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Abstract Recently, activity recognition using built-in

sensors in a mobile phone becomes an important issue. It

can help us to provide context-aware services: health care,

suitable content recommendation for a user’s activity, and

user adaptive interface. This paper proposes a layered

hidden Markov model (HMM) to recognize both short-term

activity and long-term activity in real time. The first layer

of HMMs detects short, primitive activities with accelera-

tion, magnetic field, and orientation data, while the second

layer exploits the inference of the previous layer and other

sensor values to recognize goal-oriented activities of longer

time period. Experimental results demonstrate the superior

performance of the proposed method over the alternatives

in classifying long-term activities as well as short-term

activities. The performance improvement is up to 10 % in

the experiments, depending on the models compared.

Keywords Activity recognition � Mobile sensors �
Layered hidden Markov models � Context-aware

computing

1 Introduction

Recent smartphone not only serves as the communication

device, but also provides a rich set of embedded sensors,

such as an accelerometer, digital compass, gyroscope, GPS

receiver, microphone, and camera. As mobile phones

contain increasingly various sensors, sensing information is

used for a wide variety of domains such as healthcare,

social networks, safety, environmental monitoring, and

transportation [1].

Because current mobile devices include built-in sensors

that provide real-time data gathered from the surroundings

of the devices, it is possible to infer its user’s current status

[2]. Activity is useful context to provide personalized

services like health monitoring, user adaptive interface, and

content recommendation. Because of the importance of the

activity, many researchers investigated activity classifica-

tion using smartphones. In most cases, machine learning

techniques are used to classify activities on smartphones

[3].

Recognizing human activities from data sequences is a

challenging issue [4]. In order to implement practical

activity-aware systems, the underlying recognition module

has to handle the real world’s noisy data and complexities

[5]. Furthermore, the systems must consider some impor-

tant constraints such as relatively insufficient memory

capacity, lower CPU power (data-processing speed), and

limited battery lives [6]. A lot of classification methods

have been investigated. Some research incorporated the

idea of simple heuristic classifiers [7]. On the other hand,

the other studies used more generic methods from the

machine learning techniques including decision trees,

Bayesian networks [6, 8–10], support vector machines

[11], neural networks [12], and Markov chains [13–15].

Probabilistic models such as Bayesian network and

hidden Markov models (HMMs) are appropriate for deal-

ing with vagueness and uncertainty of data in real life for

context-aware services. However, it is difficult to apply

them to mobile devices because it requires a lot of memory

and CPU time. Hierarchical probabilistic model is the
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combination of some separate classification modules. The

modular structure is suitable to overcome the limitations in

mobile environment. This paper proposes an activity-aware

system using a hierarchical probabilistic model, layered

HMMs, to recognize a user’s activities in real time. The

activity recognition system is developed on an Android

smartphone, and has two layers of HMMs to deal with both

short-term and long-term activities. To evaluate the use-

fulness of the system, we collected mobile sensing data

from graduate students and compared the accuracy of the

system with the alternative methods. Experimental results

demonstrate the superior performance of the proposed

method over the alternatives in classifying both long-term

and short-term activities. The proposed method showed

better performance up to 10 % than the alternatives.

2 Related works

2.1 Activity recognition with mobile sensors

There are many studies to recognize a user’s activities with

mobile sensors. Kwapisz et al. proposed activity recogni-

tion system using an accelerometer on Android phone [16].

Longstaff et al. presented a semi-supervised learning

method to train a classifier for monitoring patients [3].

Maguire et al. classified human activities using k nearest

neighbor and decision tree [17]. They extracted some

features such as mean, standard deviation, energy, and

correlation from acceleration and heart rate data. Gy}orbı́ró

et al. developed a system to recognize a person’s activities

from acceleration data using a feed-forward neural network

[18]. Song et al. proposed an activity recognition system

for the elderly using a wearable sensor module including an

accelerometer [12]. They used multi-layer perceptron to

recognize activities of daily life. Zappi et al. used HMMs to

recognize a user’s activities from acceleration data [13].

