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Abstract One-class classification belongs to the one of

the novel and very promising topics in contemporary

machine learning. In recent years ensemble approaches

have gained significant attention due to increasing robust-

ness to unknown outliers and reducing the complexity of

the learning process. In our previous works, we proposed a

highly efficient one-class classifier ensemble, based on

input data clustering and training weighted one-class

classifiers on clustered subsets. However, the main draw-

back of this approach lied in difficult and time consuming

selection of a number of competence areas which indirectly

affects a number of members in the ensemble. In this paper,

we investigate ten different methodologies for an automatic

determination of the optimal number of competence areas

for the proposed ensemble. They have roots in model

selection for clustering, but can be also effectively applied

to the classification task. In order to select the most useful

technique, we investigate their performance in a number of

one-class and multi-class problems. Numerous experi-

mental results, backed-up with statistical testing, allows us

to propose an efficient and fully automatic method for

tuning the one-class clustering-based ensembles.

Keywords Pattern classification � One-class

classification � Fuzzy clustering � Competence areas �
Classifier selection � Kernels

1 Introduction

Machine learning becomes frequently used in real-life

applications, allowing to analyze massive and complex data.

However, most of the canonical learning algorithms assume

that considered data belong to one of the pre-defined cate-

gories, called classes. The classical approach relies on a set of

data with well known classes, which are used for training of a

machine learning algorithm. Then, an unknown object can be

assigned a class label based on the trained method. Thus, in

order to prepare a competent classifier for a given task, one

needs to have a training dataset consisting of representatives

of each of the possible classes. However, in some cases one

of the classes can be obtained with ease, while the remaining

ones are hard or impossible to gather [14]. Collecting a

representative set of objects may be costly, time consuming,

unethical or simply impossible [27]. In such cases, one needs

to create a fully operational pattern classification system with

the usage of objects originating only from a single class. This

learning paradigm is known as the one-class classification

(OCC) [22].

In a case of one-class classifier, we need to maintain

both good generalization abilities on the known class, and

high discriminative power against the unknown classes.

Since during the training step we have only objects from a

single class at our disposal, then proper parameter and

model selections are not trivial [33]. Adding the fact, that

many one-class problems have complex distributions [30],

one may see that it is difficult to prepare a single accurate

and robust one-class classifier. This is why the ensemble
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learning paradigm [36] has gained a significant attention in

the machine learning community for the last years [6, 23,

28, 34].

Using a pool of classifiers prevents us from selecting the

weakest model, and very often a combination of individual

classifiers gives better accuracy than any single committee

member. However for ensemble to work properly, its

individual members should at the same time display high

individual quality and be mutually complementary to each

other. Combining several but similar models would not

contribute anything new to the competence of the com-

bined classifier. Similarly, fusing outputs of diverse but

locally incompetent classifiers would return a weak

ensemble. When constructing ensembles of classifiers we

can consider heterogeneous or homogeneous structures.

Heterogeneous committees consists of classifiers trained on

the basis of different models (e.g., neural networks, support

vector machines, decision trees, etc.) [26], while homoge-

neous ones use the same classifier model but each fed with

a diverse input (e.g., different subsets of objects or fea-

tures) [17]. Current studies report, that for one-class

ensembles combining different object/feature subspaces

yields significantly better results than utilizing different

models [4], especially when combined with classifier

selection step [23].

Following this observation, we have recently proposed a

one-class clustering-based ensemble (OCClustE) [24] in a

form of a highly efficient committee based on one-class

classifiers and soft space partitioning [7]. It resolves around

the idea of divide-and-conquer strategy, in which a complex

problem is divided into a number of simpler tasks [6]. In

OCClustE, we aim at detecting local competence areas and

train classifiers on them. Thus, we decompose the original

task into a set of smaller problems, reducing the number of

instances that must be processed by each classifier. We apply

a clustering algorithm, in order to detect groups of objects

with spatial relations and to achieve more compact decision

boundaries outputted by individual classifiers. For base

classifiers, we use the weighted one-class support vector

machines (WOCSVM) [3] that assign a weight to each

objects, in accordance with its importance defined by some

measure. This allows to filter out outliers and noisy objects.

To avoid computationally expensive calculation of weights,

we use membership values from soft clustering and apply

them directly as weights in classifier’s training procedure.

We have also shown, that OCClustE can be efficiently used

for both one-class tasks, as well as for efficient decomposi-

tion of the multi-class problems.

However, the main drawback of the aforementioned

method lies in the assessment of a number of the compe-

tence areas (which directly translates to the number of

classifiers in the ensemble). This factor cannot be easily

determined beforehand and has a crucial impact on the

quality of the ensemble quality. Manual tuning of this

parameter is time-consuming and requires some knowledge

about the machine learning domain (which cannot always

be assumed, especially in case when the end-user is just

using it as a data analysis tool).

To remedy this problem, in this paper we propose to

investigate ten different methods for automatic detection of

a number of competence areas for the OCClustE algorithm.

They all have roots in model selection for clustering. We

use methods from the three following groups: the one that

requires only membership values, the one requiring both—

the membership values and the dataset—and the one that is

based on a statistical model selection. All of these methods

are fully automatic and require no manual tuning. We ran

extensive experiments in two scenarios: for typical one-

class problems and for decomposing multi-class datasets.

This allows us to shed light on the performance of each of

the used methods, and to select the best performing ones.

The main contributions of this work are as follows:

• Proposal of new methods for automatic selection of

locally specialized one-class classifiers, based on the

determination of a number of mutually complementary

competence areas.

