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Abstract Most well-known classifiers can predict a bal-

anced data set efficiently, but they misclassify an imbal-

anced data set. To overcome this problem, this research

proposes a new impurity measure called minority entropy,

which uses information from the minority class. It applies a

local range of minority class instances on a selected numeric

attribute with Shannon’s entropy. This range defines a subset

of instances concentrating on the minority class to be con-

structed by decision tree induction. A decision tree algo-

rithm using minority entropy shows improvement compared

with the geometric mean and F-measure over C4.5, the

distinct class-based splitting measure, asymmetric entropy,

a top–down decision tree and Hellinger distance decision

tree on 24 imbalanced data sets from the UCI repository.

Keywords Decision tree � Minority entropy � Minority

range � Geometric mean � F-measure

1 Introduction

In 2011, the decision tree was voted one of the most used

data mining algorithms [1]. It was included in 2008 [2] for

the C4.5 [3] algorithm as one of the top 10 algorithms for

data mining. The idea of the decision tree derived from the

concept learning system (CLS) [4], which applies a

recursive partitioning method to construct a tree, and CLS-

inspired descendant algorithms, such as ID3 [5], C4.5,

classification and regression tree (CART) [6], top–down

decision tree (DKM) [7–9], asymmetric entropy (AE) [10,

11], Hellinger distance decision tree (HDDT) [12] and

distinct class-based splitting measure (DCSM) [13].

Despite much research based on C4.5, there are some

limitations of the decision tree that can be improved fur-

ther. This paper focuses on a well-known problem in

classification called a class imbalanced problem, which

occurs in a data set with a highly different number of

instances among classes. For example, in a two-class data

set, one class has only 1 % of instances, while the

remaining instances are in the other class. Several classi-

fiers predict all instances as the second class because this

achieves an accuracy of 99 %, which misclassifies all

instances in the first class. In an imbalanced problem, a

class with a small number of instances is called the

minority class, while the other class is known as the

majority class. In real-world classification, users are fre-

quently more interested in the accuracy of predicting

minority class instances than the accuracy of predicting

majority class instances, especially in cases in which the

cost of misclassifying minority class instances is higher

than that of majority class instances, such as network

intrusions [14] and the detection of oil spills using satellite

radar images [15].

In 2010, [16] proposed an insensitive measure for a

decision tree called the class confidence proportion deci-

sion tree (CCPDT), which replaced the use of Shannon’s

entropy (SE) [17] as the split measure. The CCPDT com-

puted the class confidence proportion for each attribute and

selected the best split from the best confidence value. The
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class confidence proportion used by the CCPDT was

modified from the traditional confidence in [18] to focus on

instances in each class instead of instances in each parti-

tion. Additionally, it integrated Fisher’s exact test [19] to

prune the branches, which improved overall performance.

According to the results in the paper, the proposed measure

yielded statistically improved performance on imbalanced

data sets compared with traditional confidence.

Other methods exist that are based on a sampling

technique that aims to balance the number of instances

between classes by either over-sampling, under-sampling

or both. For an over-sampling technique, the number of

minority instances is synthesized to balance instances

between the majority and minority instances, for example,

adaptive synthetic (ADASYN) [20], synthetic minority

over-sampling technique (SMOTE) [21], borderline-

SMOTE [22], density-based synthetic minority over-

sampling technique (DBSMOTE) [23] and safe-level-

SMOTE [24]. For an under-sampling technique, some

majority instances are removed instead of synthesizing

minority instances, for example, majority under-sampling

technique (MUTE) [25]. These sampling techniques can

be applied with any existing classifier, but they change

the distribution within the data set. Additionally, an

increase in the number of instances requires extra pro-

cessing time.

In this paper, we propose a new impurity measure called

minority entropy (ME) to improve the performance of

decision tree induction on an imbalanced data set. This

technique aims to reduce the effect of overwhelming

majority class instances, while maintaining all minority

class instances in the current data set. The concept of an

under-sampling technique permanently eliminates majority

class instances, while ME ignores majority class instances

along an examining attribute. ME therefore preserves all

instances in the data set. ME is designed to focus on the

minority class instances surrounded by the instances from

another class, which increases the ability to recognize

minority class instances within an attribute range. The

minority range on the selected attribute is defined as the

difference between the largest and smallest values of all

minority class instances. According to the results in the

fifth section of this paper, ME improves performance to

manage an imbalanced problem compared with the geo-

metric mean and the harmonic mean of the detection rate

and false alarm rate (F-measure).

The next section in this paper elaborates on decision

tree induction. The third section presents related works

and the fourth section explains the details and proofs of

ME properties. The fifth section presents experimental

results of ME compared with C4.5, DCSM, AE, DKM and

HDDT. The final section contains the conclusion and

future work.

2 Decision tree

A decision tree is a tree structure model that consists of

multiple nodes connected by branches. There are three

types of nodes, which are the root, internal and leaf

nodes. The root node reaches every other node in the tree

and an internal node represents an attribute that is used to

test instances. Each internal node connects to its child

nodes by branches that satisfy specified conditions. A leaf

node contains instances that are classified in a specific

class.

In this paper, we use a two-class data set, which consists

of instances from a positive class and negative class.

Decision tree induction is an algorithm to construct a

decision tree from training instances. At each node, all

instances are separated into partitions based on their values

in the specified attribute to reduce impurity of the data set.

Therefore, the impurity measure plays an important role in

determining the best split. If each partition contains only

instances in the same class, the impurity is zero. Con-

versely, if each partition contains instances of all classes

equally, the impurity is set to the highest value. The widely

used impurity measures are entropy [17], Gini [26] and

classification error.

The structure of the data set is presented in Fig. 1 to

describe the impurity formulae. Given the data set D, the

attribute a 2 fA1;A2; :::;Amg represents the selected attri-

bute. D consists of instances from a set of two classes C =

{?, -}. Note that Dþ \ D� ¼ ; and D ¼
S

c2C Dc.