Berchtold et al. proposed a fuzzy inference based classifier

to recognize a user’s activities [19]. Recently, many

researchers attempt to incorporate various sensors with

different places to attack the problem [20–22]. Table 1

summarizes the studies to recognize human activities using

mobile sensors.

Most studies in activity recognition have been using

discriminative approaches such as support vector machines

(SVM) and decision trees, ignoring the time-series char-

acteristics of sensor signals. Although these models are

easy to implement, they require the use of a rich set of

features, which in turn increases computational costs, in

exchange for algorithm simplicity. To take advantage of

this inherent characteristics of sensor signals, we propose

an activity recognition system using layered HMMs to deal

with multi-modal sensors efficiently.

2.2 Hierarchical probabilistic models

There are many probabilistic models, including hierarchi-

cal structure, such as hierarchical Bayesian network

(HBN), hierarchical dynamic Bayesian network (HDBN),

hierarchical hidden Markov model (HHMM), and layered

HMMs (LHMM). The model with a hierarchical structure

is an effective solution to the problems which can be

divided into smaller units. For instance, to recognize

human activities, the model of human is divided into

smaller parts of body, head, and arms, respectively. The

hierarchical models can improve accuracy and speed of

activity recognition.

Min and Cho [11] proposed a method to recognize

activities by combining multiple classifiers such as support

vector machine (SVM) and Bayesian network (BN). Park

and Aggarwal presented a method for the recognition of

two-person interactions using a hierarchical Bayesian net-

work. They divided the overall body pose into separate

body parts. The pose of body parts is modeled at the low

level of the BN, and the overall pose is estimated at the

high level of the BN [8]. Mengistu et al. used hierarchical

HMM for spoken dialogue system [27]. Wang and Tung

recognized dynamic human gestures using dynamic

Bayesian networks which represented multi-level proba-

bilistic process like hierarchical HMM [9]. Du et al. pro-

posed a dynamic Bayesian network based method to

recognize activities. They divided the features for human

activities into global and local features, and built a hier-

archical DBN model to combine the two features [10].

Table 2 summarizes examples of hierarchical models. In

most cases, hierarchical model is used to recognize an

activity that consists of smaller behaviors or time-series

patterns.

3 Activity recognition using layered HMM

The proposed structure consists of two steps to analyze

sensor data and recognize a user’s behaviors. First, after

sensor data are collected from sensors on a smartphone, the

data are transferred to HMMs and preprocessing units to

classify a user’s short-term activities. In the second phase,

the second-level HMMs are used to recognize a user’s

long-term activities from the temporal pattern of the short-

term activities and the other features. Figure 1 shows the

process of the entire system.

3.1 Feature selection for HMM state recognition

In many applications of activity recognition on a mobile

device, the problem of high dimensionality of data appears.

Since high dimensional data often require a large amount
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Table 1 Activity recognition using accelerometers

Author Year Classifier Sensor Contribution

Gupta and

Dallas [20]

2014 kNN, NB Accelerometer Recognize activities from sensors placed in subject’s

waist

Pei et al. [21] 2013 SVM Various sensors Construct context pyramid

Travelsi et al.

[22]

2013 HMM Accelerometer Unsuervised approach based on HMM regression

Kwapisz et al.

[16]

2010 ANN, J48 Accelerometer Need for a little data size for recognition, fast

recognition

Longstaff et al.

[3]

2010 NB, DT GPS receiver,

Accelerometer

Use of co-learning, high accuracy

Berchtold

et al. [19]

2010 Fuzzy logic Accelerometer Activity recognition service architecture on mobile

phones for common users

Maguire et al.

[17]

2009 kNN, J48 Accelerometer,

Heart-beat rate

Fast recognition

Gyorbiro et al.

[18]

2009 C4.5, NN Accelerometer Real time recognition, efficient battery usage

Bieber et al.

[7]

2009 Heuristics (rule) Accelerometer Identification of physical activity in everyday life on

a standard mobile phone

Lu et al. [23] 2009 Microphone Decision tree,

Markov model

Hierarchical architecture for recognizing a set of

sound events

Song et al.

