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Abstract We propose a new class-specific image repre-

sentation for image classification using multiple region

detectors. The new representation is designed to solve the

problem of increasing variation in object location and size

within images of a class, for which traditional spatial

pyramid matching shows limited classification accuracy.

We propose a new region-division method that divides the

image region into two class-specific regions, called class-

specific region-of-interest (C-ROI) and focal region (FR).

Using multiple region detectors and appropriate mixing of

their responses avoids the problem of selecting a region

detector that gives the best classification accuracy for a

given image class, and thereby yields better results than

using only one region detector. Several scale-invariant

region detectors are used to obtain C-ROI and FR by

considering their importance over a given image class. In

experiments using several well-known datasets, the pro-

posed method improved the accuracy and achieved results

that were better than or comparable to those achieved by

the related methods.

Keywords Image representation � Class-specific region-

of-interest (C-ROI) � Focal region (FR) � Classification
accuracy � Bag-of-words

1 Introduction

Image classification is the process of classifying images

according to the objects contained in them. One of the main

challenges in designing a classification system is to

develop an appropriate method of image representation [2,

14, 16, 28, 29, 34, 36]. Bag-of-words (BoW) has been

widely used as the image representation method for image

classification [14, 34, 36].

In the traditional BoW framework, each image is rep-

resented as a histogram of word frequency by assigning all

local features to visual words. This model is insensitive to

scale and illumination change, but suffers from lack of

spatial information. Hence, pyramid structure representa-

tion such as spatial pyramid matching (SPM) [14] has been

used to extend the global BoW representation by parti-

tioning images into progressively finer sub-regions. The

SPM computes a histogram of word frequency within each

sub-region, and concatenates all the histograms to form the

final image representation. However, SPM suffers from

degradation of classification accuracy due to varying

locations of objects in images of a same class (Fig. 1a). If

the object locations in images are different, the spatial

partition based on SPM (Fig. 1b) may mismatch them. This

problem can be solved by partitioning the images sepa-

rately into object and background areas.

In this paper, we propose a class-specific image repre-

sentation (Fig. 1c) to match objects and background areas

more accurately. For the object area, we define two kinds

of region: class-specific region-of-interest (C-ROI) and

focal region (FR). The C-ROI is defined as a region that

can be found in all images of the same class (Fig. 1c,

Region 2). A C-ROI contains almost all the region of an

object of interest. The FR is defined as the most informa-

tive region in the C-ROI, i.e., the most informative part of
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the object of interest (Fig. 1c, Region 1). For the back-

ground area, we define the remaining region excluding the

object area as the region in which to match the background

scene. The region is divided horizontally into two regions

(Fig. 1c, Regions 3 and 4) to model the background scene.

By concatenating feature vectors of each region extracted

in this way, we can construct an image representation that

is more class-specific to objects of interest than is tradi-

tional SPM.

To extract C-ROI and FR, we use multiple region

detectors. Usually, the classification accuracy depends on

the region detector used, because they have different

characteristics. The region detector that is most suitable for

classification depends on the image class given. In this

paper we use four scale-invariant region detectors: DoG

[22], Harris-Laplace [24], Hessian-Laplace [25], and sali-

ent [12]. These region detectors capture a variety of char-

acteristic information such as blob-like, corner-like, and

entropy-based features; hence, combining the detectors’

output can be helpful to classify a variety of objects. We

use the similarity of information obtained from multiple

region detectors to extract C-ROIs in images of a class. We

use the spatial distribution and appearance characteristics

of region detectors to compute the similarity for extraction

of C-ROIs.

The characteristics of images in various image classes

can vary widely, which means that different information is

required to describe images of different classes. For

example, for faces (Fig. 1), the eye regions may be the

most informative region to describe the class, so capturing

blob-like structures is quite useful. Therefore, in this paper,

the most informative region of a class, i.e., the FR, is

obtained by considering the class-specific importance of

each region detector for the class. The class-specific

importance of a region detector presents how strongly the

region detector affects extraction of C-ROIs.

The proposed method to construct a specific represen-

tation for a class consists of four steps (Fig. 2). Given

training images of a class, step 1 extracts C-ROIs in them;

these C-ROIs are defined by the similarity of information

obtained from multiple region detectors. When the C-ROIs

are extracted, the class-specific importance of each region

detector is also computed to indicate which region detec-

tors give dominant effects on extraction of C-ROIs. Step 2

extracts the spatial distribution of keypoints extracted by

each region detector in the C-ROIs. We use nonnegative

matrix factorization (NMF) to obtain the semantic spatial

distribution for each region detector. Step 3 finds the FR of

the class by summing the semantic spatial distributions of

region detectors weighted by the class-specific importance

Fig. 1 Spatial layout for image

representation. Numbers are

indices of regions to be matched

in two images. a Example

images, b SPM layout,

c proposed layout

Fig. 2 Framework of proposed method for class-specific image representation. Steps are described in Sect. 3
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and by thresholding. Step 4 defines spatial pooling regions,

and concatenates encodings of each spatial region to form

the final image representation. Here, the encoding of each

spatial region is the BoW representation for obtained fea-

tures of the spatial region.