Let z be the value of the attribute a. Let projaðiÞ denote
the projection of the instance i of the attribute a. From

Eq. 1, slaðD; zÞ denotes a set of instances with values in the

attribute a less than or equal to z. From Eq. 2, sraðD; zÞ

Fig. 1 A structure of a data set
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denotes a set of instances with values in the attribute

a greater than z.

slaðD; zÞ ¼ fi 2 DjprojaðiÞ� zg ð1Þ

sraðD; zÞ ¼ fi 2 DjprojaðiÞ[ zg ð2Þ

In a standard decision tree, SE, denoted by Ent, is used as

an impurity measure in Eq. 3:

EntðDÞ ¼ � jDþj
jDj log2

jDþj
jDj � jD�j

jDj log2
jD�j
jDj ð3Þ

SaðD; zÞ ¼
jslaðD; zÞj

jDj EntðslaðD; zÞÞ

þ jsraðD; zÞj
jDj EntðsraðD; zÞÞ

ð4Þ

EntaðDÞ ¼ min
z2fprojaðiÞji2Dg

SaðD; zÞ ð5Þ

Equation 4 presents the formula that applies entropy as the

impurity measure for the value z of the attribute a. From

Eqns. 1 and 2, all instances are separated into two partitions

by z. Then the first and second terms compute entropies for

the first and second partitions, respectively. In these terms,

entropies for each partition are weighted by the ratio of

instances in the data set. Equation 5 selects the minimum

entropy among the split values of the attribute a. Then, the

best attribute is selected as the maximum value of

EntðDÞ � EntaðDÞ over the attribute a.

C4.5 is a descendant of ID3 that uses information gain to

measure the impurity of a discrete valued attribute. In Eq. 6,

InfoGainaðDÞ denotes the information gain of the attribute a.

The information gain is computed from the difference

between entropy before and after the split. The attribute a that

provides the highest value of information gain is selected as

the best split. However, ID3 tends to favor an attribute with

many distinct values, while C4.5 avoids this situation by using

split information in Eq. 7. Split information is used to estimate

the distribution of instances after the split for the value z of the

attributea. If the numberof instances in eachpartition is equal,

the split information is 1. In other cases, this value is less than

1. The gain ratio uses split information as a denominator to

reduce the bias of the information gain. Therefore, if all

instances are located only in a single partition, the gain ratio

will obtain the highest value. SplitInfoaðDÞ is defined as the

split information.GainRatioaðDÞ denotes the gain ratio for the
attribute a that provides the minimum value of the gain ratio.

InfoGainaðDÞ ¼ EntðDÞ � EntaðDÞ ð6Þ

SplitInfoaðD; zÞ ¼ � jslaðD; zÞj
jDj log2

jslaðD; zÞj
jDj

� jsraðD; zÞj
jDj log2

jsraðD; zÞj
jDj

ð7Þ

GainRatioaðDÞ ¼ min
z2fprojaðiÞji2Dg

SaðD; zÞ
SplitInfoaðD; zÞ

ð8Þ

Another interesting measure proposed in recent years is

DCSM, which combines two concepts. The first concept

addresses the number of distinct classes in each partition

after the split. The fewer distinct classes in partitions, the

purer the partitions. The results in the paper [13] showed

that DCSM could improve the performance of C4.5, and it

produced a compact decision tree. The next section pre-

sents related works that focus on techniques based on

decision tree induction targeting an imbalanced data set.

3 Related works for an imbalanced problem

As discussed in the previous section, C4.5 and DCSM are

not designed to solve an imbalanced problem; hence they

tend to yield unsatisfactory performance for an imbalanced

data set. Many researchers have addressed this problem and

provided remedies for C4.5.

In C4.5, SE is used as a split measure that is a symmetric

entropy. It achieves its maximum value at 1. In a two-class

data set, the maximum of SE occurs when both class ratios

are 0.5 and it achieves its minimum value at 0, when the

ratio of one class is 0 and the other is 1. By contrast, AE

modifies this entropy. It achieves its maximum value when

one class ratio equals the parameter called h, which is the

entropy skewness. This parameter can be set within the

range 0 to 1 to favor instances in the minority class. h can

be determined using experiments such as in [27]. However,

an unsuitable h can be a drawback for AE. Our experiments

in the fifth section of this paper use the highest performing

h from the training process.

Regarding other techniques, DKM [8, 9] and HDDT

[12] are skew-insensitive split measures that are designed

to handle an imbalanced data set. The skew-insensitive

split measure is not affected by the ratio of the number of

instances among classes. The authors of DKM introduced a

new split measure for top–down decision tree induction in

[7] in 1996. In that paper, the authors aimed to improve the

performance of decision tree induction without focusing on

an imbalanced problem. In [8, 9], DMK was adapted to run

on an imbalanced data set. In 2008, the technique in [12]

used a measure of distributional divergence as the splitting

criteria, called Hellinger distance. The authors presented

the proof that the Hellinger distance was less sensitive for

class distribution than DKM, and it yielded improvement

over DKM.

Improvement for an imbalanced data set can be

achieved by the use of ME, which is outlined in the fol-

lowing section.
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4 Minority entropy

4.1 Motivation

Most classifiers are unable to recognize minority class

instances because of the very small number of instances

compared with the majority class instances. To address this

behavior, most techniques compensate for a tiny number of

minority class instances or diminish the significance of a

large number ofmajority class instances, which increases the

likelihood of minority class prediction. The classifier is thus

able to yield enhanced accuracywith regard to theseminority

class instances. ME improves decision tree induction by

diminishing majority instances outside the range for all

minority instances, called the minority range. In Fig. 2, the

minority range is the size of the middle box, which provides

sufficient information to construct a decision tree as illus-

trated at the top of the figure. All instances outside the range

that would not affect the ability to predict minority class

instances are excluded. Therefore, ME considers only

instances in the minority range to construct a decision tree.

Given a sample data set, where the minority class is rep-

resented as the positive class and the majority class is rep-

resented as the negative class, Fig. 3a shows a split value at

0.55 for the first attribute and Fig. 3b shows a split value at

0.35 for the second attribute. ME provides a higher value for

the second attribute than the first because the significance of

minority class instances increases after the split, while the

standard decision tree splits by the first attribute because of

its entropy. ME achieves this by ignoring all majority class

instances outside the minority range.