• A complete step-by-step guidance on construction of an

efficient one-class ensemble based on soft object space

partitioning, that does not require any parameters to be

tuned manually.

• Presentation of extensive experiments that allow eval-

uating usefulness of the proposed methods for selecting

a number of competence areas in both one- and multi-

class scenarios.

The remaining part of this paper is organized as follows:

The next section discusses the basics of OCC and the

possibility of applying these methods to cases without an

access to counterexamples, as well as to cases when a

multi-class problem decomposition is required. Section 3

describes the used OCClustE. Section 5 describes in detail

the experimental study, while the last section concludes the

paper and gives an outlook on possible future directions.

2 One-class classification

In this section, a brief overview of the OCC area will be

given, with the respect to two possible areas of application:

single-class learning and multi-class decomposition.

2.1 Classification in the absence of counterexamples

OCC assumes a scenario in which there can be two or more

classes, but during the training step we have at our disposal

only objects originating from a single class [18]. This
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single class, which examples are often abundant, is known

as the target class, or the target concept, and denoted as xT.

It serves as a positive class for the pattern recognition

system. At the same time there may be present one or more

additional classes, but for other reasons such as cost, time,

ethics, etc. we do not have any access to them during the

training step [20]. However, objects of other classes may

appear during the exploitation phase of the classifier, and

the recognition system must be prepared to deal with them.

They are jointly labeled as outliers, and denoted as xO. It is

important to notice, however, that despite having an uni-

form label, outliers may be formed from more than one

class. Commonly in OCC a uniform distribution of outliers

in the decision space is assumed, meaning that they may

appear at any point. This assumption reflects the lack of

actual knowledge about the nature of outliers, and a need to

prepare a highly flexible and robust one-class classifier.

To give a practical example of an one-class scenario, let

us consider a nuclear power plant. We would like to pre-

pare a decision support system, based on machine learning

for automatic monitoring of condition of the plant [16].

Obtaining positive readings of a safe situation is relatively

easy. One needs to define a set of features to observe and

collect data for a given time. Here, one can generate a large

collection of positive objects. However, gathering negative

samples is not so straightforward. One would not want to

deliberately damage a nuclear power plant, in order to get

some readings. And when finding one with malfunctions

main efforts would be laid towards securing the plant, and

not gathering a large amount of data. And how one would

know, that gathered counterexamples sufficiently describe

all of possible malfunctions? In such a case, OCC is the

most proper solution. One may bring more examples of the

potential use of OCC, such as image/video classification

(where it is impossible to determine what will appear on

the scene) [7], data stream analysis (where new, unknown

classes may appear due to data shifts and drifts) [15, 35],

novelty detection [21] or bio-signal classification (where

some pathologies may be dependent on the patient) [13].

During the last decade, a number of methods were

proposed for tackling OCC problems. They can be divided

into three families.

First one relies on the density-estimation methods,

assuming that outliers do not fulfill the distribution of the

target class [5]. This is the simplest and most straightfor-

ward approach for OCC, but surprisingly it tends to work

well. However, these methods require a large number of

training examples in order to properly capture the proper-

ties of the target class. Additionally, they offer quite low

robustness to internal outliers and noisy data.

Second group is known as reconstruction methods. They

have their roots in clustering algorithms, and aim at pro-

viding some description of the structure of the analyzed

data [27]. They assume, that every new object from the

target class will fulfill the detected structure. Objects, that

do not fit into the structure are considered as outliers. Their

main drawback is the assumption that training data allow

us to construct a full structure of the target concept.

The third group is known as boundary methods [32].

These methods assume that it is often impossible to prop-

erly estimate the density or full structure of the target class.

Instead, they concentrate on providing an enclosing

boundary around the target concept, allowing some outliers

at the same time. Volume of such an enclosing boundary

cannot be too small (not to be overfitted to training data),

but at the same time cannot be too large (not to lose

robustness to potential outliers).Therefore, main effort in

training a boundary classifier lies in the process of opti-

mizing the boundary volume [19]. Boundary methods work

well with small training sets. However, they require a

number of parameters to be set, thus making the model

selection a non-trivial task.

2.2 One-class classifiers for multi-class problems

OCC can also be used for scenarios, in which we have

representatives of all of the classes at our disposal [24, 34].

In recent years, handling multi-class problems with

decomposition techniques became a popular approach [11].

Decomposing a multi-class problem into a set of binary

tasks is the most often used mechanism [10]. Here two

strategies can be applied: one-versus-one (OVO) and one-

versus-all (OVA). In OVO, a classifier for each possible

pair of classes is constructed. On the other hand, in the case

of OVA we construct a classifier for a given class and use

the aggregation of the remaining classes as the negative set.

OVO decomposes the problem into much more simpler

tasks, but returns a high number of classifiers, especially

for problems with a large number of classes. OVA gives

M classifiers for a M-class problem, but trains them on a

highly imbalanced datasets (1 class versus M � 1 classes).

One may also use one-class classifiers to decompose a

multi-class problem [37]. It can be seen as a special case of

OVA, as we train a single one-class method for a given

class, and use it to discriminate against other classes.

Therefore, for M-class problem we get M one-class clas-

sifiers, getting a significantly more compact pool of models

than OVA. On the other hand, as we do not use coun-

terexamples during the training step, we alleviate the

imbalance problem connected with OVA.