2 Related work

Image representation has been developed as the main

objective for various tasks such as image classification and

retrieval [14, 16, 17, 34, 36]. For image classification, the

pyramid structure representation based on Bag-of-words

(BoW) [14, 34, 36] has been widely used as the image

representation. This representation extends the global BoW

representation and models approximate geometric layout

by partitioning the image plane into progressively finer

sub-regions; this procedure has become standard in the

image classification task. Yang et al. [36] and Wang et al.

[34] proposed extensions of the SPM approach [14]; the

extensions compute a pyramid image representation based

on effective coding schemes, instead of the k-means vector

quantization in the SPM. The extensions obtained better

classification accuracy than traditional SPM, and attained

state-of-the-art accuracy on some benchmarks. However, if

corresponding object locations and scene layout differ

among images, these methods also suffer from

misalignment.

The misalignment problem between objects in images

can be solved by the object-centered representation. The

part-based approach [5–8] and the interest region-based

approach [1, 9, 11, 26, 31, 35] are two widely used object-

centered representations. The part-based approach repre-

sents an object as a spatial layout of multiple parts, where

the deformable configuration is characterized by spring-

like connections between them [8] or by a joint Gaussian

density of the locations of parts obtained from a random

constellation [6]. Other methods [5, 7] constructed with

spring-like connections introduce many local ambiguities

and limited parts. The disadvantage of existing part-based

models is that they depend heavily on the representations

of each part. The interest region-based approaches repre-

sent an image by focusing on the specific interest region

considered in their work. Galleguillos et al. [9] focused on

the interest region for image classification by incorporating

multiple stable segmentations and Bag-of-features (BoF)

image representation into a multiple instance learning

(MIL) framework. Chai et al. [1] proposed segmenting

images into foreground and background within a co-seg-

mentation scenario to improve image classification accu-

racy. Yakhnenko et al. [35] used a latent-SVM model,

which uses all regions to score an image, and associates

each region with a latent variable that indicates whether or

not the region represents the object of interest. Nguyen [26]

used segment-based Support Vector Machines which

simultaneously localize the most discriminative set of

segments and use them to learn an SVM. However, all of

these methods are based on segments, and are sensitive to

the segmentation result. Recently, some studies [11, 31]

presented methods based on the saliency map for the

interest region. Sharma [31] proposed a method to learn the

discriminative spatial saliency of images while simultane-

ously learning a max margin classifier for a given visual

classification task, but this work focused mainly on image

classes like ‘riding horse’ in which the spatial relation

between a person and an object (‘horse’) is important

information to obtain the saliency map. Jiang et al. [11]

used supervised learning to map the regional feature vector

to a saliency score that yielded the saliency map. Because

the method is only evaluated in terms of salient object

detection, not image classification, the interest region

obtained from this method has not been proven to be

effective for image classification.

The proposed method also aims to find interest regions

for the object-centered representation. Unlike most existing

region-based approaches that obtain interest regions from

segmentation results or saliency maps, our method exploits

scale-invariant region detectors to model the interest

regions. Scale-invariant region detectors such as DoG,

Harris-Laplace, Hessian-Laplace, and Salient can capture

important information (e.g., blob-like, corner-like, entropy-

based) in images. Traditionally, region detectors have been

used to extract keypoints for image matching and object

class recognition. Some previous studies [6, 23] proposed

frameworks that used scale-invariant region detectors to

classify images. Fergus et al. [6] used the Salient detector

to construct a probabilistic representation. Mikolajczyk

et al. [23] compared the classification accuracy of local

detectors and descriptors in the context of object class

recognition. However, the question of which region

detectors are most effective for a specific class is seldom

discussed. In this paper, we try to define effects of region

detectors for a specific class and use them in the class-

specific modeling.