The effect of removing majority class instances is

illustrated in Fig. 4a, b. Figure 4a shows the data set after

removing all majority class instances with values in the

first attribute less than 0.15 and Fig. 4b removes all

(a)

(b)

Fig. 3 a Split by attribute 1 and b split by attribute 2Fig. 2 An example of a decision tree
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majority class instances with values in the second attribute

greater than 0.65. The second attribute obviously provides

a better split than the first, as shown in Fig. 4b. ME con-

siders the minority class instance distribution and ignores

majority class instances outside the minority range, which

is explained in the next section.

4.2 Minority entropy

Minority entropy is a new impurity measure to be applied

with decision tree induction, which is computed from the

minority class instances within the minority range. To

compute ME, the minority range is defined by the range of

values between min k2Dþ projaðkÞ and max l2Dþ projaðlÞ of
the attribute a. Then a set of instances within the minority

range is defined:

spraðDÞ ¼ fi 2 Dj min
k2Dþ

projaðkÞ� projaðiÞ� max
l2Dþ

projaðlÞg

ð9Þ

Using spraðDÞ instead of D in the entropy formula, the

ratio of minority class instances in the minority range is

greater than or equal to the ratio of minority class instances

from SE, and the ratio of majority class instances in the

minority range is less than or equal to the ratio of majority

class instances from SE, which is proved in Theorem 1.

This theorem, proposed by us, is used to demonstrate the

idea of ME. The details of the theorem are provided as

follows:

Theorem 1 Define D as a set of instances, D = { x1, x2,

..., xn}, where n is the number of instances. Each instance

consists of m attributes, {A1, A2, ..., Am}. Let a 2 {A1, A2,

..., Am}. D? is a nonempty set of positive instances and D- a

set of negative instances, such that D? \ D2 = ; and D? [
D- = D. spraðDÞþ and spraðDÞ� are sets of positive and

negative instances in spraðDÞ. The following statements are

true.

1.
jDþj
jDj �

jspraðDÞþj
jspraðDÞj

2.
jD�j
jDj � jspraðDÞ�j

jspraðDÞj

Proof Because spraðDÞ � D, jspraðDÞj � jDj, Moreover,

all positive instances in D lie within the minority range.

Therefore, spraðDÞþ ¼ Dþ. We can conclude that the first

statement is true.

Let Q = D - spraðDÞ. Q? is a set of positive instances in

Q. Q- is a set of negative instances in Q. Because no

positive instances lie in Q, Q = Q-. Let c be the number of

instances in Q-.

jD�j
jDj ¼ jspraðDÞ� [ Q�j

jspraðDÞ [ Qj

¼ jspraðDÞ�j þ c

jspraðDÞj þ c

� jspraðDÞ�j
jspraðDÞj

:

Thus, the second statement is true.

Minority entropy is defined according to Theorem 1 as

follows: MEaðDÞ denotes the minority entropy formula of a

data set (D) for an attribute (a).

MEaðDÞ ¼ EntaðspraðDÞÞ ð10Þ

(a)

(b)

Fig. 4 a Split by attribute 1 and b split by attribute 2
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From this equation, ME provides the highest value, which

is 1, when the number of instances in the positive and

negative classes are the same. It also provides the lowest

value, which is 0, when all instances are in the same class,

as for SE. Moreover, ME provides the zero value when

minority class instances are embedded between majority

class instances and no majority class instances appear

inside the range of minority class instances along the

attribute, while decision tree induction using SE may not

always provide the zero value. The proof of this case is

provided in Theorem 2. h

Theorem 2 Define D as a set of instances, D = D? [ D-.

If spraðDÞ = D?, then MEaðDÞ provides the lowest value =
0.

Proof Suppose spraðDÞ = D?. Because

spraðDÞ ¼ spraðDÞþ [ spraðDÞ�, then spraðDÞ� ¼ ;.

EntaðspraðDÞÞ ¼ �
jspraðDÞþj
jspraðDÞj

log2
jspraðDÞþj
jspraðDÞj

� jspraðDÞ�j
jspraðDÞj

log2
jspraðDÞ�j
jspraðDÞj

¼ � 1 log2 1 � 0 ¼ 0

Because MEaðDÞ ¼ EntaðspraðDÞÞ from Eq. 10, then

MEaðDÞ ¼ 0:

If the range along the attribute a contains only minority

class instances, then ME has the lowest value for this

attribute. Decision tree induction using ME, therefore,

selects this attribute as the best split (see Figs. 3 and 4).

Example 1 illustrates the steps for computing ME, which

supports Theorem 2. h

Example 1 The sample data set (D) has 10 positive

instances and 28 negative instances, as shown in Fig. 5. For

the first attribute, the first partition consists of all instances

with values less than or equal to 0.7 and the second par-

tition consists of all instances with values greater than 0.7.

Therefore, ME for the first attribute is 0.4019.

For the second attribute, the first partition consists of all

instances with values less than or equal to 0.6. The second

partition consists of all instances with values greater than

0.6. ME for the second attribute is zero. Decision tree

induction using ME selects the second attribute as a split.

SE is 0.4019, which is the same value as ME for the first

attribute, but it is 0.4373 for the second attribute, which is

higher than the value for the first attribute. Therefore, the

decision tree using SE selects the first attribute as a split.

