]

proposed a new unsupervised feature selection technique to

reduce the feature dimension. They try to identify the best

subset of the most useful features by integrating cluster

analysis along with sparse structural analysis. In case of FIC

technique, we would like to extract some features that can

avoid expensive least-square metric. Since in FIC we are

interested in block matching, local features from each block

are desirable. This local feature should provide relevant

information about the general structure of the block.

Accordingly, dissimilar blocks can be ignored easily without

calculating least-square metric. However, for the case of

similar features, further processing can be done by the least-

square metric. We believe that a good feature can distinguish

one block from other non-similar blocks. This feature must

be as robust as possible in order to prevent generating dif-

ferent feature codes for the similar blocks regarding the noise

within block. Accordingly, we are interested only in local

features for each single block. We also believe that the fea-

ture extraction step should be simple and quick since the

main drawback in FIC is the expensive compression step and

feature extraction step should not be a big overload to the

whole compression technique.

3.1 Original local binary patterns

The local binary pattern texture operator was first intro-

duced as a complementary measure intended for local

image contrast by Ojala et al. [25]. The most important

properties of the LBP operator in real-world applications

are their invariance in opposition to monotonic gray-level

changes and its particular computational simpleness. An

LBP code is produced by multiplying the thresholded

values with weights given by the corresponding pixels and

summing up the end result. As the neighborhood consists

of 8 pixels, throughout its earliest version, an overall total

of 28 = 256 distinct labels can be obtained according to the

relative gray values of the center and the neighborhood

pixels [26]. Figure 2 shows an original image of Lenna and

the output of the LBP operator.

Although LBP have certain advantages as previously

mentioned, it also holds two significant flaws, i.e., sensi-

tivity to noise and tendency to characterize different

structural textures with the same binary code, which causes

a discriminability reduction. In order to overcome the

mentioned weaknesses and make LBP more robust and

stable, different strategies are proposed [27–29]. With

these kinds of strategies, essentially, the local differences

Fig. 2 a Original Lenna and b LBP output
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in addition to conventional gray value of the center pixel

are enhanced as a way to increase discrimination in

between different patterns.

3.2 Proposed local feature extraction operator

In this paper, a new local feature extractor similar to the

standard LBP due to the block size property of FIC is pro-

posed. The proposed strategy considers two essential changes

that could manage the less noisy central pixel and adds more

local features than the original LBP. The first step forms a

super-pixel named mg by averaging four central pixels with

two benefits: delivering the central pixel for the threshold

value and improving the classification by averaging noisy

pixels. In this paper, the range and the domain size are 4 9 4

and 8 9 8, respectively. Accordingly, the suggested strategy

to acquire the super-pixel is represented in Fig. 3. g1, g2, g3,

and g4 denote four central pixels; therefore, mg is:

mg ¼ ðg1 þ g2 þ g3 þ g4Þ=4: ð4Þ

As discussed earlier, mg can provide a new super-pixel

rather than the conventional central pixel. It can also diminish

the noise effects simply by averaging the pixels. Second,

rectangular neighborhoods are utilized rather than standard

round ones. This rectangular strategy not only adds more

pixels to our local feature but also avoids the circular position

of conventional LBP [26]. In this study, the direction of

picking up pixels is clockwise, orienting in the particular top-

left pixel as shown in Fig. 4, but any arbitrary direction can be

preferred. It is worth mentioning that different combinations

of pixels for constructing super-pixel are used. Our findings

show that the current combination can provide the best super-

pixel regarding noise lowering. Likewise, 12-bit pattern can

include adequate patterns regarding pattern discriminations

aims comparing with the 8-bit conventional LBP (data not

shown). After the above adjustments, a sequence of 12 bits,

starting from p0 to p11, will be acquired. Eventually, the LF

value for each block is acquired using the following:

LF ¼
X11

u¼0

Z mg� puð Þ2u; ð5Þ

where Z(u) denotes the thresholding function defined as

follows:

ZðuÞ ¼ 1 u� 0

0 u\0

�

ð6Þ

The suggested strategy has 212 bits and thus explores 4096

textures.

4 Proposed FIC algorithm

The binary similarity and dissimilarity distances play a

critical role in pattern analysis. Considering that the overall

performance will depend on the selection of the appropriate

measure, numerous binary similarity measures and distance

measures have been proposed in various fields [30]. Gen-

erally, distance measures consider positive matches, neg-

ative matches, and mismatches for the final judgment. In

this work, regarding measuring the similarity between the

corresponding range and domain blocks, the Hamming

distance is preferred since it only takes number of mis-

matches. Our experimental results show that among the

well-known binary similarity measures (Jaccard, Dice,

Euclid, simple matching coefficient, and Czekanowski

Index), Hamming distance outperforms in both running

time and the decoded image quality (data not shown).