[12]

2008 ANNs Accelerometer Implementation on mobile environment

Zappi et al.

[13]

2008 HMM Accelerometer Dynamic sensor selection

Choudhury

et al. [5]

2008 Accelerometer, barometer, compass,

humidity, temperature

Probabilistic model Using Mobile Sensing Platform (MSP) for activity

recognition

Reddy et al.

[24]

2008 GPS receiver, accelerometer Decision tree,

discrete HMM

Convenient system by not having strict position/

orientation requirements

Yang et al.

[25]

2007 Neuro-fuzzy Accelerometer Application of neuro-fuzzy

Ganti et al.

[14]

2006 HMM GPS receiver,

Accelerometer

Implementation of middleware

Table 2 Related works using hierarchical model

Author Year Classifier Sensor Contribution

Min et al. [11] 2011 Bayesian network and

SVMs

Accelerometer, wearable

sensors

Activity recognition using classifier fusion with multi-modal

sensors

Hwang

et al.[6]

2009 Modular Bayesian

network

GPS receiver, weather, call

history, etc.

Modularization of probabilistic models

Aarno et al.

[26]

2009 Layered hidden

Markov models

JR3 force-torque sensor Task segmentation and modeling using LHMM

Mengistu

et al. [27]

2008 HHMM Text data Understanding underlying semantics of words and sentences

Wang et al.

[9]

2007 HDBN Video camera Gesture recognition using HDBN

Du et al. [10] 2006 HDBN Video camera Hierarchical durational-state DBN

Park et al. [8] 2004 HDBN Video camera Modularization using HDBN

Oliver et al.

[28]

2004 Layered hidden

Markov models

Microphones, camera,

keyboard, mouse

Real-time, multimodal approach to human activity recognition

in an office environment
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of memory and CPU time to analyze, dimensionality

reduction is essential to recognize behaviors in mobile

environment. In order to reduce the dimensionality of raw

data, most classifiers extract features from the data. How-

ever, it is difficult to extract good features to reduce

dimensionality without any degradation to the performance

for activity recognition. Usually, the feature extraction

involves a function that measures the capability of the

feature set to discriminate the classes [29].

This section presents the feature selection for the

activity recognition system. Firstly, the window size for

collecting the raw sample is reviewed to make into fea-

tures. Then, the information gain value of each feature is

calculated as a measure for feature selection. Finally,

classification methods for features are chosen for the

activity recognition with the criteria.

A window of 5 s is used for the period of activity

recognition. There are various window sizes depending on

sensor types and activities to recognize in a mobile envi-

ronment. Hyunh and Schilele compared diverse window

sizes, 0.25, 0.5, 1, 2, and 4 s, to recognize various behav-

iors such as ‘jogging,’ ‘walking,’ ‘skipping,’ ‘hopping,’

and ‘standing’ [30]. Bao and Intille determined each win-

dow size for activity recognition with 6.7 s [31]. Kern et al.

used 1 s to detect human activity using body-worn sensors

[32]. The smaller window size is not effective to consider

certain long-term activities and the larger window size may

include noises since multiple activities could exist. The

window size of 5 s was used by our previous work [33] in

classifying the classes of activities that this work targets.

To measure the ‘‘value’’ of each feature, the information

gain (or the predictive power) of each feature is calculated

[34]. Suppose that F be the set of all features and X the set

of all training samples, value(x, f) with x[X defines the

value of a specific sample x for feature f [F. E specifies the

entropy. The information gain for a feature f [ F is defined

as follows:

IGðX; f Þ ¼ EðXÞ

�
X

v2valuesðaÞ
jfx 2 Xjvalueðx; f Þ ¼ vgj

jXj
�Eðfx 2 Xjvalueðx; f Þ ¼ vgÞ ð1Þ

The information gain is the difference between the total

entropy and the relative entropies when a specific feature

value is determined. It can be used as a score to measure

the power of prediction [35].