The worst case scenario: If the minority range covers

all majority instances along the attribute, then spraðDÞþ ¼

Dþ and spraðDÞ� ¼ D�. In this case, ME has the same

value as SE, so no benefit is gained from using ME as

shown in Fig. 6. The following algorithm provides details

for decision tree induction using ME:

Algorithm: Decision Tree Induction using ME

Input: A data set (D) including minority class instances
and majority class instances

Output: A decision tree

1. Create a node of the tree
2. If all instances are in the same class then
3. Return the node labeled as that class
4. For each attribute a in D

5. Compute spra(D) for attribute a

6. For each value(z ) of (spra(D)) in attribute a

7. Split the instances by spra(D) into a left partition
and right partition

8. Compute ME for a value(z ) of spra(D)

9. End For

10. Select the best split for attribute a from the value
to provide the minimum value of ME

11. End For
12. Separate the instances into partitions corresponding to

the selected attribute
13. Iterate for each partition

Fig. 5 An example data set
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Minority Entropy (D, a)

1. Find the set of instances in a minority range (MR)
for attribute a

2. Prob Pos = number of positive instances
number of instances

3. Prob Neg = number of negative instances
number of instances

4. Prob PosMR = number of positive instances in MR
number of instances in MR

5. Prob NegMR = number of negative instances in MR
number of instances in MR

6. ME = Compute entropy from ( Prob PosMR
and Prob NegMR )

7. Return ME

Time complexity: To find the best split, the time

complexity for computing the gain ratio in C4.5 is O(m �n)
for each level, where n is the number of instances and m is

the number of attributes. The time complexity of C4.5 was

derived in [28]. For ME, the time complexity for each level

is also O(m �n), which is the same as for C4.5. Theorem 3

shows the proof of the time complexity for ME.

Theorem 3 The time complexity of computing ME for

all attributes is O(m �n), where n is the number of instance

and m is the number of attributes.

Proof Let T(n) be the time complexity of computing ME.

Ti(n) denotes the time complexity of the ith task. The

details of all tasks shown in Minority Entropy() are shown

as follows:

– T1(n) denotes the time complexity of find_inst_in_MR.

To find the minority range, the minimum and maximum

values of positive instances have to be identified first.

The algorithm loops through all instances to find the

minimum and maximum values. Therefore, T1(n) =

O(n). In the worst case scenario for identifying this

group of instances, it takes O(n).

– T2(n) denotes the time complexity of count_pos_inst.

T2(n) = O(n) because each instance is examined once.

– T3(n) denotes the time complexity of count_neg_inst.

T3(n) = O(n) because each instance is examined once.

– T4(n) denotes the time complexity of count_-

pos_inst_in_MR. T4(n) = O(n) because each instance

is examined once.

– T5(n) denotes the time complexity of count_neg_in-

st_in_MR. T5(n) = O(n) because each instance is

examined once.

– T6(n) denotes the time complexity of compute_ME.

T6(n) = O(1).

Because task 1 through task 6 are performed for each

attribute, their time complexities have to be multiplied by

the number of attributes (m). Task 2 through task 5 can be

computed in O(n). Therefore,

TðnÞ ¼ m � ðT1ðnÞ þ T2ðnÞ þ T3ðnÞ þ T4ðnÞ
þ T5ðnÞ þ T6ð1ÞÞ

¼ m � ðOðnÞ þ OðnÞ þ OðnÞ þ OðnÞ
þOðnÞ þ Oð1ÞÞ

¼ m � ðOðnÞ þ 1Þ
¼ Oðm � nÞ

h

5 Experimental results

5.1 Data sets

The experiments were performed on 24 data sets from the

UCI repository [29] with minority class instances of less

than 30 %. SatImage, OpticDigits, Adult and PenDigits

data sets had training and testing available in the UCI

repository, while the other data sets were validated using

tenfold cross-validation. Table 1 presents the data sets in

the order of their percentage of minority class instances.

The first and the second columns contain the data set

Fig. 6 An example data set where ME and SE provide the same

information
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number and name, and the third column contains the

selected class as a minority class and the remaining classes

as majority classes. For example, in the Letter data set,

class A is selected as the minority class, while the

remaining classes are defined as majority classes. SatI-

mage(1) and SatImage(4) are SatImage data sets for which

class 1 and class 4 are selected as minority classes,

respectively. Ecoli(imU) and Ecoli(pp) are Ecoli data sets

for which class imU and class pp are selected as minority

classes, respectively. The fourth column contains the

number of attributes in the data sets and the fifth column

contains the number of instances in the data sets. The last

column contains the percentage of minority class instances.

These data sets were used in all experiments, which aimed

to show the results for handling imbalanced data sets using

C4.5, DCSM, DKM, HDDT, AE and ME.

5.2 Performance measures and evaluation

C4.5, DCSM, DKM, HDDT, ME and AE were imple-

mented using MATLAB. Only AE required the parameter

h, which was obtained from the best performance in the

training data set. The experimental results show a

comparison of ME with C4.5, DCSM, DKM, HDDT ME

and AE using the F-measure [30]. According to [31], the F-

measure is one of the performance measures that is suit-

able for a class imbalanced problem, which harmonizes the

recall in Eq. 11 and precision in Eq. 12. b is used as the

weight of importance between the recall and precision, so it

is set to 1, which means the recall and precision are equally

important. The formulae for the F-measure and geometric

mean are provided in Eqs. 13 and 14, respectively. The

recall and precision performance measures are extracted

from the contingency table shown in Table 2. In this table,

true positive (TP) denotes the number of positive instances

that are correctly predicted as positive instances, true

negative (TN) denotes the number of negative instances

that are correctly predicted as negative instances, false

positive (FP) denotes the number of negative instances that

Table 1 Detail of imbalanced

two-class data sets
No. Data sets Minor. class / major. class #att. #inst. % Minority (%)

1 Page blocks 1 / The remainder 10 5473 0.51

2 Thyroid 1 / The remainder 21 720 2.36

3 Letter A / The remainder 16 20,000 3.95

4 Abalone 18 / 9 8 731 5.75

5 Glass 5 / The remainder 9 214 6.07

6 Cleveland 0 / 4 13 173 7.51

7 LED display domain 0, 2, 4, 5, 6, 7, 8, 9 / 1 7 443 8.35

8 Vowel 0 / The remainder 13 988 9.11

9 PenDigit* 5 / The remainder 16 10,992 9.60

10 OpticDigits* 4 / The remainder 36 6435 9.76

11 Ecoli(imU) O / The remainder 64 5620 9.86

12 SatImage(4)* imU / The remainder 7 336 10.42

13 Fertility O / The remainder 10 100 12.00

14 Breast tissue con / The remainder 10 106 13.21

15 Segmentation 1 / The remainder 19 2310 14.29

16 Ecoli(pp) pp / The remainder 7 336 15.48

17 Vertebral column DH / The remainder 6 310 19.35

18 Shuttle* The remainder / 1 9 58,000 21.40

19 SatImage(1)* 1 / The remainder 4 748 23.80

20 Transfusion 1 / The remainder 36 6435 23.82

21 Adult* 0 / The remainder 10 195 24.62

22 Parkinsons 1 / The remainder 14 45,099 24.76

23 Haberman 2 / The remainder 3 306 26.47

24 Wine 3 / The remainder 13 178 26.97

‘‘*’’ indicates the data sets that use train/test partitions

Table 2 Contingency table

Actual positive Actual negative

Predicted positive True positive (TP) False positive (FP)

Predicted negative False negative (FN) True negative (TN)
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are inaccurately predicted as positive instances and false

negative (FN) denotes the number of positive instances that

are inaccurately predicted as negative instances.