Suppose that V1 and V2 are representing the two binary

feature vectors and n the number of attributes or length of

the feature vectors. Definitions of Hamming distance can

be expressed by the following:

HMD V1;V2ð Þ ¼
Xn

i¼1

XorðV1;i;V2;iÞ ð7Þ

We calculated Hamming distances for the best-matched

range–domain blocks using full-search method (Table 1).

The image size is 256 9 256, the range size is 4 9 4, and

the domain size is 8 9 8; therefore, the total number of

range blocks is 4096, and the domain pool has 64,001

blocks.

Table 1 shows that 4041 (99 %) out of 4096 of the

matched blocks for the Lenna image have HMD B 5.

Fig. 3 New super-pixel instead of conventional central pixel

Fig. 4 Rectangular neighborhood instead of the circular one of

standard LBP
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Considering Table 1, we infer that more than 98 % of the

matched blocks have HMD between 0 and 5. This indi-

cates that domain blocks having HMD B 5 corresponding

to each range block shall be considered in the costly least-

square measure, and the rest of the domains can be

excluded. To evaluate the end results connected to the

excluding irrelevant range–domain block matching, we

adjusted original FIC. While the domain pool search, if the

HMD between the range block and domain block of

interest exceeds five, the domain block is disregarded and

the search proceeds with the next domain block. Other-

wise, least-square (Eq. 1) is performed to determine the

range–domain block match. Excluding these domain

blocks does not degrade image quality considerably

(Table 2).

As stated previously, eliminating irrelevant range–do-

main blocks matching speeds up the search albeit at the

expense of small loss of quality, and the main concern is

maintaining a good balance for different images. If the

HMD threshold is large, a lot more domain blocks will be

searched using the expensive least-square (Eq. 1), leading

to a longer encoding time. However, better reconstructed

image quality will be retrieved (Fig. 5). On the other hand,

reducing the HMD will probably speed up the encoding

process, nonetheless, at the expense of lower quality

because some of the qualified domain blocks will no longer

be available. Considering the above discussion, a proper

threshold for HMD (only HMD B 5) to balance the

encoding time and keep fidelity is critical.

To cope with the adaptive threshold issue, we discov-

ered visual properties and patterns in sample images. We

think that a smaller HMD value should be assigned to

smooth blocks and a larger value should be assigned to

textured range blocks. Since in the proposed strategy we

need to deal with different kind of range blocks (smooth to

textured one), an intelligent HMD assignment strategy

based on the STD value of each range is proposed. STD is

one of the best means of measuring diversity and contrast

(root-mean-square contrast) in image data. It is a statistical

solution to define certain properties of blocks, such as pixel

dispersion and contrast value. While a smaller value of

STD shows a smooth and low-contrast region, a higher

value indicates unsmoothed, high-contrast, and textured

blocks. The definition of STD is as follows:

STD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PC

i¼1

PC

j¼1

Pi;j � �r
� �2

C � C
;

v
u
u
u
t

ð8Þ

where Pi,j denotes the pixel value at position (r, j) and �r
represents the mean value of the range block. If R is a range

block and its STD is small, it means that the pixel values of

R fluctuate little. Since R is a smooth block, we can search

domains with smaller HMD. On the other hand, when STD

is high, we think that the best-matched domain block of R

has a larger HMD. So for each range block Ri and the

domain blocks in Q, we think that the best-matched domain

block should fall into the following set:

DðRiÞ 2 QjHMDðD;RiÞ� THMDgf ; ð9Þ

where HMD is Hamming distance and THMD is the control

threshold. Besides utilizing STD for assigning an adaptive

value for HMD, a pre-computed lookup table for avoiding

redundant HMD calculations, namely HMDTable, is uti-

lized. This lookup table replaces runtime computation with

a simpler indexing operation. The HMDTable has two LF

Table 1 Matched range–domain blocks and their HMD values for StepLength = 1

HMD = 0 HMD = 1 HMD = 2 HMD = 3 HMD = 4 HMD = 5 HMD = 6 HMD = 7 HMD = 8

Lenna 848 1150 992 637 289 125 42 11 2

Pepper 756 1135 1046 678 308 129 33 9 5

Crowd 837 1177 921 599 307 140 67 26 15

Cameraman 692 996 1016 745 366 193 75 20 8

Goldhill 728 1168 1007 683 328 130 35 14 3

Table 2 PSNR and encoding

time for full search and the

discussed strategy

Lenna Pepper Crowd Cameraman F16 Goldhill

PSNR value

Full search 31.83 33.3 30.37 31.02 31.32 32.03

HMD B 5 31.83 33.27 30.36 31.0 31.3 32.02

Encoding time (s)