Nonnegative matrix factorization (NMF) [15] is an

effective factor analysis method. It aims to find two non-

negative matrices whose product provides a good approx-

imation to the original matrix. It is optimal for learning the

parts of objects because the nonnegative constraints allow

only additive combinations. The methods based on NMF

and its variants have been applied to various tasks such as

feature selection or data dimension reduction [18–21]. In

this paper, we use NMF to obtain the semantic spatial

information of keypoints extracted by each region detector;

the semantic spatial information is used to construct class-

specific representation.
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3 Proposed method

In this section, we propose a framework that uses multiple

scale-invariant region detectors for class-specific image

representation. For class-specific object area, we define two

kinds of region, i.e., the C-ROI (Sect. 3.2) and the FR

(Sect. 3.3); a class-specific image representation (Sect. 3.4)

is obtained by using these two regions.

3.1 Region detectors

In this paper, we use four different scale-invariant region

detectors to obtain class-specific spatial layouts: DoG,

Harris-Laplace, Hessian-Laplace and salient detectors. The

region detectors provide locations and scale of keypoints,

and capture different kinds of information: the DoG and

Hessian-Laplace detectors are suitable for finding blob-like

structure; the Harris-Laplace detector captures corner-like

structures; and, the salient detector extracts regions that

have high entropy (or information). These region detectors

have been successfully used in object classification. In the

preprocessing step, we use these detectors to extract key-

points and their local information (locations and scale of

the local region) for all training images.

3.2 Class-specific region-of-interest (C-ROI)

The C-ROI is a region which can be commonly found in

images of same class. To find this region, we first obtain

candidate C-ROIs at different scales and locations. The

spatial distribution and appearance characteristics of region

detectors are used to select the C-ROI among candidate

C-ROIs (Algorithm 1).

Algorithm 1 Extraction of C-ROIs of images in a class
Input: N training images xi in a class, i = 1, ..., N .
Output: N C-ROIs, Pik∗ , i = 1, ..., N .
for i = 1 to N do

Generate candidate C-ROIs Pik of xi, k = 1, ...,Mi.
for k = 1 to Mi do

for f = 1 to Nf do
For each region detector f ,
1. Compute spatial histogram S

Pik
f of Pik.

2. Construct appearance histogram A
Pik
f of Pik.

end for
For each candidate C-ROI Pik,
1. Compute Zj

ik for all xj (j �= i ) using eq.(2).
2. Rank Zj

ik for all xj .
3. Keep W smallest values Bik.
4. Compute score Tik over Bik using eq.(4).

end for
Select Pik∗ in xi using eq.(5).

end for

3.2.1 Candidate C-ROIs

To extract C-ROIs in images of the same class, we must

first identify candidate C-ROIs in images. In many previ-

ous studies, candidate regions to be processed were

obtained from all possible locations and scales, so tens of

thousands of candidates may have been identified.

Although accurate target regions could be obtained by

considering all possible candidates, this approach is

impractical because it entails huge computational cost.

Therefore, we try to reduce the number of candidate

C-ROIs by choosing a limited number. In experiments, we

observed that if extracted keypoints are concentrated in a

region, the region is worth considering closely. This means

that we must compute the density of the 2-dimensional

distribution of keypoint and find its local peaks. To do this,

we apply the four region detectors to every training image

of same class. For each image, we superimpose the four

kinds of detected keypoints on one image, then use the

MeanShift algorithm [3] to identify local peaks of the

keypoint distribution for the use as locations of candidate

C-ROIs. To increase the accuracy of locating C-ROI, we

add some extra locations around the local peaks (in our

work, these are located in �10 and �20 pixels from local

peaks). To maintain the classification accuracy even when

the C-ROIs vary in size, we use three different sizes of

candidate C-ROI at each candidate location (in our work,

sizes of the regions are 0.5, 0.7, and 0.9 times of the

image’s width/height ratio). Given a set of images

I = fx1; x2; . . .; xNg in a class, we obtain a collection of Mi

candidate C-ROIs in each image xi; this collection is

denoted as Pi ¼ fPi1;Pi2; . . .;PiMi
g. Even if a small num-

ber of candidate regions is considered, the obtained can-

didate C-ROIs cover most objects of interest in images

(Fig. 3).

The next step is to select a C-ROI among the Mi can-

didate C-ROIs for each image. To do this, we define two

features; spatial histogram SPik

f , and appearance histogram

APik

f , for each candidate C-ROI, where index f represents a

region detector. Using these two features, we select a

C-ROI for each image that gives the best matching score

with candidate C-ROIs from other images of the same

class. Although finding a C-ROI for each image is nearly

exhaustive matching, it is practical because a small number

of candidate C-ROIs is considered in this process.

3.2.2 Spatial histogram SPik

f

C-ROIs in images of a class should show similar distri-

butions of keypoints extracted by region detectors. To

describe this similarity, we compute spatial histogram SPik

f
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(Fig. 4) of keypoints detected using region detector f within

each candidate C-ROI Pik.