Recall ¼ TP

TP + FN
ð11Þ

Precision ¼ TP

TP + FP
ð12Þ

F-measure ¼ ð1þ bÞ2 � ðRecall � PrecisionÞ
b2 � ðRecallþ PrecisionÞ

ð13Þ

Geometric mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP

TP + FN
� TN

TN + FP

r

ð14Þ

In the next section, the comparison of the results using C4.5,

DCSM, AE, DKM, HDDT and ME are presented by the F-

measure, geometric mean, precision and recall. In this paper,

Table 3 Simulate testing result
F-measure Geometric mean

SE (5 % of minority class instances) 0.6667 0.7705

ME (5 % of minority class instances) 1 1

SE (10 % of minority class instances) 0.9091 0.9888

ME (10 % of minority class instances) 1 1

SE (15 % of minority class instances) 0.9677 0.9941

ME (15 % of minority class instances) 1 1

SE (20 % of minority class instances) 1 1

ME (20 % of minority class instances) 1 1

Table 4 The comparison result by the geometric mean for imbalanced data sets

No. Data sets Geometric mean

C4.5 DCSM AE DKM HDDT ME

1 Page blocks 0.8230 (3) 0.9058 (1) 0.7555 (4) 0.4225 (6) 0.7062 (5) 0.8446(2)

2 Thyroid 0.8732 (1) 0.8732 (1) 0.8732 (1) 0.5404 (5) 0.4174 (6) 0.8726 (4)

3 Letter 0.9700 (3) 0.9581 (5) 0.9739(2) 0.8953 (6) 0.9621 (4) 0.9760(1)

4 Abalone 0.4291 (3) 0.4805 (2) 0.3987(4) 0.3710 (5) 0.3395 (6) 0.5259(1)

5 Glass 0.8237 (4) 0.9584 (1) 0.9584 (1) 0.7647 (5) 0.6709 (6) 0.9584 (1)

6 Cleveland 0.6104 (2) 0.3873 (5) 0.5353(4) 0.0000 (6) 0.6665 (1) 0.5460(3)

7 LED display domain 0.8904 (1) 0.8754 (5) 0.8904 (1) 0.8732 (6) 0.8904 (1) 0.8904 (1)

8 Vowel 0.9629 (2) 0.9402 (4) 0.9423 (3) 0.5823 (6) 0.7769 (5) 0.9743 (1)

9 PenDigit 0.8848 (4) 0.9221 (1) 0.9056 (3) 0.7660 (6) 0.7920 (5) 0.9209 (2)

10 OpticDigits 0.9627 (5) 0.9765 (2) 0.9726 (3) 0.8057 (6) 0.9705 (4) 0.9806 (1)

11 Ecoli(imU) 0.6841 (3) 0.6602 (4) 0.7742 (1) 0.4908 (6) 0.6186 (5) 0.7420 (2)

12 SatImage(4) 0.7397 (3) 0.7338 (4) 0.7479 (1) 0.6612 (6) 0.7104 (5) 0.7419 (2)

13 Fertility 0.3769 (4) 0.2735 (5) 0.3844 (3) 0.2647 (6) 0.5573 (1) 0.5401 (2)

14 Breast tissue 0.9003 (4) 0.9208 (1) 0.9208 (1) 0.7137 (6) 0.8767 (5) 0.9208 (1)

15 Segmentation 0.9843 (4) 0.9944 (1) 0.9922 (2) 0.9031 (6) 0.9031 (5) 0.9894 (3)

16 Ecoli(pp) 0.8506 (2) 0.8320 (4) 0.8397 (3) 0.7337 (5) 0.6987 (6) 0.8522 (1)

17 Vertebral column 0.6693 (4) 0.6708 (3) 0.7189 (2) 0.6481 (5) 0.6432 (6) 0.7298 (1)

18 Shuttle 0.9998 (3) 0.9989 (4) 0.9998 (2) 0.9934 (6) 0.9988 (5) 1.0000 (1)

19 SatImage(1) 0.9617 (3) 0.9655 (2) 0.9588 (4) 0.9238 (6) 0.9360 (5) 0.9677 (1)

20 Transfusion 0.5239 (3) 0.5563 (1) 0.5327 (2) 0.4986 (5) 0.4745 (6) 0.5239 (3)

21 Adult 0.7460 (2) 0.7366 (4) 0.7361 (5) 0.6686 (6) 0.7474 (1) 0.7447 (3)

22 Parkinsons 0.7470 (5) 0.8081 (2) 0.8063 (3) 0.6776 (6) 0.7673 (4) 0.8274 (1)

23 Haberman 0.5346 (1) 0.5111 (5) 0.5185 (3) 0.4120 (6) 0.5121 (4) 0.5277 (2)

24 Wine 0.9638 (1) 0.9494 (3) 0.9608 (2) 0.8540 (5) 0.7145 (6) 0.9282 (4)

Average rank 2.92 2.92 2.50 5.71 4.46 1.83

Friedman test 0.010515 0.033006 0.049535 0.000001 0.000393 Base

Bold values represent the best performance measure comparing among all classifiers

Pattern Anal Applic (2017) 20:769–782 777

123



we focus on the F-measure and geometric mean rather than

the precision and recall. If a classifier blindly predicts a

minority class for all instances, it yields the highest recall

while the precision is low. If there is another classifier that

focuses on providing the highest precision, the number of

misclassifications in minority class instances tends to

increase. Therefore, a consideration based on only the pre-

cision or recall seems to be biased. To eliminate these

drawbacks, the measure must combine both the precision

and recall, such as the F-measure and geometric mean.