Of course using one-class classifiers comes at a cost of

discarding a useful knowledge about distribution of the

other classes during the training step. For standard sce-

narios, one-class decomposition will not be as efficient as

binarization. However, OCC shows its usefulness in case of

complex and difficult scenarios. OCC classifiers are robust
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to imbalanced data (as they do not use counterexamples,

they cannot be biased towards the majority class), class

noise (as some methods have embedded mechanisms for

dealing with internal outliers) or complex distributions.

This is caused by a different learning paradigm. Binary and

multi-class classifiers try to maximize the separability

between the classes. One-class methods adapt themselves

to the properties of the target concept.

Nevertheless, OCC is not a universal tool for handling

multi-class problems. However, when carefully applied, it

may outperform binary and multi-class methods for prob-

lems with complex distributions of data [24].

3 One-class clustering-based ensemble

OCClustE [24, 25] was proposed as an efficient ensemble

system for one-class learning. It originated from trying to

answer the problem on how to create a pool of base one-

class classifiers, that are at the same time individually

accurate and mutually diverse.

This method uses a clustering algorithm to partition the

feature space into atomic subsets [7]. In the next step each

of these clusters is used to train a one-class classifier. This

leads to the formation of a pool of K classifiers assigned to

the target class, as follows:

P ¼ fW1;W2; . . .;WKg: ð1Þ

This allows us to easily create a pool of several one-class

learners, dedicated to the target class. It assures the initial

diversity (as a result of using different inputs in their

training) and complementarity (as classifiers together cover

all the decision space), which leads to better performance

of the ensemble.

For the clustering step, OCClustE uses kernel fuzzy

c-means, which is a modification of the fuzzy c-means

algorithm that operates in an artificial feature space created

by a kernel function [39]. Different partitioning methods

were examined [24], but the kernel soft clustering returned

superior results.

To further boost the recognition quality, OCClustE uses

WOCSVM [3] as the base learner. It has been shown, that

weighted one-class classifiers can outperform the canonical

ones, due to an additional measure that controls influence

of each object on the shape of the decision boundary.

Additionally, weighted methods are more insensitive to

internal outliers, that may be present in the target class (as

it may contain irrelevant, noisy objects). Any data with a

low weight, has a limited impact on the process of shaping

the decision boundary.

The crucial element in using WOCSVM is the process

of establishing weights, which is heuristic and time-con-

suming [3]. We introduce a novel approach for establishing

the degree of importance of objects, based on the output of

clustering algorithm. We use fuzzy clustering algorithm,

that returns the membership functions for each object in the

given cluster. We use these membership values as weights

for WOCSVM [7]. This way, new weights reflect a degree

of importance of a given object in a cluster and are pre-

calculated, thus also reducing time needed for training

WOCSVM [25].

Finally, we need to combine the individual outputs of

base classifiers at our disposal. In our proposition, output

fusion of the WOCSVM boundary methods is based on

computing a distance between an object x and the decision

boundary that encompasses the target class xT. To apply

fusion methods we require a support function of an object x

for a given class. Hence, for a given kth WOCSVM clas-

sifier, we propose to use the following heuristic function:

Fkðx;xTÞ ¼
1

c1

expð�dðxjxTÞ=c2Þ: ð2Þ

It models a Gaussian distribution around the classifier,

where dðxjxTÞ is an Euclidean distance between the con-

sidered object and a decision boundary for the class xT, c1

denotes a normalization constant and c2 is the scale

parameter. The parameters c1 and c2 should be fitted to the

target class distribution.

There are several propositions on how to fuse the out-

puts of individual OCC models after such a mapping [31].

Let us assume that there are K OCC classifiers in the pool.

In this paper, we use the mean of the estimated support

functions which is expressed by:

ympðxÞ ¼
1

K

X

k

Fkðx;xTÞ: ð3Þ

This fusion method assumes that the outlier object distri-

bution is independent of x and thus uniform in the area

around the target concept. The schema of OCClustE is

given in Fig. 1.

Additionally, OCClustE can be applied for multi-class

problems, by decomposing a M-class dataset into M sepa-

rate one-class problems [24]. Then we train M OCClustE

algorithms, one for each class. To reconstruct the original

multi-class output, error-correcting output codes (ECOC)

are used. We have shown, that for difficult problems with a

large number of classes our approach can deliver better

performance than binary and multi-class classifiers.

In summary, OCClustE algorithm leads to several

improvements compared with the standard OCC models, as

follows:

• Boundary-based approaches (such as WOCSVM) were

shown to display better generalization abilities than

clustering-based (reconstruction) OCC [32], but are

highly prone to atypical and complex data distributions.
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Therefore, a hybrid method utilizing both approaches

combines the advantages of each while reducing their

drawbacks.

• Since classifier is trained only on a reduced chunk of

the data, its computational complexity is reduced in

comparison to a single model approach. This reduces

the probability of overtraining the one-class learner.

Additionally, a number of individual classifiers can

easily be applied in a distributed environment, leading

to a significant decrease in execution time.

• Using chunks of data as the classifier input reduces the

influence of negative effect, known as the empty

sphere; that is, the area covered by the boundary in

which no objects from the training set are located [18].

• A boundary classifier trained on a more compact data

partition usually has a lower number of support vectors.

• By combining the fuzzy clustering with weighting

scheme, we are able to obtain good estimation of

weights assigned to training objects in a reduced time.

However, a limitation of the method has been also

observed. OCClustE relies strongly on the number of

competence areas (clusters), used in the training step. This

number directly translates into a quantity of base classifiers

in the ensemble. We noticed, that the variance in accuracy

is high even for small changes of this parameter’s

value [24]. An exemplary influence of the number of

clusters on the OCClustE structure is depicted in Fig. 2.

