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Abstract As a generation of fuzzy set theory, intuition-
istic fuzzy (IF) set theory has received considerable
attention for its capability on dealing with uncertainty.
Similarity measures of IF sets are used to indicate the
degree of commonality between IF sets. Although several
similarity measures for IF sets have been proposed in
previous studies, some of those cannot satisfy the axio-
matic definitions of similarity, or provide counter-intuitive
cases. In this paper, a new similarity measure between IF
sets is proposed. The definition of similarity matrix is also
presented to depict the relations among more than two IF
sets. It is proved that the proposed similarity measures
satisfy the properties of the axiomatic definition for simi-
larity measures. Comparison between the previous simi-
larity measures and the proposed similarity measure
indicates that the proposed similarity measure does not
provide any counter-intuitive cases. Moreover, it is
demonstrated that the proposed similarity measure can be
applied to define a positive definite similarity matrix.
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1 Introduction

Since it was proposed by Zadeh [1], the theory of fuzzy set
(FS) has achieved a great success due to its capability of
handling uncertainty [2, 3]. Therefore, over the last dec-
ades, several higher order fuzzy sets have been introduced
in the literature. Intuitionistic fuzzy (IF) set, as one of the
higher order FSs, was proposed by Atanassov [4] to deal
with vagueness. The main advantage of IF set is its capa-
bility on coping with the uncertainty that may exist due to
information impression. Because it assigns to each element
a membership degree, a non-membership degree and a
hesitation degree, and thus, IF set constitutes an extension
of Zadeh’s fuzzy set which only assigns to each element a
membership degree, taking 1 minus it as the degree of non-
membership [5]. So IF set is regarded as a more effective
way to deal with vagueness than FS [6].

Similarity measure is of great significance in almost
every scientific field. Similarity measures between two IF
sets are related to their commonality on the information
conveyed by them. Since it is difficult to measure the
amount of information hidden in IF sets, we cannot com-
pare two IF sets directly. Therefore, similarity measure and
its counterpart, distance measure, play an important role in
discriminating IF sets. With the development of IF set
theory, the definition of similarity measure for IF sets has
also received considerable attention in recent years [7, 8]. It
has developed and will continue to develop into an
important tool for decision making, fault detection, pattern
recognition, machine learning, image processing, etc.

For its fundamental importance in application, many
similarity measures have been proposed. The first study
was carried out by Szmidt and Kacprzyk [9]. They applied
Hamming distance and Euclidian distance to IF environ-
ment and comparing them with the approaches used for
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ordinary FSs. Following this work, many researchers pre-
sented similarity measures for IF sets by extending the
well-known distance measures, such as Hamming distance,
Euclidian distance, and Hausdorff distance [10-16].
Meanwhile, some studies defined new similarity measures
for IF sets by defining some intermediate variables based
on membership and non-membership degrees [7, 17-21].
For example, Li and Cheng [17] suggested a new similarity
measure for IF sets based on the definition of ¢,. Recently,
many novel similarity measures are emerging in an endless
stream. This trend can be illustrated by similarity measures
defined based on cosine similarity [8], Sugeno integral
[22], interval comparison [23], intuitionistic entropy [24],
and so on. In addition, Boran and Akay [25] proposed a
new general type of similarity measure for IF sets with two
parameters, expressing norm and the level of uncertainty,
respectively. This similarity measure can also make sense
in terms of counter-intuitive cases. As a comprehensive
study on similarity measures of IF sets, Papakostas et al.
[26] investigated the main theoretical and computational
properties of the measures, as well as the relationships
between them. Moreover, a comparison of the distance and
similarity measures was carried out from a pattern recog-
nition point of view.

Among the proposed similarity measures between IF
sets, some of those, however, cannot satisfy the axioms
of similarity, or provide counter-intuitive cases, or are
produced by complex formats. Therefore, we propose a
new similarity measures between IF sets in this paper,
based on the cosine similarity and Euclidean distance
between IF sets. Axiomatic definitions of similarity and
the distance measures are first presented. Then the
relation between similarity and distance measure fol-
lows. Similarity matrix is also defined to describe rela-
tionships among more than two IF sets. The properties of
similarity matrix are examined to explore the perfor-
mance of our new similarity measure, which is defined
after critically analyzing the cosine similarity and simi-
larity generated by Euclidean distance. Properties and
performances of the proposed similarity measure are
indicated by both mathematical proofs and illustrative
examples.

