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Abstract The clustering assumption is to maximize the

within-cluster similarity and simultaneously to minimize

the between-cluster similarity for a given unlabeled data-

set. This paper deals with a new spectral clustering algo-

rithm based on a similarity and dissimilarity criterion by

incorporating a dissimilarity criterion into the normalized

cut criterion. The within-cluster similarity and the

between-cluster dissimilarity can be enhanced to result in

good clustering performance. Experimental results on toy

and real-world datasets show that the new spectral clus-

tering algorithm has a promising performance.

Keywords Spectral clustering � Normalized cut �
Similarity criterion � Dissimilarity criterion

1 Introduction

Being a powerful tool of unsupervised learning, cluster

analysis, of course, is unlabeled-data-oriented [1, 2, 8] and

widely used in the field of data mining, pattern recognition,

and machine learning. Aiming to partition the given data

into several clusters, clustering methods usually employ a

general rule, called similarity criterion, which is to maxi-

mize the within-cluster similarity and to minimize the

between-cluster similarity. As a simple and classical clus-

tering method, the K-means clustering algorithm is

expected to get a satisfied clustering result for spherical

data [8]. However, if the data are non-spherical or seriously

overlapping, the K-means clustering algorithm cannot

perform well. Furthermore, being sensitive to the initial

point, K-means often gets stuck in the local minima.

In recent years, spectral clustering has attracted a lot of

attention in machine learning [4, 7, 9, 11, 13, 15, 17, 20–

25]. Compared with K-means, spectral clustering is able to

deal with the data with any manifold besides spherical one.

In addition, spectral clustering has shown its advantage in

applications to image segmentation and data mining. Pre-

sently, many improved versions on spectral clustering have

been proposed. For example, Chen et al. proposed a par-

allel algorithm based on distributed system for spectral

clustering to avoid the problems of limited memory and

computational time when applying spectral clustering to

process a large-scale dataset [4]. Since spectral clustering is

completely unsupervised, researchers introduced the paired

and constrained prior knowledge into spectral clustering,

called semi-supervised spectral clustering [3, 13, 19, 20,

25].

The partition criterion plays an important role in the

performance of spectral clustering. The common criteria

include the min-cut [22], the average cut [17], the nor-

malized cut [18], the min–max cut [7], the ratio cut [11,

21], etc. These criteria have their advantage and disad-

vantage. For example, the ratio cut criterion is able to avoid

some weaknesses of min-cut so as to reduce the possibility

of over-dividing; however, its running speed is slow.

Although both the average cut and the normalized cut have

a capacity to get a relatively precise partition, the nor-

malized cut is more satisfying when they are applied to the

same task. The min–max cut and the normalized cut have

similar performance and can satisfy the minimization of

between-cluster similarity and the maximization of within-

cluster similarity, but the former with a more complex

computation is better than the latter when data in different
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clusters are partly overlapping. In a nutshell, all criteria are

designed according to the similarity criterion.

From the discussion above, we know that the normalized

cut criterion has some advantages. In this criterion, how-

ever, the between-cluster similarity has a negative impact

on maximizing the within-cluster similarity. To reduce this

negative effect, this paper presents a new criterion for

spectral clustering, called similarity and dissimilarity

(SAD) criterion. Based on the normalized cut criterion,

SAD introduces the concept of dissimilarity so as to make

the similarity and dissimilarity of samples more obvious

and improves the clustering performance. Experimental

results on artificial and real-word datasets show that the

algorithm proposed here has a promising performance.

The contribution of this paper is to propose a similarity

and dissimilarity criterion for spectral clustering. The rest

of this paper is organized as follows. In Sect. 2, we intro-

duce some related works for spectral clustering and the

normalized cut. Section 3 presents the similarity and dis-

similarity criterion for spectral clustering. We report

experimental results in Sect. 4 and conclude this paper in

Sect. 5.

2 Spectral clustering and normalized cut

2.1 Spectral clustering

Spectral clustering was proposed based on the spectrogram

theory. The main idea behind spectral clustering is to cast

clustering problems into the graph optimization ones. In the

spectrogram theory, the optimal partition methods and

criteria about graphs have been researched thoroughly, of

which the basic rule is to make the similarity in each sub-

graph be maximal and the similarity between sub-graphs be

minimal. This rule is totally consistent with the basic

assumption of clustering.