Tuning a proper number of clusters is time consuming

and requires some specialist machine learning knowledge,

that cannot be always assumed (e.g., in case of real-life

applications in decision support systems and their end-

users). Therefore, an efficient and fully automatic method

for estimating a number of competence areas for OCClustE

must be proposed.

4 Automatic selection of competence areas

In the previous section, we have identified the drawback of

OCCLustE method. Now, we will discuss how to auto-

matically select the number of competence areas for the

ensemble.

As OCClustE works on the basis of clustering the object

space, one may treat the problem of determining the

number of competence areas as model selection for clus-

tering algorithms [29]. They allow for an automatic

selection of the optimal number of groups in data. With

this, we can perform a tuning of OCClustE algorithm

without any need for manual selection.

We investigate ten methods for automatic selection of a

number of clusters, that in our case simultaneously repre-

sent a number of competence areas. The selection of such

methods was dictated by a recent survey on their perfor-

mance [38]. They form three groups: the first one using

only the membership matrix, the second that uses a

membership matrix and the dataset, and the third one

which is based on statistical indexes.

For the description of the following methods, we assume

that membership values coming from the kernel fuzzy

c-means are collected in the membership matrix U ¼ ½lij�,
where lij denotes a membership value of an jth data point

into the ith cluster. We assume, that we investigate a

number of clusters in the range of [1, C], where C is the

maximum number of examined clusters selected by the

user. We assume also, that our training set TRS consists of

N objects.

Please note, that all of the mentioned methods work on a

set of possible clustering models. They use the same

clustering results as input. Their sole purpose is to auto-

matically identify the most suitable number of clusters

among the input C models.

4.1 Indexes based on membership values

4.1.1 Partition coefficient

The partition coefficient (PC) can be defined as follows:

PCðU;CÞ ¼ 1

N

XC

i¼1

XN

j¼1

l2
ij ð4Þ

where lij is a membership value of an jth data point to

the ith cluster, as assigned by the fuzzy c-means method.

The PC ranges between [1 / C, 1]. The closer the index

Fig. 1 Schema of the OCClustE

framework
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to 1.0, the crisper the clustering. Therefore, a PC value

close to 1 / C indicates that there is no clustering ten-

dency in the analyzed data or the clustering method

failed to detect one.

4.1.2 Partition entropy

The partition entropy coefficient (PE) can be defined as:

PEðU;CÞ ¼ � 1

N

XC

i¼1

XN

j¼1

lij logðlijÞ: ð5Þ

This index is calculated only for a number of clusters

greater than 1, and its value falls into the range ½0; logC�.
Values of PE close to 0 indicate the difficulties in clus-

tering of the analyzed data. Once again, the values close to

the upper bond 1 / C indicate that there is no clustering

tendency in the analyzed data or the clustering method

failed to detect one.

4.1.3 Modified partition coefficient

The modified partition coefficient (MPC) method origi-

nates from an observation of the weakness of the PC

method. PC is monotonously dependent on the number

of clusters C. To alleviate this, we should look for a

significant knees of increase of the criterion based on the

number of clusters versus PC values. One can reduce the

monotonicity tendency by using the following formula:

MPCðU;CÞ ¼ 1 � C

C � 1
ð1 � C � PCðU;CÞÞ; ð6Þ

where 0�MPC� 1.

4.2 Indexes based on membership values

and dataset

4.2.1 I index

The I index is defined as follows:

IðU;C; TRSÞ ¼ Dmax

C � ECðU;C; TRSÞ

� �p

; ð7Þ

where

ECðU;C; TRSÞ ¼
XC

i¼1

XN

j¼1

lijkxi � cik; ð8Þ

where xi is an ith datapoint, and ci denotes the centroid of

the vi cluster. The factor Dmax stands for a maximum dis-

tance between the cluster prototypes. It will increase with

the number of clusters. The second factor 1
C

is responsible

for reducing the value of this index with increase of the

number of clusters. The third factor 1
EC

measures the total

fuzzy dispersion, and penalizes the index with it’s increase.

Finally, the power of p controls the contrast between the

different cluster configurations. In our experiments we set

p ¼ 2, as suggested in the literature [38].

Fig. 2 Exemplary differences

between the structures of

OCClustE for a different

number of competence areas

and base classifiers: a single

one-class classifier, b two

clusters detected, c three

clusters detected, d four clusters

detected
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4.2.2 Cluster validity measure

The cluster validity measure (CVM) is defined as:

CVMðU;C; TRSÞ ¼ C þ ðf � Gð2; 1Þ þ 1ÞDa

De

; ð9Þ

where Da is the measure of compactness of clusters:

DaðC; TRSÞ ¼ 1

N

XC

i¼1

X

x2vi
kx� cik2; ð10Þ

and De is the measure of the average separation between

two clusters over all possible pairs of clusters:

DeðCÞ ¼ averageðkci � cjkÞ2; ð11Þ

where i ¼ 1; 2; . . .;C, and j ¼ iþ 1; . . .;C, f denotes a

constant, G(2, 1) is a radial basis function with mean value

equal to 2.0 and standard deviation equal to 1.0. CVM

measure should be minimized in order to obtain accurate

and compact clusters.

4.2.3 Fukuyama–Sugeno index

The Fukuyama–Sugeno index (FS) is defined as follows:

FSðU;C; TRSÞ ¼
XC

i¼1

XN

j¼1

lmij kxi � cjk2 � kcj � �ck2;

ð12Þ

where �c ¼
Pc

i¼1 ci=C is an average of all centroids.