The remainder of this paper is organized as follows.
Section 2 recalls the definitions related to the IF sets. In
Sect. 3, distance measure, similarity measure, similarity
matrix, and their properties with proofs are proposed. The
new similarity measure is defined in Sect. 4. Its properties
are also proved in this section. Comparison between sim-
ilarity measures and illustration of the positive definiteness
of similarity matrix is carried out in Sect. 5. We come to
the conclusion of this paper in Sect. 6.
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2 Preliminaries

In this section, we briefly recall the basic concepts related
to IF set, and then list the properties of the axiomatic
definition for similarity measures.

Definition 1 [1] Let X = {x;,x,,...,x,} be a universe of
discourse, then a FS A in X is defined as follows:

A = {{x 1y (x))|x € X} (1)

where i, (x) : X — [0, 1] is the membership degree.

Definition 2 [4] An IF set A in X defined by Atanassov
can be written as

A = {(x, pa (%), valx))x € X} (2)

where 4 (x) : X — [0,1] and va(x) : X — [0, 1] are mem-
bership degree and non-membership degree, respectively,
with the condition:

0< iy (1) +va() < 1 (3)
T4(x) determined by the following expression:
ma(x) =1 = py (x) — va(x) (4)

is called the hesitancy degree of the element x € X to the
set A, and my(x) € [0,1], Vx € X.

ma(x) is also called the intuitionistic index of x to A.
Greater my(x) indicates more vagueness on x. Obviously,
when 74(x) =0, Vx € X, the IF set degenerates into an
ordinary FS.

In the sequel, the couple (u,(x),va(x)) is called an IF
set or IF value for clarity. Let /FSs(X) denote the set of all
IF sets in X.

Definition 3 For A € IFSs(X) and B € IFSs(X), some
relations between them are defined as:

(R1) A C Biff Vx € X py (x) < pig(x), va(x) > vp(x)

(R2) A = Biff Vx € X piy(x) = pg(x),va(x) = vp(x)

(R3) A = {(x,va(x), s (x))|x € X}, where A is the
complement of A.

It is worth noting that besides Definition 2 there are
other possible representations of IF sets proposed in the
literature. Hong and Choi [27] proposed to use an interval
representation [ty (x), 1 — v4(x)] of IF set A in X instead of
pair (uy(x),va(x)). This approach is equivalent to the
interval valued FSs interpretation of IF set, where the
interval [u,(x),1 —va(x)] represents the membership
degree of x € X to the set A. Obviously, [u(x), 1 — va(x)]
is a valid interval, since p, (x) <1 — v4(x) always holds for
fa(x) 4 va(x) < 1.
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3 Distance and similarity measures for IF sets
3.1 Related definitions and properties

Generally, a distance is a measure of the difference
between two elements of a set. For the case of IF sets, the
distance between them must satisfy the axiomatic defini-
tions of a metric distance. Moreover, the distance should
not counter-intuitive analysis, i.e., the distance measure
must be capable of reflecting the similarity among the IF
sets. So we have next definition.

Definition 4 Let D denote a mapping D :IFS x
IFS — [0, 1], if D(A, B) satisfies the following properties,
is called a distance between A € IFSs(X) and B € IFSs(X).

(D) 0<D(A,B)<1,

(D2) D(A,B)=0< A =B,

(D3) D(A,B) = D(B,A),

(D4) If A C B C C, then D(A, B) <D(A, C), and

D(B,C) <D(A, C),

(D5) D(A,B) +D(B,C)>D(A,C).

As the complementary concept of distance measure, the
similarity measure between two IF sets can be described in
next definition.

Definition 5 A mapping S : IFS X IFS — [0, 1] is called a
degree of similarity between A € IFSs(X) and B € IFSs(X)
a, if S(A, B) satisfies the following properties:

(S1) 0<S(A,B)<1,

(S2) S(A,B)=1<A=B,

(S3) S(A,B) = S(B,A),

(S4) If A C B C C, then S(A,B) > S(A, C) and
S(B,C) > S(A,C).

Theorem 1 Let D denote the distance measure between
IF sets. Then, Sp=1—D is the similarity measure
between IF sets.