The Friedman test is used to compare ranking across

imbalanced data sets. It is a non-parametric statistical test

that is suitable for the comparison of classifiers [32]. All

experiments use the significance level of a ¼ 0:05:

5.3 Results

To show the effectiveness of ME over SE, the simulated data

sets were generated and evaluated by the F-measure and

geometric mean. These data sets consisted of ten attributes of

100 instances. For the first attribute, a specific range was

selected and fixed, such as the range between 0.1 and 0.2, so

that uniform sampling of minority instances was performed

within this range, while the other class instances were located

outside this range. The values for the other attributes were

selected at random between 0 and 1. Experiments were per-

formed on four groups of data sets with 5, 10, 15 and 20 % of

minority class instances. Each group contained 10 simulated

data sets. The average results for ME compared with SE by

the F-measure and geometric mean are presented in Table 3.

For SE, the values for both the F-measure and geometric

mean increase when the percentage of the minority class

instances increases, which means that it can handle a bal-

anced data set better than an imbalanced data set. Note that

ME provides the average F-measure and geometric mean

of 1, which is shown for all data sets. This result is evi-

dence that ME outperforms SE when a data set contains

pure minority instances in the minority range.

Despite the effectiveness of ME, real-world data sets

rarely exhibit pure minority instances within the minority

Table 5 The comparison result by the F-measure for imbalanced data sets

No. Data sets F-measure

C4.5 DCSM AE DKM HDDT ME

1 Page blocks 0.6667 (3) 0.8070 (1) 0.6400 (4) 0.2857 (6) 0.5000 (5) 0.7273 (2)

2 Thyroid 0.8125 (1) 0.8125 (1) 0.8125 (1) 0.3704 (5) 0.2069 (6) 0.7879 (4)

3 Letter 0.9442 (3) 0.9314 (5) 0.9494 (2) 0.8303 (6) 0.9349 (4) 0.9544 (1)

4 Abalone 0.2192 (3) 0.2740 (2) 0.1728 (4) 0.1644 (5) 0.1449 (6) 0.3158 (1)

5 Glass 0.6923 (4) 0.9231 (1) 0.9231 (1) 0.5161 (5) 0.5000 (6) 0.9231 (1)

6 Cleveland 0.4348 (2) 0.2105 (5) 0.2857 (4) 0.0000 (6) 0.4800 (1) 0.3636 (3)

7 LED display domain 0.7895 (1) 0.7733 (5) 0.7895 (1) 0.7532 (6) 0.7895 (1) 0.7895 (1)

8 Vowel 0.9333 (2) 0.9143 (3) 0.8852 (4) 0.4593 (6) 0.7051 (5) 0.9451 (1)

9 PenDigit 0.8373 (4) 0.8885 (1) 0.8683 (3) 0.6119 (6) 0.6782 (5) 0.8777 (2)

10 OpticDigits 0.9379 (5) 0.9474 (3) 0.9575 (2) 0.6919 (6) 0.9389 (4) 0.9609 (1)

11 Ecoli(imU) 0.5397 (3) 0.4923 (4) 0.6197 (1) 0.2857 (6) 0.4516 (5) 0.6061 (2)

12 SatImage(4) 0.5541 (4) 0.5634 (3) 0.5891 (1) 0.4734 (6) 0.5450 (5) 0.5823 (2)

13 Fertility 0.1481 (4) 0.0909 (5) 0.1667 (3) 0.0741 (6) 0.3636 (1) 0.2963 (2)

14 Breast tissue 0.7742 (5) 0.8889 (1) 0.8889 (1) 0.5000 (6) 0.8148 (4) 0.8889 (1)

15 Segmentation 0.9742 (4) 0.9894 (1) 0.9834 (2) 0.8286 (6) 0.8427 (5) 0.9818 (3)

16 Ecoli(pp) 0.7723 (2) 0.7238 (4) 0.7600 (3) 0.5941 (5) 0.5625 (6) 0.7800 (1)

17 Vertebral column 0.5172 (4) 0.5217 (3) 0.5862 (2) 0.4615 (6) 0.4640 (5) 0.6239 (1)

18 Shuttle 0.9997 (3) 0.9985 (4) 0.9998 (2) 0.9899 (6) 0.9985 (5) 1.0000 (1)

19 SatImage(1) 0.9463 (4) 0.9538 (1) 0.9469 (3) 0.8682 (6) 0.8936 (5) 0.9511 (2)

20 Transfusion 0.3522 (3) 0.3939 (1) 0.3620 (2) 0.3302 (5) 0.3000 (6) 0.3522 (3)

21 Adult 0.6301 (2) 0.6213 (4) 0.6199 (5) 0.5295 (6) 0.6343 (1) 0.6300 (3)

22 Parkinsons 0.6263 (5) 0.6990 (3) 0.7416 (2) 0.5294 (6) 0.6739 (4) 0.7609 (1)

23 Haberman 0.3669 (1) 0.3415 (5) 0.3522 (3) 0.2411 (6) 0.3462 (4) 0.3625 (2)

24 Wine 0.9388 (2) 0.9184 (3) 0.9474 (1) 0.8043 (5) 0.6207 (6) 0.9130 (4)

Average rank 3.08 2.88 2.38 5.75 4.38 1.88

Friedman test 0.010515 0.088082 0.049535 0.000001 0.000393 Base

Bold values represent the best performance measure comparing among all classifiers
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range for any attribute. However, this situation appears

after a finite number of splits occur. To demonstrate the

effectiveness of ME for general data sets, data sets from the

UCI repository were used and the results of these data sets

were compared with the other techniques.

For the first experiment, the results in Table 4 show that

ME yielded the lowest average ranking over C4.5, DCSM,

DKM, HDDT and AE at 1.83. The Friedman test showed

evidence that ME provided a statistical improvement over

these five techniques for imbalanced data sets compared

with the geometric mean at a 0.05 significance level.