Suppose that we have an unlabeled data set X = {x1,

x2,…, xn} where xi 2 Rd, Rd denotes d-dimensional real-

valued sample space, and n is the number of samples. If

each sample is treated as a vertex of graph and the edges

are weighted according to the similarity between samples,

then we can get a weighted and undirected graph G (V, E),

where V represents the vertex set of graph G, V = X, and

E denotes the edge set. As a result, we can formulate the

clustering problems as the graph partition problems.

Specifically, it requires dividing the graph G (V, E) into

k subsets X1, X2,…, Xk which are mutual exclusion. The

important thing is that the similarity in the subset Xi is

maximized and the dissimilarity between the different

subsets Xi and Xj is also maximized.

Generally specking, three steps are included when using

spectral clustering:

1. Calculate the similarity matrix W among samples;

2. Obtain the eigenvectors of matrix W or other related

matrix;

3. Implement the clustering of eigenvectors using classi-

cal clustering methods.

The first step is very important and now there are many

methods to implement the construction of similarity

matrix, such as the nearest neighbor and the full connection

method Luxburg [15]. Here, the full connection method is

considered. Gaussian kernel is typically selected as the

measure of similarity between the sample xi and xj [13, 15,

18, 24]. The reason is that Gaussian kernel would give a

large similarity for the two close samples and a small

similarity for the two far samples, which is just the defi-

nition of similarity. In general, the elements of similarity

matrix can be denoted as

Wij ¼ exp �
xi � xj
�
�

�
�
2

r2

 !

; ð1Þ

where r is a pre-determined parameter. If let r2 = rirj,
then the similarity function described in Zelnik-Manor and

Perona [24] can be written as

Wij ¼ exp �
xi � xj
�
�

�
�
2

rirj

 !

; ð2Þ

where ri and rj are related with the two samples xi and xj,

respectively. The similarity function (2) is more powerful

than the similarity function (1) on the capacity of similarity

representation since the similarity function (1) only takes

into account one global parameter r, but the similarity

function (2) contains two local parameters ri and rj. Note
that different eigenvectors generated in the second step

when different partition criteria are employed would result

in different partitions.

2.2 Normalized cut

Assume that a graph G is partitioned into two sub-graphs

X1 and X2 where X1 [ X2 = V and X1 \ X2 = [. In 2000,

Shi and Malik proposed a normalized cut criterion for

bipartition according to the spectrogram theory Shi and

Malik [18]:

minNcutðX1;X2Þ ¼
cutðX1;X2Þ
assocðX1;VÞ

þ cutðX1;X2Þ
assocðX2;VÞ

; ð3Þ

where cut(X1, X2) is the total connection from nodes in X1

to nodes in X2, or

cutðX1;X2Þ ¼
X

xu2X1

X

xv2X2

Wuv
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and assoc(Xi, V) is the total connection from nodes in Xi to

all nodes in the graph, or

assocðXi;VÞ ¼
X

xu2Xi

X

xp2V
Wup

In fact, cut(X1, X2) can be taken as the between-cluster

similarity, and assoc(Xi, V) is the summation of the

between-cluster similarity and within-cluster similarity.

The normalized cut criterion can not only maximize the

within-cluster similarity but also maximize the between-

cluster dissimilarity. What is more important is that the

normalized cut can also efficiently avoid the preference of

small region partition which often occurs in the min-cut

criterion. Another form of (3) can be represented as [18]

min
y

yTðD � WÞy
yTDy

ð4Þ

s:t: yTDy ¼ 1

yTD1 ¼ 0;

where 1 is a vector with all elements of 1 and the matrix

D 2 Rn9n is a diagonal one with the elements of Dii ¼
Pn

j¼1 Wij, and the indicator vector y = [y1, y2,…, yn]
T.

Obviously, the objective of (4) is a Rayleigh equation so

that the continuous and loose form of indicator vector y can

be taken into account. Then the solution to (4) is equivalent

to the solution to (D - W)y = kDy.
The goal of the normalized cut is to maximize the

within-cluster similarity and minimize the between-cluster

similarity, but the denominator of the objective in (4),

yTDy, can be roughly viewed as the sum of the within-

cluster similarity and the between-cluster similarity. It is a

contradiction that we maximize yTDy while making the

between-cluster similarity be minimized. But how to

explain the good performance obtained by normalized cut?