Proof As the distance measure between IF sets, D satis-
fies the conditions in Definition 4 as:

0<D(A,B)<1,

D(A,B)=0< A =B, D(A,B) = D(B,A)

Considering Sp=1—D, we can get the following
expressions straightforwardly:

0<Sp(A,B) <1,

Sp(A,B)=1< D(A,B)=0< A =B,

SD(AaB) = SD(BvA)

Given IF sets A, B and C satisfying A C B C C, we have
D(A,B)<D(A,C) and D(B,C)<D(A,C).

So we get:

1—D(A,B)>1-D(A,C), 1—D(B,C)>1-D(4,C).
Thus, Sp(A,B) > Sp(A, C), Sp(B, C) > Sp(A, C).
Hence, Sp(A,B)=1—D is the similarity measure

between IF sets. |

Theorem 1 says that the distance measure can be applied
to define its complementary concept, similarity measure.
Given a similarity measure S, we can learn from the proof
of Theorem 1 that D = 1 — S satisfies all the properties in
Definition 4, excluding DS, the triangle inequality. So all
the distance measures can be transformed to a similarity
measure, but not vice versa. We can say that the axiomatic
definition for distance measure is stricter than that of the
similarity measure.

Since the inception of IF sets, many similarity measures
between IF sets have been proposed in the technical liter-
ature. Table 1 summarizes several well-known similarity
measures that will be analyzed in this paper. In this table,
we let X = {x;,x2,...,x,} be a universe of discourse, A €
IFSs(X) and B € IFSs(X) be two IF sets in X, denoted by
A= {{x (), va())l € X} and B = {(x, juglx), va(x))
|x € X}, respectively. For clarity, we only give the
expressions of similarity measures, with an absence of the
interpretations of other intermediate variables, which can
be found in related references.

3.2 Similarity matrix for IF sets

The distance and similarity measures can demonstrate
the relationships between two IF sets. However, under
most circumstances, more than two IF sets will we are
confronted with, where the distance and similarity
measures are not suitable to cope with the relationships
among them. So we define the similarity matrix for IF
sets.

Definition 6 Let A;,A,,...,Ay denote N(N >2) IF sets
in the universe of discourse X = {x,x2,...,x,}. S denotes
the similarity measure between IF sets. The similarity
matrix between them is defined as:

S(A1,A1)  S(A1,A7) S(A1,Ay)
S(Az,A1)  S(Ay,A7) S(Az,An)

- : : : (5)
S(An,A1)  S(An,Az2) S(An,An)

Since  S(A;,Aj) =S(4;,4;)) for i=1,2,...,N and
S(A;,A;) = 1, the similarity matrix S is a square and
symmetric matrix, with 1 as its diagonal elements.

Theorem 2 The similarity matrix S between IF sets is a
non-singular matrix.

@ Springer
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Table 1 Existing similarity measures

Author(s) Similarity measure

Li and Cheng [17] 2 IS on () =g (6P
SDC(AvB) =1 ¢ M

Mitchell [18] Sus(A,B) =1 (p,(A,B) + p,(A,B))

Liang and Shi [19]

(A, B) = 1 — {] 2 (8500, 0)
Liang and Shi [19] = —
SV(A,B) = 1 — {[ 2 bale)tbatll

Liang and Shi [19]

3n

Chen [21] Sc(AB) = 1—

S4B =1 </Z’,; |00, () 5 )

S () —va (30)) = (ptg () =V ()|

2n
Hong and Kim [14]

2n
Ye [8]

Su(AB) = 1 — S i (i) () = (va () =V (30))|

I (i) g (i) v (xi) v (xi)

Cirs(A, B)

— 1y
n i V/ ta (30) (4 (60))* /(1 (50)) (v ()

Li et al. [16]

n

Hung and Yang [13] Shy(A,B) =1 —dy(A,B), S3y(A,B) =

Li and Xu [15]

Dl () =va (x0) = (g ()

" I - 24 (va(x;)—vp(x:))?
Sol.B) =1 - \/Z,:] (i)t o))

—dp(AB) _ ,—1 1-dy(A,B
T Shy(A,B) = 1+d:EALB;’
vp(a)l D (it )= () v () =i () )

4n
Zhang and Yu [23]

4n

n ]
=17 .
S aien

{le(a (i) = pp (i) = (va (i) = v ()" +[e(va(xi) = vi(xi)) — (ua (i) — up(xi))"}

Proof Let’s suppose that S is a singular matrix. Then at
least two of its column vectors are linearly dependent.
Without any loss of generality, we can assume x; and x; are
linearly dependent. So we have:

X; =1-Xg.
Hence,
Xp=1t-x forall p=1,2.. N.