For the second experiment, the results in Table 5 show

that ME yielded the lowest average ranking over C4.5,

DCSM, DKM, HDDT and AE at 1.88. The Friedman test

also confirmed that ME provided a significant improve-

ment over C4.5, DKM, HDDT and AE but not DCSM for

imbalanced data sets compared with the F-measure at a

0.05 significance level.

For the third experiment, the results in Table 6 show that

ME yielded the lowest average ranking over C4.5, DCSM,

DKM, HDDT and AE at 1.92. The Friedman test showed a

significant improvement over C4.5, DKM and HDDT for

imbalanced data sets compared with precision at a 0.05

significance level. For the comparison between DCSM and

AE, ME yielded better performance, which was demon-

strated by the lower average ranking. However, it could not

achieve a significant improvement by the precision at a

0.05 significance level.

For the fourth experiment, the results in Table 7 show

that ME yielded the lowest average ranking over C4.5,

DCSM, DKM, HDDT and AE at 1.71. The Friedman test

showed that ME attained a significant improvement over

C4.5, DKM, HDDT and DCSM but not AE for imbalanced

data sets compared with the recall at a 0.05 significance

level.

5.4 Discussion

Our experimental results confirm that C4.5 is not suitable for

an imbalanced data set; however, the results can be improved

using ME on data sets, especially glass, OpticDigits, breast

tissue, vertebral column and Parkinsons. Although ME

Table 6 The comparison result

by precision for imbalanced

data sets

No. Data sets Precision

C4.5 DCSM AE DKM HDDT ME

1 Page blocks 0.6552 (5) 0.7931 (1) 0.7273 (3) 0.7143 (4) 0.5000 (6) 0.7407 (2)

2 Thyroid 0.8667 (1) 0.8667 (1) 0.8667 (1) 0.5000 (5) 0.2500 (6) 0.8125 (4)

3 Letter 0.9454 (3) 0.9429 (4) 0.9482 (2) 0.8560 (6) 0.9421 (5) 0.9544 (1)

4 Abalone 0.2581 (3) 0.3226 (2) 0.1795 (6) 0.1935 (4) 0.1852 (5) 0.3529 (1)

5 Glass 0.6923 (4) 0.9231 (1) 0.9231 (1) 0.4444 (6) 0.5455 (5) 0.9231 (1)

6 Cleveland 0.5000 (1) 0.3333 (4) 0.2667 (5) 0.0000 (6) 0.5000 (1) 0.4444 (3)

7 LED display domain 0.7692 (1) 0.7632 (5) 0.7692 (1) 0.7250 (6) 0.7692 (1) 0.7692 (1)

8 Vowel 0.9333 (3) 0.9412 (1) 0.8710 (4) 0.6889 (1) 0.8333 (6) 0.9348 (2)

9 PenDigit 0.8893 (4) 0.9228 (1) 0.9142 (2) 0.6119 (6) 0.7152 (5) 0.8997 (3)

10 OpticDigits 0.9432 (3) 0.9344 (4) 0.9657 (1) 0.7169 (6) 0.9286 (5) 0.9556 (2)

11 Ecoli(imU) 0.6071 (3) 0.5333 (4) 0.6111 (2) 0.3214 (6) 0.5185 (5) 0.6452 (1)

12 SatImage(4) 0.5279 (5) 0.5581 (4) 0.5905 (1) 0.4828 (6) 0.5600 (3) 0.5865 (2)

13 Fertility 0.1333 (4) 0.1000 (5) 0.1667 (3) 0.0667 (6) 0.4000 (1) 0.2667 (2)

14 Breast tissue 0.7059 (5) 0.9231 (1) 0.9231 (1) 0.4444 (6) 0.8462 (4) 0.9231 (1)

15 Segmentation 0.9757 (4) 0.9879 (1) 0.9790 (3) 0.8152 (6) 0.8492 (5) 0.9818 (2)

16 Ecoli(pp) 0.7959 (2) 0.7170 (4) 0.7917 (3) 0.6122 (6) 0.6136 (5) 0.8125 (1)

17 Vertebral column 0.5357 (4) 0.5455 (3) 0.6071 (2) 0.4286 (6) 0.4462 (5) 0.6939 (1)

18 Shuttle 0.9997 (3) 0.9990 (5) 1.0000 (1) 0.9904 (6) 0.9993 (4) 1.0000 (1)

19 SatImage(1) 0.9558 (3) 0.9666 (1) 0.9661 (2) 0.8384 (6) 0.8768 (5) 0.9522 (4)

20 Transfusion 0.3758 (4) 0.4276 (1) 0.3836 (2) 0.3796 (3) 0.3380 (6) 0.3758 (4)

21 Adult 0.6251 (4) 0.6265 (3) 0.6229 (5) 0.5333 (6) 0.6349 (1) 0.6291 (2)

22 Parkinsons 0.6078 (5) 0.6545 (4) 0.8049 (1) 0.5000 (6) 0.7045 (3) 0.7955 (2)

23 Haberman 0.3523 (4) 0.3373 (5) 0.3590 (3) 0.2833 (6) 0.3600 (2) 0.3671 (1)

24 Wine 0.9200 (3) 0.9000 (4) 0.9574 (1) 0.8409 (5) 0.6923 (6) 0.9545 (2)

Average rank 3.38 2.88 2.33 5.63 4.13 1.92

Friedman test 0.00065 0.0881 0.3711 0.000007 0.00039 Base

Bold values represent the best performance measure comparing among all classifiers
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outperforms C4.5 for most data sets in our experiments, it is

difficult to conclude that ME provides advantages over C4.5

for data sets with a low number of minority class instances

comparedwith data sets with a high number ofminority class

instances, as demonstrated in the experiment on simulated

data sets. In our opinion, real-world data sets can have sev-

eral groups of minority class instances. To identify the best

split, C4.5 considers the impurity of instances after the split,

while ME focuses on the impurity of a single group of

minority class instances. That group of minority class

instances is usually identified aftermultiple splits. Therefore,

ME cannot outperform C4.5 for some data sets from the UCI

repository because of impurity of minority instances within

the minority range.