As Table 3 shows, orientation, pitch, roll, acceleration,

and magnetic field show relatively high information gain

score. On the other hand, the other sensors such as light

sensor, location, and proximity sensor have lower infor-

mation gain score. This result implies the need to analyze

acceleration, magnetic field, orientation values more care-

fully. To consider temporal patterns delicately, hidden

Markov model (HMM) is applied to the values of the three

sensors of high information gain score. The other features

are processed using simple rules with pre-defined

thresholds.

Fig. 1 Activity recognition system overview

Table 3 Information gain scores for feature selection

Sensor Score

Orientation, pitch, roll 1.156053

Accelerometer 1.015941

Magnetic field sensor 1.013732

Light sensor 0.293353

Locations 0.267844

Proximity sensor 0.117537
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3.2 First layer HMMs for short-term activity

recognition

HMM is a probabilistic model based on Markov chains,

and it is suitable to handle time series data such as speech

processing and stochastic signal processing [36]. The

HMM k consists of three elements as follows:

k ¼ ðA;B; pÞ ð2Þ

where k represents a HMM model, A is a state transition

probability distribution, B is an observation distribution,

and p is an initial state distribution. Let us assume that we

have M observation symbols and N states for this model.

A = {aij}, including transition probability from state i to

state j, is defined as follows:

aij ¼ Pðqtþ1 ¼ Sjjqt ¼ SiÞ; 1� i; j�N: ð3Þ

where aij[ 0 for all i, j. The observation probability in

state j, B = {bj(k)}, is defined as follows:

bjðkÞ ¼ Pðxk at tjqt ¼ SjÞ; 1� j�N; 1� k�M: ð4Þ

The initial state probability in state i, p = {pi}, is defined

as follows:

pi ¼ Pðq1 ¼ SiÞ; 1� i�N: ð5Þ

The probability of the observation sequence, X = x1, x2,

…, xT, given the model k, P(X|k) is calculated through

enumerating every possible state sequence of length T (the

number of observations). A fixed state sequence Q is

defined as follows:

Q ¼ q1; q2; . . .; qT ð6Þ

where q1 is the initial state. The probability of the obser-

vation sequence X for the state sequence of Eq. (6) is

PðXjQ; kÞ ¼
YT

t¼1

P Xtjqt; kð Þ ¼ bq1
ðx1Þ � bq2

ðx2Þ � . . . � bqT ðxTÞ:

ð7Þ

The probability of such a state sequence Q can be written

as

PðQjkÞ ¼ pq1
aq1q2

aq2q3
. . .aqT�1qT : ð8Þ

The joint probability of X and Q, the probability that X and

Q occur simultaneously is simply the product of the above

two terms as follows.

PðX;QjkÞ ¼ PðXjQ; kÞPðQjkÞ: ð9Þ

The probability of X (given the model) is obtained by

summing the joint probability in Eq. (9) as follows.

PðXjkÞ ¼
X

all Q

PðXjQ; kÞPðQjkÞ

¼
X

q1;q2;...;qT

pq1
bq1

ðx1Þaq1q2
bq2

ðx2Þ. . .aqT�1qT bqT ðxTÞ

ð10Þ

There are two types of HMMs, continuous HMM and

discrete HMM, according to data types. While the discrete

HMM deal with discrete data from a categorical distribu-

tion, the continuous HMM uses a single Gaussian or a

mixture of Gaussians as the continuous observation dis-

tribution. Using Gaussian mixtures for observation distri-

butions requires evaluation of the probability densities in

the mixture for each feature vector at each state in the

HMM. Since the evaluations are computationally complex,

they account for much of the time spent in activity

recognition [37]. In order to recognize activities more

efficiently, we consider to quantize the feature vectors into

a finite set of symbols prior to activity recognition as

shown in Fig. 2.