Given p = j and p = k, we have:

Xj=teoxg =1 xp=t-x0 =1

And then, two contradictory equations can be achieved as:

t=1/x3>1 and r=xp<l.

Subsequently, the assumption that S is a singular matrix
cannot stand up.

So the similarity matrix S between IF sets is a non-
singular matrix. O

Theorem 3 Let D be a metric distance measure between
IF sets. The similarity matrix Sp defined by Sp =1 — D
according Eq. (5) is a positive definite matrix.

Proof Theorem 1 indicates that Sp =1 — D is a simi-
larity measure between IF sets. The similarity defined by
matrix can be expressed as:

@ Springer

1-D(A;,A)) 1-D(A,A;) - 1—D(A},Ay)
l_D(AZaAl) I_D(A27A2) I_D(A27AN)
Sp= : ) ) .
1—-D(An,A1) 1—D(Ay,As) -+ 1—D(An,AN)
Given D(A;,A))=0 and D(A;,A))=D(4;,A;) for
i=1,2,..., N, we also get:
Sp =S}
1 1 —D(A,A7) 1 —D(A1,An)
1 —D(Ay,Ay) 1 1 —D(Az,An)
1 —D(An,A1) 1-D(Ay,Az) -+ 1

Since the eigenvalues of symmetric matrix are all real
numbers, the similarity matrix Sp has N real eigenvalues
(including repeated eigenvalues), denoted by Ay, 45, ..., Ay.
Let A be an arbitrary eigenvalue of §, i.e,

A€ {1, ..., An}. Following the Gerschgorin Theorem,
we can get:

N
A—=11< ) (1-D(A,4)), Jie{l,2,...N}

o

Thus,
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=z

<> (-

J=1
J#

1) - i(m&x

D(A;,A)))

Jie{1,2,...,N}

.
-~ =

.

Considering the following relations:

N
Z/Lk ZSH—N and N - Jpax > ZAkZN
i=1 k=1

* Amin;

where A, and A, are the minimum and maximum
eigenvalues, respectively, we have Ay, < 1 and A, > 1.
Then, can get:

| ‘min 1| =1- /Lmin
N
<(N-1)= 3 D(A,4;), Jie{l,2,.. N},
j=1
J#i

N
Amin > 2+ D(A;,Aj)—N,

Jie{1.2,...N}.

=
J#i

No generality will be lost by considering i = 1, i.e., Ay, 1S
in the first Gerschgorin circle of Sp. So we have:
N

;Lmin >2+ ZD(AHA]) —N.

(i) For N = 2, we have:
)Lmin >2 +D(A17A2) —-2= D(Al,Az) > 0.

(ii)) For N = 3, we have:

Jmin > 2+ D(A1,A2) + D(A1,A3) — 3
=D(A1,A;) + D(A1,43) — 1
>D(A;,A3) — 1.

Considering the randomicity of D(A,A;) and
D(A;,A3) — 1 <0, we can conclude that only Z,;, > 0 can
make Amin > D(Az,A3) — 1 holds for any D(A;,A3). So we
have Ay > 0.

(iii) Given N>4 and D(A},Ay) +D(A|,A3)>D
(Az,A3), we have:

N
Jmin > 2 + ZD(Al,Aj) -N
=

N
=2— N+ (D(A1,A2) + D(A1,A3)) + > D(A1,Ay)
=4
N

>2—N+D(Ay,A3) + > _ D(A1,4)).
=4

We can also get

N
2= N+ D(Az,A3) + > D(Ay,A))
=4

<2-N+4+14+(N-3)=0.

Since Amin > 2 — N + D(A3,A3) + Z,N:4 D(A1,4;)) is con-
stant for any arbitrary D(A;,A3) and D(Aj,A4;)
(G=4,5,...,N), Amin should be not less than the maximum
of the right hand side. Then we have Ay, > 0.

Considering (i)—(iii), we can conclude that all the
eigenvalues of Sp are nonnegative. So the similarity matrix
Sp is positive semidefinite.

Taking [, 4 = detSp and detSp # 0 (Sp is non-
singular) into consideration, we can know there is no zero
eigenvalue in the eigenvalues of Sp, i.e., all the eigenvalues
of Sp are strictly positive.