The main reason is that the numerator term of the objective

in (4) emphasizes the minimization of the between-cluster

similarity. Meanwhile, if the within-cluster similarity is

large enough, the effect of between-cluster similarity on

the denominator can be ignored. But the maximization of

between-cluster similarity in the denominator still has

some negative effects on the clustering performance.

3 Spectral clustering method based
on the similarity and dissimilarity

In this section, we introduce a dissimilarity criterion, pro-

pose the criterion of similarity and dissimilarity (SAD), and

describe the spectral clustering method based on SAD in

detail.

3.1 Dissimilarity criterion

The clustering assumption is to maximize the within-

cluster similarity and simultaneously to minimize the

between-cluster similarity, which can also be described as

minimizing the within-cluster dissimilarity and maximiz-

ing the between-cluster dissimilarity, called dissimilarity

criterion. Let Q be the dissimilarity matrix, where Qij is in

direct proportion to the distance, the smaller the similarity

is and the greater the dissimilarity do. If (2) is selected to

measure the similarity, then the measure of dissimilarity is

given by

Qij ¼ 1� exp �
xi � xj
�
�

�
�2

rirj

 !

ð5Þ

According to (5), the within-cluster dissimilarity can be

defined as

X

xi2X1

X

xj2X1

Qij þ
X

xi2X2

X

xj2X2

Qij; ð6Þ

and the between-cluster dissimilarity can be described as

X

xi2X1

X

xj2X2

Qij þ
X

xi2X2

X

xj2X1

Qij ð7Þ

Define a new indicator vector z = [z1, z2,…, zn]
T. If

xi 2 X1, then zi = 1; otherwise zi = -1. Then z can reflect

the clustering results. (1 ? z)/2 and (1 - z)/2, respec-

tively, represent the indicator vectors of xi 2 X1 and

xi 2 X2. Thus, the dissimilarity between samples in the

same cluster and between clusters can be, respectively,

denoted as

X

xi2X1

X

xj2X2

Qij þ
X

xi2X2

X

xj2X1

Qij

¼ 1

4
1� zð ÞTQ 1� zð Þ þ 1

4
1þ zð ÞTQ 1þ zð Þ

ð8Þ

and

X

xi2X1

X

xj2X1

Qij þ
X

xi2X2

X

xj2X2

Qij ¼
2

4
1þ zð ÞTQ 1� zð Þ ð9Þ

We combine (8) and (9), and have the following objective:

max
X

xi2X1

X

xj2X2

Qij þ
X

xi2X2

X

xj2X1

Qij �
X

xi2X1

X

xj2X1

Qij

�
X

xi2X2

X

xj2X2

Qij ¼ �zTQz;
ð10Þ

which can implement minimizing the within-cluster dis-

similarity and maximizing the between-cluster dissimilar-

ity. In the normalized cut, we optimize the vector y instead
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of vector z. Thus, we perform the similar replacement.

Then (10) can be rewritten as

max � yTQy; ð11Þ

where yi 2 {1, -b}, and b ¼
P

zi [ 0
Dii

P

zi\0
Dii

3.2 Similarity and dissimilarity criterion

According to the analysis in Sect. 2, we want to further

reduce the effect of the between-cluster similarity in the

denominator of the objective in (4) in the normalized cut.

Thus, we introduce the dissimilarity criterion (11) into the

denominator of the objective in (4), and get

min
y

yTðD�WÞy
1� mð ÞyTDy� myTQy

ð12Þ

s:t: yTDy ¼ 1;

yTD1 ¼ 0;

where 0 B m B 1 is a trade-off factor that determines the

influence of dissimilarity criterion. The larger the factor m,

the greater the influence. If m = 0, then the method pro-

posed here is totally the same to the spectral clustering

method based on normalized cut.

Theorem 1. Given 0 B m B 1 in (12), the between-

cluster similarity in the denominator of (12) has a smaller

weight than that of (4).

The proof of Theorem 1 is described in Appendix A.