K-means clustering is performed to quantize the feature

vectors into finite symbols. Clustering is a method to assign

a set of samples into groups according to a distance metric

[30]. K-means clustering aims to partition n observations

into k groups in which each observation belongs to the

group with the nearest mean. The algorithm uses an iter-

ative refinement technique. Given an initial set of k means

m1, …, mk, the algorithm proceeds by iterating the fol-

lowing two steps:

• Assignment step: assign each observation to the cluster

with the closest mean

Ct
i ¼ fxp : jjxp � m

ðtÞ
i jj � jjxp � m

ðtÞ
i jj; 81� j� kg

where each xp goes into exactly one Ci
(t), even if it could

go in two of xp: an observation, mi
t: mean for the ith

cluster at time step t Ci
(t): a set of observations assigned

to the ith cluster at time step t

• Update step: calculate the new means to be the centroid

of the observations in the cluster as follows

m
ðtþ1Þ
i ¼ 1

jCðtÞ
i j

X

xj2CðtÞ
i

xj ð11Þ

As mentioned in the previous section, discrete HMMs

are trained using orientation, acceleration, and magnetic

field to analyze a user’s activity. The data are discretized

into 20 states by k-means clustering with k = 20. Our

previous work [33] used continuous HMM to recognize
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activities from acceleration, where the observations were

assumed to follow a Gaussian distribution. Although the

acceleration data follow a Gaussian distribution, continu-

ous HMMs for magnetic field and orientation, not follow-

ing Gaussian distribution, cannot show good performance

in the experiments. The HMMs at the first layer recognize

short-term activities: stay, walk, run, vehicle, and subway,

and they have five hidden states.

3.3 Second layer HMMs for long-term activity

recognition

After the first layer HMMs, we can get the inference results

of the short-term activities among stay, walk, run, vehicle

and subway. In addition, the features of the light, prox-

imity, and time, and the locations visited at that time

constitute a feature vector, which is passed to the next layer

of activity recognition as shown in Fig. 3. The models at

this level are also discrete HMMs, with one HMM per

long-term activity to classify. This layer of HMMs gets the

sequence of the feature vectors for about 5 min to handle

the concepts that have longer temporal patterns. Long-term

activities recognized by the system include: relaxing,

moving, working, and eating.

The final goal of the system is to decompose in real-time

the temporal sequence obtained from the sensors into

concepts at different levels of abstraction or temporal

granularity. At each level, we use the forward–backward

algorithm to compute the likelihood of a sequence given a

particular model. The HMM model with the highest like-

lihood is selected to perform inference with LHMMs. In

the approach, the most probable short-term activity is used

as an input to the HMMs at the next level [28].

Let us suppose that we train K HMMs at level L of the

hierarchy, kk
L, with k = 1, …, K. The log-likelihood of the

observed sequence X1:T for model kk
L, L(k)T

L is defined as

follows:

LðkÞLT ¼ log P X1:T jkLk
� �� �

¼ log
X

i

aT i; kLk
� �

ð12Þ

where aT(i; kk
L) is the alpha variable of the standard Baum-

Welch algorithm at time T, state i and for model kk
L.

Equation (13) shows a recursive function aT(i; kk
L).

Fig. 2 First layer HMMs for short-term activity
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aTþ1 j; kLk
� �

¼
XN

i¼1

aT i; kLk
� �

a
kLk
ji bj xT ; k

L
k

� �

a
kLk
ji : the transition probability from state j to state i from model kLk

bj xT ; k
L
k

� �
: the probability for state j in model kLk of observing xT

ð13Þ

At that level, we classify the observations by declaring

class Class(T)L as follows.

ClassðTÞL ¼ arg max
k

LðkÞLt ; k ¼ 1; . . .;K ð14Þ

The window size varies with the granularity of each level. At

the first level of the hierarchy, the samples of the time win-

dow are extracted from the raw sensor data. At the second

level of the hierarchy, the inference outputs of the previous

level are used as part of samples.The other sensors except

acceleration, orientation, and magnetic field are analyzed to

extract three features in Eqs. (15), (16), and (17).

sumX ¼
XS

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xi�1ð Þ2

q
ð15Þ

meanX ¼
PS

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xiþ1 � xið Þ2

q

S
ð16Þ

stdX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xiþ1 � xið Þ2
q

� meanX

� �2
s

ð17Þ

where xi is the value from a specific sensor at time step i,

and S is the total number of samples in a window.