Given a candidate C-ROI Pik, k 2 Mi in an image, Pik is

decomposed into NR regular small sub-regions (in our

work, NR is set to 100, i.e., 10� 10 grids). For a region

detector f in Pik, a spatial histogram SPik

f with NR bins is

constructed by counting the number of keypoints detected

using f in each bin. The spatial histogram of bin r 2 NR is

computed by

SPik

f ðrÞ ¼
X

e2Pik

dðe 2 RrÞ; ð1Þ

where e is the keypoint extracted using f, Rr is a sub-region

that corresponds to bin r, and dðPÞ returns 1 if P is true and

0 otherwise. The value of each bin is normalized to a

proportion of the maximum value of the spatial histogram.

3.2.3 Appearance histogram APik

f

To obtain the appearance histogram from each candidate

C-ROI Pik, we use the Bag-of-words (BoW) representation,

for which denseSIFT [14] features are extracted from

subsampled training images and a codebook is constructed

from them using k-means clustering as a preprocessing

step. Only one codebook is constructed for all classes.

Once the codebook is prepared, all that is required to

compute the appearance histogram is to collect denseSIFT

features in Pik and to use the codebook to generate a his-

togram. To extract the individual characteristics of each of

the four region detectors used in this paper, we modify Pik

in two aspects. First, instead of using the whole region of

Pik to obtain the histogram, we exclude some sub-regions

Nr in which the number of keypoints detected using f is

very small. Here, the sub-region is the same as the sub-grid

region used for spatial histogram computation; i.e., we use

only the sub-regions that are informative enough for each

f. Second, we modify the size s and location l of each

remaining sub-region that is used for histogram computa-

tion. Instead of using a fixed-sized sub-region at the regular

location, we relocate each remaining sub-region to the

average location of all the keypoints detected in it. We also

set its size to s ¼ ksrs, where rs is the average scale of all

detected keypoints in the sub-region. Here, ks is set to 8.

We obtain four APik

f for each Pik (Fig. 4). Notice that we

use denseSIFT features for histogram computation; we use

the four region detectors only to define the newly changed

sub-regions in each Pik.

3.2.4 C-ROI selection

C-ROI is a region that can be commonly found in images

of the same class. To select the region k 2 Mi among

candidate C-ROIs Pik in an image xi, the similarity of Pik

over the class must be measured. For a candidate C-ROI

Pik, the closest distance to candidate C-ROIs in another

image xj is defined as

Z
j
ik ¼ min l2Mj

ZðPik;PjlÞ; ð2Þ

The distance ZðPik;PjlÞ between two regions is

ZðPik;PjlÞ ¼min
f2F

½aDðSPik

f ; S
Pjl

f Þ

þ ð1� aÞDðAPik

f ;A
Pjl

f Þ�;
ð3Þ

where F is the set of region detectors, a is the trade-off

parameter between the two types of information (in our

case, a = 0.5), and D computes the v2 distance between

two histograms.

Fig. 3 Obtained candidate C-ROIs (green rectangles) in some images of Caltech-4
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To measure the similarity of the candidate C-ROI over a

class, we use Multi-ranking Amalgamation Strategy [10].

For region k in xi, we re-rank Z
j
ik with all j and keep the W

smallest values, which are defined as Bik ¼ fB1
ik;B

2
ik;

. . .;BW
ik g, for which Bm

ik \Bn
ik and m\ n. The score of the

region k as a C-ROI increases as the values in Bik decrease.

Therefore, the score of Pik is defined as

Tik ¼
1

W

XW

w¼1

1

logð1þ Bw
ikÞ
: ð4Þ

The C-ROI Pik� in xi is selected by

k� ¼ argmax
k

Tik: ð5Þ

Fig. 4 Conceptual illustration

of spatial histogram and

appearance histogram for a

given candidate C-ROI

Fig. 5 Examples of extracted C-ROIs for some classes of Caltech-101: a pagoda, b starfish, c hedgehog and d stop-sign classes
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As examples we present extracted C-ROIs (Fig. 5) for

several classes of the Caltech-101 dataset.

3.2.5 Class-specific weights of region detectors for C-ROIs

We can measure the class-specific weights of region

detectors that represent the relative importance of a region

detector for detecting C-ROIs from a given class of images

(Algorithm 2).