DCSM can improve performance and provides a com-

pact tree compared with C4.5. It does not intentionally

focus on handling an imbalanced data set. According to the

experimental results, the comparison between ME and

DCSM is not statistically significant compared with the F-

measure and precision. However, ME provides lower

average ranking than DCSM for the experiments overall

and is statistically significant compared with the geometric

mean and recall.

One weakness of AE is the setting of h, which must be

set to a suitable value of imbalance in a data set that is

derived from the training process. Accordingly, AE can

handle imbalanced data sets better than C4.5, DCSM,

DKM and HDDT. Overall, ME yields better performance

compared with AE for all measures. It can outperform AE

statistically significantly compared with the geometric

mean, F-measure and recall.

In conclusion, ME provides the most improved perfor-

mance of the geometric mean, F-measure, precision and

recall among the six techniques: C4.5, DCSM, AE, DKM,

HDDT and ME.

6 Conclusion and future work

Evidence shows that the decision tree is one of the most

popular classifiers [1, 2]. Its weakness is demonstrated

when applying it to an imbalanced problem because

Table 7 The comparison result

by recall for imbalanced data

sets

No. Data sets Recall

C4.5 DCSM AE DKM HDDT ME

1 Page blocks 0.6786 (3) 0.8214 (1) 0.5714 (4) 0.1786 (6) 0.5000 (5) 0.7143 (2)

2 Thyroid 0.7647 (1) 0.7647 (1) 0.7647 (1) 0.2941 (5) 0.1765 (6) 0.7647 (1)

3 Letter 0.9430 (3) 0.9202 (5) 0.9506 (2) 0.8061 (6) 0.9278 (4) 0.9544 (1)

4 Abalone 0.1905 (3) 0.2381 (2) 0.1667 (4) 0.1429 (5) 0.1190 (6) 0.2857 (1)

5 Glass 0.6923 (4) 0.9231 (1) 0.9231 (1) 0.6154 (5) 0.4615 (6) 0.9231 (1)

6 Cleveland 0.3846 (2) 0.1538 (5) 0.3077 (3) 0.0000 (6) 0.4615 (1) 0.3077 (3)

7 LED display domain) 0.8108 (1) 0.7838 (5) 0.8108 (1) 0.7838 (5) 0.8108 (1) 0.8108 (1)

8 Vowel 0.9333 (2) 0.8889 (4) 0.9000 (3) 0.3444 (6) 0.6111 (5) 0.9556 (1)

9 PenDigit 0.7910 (4) 0.8567 (1) 0.8269 (3) 0.6119 (6) 0.6448 (5) 0.8567 (1)

10 OpticDigits 0.9326 (5) 0.9607 (2) 0.9494 (3) 0.6685 (6) 0.9494 (3) 0.9663 (1)

11 Ecoli(imU) 0.4857 (3) 0.4571 (3) 0.6286 (1) 0.2571 (6) 0.4000 (5) 0.5714 (2)

12 SatImage(4) 0.5829 (2) 0.5687 (4) 0.5877 (1) 0.4645 (6) 0.5308 (5) 0.5782 (3)

13 Fertility 0.1667 (3) 0.0833 (3) 0.1667 (5) 0.0833 (6) 0.3333 (1) 0.3333 (1)

14 Breast tissue 0.8571 (1) 0.8571 (1) 0.8571 (1) 0.5714 (6) 0.7857 (5) 0.8571 (1)

15 Segmentation 0.9727 (4) 0.9909 (1) 0.9879 (2) 0.8424 (5) 0.8364 (6) 0.9818 (3)

16 Ecoli(pp) 0.7500 (2) 0.7308 (3) 0.7308 (3) 0.5769 (5) 0.5192 (6) 0.7500 (1)

17 Vertebral column 0.5000 (3) 0.5000 (3) 0.5667 (1) 0.5000 (3) 0.4833 (6) 0.5667 (1)

18 Shuttle 0.9997 (2) 0.9980 (5) 0.9997 (2) 0.9894 (6) 0.9977 (2) 1.0000 (1)

19 SatImage(1) 0.9371 (3) 0.9414 (2) 0.9284 (4) 0.9002 (6) 0.9111 (5) 0.9501 (1)

20 Transfusion 0.3315 (3) 0.3652 (1) 0.3427 (2) 0.2921 (6) 0.2697 (5) 0.3315 (3)

21 Adult 0.6353 (1) 0.6163 (4) 0.6168 (4) 0.5256 (6) 0.6336 (2) 0.6309 (3)

22 Parkinsons 0.6458 (3) 0.7500 (1) 0.6875 (5) 0.5625 (6) 0.6458 (3) 0.7292 (2)

23 Haberman 0.3827 (1) 0.3457 (3) 0.3457 (3) 0.2099 (5) 0.3333 (4) 0.3580 (2)

24 Wine 0.9583 (1) 0.9375 (2) 0.9375 (2) 0.7708 (5) 0.5625 (6) 0.8750 (4)

Average rank 2.50 2.75 2.38 5.50 4.54 1.71

Friedman test 0.0389 0.0253 0.0593 0.000001 0.00012 Base

Bold values represent the best performance measure comparing among all classifiers
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decision tree induction was designed based on a balanced

data set. Consequently, our research develops a new mea-

sure called ME, which uses SE on instances from the

minority range along a single attribute. Overall, ME yields

better performance over C4.5, DCSM, DKM, HDDT and

AE compared with the geometric mean and F-measure.

Although ME requires additional time to locate instan-

ces in the minority range, the overall time complexity of

the algorithm is the same as C4.5. As with all methods on

an algorithmic level, ME does not change the distribution

of the data set. As a result, it does not have to process

additional instances or build multiple classifiers, which

consumes less time compared with over-sampling and

ensemble techniques.

In comparison with an imbalanced algorithm, ME pro-

vides better F-measure performance than AE. Moreover,

AE requires a parameter (h). If a given parameter is not

suitable, using AE can affect the performance of the

decision tree significantly. As a parameter-free method,

ME does not have this weakness.

For future work regarding the decision tree, the minority

range can be applied directly with other impurity measures,

such as Gini. ME can be extended to handle nominal and

ordinal data types.
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