Small values of FS indicate compact and separable

clusters. The first term in Eq. 12 measures the com-

pactness of the clusters, while the second measures the

distances between a given centroid and the mean of all

centroids.

4.2.4 Fuzzy hyper volume

The fuzzy hyper volume (FHV) is based on the concept of

hyper volume and its density. It is defined as an average of

a measure Qi:

FHVðU;C; TRSÞ ¼
XC

i¼1

Qi; ð13Þ

where

QiðU; TRSÞ ¼
X

i

�����

�����

1=2

¼
PN

j¼1ðxj � ciÞðxj � ciÞT
PN

j¼1 l
m
ij

 !
:

ð14Þ

Small FH values informs about the presence of compact

clusters.

4.2.5 Average partition density

The average partition density (APD) can be formulated as

follows:

APDðU;C; TRSÞ ¼ 1

C

XC

i¼1

Si

Vi

; ð15Þ

where Si ¼
P

x2xi lij, xi being the set of data points within a

center of cluster ci. Si is called the sum of the central mem-

bers of the ci cluster. Vi should be calculated from Eq. 14.

4.2.6 Xie–Beni index

The Xie–Beni index (XBI), known as the compactness and

separation validity function is defined as follows:

XBIðU;C; TRSÞ ¼ 1

N

XC

i¼1

r2
i

( )
=fDming2; ð16Þ

where

r2
i ðU; TRSÞ ¼

XN

j¼1

lijkxj � cik2; ð17Þ

and Dmin stands for the minimum distance between the

cluster centroids. Each r2
i is a fuzzy weighted mean-square

error for the ith cluster, and decreases with the increase of

compactness of a cluster.

4.3 Statistical indexes

4.3.1 Akaike information criterion

Akaike information criterion (AIC) is defined as follows:

AICðCÞ ¼ Da þ 2lðCÞr2; ð18Þ

where lðU;CÞ ¼ ðC � 1ÞN þ C denotes a number of

degree of freedom of the model, Da can be computed from

Eq. 10, and the noise level r2 can be estimated from:

r2ðU;CÞ ¼ DaðC�Þ
pN � lðC�Þ ; ð19Þ

where C� is the maximum of a number of clusters, p is the

co-dimension of the model (p ¼ 1). The smaller the AIC

value, the better the clustering performance for the data set.

5 Experimental investigations

The aim of the experimental analysis was to examine the

usefulness of ten described methods for an automatic

detection of a number of the competence areas for
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OCClustE algorithm. To reflect the dual possibility of

using our classifier, we conduct two types of experiments:

• Evaluation on one-class problems, where we train

OCClustE with a single class data without an access to

counterexamples.

• Evaluation on multi-class problem, where we decom-

pose a data set into M separate one-class tasks, train

OCClustE on each of them, and then reconstruct the

original decision with the usage of ECOC combiner.

In the following subsections, we will describe the datasets

used, set-up of experiments, and present the results with a

discussion.

5.1 Data sets

For the experiments twenty datasets from the UCI reposi-

tory [9] are used. Ten of them are binary datasets for the

OCC experiments, and the remaining ten are multi-class

problems for the one-class decomposition experiments.

For classification in the absence of counterexamples, we

require one-class problems. As there are no dedicated one-

class benchmarks publicly available, we transform binary

data into one-class: the objects from the majority class

were used as the target concept, while objects from the

minority class as outliers.

Details of the datasets are given in Table 1.

5.2 Set-up

For the experiment the WOCSVM with the RBF kernel,

r ¼ 0:1 and cost parameter m ¼ 10 is used as a base clas-

sifier. The pool of classifiers were homogeneous, i.e. con-

sisted of classifiers of the same type. Kernel fuzzy c-means

also employed the RBF kernel with r ¼ 0:5.

For all the tests, the maximum number of clusters to be

examined was set to C ¼ 20.

These settings were dictated by our previous experience

with the OCClustE [24]. Additionally, we use the same

parameters for each dataset, as our aims were to evaluate

methods for competence areas detection, not the classifier

itself.

For multi-class problems we generated a separate

OCClustE for each class, then combined them with ECOC.

We used an exhaustive code generation procedure descri-

bed in [2].

In order to present a detailed comparison among a group

of machine learning algorithms, one must use statistical

tests to prove, that the reported differences among classi-

fiers are significant [8]. We use both pairwise and multiple

comparison tests. Pairwise tests give as an outlook on the

specific performance of methods for a given data set, while

the multiple comparison allows us to gain a global

perspective on the performance of the algorithms over all

benchmarks. With this, we get a full statistical information

about the quality of the examined classifiers.

• For simultaneous training/testing and pairwise compar-

ison, we use a 5 � 2 combined CV F-test [1]. It repeats

five-time two fold cross-validation so that in each of the

folds the size of the training and testing sets is equal.

This test is conducted by comparison of all versus all.

• For assessing the ranks of classifiers over all examined

benchmarks, we use a Friedman ranking test [8]. It

checks, if the assigned ranks are significantly different

from assigning to each classifier an average rank.

• We use the Shaffer post-hoc test [12] to find out which

of the tested methods are distinctive among an n� n

comparison. The post-hoc procedure is based on a

specific value of the significance level a. Additionally,

the obtained p values should be examined in order to

check how different are the pairs of algorithms.

We fix the significance level a ¼ 0:05 for all comparisons.