Algorithm 2 Class-specific weights of region detectors
Input: N C-ROIs, Pik∗ , i = 1, ..., N , in a class c
Output: Weights wc

f of region detectors over c
for i = 1 to N do

For each C-ROI Pik∗ ,
1. Obtain the set of W regions, Qik∗ having the smallest distance with Pik∗ .
2. Find the index set of region detectors, Fi using eq.(6).

end for
Obtain a collection of index sets of the class c, F c.
for f = 1 to Nf do

For each region detector f ,
Compute a weight, wc

f .
end for

Let Pik� be a C-ROI in an image xi and Qik� ¼
fQ1

ik� ;Q
2
ik� ; . . .;Q

W
ik�g be the set of W candidate C-ROIs in

other images having the smallest distance from Pik� . Then

we can find the region detector that gives the minimum

distance between Pik� and Qw
ik� , which we denote as f wik� ,

using the equation:

f wik� ¼ argmin
f2F

½aDðSPik�
f ; S

Qw
ik�

f Þ

þ ð1� aÞDðAPik�
f ;A

Qw
ik�

f Þ�:
ð6Þ

For the set Qik� , we can get a set Fi; Fi ¼ ff 1ik� ; f 2ik� ; . . .; f Wik�g.
For a given image class c, we can get a collection of index

sets defined as: Fc ¼ fF1;F2; . . .;FNg, where N is the

number of images in c. Then, jFcj ¼ WN.

The relative importance, or weight wc
f of the region

detector f for c can be measured by counting the number Nc
f

of each region detector in Fc:

Nc
f ¼

X

a2Fc

dða ¼¼ f Þ;

wc
f ¼

Nc
f

maxf2F Nc
f

;
ð7Þ

where dðPÞ returns 1 if P is true, and 0 otherwise. The

relative importance of region detectors shows relatively

large variation depending on image classes (Table 1).

3.3 Focal region (FR)

The extracted C-ROI in Sect. 3.2 generally contains the

whole structure of the object of interest. In this section, we

Table 1 Relative importance of detectors for image classes in Fig. 5

Classes DoG Harris-lap Hessian-lap Salient

Pagoda 0.74 1.00 0.82 0.94

Hedgehog 1.00 0.72 0.93 0.61

Starfish 0.99 0.97 1.00 0.77

Stop-sign 0.74 0.92 0.65 1.00

Fig. 6 Illustration of

constructing spatial

distributions to apply NMF for

FR
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aim to find the most informative region called FR in the

C-ROI (Algorithm 3).

Algorithm 3 Extraction of FRs in a class
Input: N C-ROIs, Pik∗ , i = 1, ..., N , in a class c
Output: N FRs, Yi on the Pik∗ , i = 1, ..., N
for f = 1 to Nf do

For each region detector f ,
1. Construct spatial distribution Xc

f .
2. Apply NMF to the Xc

f using eq.(8).
3. Obtain semantic spatial histogram Uc

f .
end for
Obtain an activation map Ac using eq.(9) and thresholding.
For each Pik∗ , activate a FR Yi.

Toward this goal, the algorithm follows four steps. Given

N training images of a class c, the first step is to get the NR-

dimensional spatial histograms S
Pik�
f , i ¼ 1. . .N, for region

detector f from C-ROIs in N images (Sect. 3.2.2), and

obtain a NR � N matrix Xc
f by putting them in a matrix

form (Fig. 6), that is, Xc
f ¼ ½SP1k�

f S
P2k�
f . . .SPNk�

f �.
The second step is to obtain the semantic spatial dis-

tribution by applying nonnegative matrix factorization

(NMF) [15] to Xc
f . NMF is known to be able to learn parts

or semantic information of some content. NMF determines

a 2-factor decomposition:

Xc
f � Uc

f V
c
f ; ð8Þ

where Uc
f is an NR � K matrix that contains K bases (in our

case, K = 11), and Vc
f is a K � N matrix that contains

K weights for each basis.

The third step is to get the activation map Ac by sum-

ming Uc
f weighted with the class-specific weights wc

f :

Ac ¼
XNf

f¼1

wc
f U

c
f : ð9Þ

The final step is to get the FR from activation map Ac by

thresholding. The FR is fixed relative to C-ROI for all

images of same class. As examples, we present the FRs

detected in C-ROIs for two classes of image (Fig. 7). The

detected FRs are almost the same regions that can be

designated by human intuition.

3.4 Class-specific image representation

The C-ROI and the FR described so far can be used to

construct the class-specific image representation. To com-

pute an image-level descriptor for an image, we define

spatial pooling regions, then concatenate encodings of each

spatial region. Here, the encoding of each spatial region is

the BoW representation with denseSIFT features of the

spatial region. As in the traditional SPM where the spatial

pooling is done in a spatial pyramid fashion (1� 1, 2� 2

and 4� 4 grids), we also construct 3-level spatial pooling

structure as:

• Level 1: The whole image is used as a spatial pooling

region (1� 1 grid).