3.4 Mobile interface for visualization

The recognized activity is displayed by using mobile

applications. We develop two applications to manage

personal information such as visited places, short-term

activity, and long-term activity. Figure 4 shows an appli-

cation for short-term activity visualization. It has three

interfaces: activity representation by text, activity repre-

sentation by graph, and place representation on a map. In

addition, the other program summarizes long-term activi-

ties in a day as shown in Fig. 5.

Fig. 3 Second layer HMMs for long-term activity
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4 Experiments

4.1 Data collection

Mobile sensor data were collected from four graduate

students who are 26–32 years old for over a week. Figure 6

shows a part of the logs, which illustrates the correlations

between the temporal pattern and the short-term activities.

In this paper, attending a lecture and studying were

regarded as a work, one of long-term activities, since the

users were students. Table 4 summarizes the details of

collected data from a mobile phone.

Fig. 4 Short-term activity visualization on a mobile phone

Fig. 5 Long-term activity

visualization on a mobile phone
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4.2 Evaluation of HMMs for short-term activity

recognition

To compare the proposed k-means clustering-based HMM

(KMC ? HMM) with other classification methods, we

conducted an experiment using the collected data set. In the

experiment, we applied naı̈ve Bayes (NB), multi-layer

perceptron (MLP), j48 decision tree (J48), support vector

machine (SVM), and Bayesian network (BN) as well as a

single layer HMM with quantization by k-means cluster-

ing. Those models were from the Weka (http://www.cs.

waikato.ac.nz/*ml/weka). Some features such as mean,

standard deviation, and summation in a window are used to

recognize short-term activities (stay, walk, run, vehicle,

and subway) by the classification methods because most of

them cannot handle time series data. Figure 7 shows a part

of the short-term activities.

We tested the precision and the recall of the recognized

short-term activities by comparing them with the actual

labels acquired from the users, and achieved about 80 %

for the short-term activities as shown in Table 5. Here, the

proposed first-level HMM shows the comparable

Fig. 6 Acceleration and magnetic field data for each short-term activity

Table 4 A summary of the data

sets used
Type Format Description

Time YYYYMMDD hh:mm:ss Date and time

Location Location name Matched or labeled location

Position Hand/pocket Attached position

Acceleration Real number (X axis) -2–2 g

Real number (Y axis) -2–2 g

Real number (Z axis) -2–2 g

Orientation Real number 0–359

Pitch Real number -180–180

Roll Real number -90–90

Magnetic field Real number (X axis) Digital compass

Real number (Y axis) Digital compass

Real number (Z axis) Digital compass

Light Integer number Light intensity

Proximity 1 or 0 Contact or not contact

Pattern Anal Applic (2016) 19:1181–1193 1189
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performance with other classification methods, even

though it is not the best for both criteria. However, we can

see the proposed model produces the results consistently.

Tables 6 and 7 show the performance for each short-term

activity. There are some subjects who used subway during

data collection. Although location information is not used

at this level, using subway is recognized well because of

the magnetic field sensor.

4.3 Evaluation of LHMMs for long-term activity

recognition

We attempt to recognize four kinds of long-term activities

(move, eating, relaxing, and working) as shown in Fig. 8. It

is assumed that the activities have different temporal pat-

terns correlated to sensing values. For instance, when a

user is moving at a department store, he or she is going to

repeat walking and standing regularly. On the other hand, if

a user works at the office, the acceleration pattern may be

similar to ‘staying’ for sitting in a seat, and his location is

fixed to ‘office.’ The long term activities can be recognized

by considering location, and time as well as a sequential

pattern of short-term activities. Especially, location is

important information to estimate a user’s activities. Fig-

ure 9 shows the locations for each long-term activity.