5.3 Results and discussion

We present the performance of the examined methods

according to the average number of competence areas they

had identified, and to their final accuracy. For multi-class

Table 1 Details of datasets used in the experiments

No. Name Objects Features Classes

1. Breast-cancer 286 (85) 9 2

2. Breast-Wisconsin 699 (241) 9 2

3. Colic 368 (191) 22 2

4. Diabetes 768 (268) 8 2

5. Heart-statlog 270 (120) 13 2

6. Hepatitis 155 (32) 19 2

7. Ionosphere 351 (124) 34 2

8. Sonar 208 (97) 60 2

9. Voting records 435 (168) 16 2

10. CYP2C19 isoform 837 (181) 242 2

11. Autos 159 25 6

12. Car 1728 6 4

13. Cleveland 297 13 5

14. Dermatology 366 33 6

15. Ecoli 336 7 8

16. Flare 1389 10 6

17. Lymphography 148 18 4

18. Segment 2310 19 7

19. Vehicle 846 18 4

20. Yeast 1484 8 10

For binary problems, values in parentheses indicate the number of

objects in the minority class
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problem, we assumed identical number of clusters selected for

each class (in order to simplify the presentation of results).

5.3.1 Experiments with one-class classification

The average quantity of detected competence areas by each

method is presented in Table 2. Table 3 depicts the accu-

racies of OCClustE methods trained on the basis of

detected subsets of objects.

5.3.2 Experiments with multi-class decomposition

The average quantity of detected competence areas by each

method is presented in Table 4. Table 5 depicts the accu-

racies of OCClustE methods trained on the basis of

detected subsets of objects.

5.3.3 Discussion of results

Experimental study conducted on ten different methods for

determining the number of competence areas for the pur-

pose of training of the OCClustE classifier, allows us to

draw several interesting conclusions.

One must remember, that all of then examined indexes

work on the basis of kernel fuzzy c-means. So obtained

results are related to the clustering model selection pro-

cedure, not to the clustering itself.

Firstly, one can observe a great variety in the outputs of

all of the examined competence area selection methods.

This proves, that they can return diverse results for the

same set of points, and thus it is worthwhile to test their

behavior over a set of benchmarks. However, for few

datasets (e.g., heart-statlog or yeast) an identical number of

areas is returned by all of the methods. This can lead to

conclusions, that for these cases the clustering task is rel-

atively easy and has a single best-performing solution.

When analyzing the accuracy of different OCClustE

classifiers built on the basis of different object space par-

titions, one may observe how crucial is the impact of a

proper selection of the number of base classifiers on the

final quality of the model. This happens for both one-class

and multi-class problems. Therefore, looking for methods

that will be able to most precisely detect the number of

partitions is of great importance.

We can observe, that for small datasets some methods

tend to output too little competence areas, failing to dis-

cover hidden structures. On the other hand, for higher

number of objects, these methods tend to over-cluster the

data, locating false groups of objects. Both of these situa-

tions highly decrease the accuracy of OCClustE, and

should be strongly avoided.

One should also take a look at the autos dataset, in

which the best performance was delivered when no clus-

tering was done (so a single one-class classifier for each

class). Some of the metrics were able to detect, that there is

no clustering tendency in this data and prevented the

construction of the ensemble. Training multiple classifier

system in such a case would only consume computational

time, without any benefit for the recognition accuracy.

Such an example show, that a proper evaluation metric for

tuning OCClustE can also detect situations, in which case a

committee of classifiers is not beneficial.

We have examined ten different evaluation methods,

originating in three groups. From the tests on both one-

class and multi-class problems, we can observe that the

best performing ones are PE, I, FHV and AIC. These four

methods significantly outperform remaining six, so we will

concentrate our further discussion on them.

Partition Entropy is the only method, that requires just the

membership values for computations. This reduces the

required information, but at the same time reduces also the

quality of the method—as PE achieves lower overall rank than

the three remaining evaluation approaches. However, it is

Table 2 The average number

of selected competence areas

(clusters) by each approach on

the target class xT

Dataset PC PE MPC I CVM FS FHV APD XBI AIC

Breast-cancer 5 4 5 3 6 4 3 5 5 3

Breast-Wisconsin 7 6 7 5 3 4 5 3 6 5

Colic 4 4 4 2 4 3 2 3 3 2

Diabetes 5 7 6 7 5 6 7 5 5 7

Heart-statlog 3 3 3 3 3 3 3 3 3 3

Hepatitis 2 3 2 3 4 4 3 2 2 3

Ionosphere 3 4 3 5 7 7 3 4 3 5

Sonar 3 3 3 3 3 3 3 3 3 2

Voting records 5 5 5 5 5 5 5 5 5 5

CYP2C19 isoform 9 10 7 11 7 10 11 9 9 12

All indexes use output of the kernel fuzzy c-means
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easy and straightforward to compute and may be efficiently

used in the cases of limited memory/computational time.

Both I index and FHV require at the same time mem-

bership values and dataset for being computed. They out-

perform PE method, due to the additional information

embedded in the dataset. However, differences between

them are pretty small, as both methods operate on similar

assumptions.

AIC is based on statistical information. What is inter-

esting, this is the only method that succeeded for all of the

used datasets. For many cases it returned identical quantity

of space partitions as PE, I or FHV, but for some other

benchmarks (e.g., sonar) it was able to outperform all of

the other methods.