• Level 2: Class-specific spatial pooling is designed.

Unlike SPM pooling, the proposed method uses four

regions divided differently (Fig. 1), i.e., Region 1 of

FR, Region 2 of C-ROI, Regions 3 and 4 on the

remaining area that correspond to background. Here,

Regions 3 and 4 are partitioned horizontally as shown

in Fig. 1c; the properties of background are generally

changed to the horizontal direction.

• Level 3: Regular 4� 4 grids are constructed on the

C-ROI of the class so that we can obtain more detailed

information on the object of interest.

3.4.1 Classifier learning

For learning a classifier, we use the PEGASOS SVM [30]

as a linear SVM solver. To use non-linear additive kernels

instead of the linear kernel, we use the v2 explicit feature

map [33]. The regularization-loss trade-off parameter C of

the SVM is set to 10. For a specific class, training images

are divided into two groups, positive (training images of

the specific class) and negative (all training images of the

other classes). Then, a 1-vs-rest classifier is trained with the

training data for the specific class. For multi-class image

classification, a 1-vs-rest classifier has to be prepared for

each class so that the number of classifiers is the same as

the number of classes.

3.4.2 Testing

To test an image i, candidate C-ROIs are extracted first. To

select a C-ROI for a class c among them, equation (2) is

modified to

Zc
ik ¼ ZðPik;P

c
jl� Þ; ð10Þ

where Pc
jl� denotes the C-ROI (not candidate C-ROI) of

training image j of class c, which were obtained in the

training stage. Equations (3)–(5) can be used without

modification. Notice that C-ROI is extracted differently

depending on the class to test. FR in the extracted C-ROI

can be obtained using the activation map Ac of the class to

test, which is fixed for each class. Using these two regions

yields a class-specific image representation of the class,

and which we use to evaluate over the c classifier. Finally,

if the evaluation of all classes is finished, the test image is

1 We used only one basis because in experiments we observed that

one basis is sufficient to represent the particular information of the

given data.
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classified into the class c� that has the maximum score

using the equation:

c� ¼ argmax
c2C

Sci ; ð11Þ

where Sci is a score obtained from the c classifier for the test

image i and C is the set of classes to test.

4 Experiments

4.1 Datasets

We evaluated our proposed method on the Caltech-42, the

Caltech-1013, the CMU Faces4, and the Scene 155 bench-

mark datasets (Table 2). The Caltech-4 contains four

classes of images with large variation in object size and

location; the Caltech-101 contains 101 classes of images

with even larger variation in object size and location than

in the Caltech-4, and with additional large variation in

object pose. Among 101 classes in the Caltech-101 dataset,

we selected only 36 classes that do not have large variation

in object pose, because our approach is based on the

assumption that the spatial distribution of region detector

responses would be similar over images of a same class.

The CMU Faces dataset was of special interest. The goal

was to classify images according to whether or not the

faces wore sunglasses; this task seemed suitable to

demonstrate the power of the FR proposed in this paper for

classification. The Scene 15 dataset was included to show

the ability of our algorithm to capture similar parts in the

scenes as C-ROIs even though unlike other datasets these

scenes do not contain objects apparent for classification.

4.2 Implementation details

We used a single descriptor, denseSIFT [14]. The SIFT

descriptors extracted from 16� 16 pixel patches were

densely sampled from each image on a grid with step size

of 8 pixels. The images were all processed on gray scale.

We used k-means to learn a codebook of size 1024, and

assigned the SIFT features to the nearest codebook vector

Fig. 7 Results of activation map and FRs obtained from C-ROIs of face and cup classes. a C-ROIs, b activation map, c FRs

Table 2 Descriptions of the

four datasets
Datasets Caltech-4 Caltech-101 CMU faces Scene 15

Total # of images 2236 9144 624 4485

# of classes 4 101 (selected 36) 2 15

# of images / class 100–400 31–800 311 and 313 200–400

# of training images / class Half size [6, 9] 15 or 30 254 [26] 100

# of testing images / class Half size [6, 9] *50 370 [26] The rest

2 http://www.robots.ox.ac.uk/vgg/data3.html
3 http://www.vision.caltech.edu/Image_Datasets/Caltech101
4 http://archive.ics.uci.edu/ml/datasets/CMU?Face?Images
5 http://www-cvr.ai.uiuc.edu/ponce_grp/data
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(hard assignment). We used the VLFeat library [32] for

SIFT and k-means computation. For all datasets, we set NR

to 10� 10 grids for spatial histogram computation6. For

the Caltech-4, Caltech-101, CMU Faces datasets, only two

levels (1 and 2) were used for the spatial pooling. For the

Scene 15 dataset, all three levels were used for this task.