Full search 58.81 61.01 60.25 63.01 64.13 62.34

HMD B 5 30.86 31.59 31.15 30.21 29.94 31.06

Pattern Anal Applic (2017) 20:1119–1128 1123
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value entries of range and domain blocks, which return the

HMD for the entries.

The proposed encoding algorithm consists of the fol-

lowing steps:

1. Partition the image into non-overlapped range blocks

of Ri. For each block, calculate its LF value using

Eq. 5 and STD value using Eq. 8; the former is called

LFRi, and the latter is called STDRi.

2. Partitioning an image into overlapping domain blocks

of Dj, calculate their LF values and name them LFDj.

3. Find the maximum and minimum values of all STDRs,

and label them MaxSTD and MinSTD, respectively.

4. Consider the criterion for x = 0 to 5

Crx ¼
Crx�1 þ ðMaxSTD�MinSTD=5 x[ 0

MinSTD x ¼ 0

�

ð10Þ

5. While there is uncovered Ri, do the following:

a. If (Cr0 B STDRi B Cr1) THMD = 1;

b. Else if (Cr1\ STDRi B Cr2) THMD = 2;

c. Else if (Cr2\ STDRi B Cr3) THMD = 3;

d. Else if (Cr3\ STDRi B Cr4) THMD = 4;

e. Else THMD = 5;

6. While performing range–domain block matching using

Eq. 1, consider only those domains that can satisfy

Eq. 9.

The proposed fractal image encoding algorithm is divided

into three parts: the block-construction phase (Steps 1 and

2), marginal values calculation (Steps 3 and 4), and the

encoding phase. In the block construction phase, the orig-

inal image f is partitioned into non-overlapping range

blocks C 9 C and overlapping B 9 B domain blocks. The

step length of domain blocks is denoted by StepLength.

Then, the STD values of range blocks are calculated, and

maximum and minimum values are picked up. According

to these STD numbers, five marginal values (Cr0–Cr4) for

separating Hamming distances are calculated. With the

encoding phase, according to the STD value of every range

block Ri, an effective THMD will be assigned (only the

domain blocks in Q whose HMD value can fulfill Eq. 9 are

good candidates). Then the search for the best-matched

domain block of Ri is carried out in the domain block set

D(Ri) (see Eq. 9).

The primary disadvantage of fractal encoding is the

large amount of time required to search for the best range–

Fig. 5 PSNR value versus

Hamming distance

Fig. 6 Original images a Lenna, b Baboon, c Pepper, and d Goldhill
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domain block match from the domain pool. Through the

domain pool search, if the HMD between the range block

and domain block of interest exceeds a specific threshold,

the domain block will be ignored and the search proceeds

with the next domain block. Otherwise, Eq. 1 matching

operation is carried out to look for the best range–domain

block match. As stated previously, selecting adaptive HMD

values can lead to an acceptable speed and relatively high

reconstructed image quality. That is, range blocks with

higher STD (high-contrast blocks) demand comparing

against more domain blocks for discovering the best-mat-

ched block. Therefore, selecting a higher HMD value will

include more domain blocks in the block matching step. On

the other hand, low-contrast range blocks (smoothed

blocks) with lower STD can be easily matched with a small

number of domain blocks. Thus, selecting a smaller value

of HMD will exclude a large number of immaterial domain

blocks. This threshold, of course, is an adaptively changing

value.

5 Experimental results and discussion

Several experiments were conducted to demonstrate the

performance of the proposed method. The proposed algo-

rithm was compared with different methods, including the

full-search method, intelligent classification algorithm

(ICA) based on STD [13], and hybrid method using STD

and DCT values (HSD) [14]. Different graphs and

tables are illustrated that include the PSNR value and the

encoding time. The eight images used for this experiment

are Lenna, Babbon, Peppers, Goldhill (Shown in Fig. 6),

Crowd, Cameraman, F16 and Barbara. All the experiments

were executed on a PC with Intel Core i5, 2.5-GHz

processor, 3-GB RAM, and 32-bit Windows Seven oper-

ating system. All methods are implemented in MATLAB.