Theorem 1 states that the effect of the between-cluster

similarity on the maximization of within-cluster similarity

can be reduced provided that the dissimilarity criterion is

introduced into the normalized cut criterion. For a better

analysis on the similarity and dissimilarity criterion, the

objective in (12) can be rewritten as

min
y

Pn
i¼1

Pn
j¼1 ðyi � yjÞ2Wij

1� mð Þ
Pn

i¼1

Pn
j¼1 yiyjDij � m

Pn
i¼1

Pn
j¼1 yiyjQij

ð13Þ

By analyzing (13), we have the following remarks:

1. When Qij is very small, Qij makes less contribution to

the second term of denominator, and the two samples

xi and xj tend to be partitioned into the same cluster. At

the same time, the similarity Wij in the numerator is

large. If we want to minimize (13), it requires the value

of (yi - yj)
2 to be very small so as to show the

similarity between the two samples xi and xj.

2. When Qij is very large, the two samples xi and xj tend

to be partitioned into different clusters. Due to the

effect of Qij, the value of mQij in the denominator of

(13) is also very large. In this case, even though we

increase the value of (yi - yj)
2 to make the data points

being far away from each other, it would not have a

huge effect on the optimization of the objective. By

doing so, we can increase the dissimilarity of between-

cluster samples.

3.3 Spectral clustering based on the similarity

and dissimilarity criterion

By introducing the dissimilarity criterion, we design a new

clustering criterion, which further increases the within-

cluster similarity and the between-cluster dissimilarity. As

a consequence, a better clustering result is guaranteed. The

detailed description of the new method is shown in Algo-

rithm 1. Similar to the standard spectral clustering method,

the dimensionality of samples is identical to the number of

clusters.

In the following, we analyze the space complexity and

computational complexity of the spectral clustering method

based on SAD. For spectral clustering based on the nor-

malized cut, the space complexity coming from the storage

of similarity matrix is O(n2), and the computational com-

plexity includes the computation of constructing the simi-

larity matrix, of the generalized eigen-decomposition, and

of the used classical clustering method [13]. Compared

with the spectral clustering method based on the normal-

ized cut, the proposed method has almost the same space

complexity and computational complexity. Since the dis-

similarity matrix can be obtained by directly using the

similarity matrix, no additional space is required and its

space complexity is still O(n2). The new method just

involves the operations of the matrix addition and of the

multiplication of a real number and a matrix, which would

not change the computational complexity. Thus, the spec-

tral clustering method based on SAD has almost the same

computation complexity with the one based on the nor-

malized cut.
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4 Experimental results

To validate the efficiency of the proposed method here, we

perform experiments on artificial datasets, nine UCI data-

sets and one face dataset. Compared methods include the

classical K-means method, the normalized cut-based

spectral clustering (Ncut) method, and similarity and dis-

similarity-based spectral clustering (SAD) method. In

addition, K-means is also used in both Ncut and SAD as the

subsequent clustering algorithm.

All numerical experiments are performed on the per-

sonal computer with a 1.8 GHz Pentium III and 2G bytes

of memory. This computer runs on Windows XP, with

MAT-LAB 7.1 and VC??6.0 compiler installed.

4.1 Artificial datasets

4.1.1 Data description

Consider two artificial datasets containing certain manifold

structure. Dataset 1 being from Shi and Malik [18] is

composed of 4 subsets with different distributions, as

shown in Fig. 1a. Specifically, one subset consists of 80

data points forming a circle distribution, and the other three

subsets are the data obeying different Gaussian
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Fig. 1 Two artificial datasets. a Dataset 1, b dataset 2
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distributions, respectively. For the other three subsets, the

one locating in the circle consists 10 data points and the

other two ones locating outside of circle both consist of 20

data points. Dataset 2 being from Zelnik-Manor and Perona

[24] is also composed of 4 subsets with different distri-

butions, as shown in Fig. 1b. Each subset consists of 200

data points coming from a uniformly random distribution

taking value from a rectangle with different height and

width.