For comparison of classification accuracy, we used SPM as

baseline with linear SVM, which was obtained from the

Liblinear [4] library.

4.3 Effects of class-specific combination of region

detectors

The relative importance (or weights) wc
f of region detectors

computed for some classes of four datasets (Fig. 8;

Table 3) shows which region detectors contribute most to

extracting C-ROIs from the class. For example, the

Hessian-Laplace detector is known to be good at extracting

blob-like structure, and showed the highest weights for the

classes of leopards and faces with sunglasses which have

such blob-like structures. The high weights for these pat-

terns seemed to lead to extraction of FRs that include them.

In this section, we show the effects of class-specific

combination of region detectors for image classification.

Fig. 8 Example images for some classes of four datasets

Table 3 Relative importance of

detectors for some classes (in

Fig. 8) in the datasets of

(a) Caltech-4, (b) Caltech-101,

(c) CMU Faces and (d) Scene

15

Classes Dataset DoG Harris-lap Hessian-lap Salient

Leopard (a) 0.82 0.84 1.00 0.72

Airplane (a) 0.93 1.00 0.99 0.53

Stop-sign (b) 0.74 0.92 0.65 1.00

Sunflower (b) 0.82 0.99 0.98 1.00

Faces (sunglasses) (c) 0.62 0.99 1.00 0.47

MITallbuilding (d) 0.84 0.87 0.99 1.00

Kitchen (d) 0.81 1.00 0.86 0.98

Livingroom (d) 0.76 0.97 0.94 1.00

Table 4 Classification rate (%) on (a) Caltech-4, (b) Caltech-101,

(c) CMU faces and (d) Scene 15 datasets

Methods (Ours) (a) (b) (c) (d)

Only DoG 98.71 78.42 84.59 82.87

Only Harris-Laplace 99.12 77.83 89.19 83.05

Only Hessian-Laplace 99.17 76.71 90.54 83.67

Only salient 98.71 79.56 82.71 82.16

w/o weight 99.42 80.59 90.81 83.81

With weight 99.64 81.22 91.89 84.21

6 In our experiments, the number of sub-regions has little effect on

the classification performance.
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To do this, we applied only one region detector to our work

for image classification for the four datasets (Table 4).

Combining the four detectors always gave results better

than any single region detector. This result is very impor-

tant in that if only one region detector is allowed, we must

choose the best one; this choice depends on the data to

classify, and is neither easy nor intuitive.

We extracted average images of C-ROIs extracted from

some classes of the Caltech-101 and the Scene 15 datasets

(Fig. 9). The average images obtained using the combina-

tion of region detectors showed clearer boundary of objects

than the images obtained using any single region detector.

This means that the combination of region detectors

localizes the class-specific region-of-interest in images

better than does a single detector.

4.4 C-ROI and FR

For qualitative results, we implemented extraction of

C-ROIs (Fig. 10) and FRs (Fig. 11) on four datasets in

Sect. 4.1. If objects in a given class had similar shapes, the

C-ROIs were well extracted regardless of size and location

of the objects. The activated FRs in C-ROIs of some

classes contained key components of them, i.e., the spines

on the hedgehog, the spot pattern on the leopard, the

highway sign, and the sunglasses on the face.

To check the effect of two proposed class-specific

regions for image classification, we evaluated the classifi-

cation accuracy using only these two regions over the CMU

Faces and the Scene 15 datasets; these two datasets are

specially designed to classify specific conditions or scenes

without objects apparent for classification, and are therefore

suitable to evaluate the power of the C-ROI and the FR for

classification. For feature extraction, we defined four dif-

ferent spatial pooling regions: the whole image as baseline;

only C-ROI; only FR; C-ROI and FR, instead of 3-level

spatial pooling structure (in Sect. 3.4). Classification

accuracy for the four different spatial pooling regions is

listed in Table 5. For the CMU Faces, the proposed C-ROI

or FR (Figs. 10, 11c) was significantly better than the whole

Fig. 9 Average images of selected C-ROIs for some classes from

Caltech-101 and Scene 15 datasets; each row represents average

images of obtained C-ROIs using a only DoG region detector, b only

Harris-Laplace region detector, c only Hessian-Laplace region

detector, d only salient region detector, and e multiple region

detectors (in proposed method)
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image region. This result seems reasonable because the

C-ROI or FR captures the region that gives the information

about the presence of sunglasses. Similarly, for the Scene

15, the proposed C-ROI or FR showed much better results

than the whole image region. To check classes that showed

quite good classification accuracy with the proposed C-ROI

or FR, we separately evaluated the classification accuracies

for each class in the Scene 15, and listed classes with largest

improvements over the accuracy of the baseline that con-

siders the whole image region (Fig. 12). Characteristics of

some scenes were better described using C-ROI or FR than

using the baseline. For both datasets, using both C-ROI and

FR for classification gave better results than using only one

C-ROI or FR; this result means that both proposed regions

play an important role in classification.