We may conclude, that I, FHV and AIC are the best

performing measures for automatic selection of the number

Table 3 Results of the experimental results with the respect to the accuracy (%) and statistical significance

Dataset PC1 PE2 MPC3 I4 CVM5 FS6 FHV7 APD8 XBI9 AIC10

Breast-cancer 61.28 63.79 61.28 65.18 57.49 63.79 65.18 61.28 61.28 65.18

5 1;3;5;8;9 5 1;2;3;5;6;8;9 � 1;3;5;8;9 1;2;3;5;6;8;9 5 5 1;2;3;5;6;8;9

Breast-Wisconsin 88.93 91.45 88.93 92.18 88.25 89.76 92.18 88.25 91.45 92.18
� 1;3;5;6;8 � 1;3;5;6;8 � 1;3;5;8 1;3;5;6;8 � 1;3;5;6;8 1;3;5;6;8

Colic 78.03 78.03 78.03 80.72 78.03 75.69 80.72 75.69 75.69 80.72

6;8;9 6;8;9 6;8;9 1;2;3;5;6;8;9 6;8;9 � 1;2;3;5;6;8;9 � � 1;2;3;5;6;8;9

Diabetes 55.39 62.05 59.16 62.05 55.39 59.16 62.05 55.39 55.39 62.05
� 1;3;5;6;7;8;9 1;5;8;9 1;3;5;6;7;8;9 � 1;5;8;9 1;3;5;6;7;8;9 � � 1;3;5;6;7;8;9

Heart-statlog 87.11 87.11 87.11 87.11 87.11 87.11 87.11 87.11 87.11 87.11
� � � � � � � � � �

Hepatitis 56.78 60.46 56.78 60.46 58.12 58.12 60.46 56.78 56.78 60.46
� 1;3;5;6;8;9 � 1;3;5;6;8;9 1;3;8;9 1;3;8;9 1;3;5;6;8;9 � � 1;3;5;6;8;9

Ionosphere 78.64 80.63 78.64 80.92 72.07 72.07 78.64 80.63 78.64 80.92

5;6 1;3;5;6;7;9 5;6 1;3;5;6;7;9 � � 5;6 1;3;5;6;7;9 5;6 1;3;5;6;7;9

Sonar 92.12 92.12 92.12 92.12 92.12 92.12 92.12 92.12 92.12 93.56
� � � � � � � � � ALL

Voting records 89.64 89.64 89.64 89.64 89.64 89.64 89.64 89.64 89.64 89.64
� � � � � � � � � �

CYP2C19 isoform 75.62 80.09 73.18 80.98 73.18 80.09 80.98 75.62 75.62 83.01

3;5 1;3;5;8;9 � 1;3;5;8;9 � 1;3;5;8;9 1;3;5;8;9 3;5 3;5 ALL

Avg. rank 9.20 4.10 8.60 2.70 6.80 5.80 2.80 7.30 5.40 2.30

Differences in obtained accuracy are related to different number of selected clusters according to a given index. Small numbers under accuracies

stand for indexes of methods, from which the considered one is statistically superior according to a pairwise test

Table 4 The number of

selected competence areas

(clusters) averaged over all

classes by considered

approaches

Dataset PC PE MPC I CVM FS FHV APD XBI AIC

Autos 2 1 2 1 2 2 1 2 2 1

Car 7 8 7 9 7 8 9 7 7 9

Cleveland 2 2 2 2 2 2 2 2 2 2

Dermatology 2 3 2 3 2 2 3 2 2 3

Ecoli 2 2 2 2 2 2 2 2 2 2

Flare 10 8 10 6 8 9 6 10 8 6

Lymphography 2 2 2 2 2 2 2 2 2 3

Segment 10 5 10 5 8 8 5 10 10 5

Vehicle 7 5 7 5 8 8 5 7 7 4

Yeast 4 4 4 4 4 4 4 4 4 4

All indexes use output of kernel fuzzy c-means
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of competence areas for the OCClustE, with AIC being the

most robust one.

In order to prove our claims, we present the results for

Shaffer post-hoc test in Table 6. From them one may see,

that when considering multiple comparisons, the three

selected methods are statistically superior to the remaining

indexes. What is interesting, the differences between I and

FHV indexes are statistically insignificant, while AIC is

significantly better than these two (although the obtained

p values are close to the significance threshold).

6 Conclusions

In this paper, the problem of an automatic determination of

the optimal number of competence areas for the OCClustE

was investigated. It extends our previous work, in which

tuning of the competence areas of OCClustE was done

manually, which required an extended effort from the end-

user side.

To allow an automatic tuning of this parameter, we have

investigated ten clustering evaluation indexes, originating

Table 5 Results of the experimental results with the respect to the accuracy (%) and statistical significance

Dataset PC1 PE2 MPC3 I4 CVM5 FS6 FHV7 APD8 XBI9 AIC10

Autos 63.98 68.12 63.98 68.12 63.98 63.98 68.12 63.98 63.98 68.12
� 1;3;5;6;8;9 � 1;3;5;6;8;9 � � 1;3;5;6;8;9 � � 1;3;5;6;8;9

Car 85.18 87.82 85.18 90.06 85.18 87.82 90.06 85.18 85.18 90.06
� 1;3;5;8;9 � 1;2;3;5;6;8;9 � 1;3;5;8;9 1;2;3;5;6;8;9 � � 1;2;3;5;6;8;9

Cleveland 60.01 60.01 60.01 60.01 60.01 60.01 60.01 60.01 60.01 60.01
� � � � � � � � � �

Dermatology 91.07 94.52 91.07 94.52 91.07 91.07 94.52 91.07 91.07 94.52
� 1;3;5;6;8;9 � 1;3;5;6;8;9 � � 1;3;5;6;8;9 � � 1;3;5;6;8;9