4.1.2 Selection of similarity function parameter

Gaussian kernel parameters need to be set before calcu-

lating the similarity matrix. An adaptive method was pre-

sented to tune the parameter in Zelnik-Manor and Perona

[24]. (2) is used to compute the similarity matrix, where ri
is the square root of distance between the sample xi and its

pth neighbor. We consider how the parameter p affects the

clustering performance, where p 2 {1, 2,…, 15}. For both

Dataset 1 and Dataset 2, we randomly generate 50 training

sets (for 50 experiments), respectively. Here, only Ncut is

performed. The average results of 50 experiments are

shown in Fig. 2. From the results, we can know that the

method can obtain satisfying performance when setting the

number of neighbors to be 7, just being the conclusion of

Zelnik-Manor and Perona [24]. Thus, in the following

experiments let p = 7.

4.1.3 Comparison of SAD with K-means and Ncut

In SAD, there is another parameter m. How to determine

the value of m is discussed in the next subsection. Here, let

m vary in the set {0, 0.1, 0.2,…, 0.9, 1}. Under the same

experimental conditions as before, we compare K-means,

Ncut and SAD on the new 100 training sets, and the

average error of 100 experiments is shown in Fig. 3.

Observation on Fig. 3 indicates that SAD outperforms

Ncut with different parameter m. In addition, the perfor-

mance of SAD can be effected by the parameter m on these

two artificial datasets.

In the experiment, we find that SAD with m = 0 does

not have the same average performance as Ncut. The main

reason is that we take K-means as the subsequent clustering

method. It is well known that K-means is instable. From

both theory and experiment, we can show that the feature

vectors obtained by SAD with m = 0 are totally equivalent

to the ones obtained by Ncut. Next, we would verify this

from an experimental viewpoint.

In SAD, let m = 0. We perform experiments only on

Dataset 1. Ncut and SAD, respectively, obtain their

eigenvectors after spectral mapping, as shown in Fig. 4a.

Since Dataset 1 contains 4 classes, the eigenvectors cor-

responding to the four smallest eigenvalues are selected.

From Fig. 4a, it is obvious that the two methods generate

the same eigenvalues and eigenvectors. Of course, SAD

with m = 0 would generate different eigenvectors with

Ncut, see Fig. 4b with m = 1. In Fig. 4, the abscissa rep-

resents the index of samples, where the indexes from 1 to

80 belong to the first class, from 81 to 90 belong to the

second one, from 91 to 110 is the third one, and from 111

to 130 the fourth one.

4.1.4 Selection of the parameter m for SAD

From the discussion before, the parameter m has an effect

on the clustering error (CE) performance of SAD. How-

ever, we cannot select the optimal m according to the best

clustering result which is unknown in clustering problems.

Fortunately, many validity indices to measure the cluster-

ing performance have been proposed, such as the Davies-

Bouldin (DB) index [5], the Dunn index [2], the SIL index

(a)

(b)

Fig. 2 Clustering error of Ncut vs. the number of neighbor. a Dataset
1, b dataset 2
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[16], and the negentropy index [12]. In theory, the best

clustering partition is the one that minimizes the DB index,

or minimizes the negentropy index, or maximizes the Dunn

index, or maximizes the SIL index. It is easy to compute

these indices for a given clustering partition. Thus, we can

determine the optimal m as the corresponding one when

these indices achieve their maximal or minimal value.

m varies in the set {0, 0.1, 0.2,…, 0.9, 1}. According to

the partition obtained by SAD,we compute these indices and

CE in one trial and show them in Fig. 5. In Fig. 5a, the best

CE for Dataset 1 is obtained at m = 0, m = 0.1, m = 0.2,

m = 0.9, and m = 1, respectively. At these points, the SIL

index achieves its maximal value (or 0.0591), and the

negentropy index also achieves its minimal value (or

1.0021). However, we cannot find the corresponding rela-

tionship between both the DB and the Dunn indices and CE,

since these two indices are assuming that the the clusters are

spherical [12]. Thus, the two indices may not be effective for

the selection ofm in Datasets 1 and 2 here.We have the same

conclusion on Dataset 2, see Fig. 5b.When the maximal SIL

index and the minimal negentropy index are obtained, the

best partition is generated. Thus, we can use the SIL index or

the negentropy index to select mfor SAD.