C-ROI and FR extraction sometimes failed (Fig. 13).

Failures usually occurred in classes that do not have a

common structure for the same class (e.g., the beds from

various viewpoints in bedroom class). Because we assumed

that images in the same class should have similar structures

or objects, classification accuracy would be degraded when

the assumption was not satisfied. Relaxing this assumption

for the condition of classes will be our future work.

4.5 Comparison with existing methods

Image classification results were obtained from the four

datasets (Tables 6, 7, 8, 9). In these experiments, we

compared our result with SPM as baseline and with other

existing methods for both cases of without and with

weights of region detectors over each category.

For the Caltech-4 dataset (Table 6), our method showed

almost 100 % classification accuracy. Simple SPM showed

better accuracy than other methods [6, 9, 26] which were

developed to solve problems involved in classifying ima-

ges in which object location and size vary.

For the Caltech-101 dataset (Table 7), our method

showed classification accuracy comparable to the extended

versions of SPM [34, 36]7which adopt efficient encoding

Fig. 10 Examples of extracted C-ROIs for some classes of a Caltech-4, b Caltech-101, c CMU Faces and d Scene 15 datasets

7 To compare classification results for selected 36 classes, we used

codes provided from [34, 36].
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techniques although our method uses hard assignment for

encoding. Our method showed much more improvement

over SPM in this dataset than in the Caltech-4 dataset

because variation in object size and location in images is

greater in the Caltech-101 dataset than in the Caltech-4

dataset.

For the CMU Faces dataset (Table 8), our result

achieved as much as 8.7 % higher classification accuracy

than the SPM result; this improvement over the SPM result

was larger than achieved in the Caltech-4 dataset and the

Caltech-101 dataset, and seemed to be achieved mainly due

to our method’s ability to detect the most discriminative

region (i.e., FR) in the C-ROI. Actually, we obtained the

best accuracy (92.97 %, Table 5) when we used only

C-ROI and FR without background information. This

means that the background information of this dataset

disturbs rather than assists image classification. Our

method gave results better than Nguyen’s method [26]

Fig. 11 Activated FRs on C-ROIs for some classes of a Caltech-4, b Caltech-101, c CMU Faces and d Scene 15 datasets

Table 5 Classification rate (%) on (a) CMU faces and (b) scene 15

datasets

Methods (a) (b)

The whole image (baseline) 81.08 77.94

Only C-ROI 90.77 80.27

Only FR 90.54 82.52

C-ROI and FR 92.97 83.03
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which is similar to ours in that automatically localize the

subwindows that are most discriminative for classification.

For the Scene 15 dataset (Table 9), our method achieved

higher classification accuracy than SPM and the extended

versions of SPM [34], and achieved comparable accuracy

with state-of-the-art method [31] which uses the discrimi-

native spatial saliency as the interest region for classifica-

tion task.

For all datasets, the use of only one region detector

(Table 4) usually gave results better than did SPM; this

observation implies that the proposed representation using

C-ROI and FR contributed to solve the problems caused by

varying size and location of objects in images.

5 Conclusion

We proposed a new method to construct a class-specific

representation that is better than SPM for classification of

images with large variation of object size and location in

Fig. 12 Example of classes with largest gains obtained by a C-ROI and b activated FR on C-ROI for the Scene 15 dataset; the classification

accuracy are listed below sample images with gains obtained from baseline

Fig. 13 Examples of failure cases for C-ROI (left) and FR (right) extraction; a failure case 1—industrial class and b failure case 2—bedroom

class
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images. To obtain good classification accuracy despite

these variations, we proposed two kinds of region, called

class-specific region-of-interest (C-ROI) and focal region

(FR). The C-ROI is the region that is common in images of

same class; the FR is the region that is most discriminative

in the C-ROI. To extract those two regions, we used the

DoG, Harris-Laplace, Hessian-Laplace, and salient multi-

ple scale-invariant region detectors. Image representation

using these two regions gave better classification results for

several well-known datasets than did SPM. In future, this

concept could be extended to find the best combination of

macro-features to describe object classes.
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