So the similarity matrix Sp defined by Sp =1 —D is
positive definite. O

4 A new similarity measure between IF sets

In the similarity measures shown in Table 1, some of
them are based on the well-known distances measures,
such as the Hamming distance and the Euclidian distance,
while others are characterized by the linear or non-linear
combinations of the membership and non-membership
functions of the IF sets, respectively. Since the similarity
measures based on the Euclidian distance are of definitude
physical meaning, we will review the generation of
Euclidian distance in IF environment [11]. Moreover,
some of its properties will be presented along with their
proofs.

Definition 7 [11] The distance between two IF sets A and
Bin X = {x1,x2,...,%x,} can be defined as:

S (G4 (0) = g )+ 04 () = v (3’
o(A, B) = 2n
(6)

Theorem 4 d,(A,B) is a metric distance measure

between IF sets.

Proof (1) Since pu(x),v(x) € [0, 1], we have:
—1<py(x) —pp(x) <1 and — 1<va(x;) —vp(x) <1,
Hence,

0< (a (1) = ptp()) >+ (va () — vi(x)* <1+ 1=2
So we get:
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/~

<mm>;wmfﬂmmwwmm@
2n

=1

Thus, 0 < DU(A,B) <.

(2) D,(A,A) =0 is straightforward. Conversely, if
D,(A,B) = 0, according to the definition of D,, it must
follow that w4 (x) = ug(x) and v4(x) = vp(x) for all x € X,
i.e., A = B. So we have D,(A,B) =0 < A =B.

(3) It is evident that D,(A, B) = D,(B,A).

(4) Given A = B = C, we have py (x) < ug(x) < pe(x)
and v4(x) > vp(x) > ve(x) for all x € X. Therefore,

0 < pp(xi)
0 < pc(x:)
0<va(x;)
0 <vg(x)

— pa(xi) S pe(xi) — pa(xi),
— up(xi) S pexi) — pa(xi),
—vp(x;) <valxi) —ve(x),
—vel(xi) <valx) — vel(x),

Xi
X; for Vx; € X.

Consequently,

$z&(wm»ﬂmmﬂwmm—me)
2n

JELQMW-MWW%MW—WWW)
= 2n ’

$ZLO%M—%mwﬂmm—mmﬂ
2n

\J > ((#c(xi) — 14 (1)) +(va () — Vc(xi))z)
< ™ .

According to Eq. (6), we can get: D,(A, B) <D,(A, C) and
D,(B,C) <D,(A,C).
®) By the inequality,

(> aibi>2 < (Zf | a )(Zl lbz) we can get:
i: a; + b;)? Za +Zb2+2zab
i=1

; 1/2
< Za? - be +2<Zaf2b$>
i=1 i=1 i=1 i=1

(S 5

Making the following assignments:

Cauchy

@ Springer

=

n

i=1
n

i=1 i=1

=30 () — )+ (0a () — v ()
Y ((m(xou3<xi>+u3<xi>uc<xi>)2 )

+(va(x:) = va(x:) + va(x:) — ve(x))?

2
< ( Z (pa (x7) Z pp(xi) — pe(xi )2>

i=1
2
+< Z(VA(xi)f l Z VB X, —Vc xl 2)
i=1

— pp(xi))

< <\/&+ \/E)2+<\/§+\/7z)
=a+b+g+h+2Vab+2./gh.

20(D, (A, B) + D,(B, C))?

V= () = )+ o) — v )

/S ((anta) = )P+ ) —vels)))
(vaFg+vb+ h)2
—a+b+g+h+2\/(at+g)b+h).

Considering such inequality:

(a+g)(b+h)— (\/_Jr\/_>
:ah—l—bg—Z\/a-I;:g—fz

— (Vah = V/bs)" 0.

we get:

Vi{a+g)(b+h)>Vab+\/gh,
at+b+g+h+2\/(a+g)(b+h)

>a+b+g+h+2vVab+2+/gh.
And then

2n(D,(A, C))* < 2n(D,(A,B) 4+ D,(B,C))*.