In Table 8, the precision and the recall of the proposed

layered HMM are compared with other classification

methods such as BN, NB, MLP, SVM, and J48. The lay-

ered HMM shows better performance in average than the

other methods. For precision, Relax is the only long-term

activity that the proposed method was not perfect, and for

recall, the proposed method was perfect except the activity

of Eat. It also shows that naı̈ve Bayes classifier has worse

performance than all the other methods. The difference

between NB and BN implies that hierarchical structure is

suitable to recognize the long-term activities.

Tables 9 and 10 depict the performance of the classifiers

for each long-term activity. The experiment was done with

tenfold cross validation. J48 and LHMM show better per-

formance for all activities. However, it is difficult to classify

‘relax’ and ‘eat’ activities sometimes because they have

similar short-term activity patterns, location, and time.

5 Concluding remarks

In this paper, we attempt to recognize short-term/long-term

activities in real time using mobile sensors on the Android

platform. The layered HMM structure is used to model the

temporal patterns with multi-dimensional data. As HMM is

Fig. 7 Short-term activities to

be recognized by

KMC ? HMM

Table 5 Performance comparison of classification methods for short-

term activity

KMC ? DHMM NB MLP SVM J48 BN

Avg.

precision

0.79 0.73 0.65 0.80 0.76 0.73

Avg. recall 0.77 0.66 0.66 0.69 0.75 0.80

Table 6 Comparison of precision for short-term activity

KMC ? DHMM NB MLP SVM J48 BN

Staying 0.63 0.62 0.73 0.70 0.67 0.59

Walking 0.86 0.67 0.81 0.90 0.79 0.46

Running 1.00 1.00 0.00 0.79 0.58 0.79

Vehicle 0.79 0.73 0.81 0.67 0.79 0.78

Subway 0.61 0.57 0.92 0.95 0.99 0.97

Table 7 Comparison of recall for short-term activity

KMC ? DHMM NB MLP SVM J48 BN

Staying 0.78 0.30 0.69 0.40 0.66 0.46

Walking 0.82 0.79 0.86 0.66 0.66 0.88

Running 0.75 0.75 0.00 1.00 0.75 1.00

Vehicle 0.58 0.81 0.85 0.94 0.84 0.82

Subway 0.90 0.80 0.96 0.60 0.90 0.82
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a Markov chain with both hidden and unhidden stochastic

processes, for activity recognition, the unhidden or

observable components are the sensor signals, while the

hidden element is the user’s activity. Looking at the results

of short-term activity recognition, it shows comparable

performance with other classification methods. LHMM has

the best accuracy among other classification methods for

recognizing the long-term activities.

Fig. 8 Long-term activities to

be recognized by HHMM

Fig. 9 Locations for each long-term activity
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There are still many problems to be solved for the

activity recognition on a mobile phone. In our experiment,

‘relax’ and ‘eat’ activities have some difficult patterns to

classify, and we need to use more wearable sensors. It is

necessary to consider modeling a user’s variations for

personalized services as well. Moreover, the comparison

with more diverse classification methods such as dynamic

time warping (DTW), hierarchical HMM (HHMM), and

hierarchical dynamic Bayesian network (HDBN) is also a

very crucial issue to be considered as a future work.
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L, Tröster G (2008) Activity recognition from on-body sensors:

accuracy-power trade-off by dynamic sensor selection. Lect

Notes Comput Sci 4913:17–43

14. Ganti RK, Jayachandran P, Abdelzaher TF, Stankovic JA (2006)

Satire: a software architecture for smart attire. In: Proceedings of

the 4th International Conference on Mobile Systems, Applica-

tions and Services 110–123

15. Khan AM, Lee YK, Lee SY, Kim TS (2010) Human activity

recognition via an accelerometer-enabled-smartphone using ker-

nel discriminant analysis. In: 5th International Conference on

Future Information Technology 1–6

16. Kwapisz JR, Weiss GM, Moore SA (2010) Activity recognition

using cell phone accelerometers. In: 4th ACM SIGKDD Inter-

national Workshop on Knowledge Discovery from Sensor Data

17. Maguire D, Frisby R (2009) Comparison of feature classification

algorithm for activity recognition based on accelerometer and

heart rate data. In: 9th IT & T Conference
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