4.2 Heart dataset

The Heart dataset contains 303 data points with 13-di-

mensional, which are divided into two classes with one is

164 data points and another is 139 data points. In SAD, m

varies in the set 0:1; 0:2 ; . . .; 0:9; 1f g. The index values for
SIL, negentropy, and CE are shown in Fig. 6. The corre-

sponding relationship between the negenropy index and CE

holds true on the Heart dataset. In other words, when the

negentropy index achieves its minimum at m = 0.1, CE

also achieves its minimum 23.10 % at the same parameter.

However, the SIL index fails to select the optimal param-

eter. Among 50 trials, the best CE of K-means is 28.38 %

and the best one of Ncut is 24.42 %.

It is known that if we choose spectral clustering, the

clustering result greatly depends on two factors, one of

which is the representation of dataset through eigenvectors

and the other one is the performance of classical clustering

method in the feature space. We hope the difference

between SAD and Ncut is the result of the first factor, not

the instability of K-means. In other word, we desire the

eigenvectors obtained by SAD is a better representation so

as to be helpful for the subsequent clustering.

We, respectively, use Ncut and SAD to perform gener-

alized eigen-decomposition and then only get the eigen-

vector corresponding to the second minimal eigenvalue

because the dataset is only divided into two classes. Fig-

ure 7 shows the distribution of data points after decom-

position with m = 0.1 for SAD. The abscissa denotes the

index of samples, and the indexes from 1 to 164 are of the

first cluster, and from 165 to end are of the second cluster.

The ordinate is the mapping value.

Instead of using K-means as the subsequent clustering

method, the simplest threshold method is used here. The

mean of all the samples in the feature space is set as the

threshold; then here we have threshold -0.0526 for Ncut

and 0.1665 for SAD, respectively. We count the number of

samples in two regions by taking the threshold as the

division point and report them in Table 1. There are 120

correct data points in the first cluster and 106 correct data

points in the second cluster for Ncut. For SAD, we can get

more correct points, 126 in the first cluster and 111 in the

second cluster, respectively. That is to say, SAD increases

the number of samples of the clusters and would result in

better clustering performance. Therefore, SAD can map

most data points in the same cluster into the same region in

the feature space, which is conducive to the subsequent

clustering in the feature space.

(a)

(b)

Fig. 3 Clustering error obtained by different clustering methods on

two artificial datasets. a Dataset 1, b dataset 2
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4.3 More UCI dataset

We also test our method on more UCI datasets, which are

described in Table 2. Since the labels of samples are given

in these UCI datasets, the clustering error rate can be cal-

culated and taken as the evaluation performance. Due to

the instability of K-means, we perform 50 times for each

dataset and report the best results of K-means and Ncut in

Table 3. We also list the results on the Heart dataset in this

table. For SAD, we use the negentropy index to select the

optimal m and report the corresponding CE.

From Table 3, SAD outperforms K-means in five out of

nine data sets, especially in the Heart dataset. Compared

with Ncut, SAD is better in five datasets and has the same

results on the two datasets. The advantage on the Iono-

sphere dataset shows SAD is more promising than Ncut.

We expect that the minimum negentropy index is cor-

responding to the best CE. However, we find that it hap-

pens only on six datasets: Liver, Heart, Musk, Sonar, Wine,

and Wpbc. In other words, we can select an appropriate

parameter m for SAD on these six datasets. For other three

datasets, Pima, Wdbc, and Ionoshpere, the negentropy

index does not work well. Figure 8 shows the negentropy

index and CE vs. m. The best CE on Pima obtained by SAD

should be 31.77 % at m = 0.4, which is supposed to be the

best performance among three clustering methods. How-

ever, according to the minimal negentropy index, 34.38 %

at m = 0.3 is listed in Table 3. We encounter the same

situation on the Wdbc dataset. The best CE 6.33 % cor-

responds to the maximal negentroy index, which is

unreasonable. Thus, we pick up the wrong m, which leads

to a bad performance of SAD.

4.4 UMIST face dataset

Here, we apply the clustering algorithm to the UMIST face

dataset [10], which is a multiview database and consists of

574 cropped gray-scale images of 20 subjects, each cov-

ering a wide range of poses from profile to frontal views as

well as race, gender, and appearance. Each image in the

(a)

(b)

Fig. 4 Comparison of

eigenvectors after spectral

mapping for Ncut and SAD.

a Ncut and SAD with m = 0,

b Ncut and SAD with m = 1
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database is resized into 32 9 32, and the resulting stan-

dardized input vectors are of dimensionality 1024. Figure 9

depicts some sample images of a typical subject in the

UMIST database.