Ecoli 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02 80.02
� � � � � � � � � �

Flare 60.86 69.02 60.86 73.28 69.02 60.86 73.28 60.86 69.02 73.28
� 1;3;6;8 � 1;2;3;5;6;8;9 1;3;6;8 � 1;2;3;5;6;8;9 � 1;3;6;8 1;2;3;5;6;8;9

Lymphography 75.36 75.36 75.36 75.36 75.36 75.36 75.36 75.36 75.36 79.73
� � � � � � � � � ALL

Segment 79.17 92.18 79.17 92.18 84.82 84.82 92.18 79.17 79.17 92.18
� 1;3;5;6;8;9 � 1;3;5;6;8;9 1;3;5;6;8;9 1;3;8;9 1;3;8;9 � � 1;3;5;6;8;9

Vehicle 63.87 68.02 63.87 68.02 65.06 65.06 68.02 63.87 63.87 69.94
� 1;3;5;6;8;9 � 1;3;5;6;8;9 1;3;8;9 1;3;8;9 1;3;5;6;8;9 � � ALL

Yeast 60.76 60.76 60.76 60.76 60.76 60.76 60.76 60.76 60.76 60.76
� � � � � � � � � �

Avg. rank 8.80 4.50 8.10 2.80 6.00 5.40 3.00 7.90 6.60 2.20

Differences in obtained accuracy are related to different number of selected clusters according to a given index. Small numbers under accuracies

stand for indexes of methods, from which the considered one is statistically superior according to a pairwise test

Table 6 Shaffer test for

comparison between the indexes

and remaining ones over 20

datasets

Hypothesis p value Hypothesis p value Hypothesis p value

I vs PC ?(0.0087) FHV vs PC ?(0.0113) AIC vs PC ?(0.0064)

I vs PE ?(0.0376) FHV vs PE ?(0.0407) AIC vs PE ?(0.0302)

I vs MPC ?(0.0162) FHV vs MPC ?(0.0202) AIC vs MPC ?(0.0126)

I vs CVM ?(0.0230) FHV vs CVM ?(0.0308) AIC vs CVM ?(0.0184)

I vs FS ?(0.0302) FHV vs FS ?(0.0394) AIC vs FS ?(0.0258)

I vs FHV =(0.1026) FHV vs APD ?(0.0122) AIC vs APD ?(0.0076)

I vs APD ?(0.0108) FHV vs XBI ?(0.0371) AIC vs XBI ?(0.0259)

I vs XBI ?(0.0339) FHV vs AIC -(0.0465) – –

I vs AIC -(0.0488) – – – –

Symbol ‘=’ stands for classifiers without significant differences, ‘?’ for situation in which the method on

the left is superior and ‘–’ vice versa
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from the model selection for clustering algorithms. We

have applied them as a measure for selection of the number

of base classifiers, that should be embedded in OCClustE.

These metrics originated from three different groups:

working on fuzzy membership values, on fuzzy member-

ship values and data, and based on statistical measures.

We have carried out an extensive computational study

with two types of experiments: the native one-class task

and the one-class classifiers applied to decomposition of

the multi-class problems. This allowed us to explore the

dual application possibilities of our OCClustE classifier.

Experimental results, backed-up with a thorough statis-

tical analysis showed that the I index, FHV and AIC

indices are the best performing measures for automatic

selection of a number of competence areas for the

OCClustE, with AIC being the most robust one.

In future, we plan to use these methodologies with dif-

ferent types of space partitioning (e.g., non-negative matrix

factorization) and with tensor-based one-class classifiers.
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25. Krawczyk B, Woźniak M, Cyganek B (2014) Weighted one-class

classifier ensemble based on fuzzy feature space partitioning. In:

22nd international conference on pattern recognition (ICPR’14),

Stockholm, pp 2838–2843
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34. Wilk T, Woźniak M (2012) Soft computing methods applied to

combination of one-class classifiers. Neurocomputing

75:185–193
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36. Woźniak M, Grana M, Corchado E (2014) A survey of multiple

classifier systems as hybrid systems. Inf Fusion 16(1):3–17

37. Yeh C, Lee Z, Lee S (2009) Boosting one-class support vector

machines for multi-class classication. Appl Artif Intel

23(4):297–315

38. Zanaty E (2012) Determining the number of clusters for kernel-

ized fuzzy c-means algorithms for automatic medical image

segmentation. Egypt Inform J 13(1):39–58

39. Zhang L, Zhou W, Jiao L (2002) Kernel clustering algorithm.

Jisuanji Xuebao/Chin J Comput 25(6):587–590

Pattern Anal Applic (2017) 20:427–439 439

123


	Selecting locally specialised classifiers for one-class classification ensembles
	Abstract
	Introduction
	One-class classification
	Classification in the absence of counterexamples
	One-class classifiers for multi-class problems

	One-class clustering-based ensemble
	Automatic selection of competence areas
	Indexes based on membership values
	Partition coefficient
	Partition entropy
	Modified partition coefficient

	Indexes based on membership values and dataset
	I index
	Cluster validity measure
	Fukuyama--Sugeno index
	Fuzzy hyper volume
	Average partition density
	Xie--Beni index

	Statistical indexes
	Akaike information criterion


	Experimental investigations
	Data sets
	Set-up
	Results and discussion
	Experiments with one-class classification
	Experiments with multi-class decomposition
	Discussion of results


	Conclusions
	Acknowledgments
	References