In this study, the scale factor of Sk was set to a fixed value

of unity for all the considered methods. It is shown that

fixed scale factor value can accelerate the encoding step

manifold while preserving the quality of the reconstructed

image [12]. The STD limit for searching domain blocks for

the method presented in [13] was set as 0.2, and K for the

hybrid method is 300 and Ts is 3.0 [14]. As mentioned

earlier, the image, range, and domain size are 256 9 256,

4 9 4, and 8 9 8, respectively; therefore, the total number

of range blocks was 4096, and the domain pool had 64,001

blocks. The compression ratio is 1.5 bpp because 24 bits

are needed to store the matched domain block position, 8

bits for storing �r, and Sk = 1. Indeed, fractal parameters are

stored as raw data in the output file without any other data

compression technique. The quality measurement of the

retrieved image is the peak signal-to-noise ratio (PSNR)

defined as:

PSNR ¼ 20� log10
MAXf
ffiffiffiffiffiffiffiffiffiffi

MSE
p

� �

ð11Þ

MSE ¼ 1

mn

Xm

i¼1

Xn

j¼1
f ði; jÞ � f 0ði; jÞk k2 ð12Þ

where MAXf ¼ 255; f is the original picture and f 0 is the

decoded image.

A comparison of our approach’s PSNR value with the

other method is graphically illustrated in Figs. 7a and 8a.

In case of StepLength = 1 (Fig. 7a), we can see that the

proposed method can achieve a reasonable image quality

and the PSNR decay compared to the full-search method

can be disregarded. The proposed method outperforms

other methods in all sample images, particularly in the case

of Baboon and Barbara due to the many unsmoothed

Fig. 7 Comparing different methods StepLength = 1; a PSNR values and b encoding time
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blocks (Fig. 7a). In terms of encoding time (Fig. 7b), the

proposed method is faster than other similar methods. In

the case of StepLength = 4 in most of the cases, our

method has better quality comparing to the similar methods

(Fig. 8a). Considering encoding time for StepLength = 4,

the proposed method is still better than other methods,

except Lenna (Fig. 8b).

Table 3 shows that the sum of the range blocks for each

THMD differed in value, as stated in the proposed encoding

algorithm. From Table 3, we infer that for images that have

more unsmoothed blocks, THMD = 2 increases and

THMD = 1 decreases. For example, in the case of Barbara

or Crowd that has many unsmoothed patterns (high-con-

trast areas), there is a higher number for THMD = 2, while

in the case of Cameraman, this value is small.

We also show the decoded images of Lenna, Baboon,

Pepper, and Goldhill that were encoded using the proposed

strategy (Fig. 9a–d). Original images are shown in Fig. 6.

These images show that the proposed approach can

preserve image quality because the PSNR decay compared

to the full-search method is very small. Indeed, they show a

considerable acceleration of the encoding step.

6 Conclusions

Fractal image compression and its related applications have

been restricted because of the intensive encoding time.

Eliminating unqualified range–domain block matching

Fig. 8 Comparing different methods StepLength = 4; a PSNR values and b encoding time

Table 3 Sum of range blocks

within each threshold value
THMD = 1 THMD = 2 THMD = 3 THMD = 4 THMD = 5

Lenna 3191 625 214 50 16

Barbara 2266 1075 587 156 12

Pepper 3244 464 256 104 28

Crowd 2457 1019 479 115 26

Cameraman 3358 315 216 172 35

Fig. 9 Decoded sample images using the proposed method:

a PSNR = 31.52; encoding time = 4.23 s, b PSNR = 24.79; encod-

ing time = 6.37 s, c PSNR = 32.92; encoding time = 4.43 s,

d PSNR = 31.67; encoding time = 4.18 s
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usually speeds up the search albeit at the expense of some

quality loss. The novelties of the proposed approach, that are

extracting the local features, Hamming distance for mea-

suring the variations between two different bit streams, and

intelligent threshold assignment using STD, can signifi-

cantly exclude a large number of unnecessary block match-

ing operations. A table with two entries is defined to avoid

redundant calculation of similarities. Another important

advantage of thismethod is that it does not have considerable

overload calculation because local features and STD values

are obtained simply during range and domain block forma-

tion. The proposed method decreases the encoding time

significantly as compared to the full-search method, at a

PSNR decay of \0.30. Because of the above-mentioned

strategies, the proposedmethod can achieve a good speed-up

as compared to similar benchmarks.
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