Empirically, let m = 0.5 for SAD. The other experi-

mental setting is the same as Sect. 4.3. We list the maxi-

mum, minimum, and average clustering errors among 20

runs in Fig. 10, respectively. In Fig. 10, ‘‘max’’ means the

maximum value of 20 runs, ‘‘min’’ means the minimum

value of 20 runs, and ‘‘average’’ means the average value

on 20 runs. Obviously, SAD is superior to Ncut and

K-means. Note that the face data are a small size sample

data since the feature number is greater than the sample

number. The best clustering error is only 42.33 % obtained

by SAD. It is hard to get a satisfied clustering result for

these clustering algorithms.

4.5 Statistical comparisons over 12 datasets

In the previous section, we have conducted experiments on

12 datasets, including 2 toy datasets, 9 UCI datasets, and

one face dataset. Statistical tests on multiple datasets for

the three algorithms are preferred for comparing different

algorithms over multiple datasets. Here, we conduct

(a)

(b)

Fig. 5 Five indices vs. m on a dataset 1, and b dataset 2

Fig. 6 Three indices vs. m on the heart dataset

0 50 100 150 200 250 300 350
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Ncut
SAD

Fig. 7 Distribution of data after projection on the heart dataset

Table 1 Sample number in different clusters on the heart dataset

Ncut SAD

C-0.0526 \-0.0526 C0.1665 \0.1665

Cluster one data 120 44 126 38

Cluster two data 33 106 28 111

Table 2 Feature description of Eight UCI datasets

Dataset Feature Class Size

Liver 6 3 345

Ionosphere 34 2 351

Musk 66 2 476

Sonar 60 2 208

Pima 8 2 768

Wpbc 33 2 198

Wdbc 30 2 569

Wine 13 3 170
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statistical tests over 12 datasets by using the Friedman test

(Friedman 1998; [6] with the corresponding post hoc tests.

The Friedman test is a nonparametric equivalence of the

repeated-measures analysis of variance (ANOVA) under

the null hypothesis that all the algorithms are equivalent

and so their ranks should be equal [6]. According to the

results described above, we can get the average ranks of

three algorithms, 2.42 for K-means, 2.17 for Ncut, and 1.42

for SAD. The p value of the Friedman test is 0.034, which

is less than 0.05. In other words, we can reject the null

hypothesis and proceed with a post hoc test. Here, the

Bonferroni-Dunn test is taken as post hoc tests. The per-

formance of pairwise algorithms is significantly different if

the corresponding average ranks differ by at least the

critical difference (CD)

CD ¼ qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðk þ 1Þ
6N

r

; ð14Þ

where k is the number of algorithms, N is the number of

datasets, and qa is the critical value which can be found in

Demšar [6]. In our case, k = 3, N = 12, and q0.1 = 1.96

where the subscript 0.10 is the threshold value. Then, we

have CD = 0.80. The difference of average ranks between

Table 3 Clustering error rate on the UCI dataset (%)

Dataset K-means Ncut SAD

Liver 44.35 43.48 42.90

Ionosphere 28.77 35.61 26.78

Musk 45.17 46.85 45.80

Sonar 44.23 46.63 46.63

Pima 33.20 32.94 34.38

Wpbc 39.90 32.32 31.31

Wdbc 7.21 10.02 35.85

Wine 4.49 3.37 3.37

Heart 28.38 24.42 23.10

Bold values are used to indicate the best performance or lowest error

rate in the same datasets with different methods, SAD outperforms

K-means in five out of nine data sets, especially in the Heart dataset.

Compared with Ncut, SAD is better in five datasets and has the same

results on the two datasets. The advantage on the Ionosphere dataset

shows SAD is more promising than Ncut

(a)

(b)

Fig. 8 Two indices vs. m on a Pima, and b Wdbc

Fig. 9 Some image samples of one person from the UMIST dataset

Fig. 10 Clustering error of 20 trials on the UMIST dataset. ‘‘max’’

means the maximum value of 20 runs, ‘‘min’’ means the minimum

value of 20 runs, and ‘‘average’’ means the average value on 20 runs
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SAD and the other two algorithms is 1.00 and 0.75,

respectively. Thus, we have the following conclusion:

– SAD is significantly better than K-means since the rank

difference between them is 1.00, which is greater than

the CD value.

– There is no significant difference between SAD and

Ncut. Note that the rank difference between them is

0.75, which approaches to the CD value. Thus, the

advantage of SAD is still obvious compared with Ncut.

5 Conclusions

This paper proposes a spectral clustering method based on

the similarity and dissimilarity criterion, which is an

extension of the spectral clustering method of the nor-

malized cut criterion. The new clustering method can

increase the within-scatter.

Similarity and the between-scatter dissimilarity. Exper-

imental results on the artificial datasets, UCI datasets, and

one face dataset show that the new method indeed works

well. We also conduct statistical tests on these datasets for

the compared algorithms. Statistical results indicate that

there is no significant difference between SAD and Ncut,

but SAD is significantly better than K-means.

In the experiments, we find that the parameter m has an

effect on the performance of SAD and use the negentropy

index to select m. In theory, SAD always could get better

CE than Ncut when 0\m B 1. However, the negentropy

index is not very efficient for some datasets, such as Pima

and Wdbc. We would further research how to adaptively

select a proper value. Besides, the study about spectral

clustering also includes the process of large-scale data [4],

semi-supervised clustering with constrains [3, 13, 19, 20,

25], and non-negative sparse spectral clustering [14]. How

to combine our method with these researches is also the

next work we will consider. We expect that semi-super-

vised clustering can improve the clustering performance on

the UMIST dataset.

Appendix A

Proof: To prove Theorem 1, we need to prove that the

weight of the between-cluster similarity in (1 - m)yT-

Dy - myTQy is less than that in yTDy. Thus, the between-

cluster similarity would have less effect on the maxi-

mization of the within-cluster similarity.

Without loss of generality, assume that a graph G can be

partitioned into two disjoint sub-graphs X1 and X2.

Consider the continuous and loose form of the indicator

vector y, and let yi 2 {1, -b} with b ¼
P

zi [ 0
Di

P

zi\0
Dii

and

indicator vector z = [z1,…, zn]. First, we expand the

denominator of the objective in (4) and simplify it, and

have

yTDy ¼
X

xi2X1

X

xj2X1

Wij þ b2
X

xi2X2

X

xj2X2

Wij

 !

þ
X

xi2X1

X

xj2X2

Wij þ b2
X

xi2X2

X

xj2X1

Wij

 !

¼ Simw þ ð1þ b2ÞSimb;

ð15Þ

where Simw is the sum of the first two terms in (15) which

can be viewed as the within-cluster similarity, and Simb ¼
P

xi2X2

P

xj2X1
Wij denotes the between-cluster similarity.

Next, we expand the denominator of the objective in (12),

and have

ð1� mÞyTDy� myTQy

¼ ð1� mÞ
X

xi2X1

X

xj2X1

Wij

 !

þ ð1� mÞ b2
X

xi2X2

X

xj2X2

Wij þ ð1þ b2Þ
X

xi2X2

X

xj2X1

Wij

 !

� m
X

xi2X1

X

xj2X1

Qij þ b2
X

xi2X2

X

xj2X2

Qij � 2b
X

xi2X1

X

xj2X2

Qij

 !

ð16Þ

Since Qij = 1 - Wij, we substitute it into (16) and get

ð1� mÞyTDy� myTDy

¼
X

xi2X1

X

xj2X1

Wij þ b2
X

xi2X2

X

xj2X2

Wij

 !

þ 1þ b2
� �

� mð1þ b2Þ
� � X

xi2X1

X

xj2X2

Wij

 !

¼ Simw þ 1þ b2
� �

� m 1þ b2
� �� �

Simb

ð17Þ

Comparing (15) with (17), we can see that the difference

between them is the weight of the between-cluster simi-

larity. In addition, it is obvious that the following

inequality

1þ b2
� �

� mð1þ b2Þ
� �

�ð1þ b2Þ ð18Þ

holds true. If and only if m = 0, the inequality becomes

equality.Thus, the between-cluster similarity in the

denominator of (12) has a smaller weight than that of (4).

This completes the proof of Theorem 1.
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