Finally we obtain D,(A,C)<D,(A,B) + D,(B,C). So



Pattern Anal Applic (2017) 20:215-226

221

D,(A,B) is a metric distance measure between IF
sets. |

According to Theorem 1, S, =1 — D,(A, B) is a simi-
larity measure between IF sets. This similarity has been
proposed by Li et al. [16]. However, this similarity measure
has a drawback that it is not sensitive to the change of IF
sets. Considering an example where A = {(x,0.3,0.2)},
B={(x,04,0.3)}, C={(x,04,0.1)}, D= {{(x0.2,
0.1)}, E = {(x,0.2,0.3) }, we can find S,(4, B) = S,(A, C)
= S,(A,D) = S,(A,E). So S, is not capable of discrimi-
nating the difference between IF sets.

Besides, there is another interesting similarity measure
between IF sets, cosine similarity measure, defined by Ye
[8]. He has proved that Cjrs(A, B) satisfied properties (S1)
and (S3) in Definition 5. He only illustrated that
Cirs(A,B) = 1if A = B. However, for two different IF sets
A= {(x,03,0.3)} and B={(x,0.4,0.4)}, we can get
Cirs(A, B) = 1. That is, the condition (S2) in Definition 5 is
not satisfied. So we can say Cips(A,B) is not a genuine
similarity measure.

Taking a close examine on Cjrs(A, B) and D, (A, B), we
can get that the cosine similarity measure indicates the
angle which quantifies how orthogonal two IF sets are,
while the distance between IF sets can quantify how close
two IF sets are from each other. Therefore, we can combine
the cosine similarity measure and the distance measure
together to define a new similarity measure for IF sets.

Definition 8 Iet A and B be two IF sets in
X = {x1,x2,...,X%,}. A new similarity measure between
them can be defined as:

S+(4, B) = 3 (Curs(A, B) + 1 = D,(4,B)) ™

Theorem 5 The measure Sp(A, B) is a similarity measure
between IF sets A and B.

Proof (1) Cirs(A,B) can be taken as the cosine value
between vectors, so 0<Cips(A,B)<1. According to
Theorems 1 and 3, it is evident that 0 <1 — D,(A,B) < 1.
Then we can get: 0 <Sg(A,B) <1.

(2) Sr(A,A)=1 is  straightforward.  Since
0< Cirs(A,B)<1and 0< 1 — D,(A,B) < 1, Cirs(A, B) =
1 — D,(A,B) = 1 must holds when Sp(A,B) = 1.

Cirs(A,B) = 1 indicates that u,(x) =k - va(x), pp(x) =
k-vp(x) with k€ [0,400) for all x € X. Considering

f(yaz) =

D,(A,B) =0 = A = B shown in Theorem 3, we can get
the converse proposition Sp(A,B) =1 = A = B.

Finally, we get Sp(A,B) =1< A =B.

(3) Sr(A,B) = Sp(B,A) can be obtain straightforwardly.

(4) For three IF sets A, B and C satisfying A C B C C,
we have f1y(x) < fp(x) < ic(x) and v (x) > va(x) = ve(x)
for all x € X.

A function f(y,z) can be defined as:

ay + bz
Va2 +b2\/y? + 22

We can calculate its derivatives as:

o av/y* + 22 — (ay + bz) )§+Z2
a_y: Va2 + P2 (y? 4 22)
az> — byz
1/(/12_‘_b2 /y2 +22(y2+z2)
z(az — by)
VE& 0\ 1 2%+ 22)
of b\/)m—(ay—i-bz)\/y;?
0z Va + b (y* + 22)
by* — ayz
VE+ /2 + 2+ 22)
—y(az — by)
Va +01\/y? + 22 (y? + 22)
If y>a,z<b, we have %go, 4>0. So for a=

100 () < () < i () and b = vy (x) > vp(x) > vee(x), we
have f(uc(x),ve(x)) <f(ug(x),vs(x)), which can be writ-
ten as:

If y<a,z>b, we have %{jzo, %];SO. So for a=

pe(x) > pp(x) = 1y (x) and b = ve(x) <vp(x) <va(x), we
have f(uy (x),va(x)) <f(ug(x),vg(x)), which can be writ-
ten as:
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<> c(x) + va(@)ve()
va ()2 (e @)+ (ve (x))?
v
»(x

\/(.“A
. < g + vl
J (e ()P + (e () ()P (v ()2

Since iy (x) < pup(x) < pe(x) and va(x) > vp(x) > ve(x) for
all xe X, (8) and (9) holds for all x € X. So we get:
Cirs(A, C) < Cips(A, B), Cirs(A, C) < Cirs(B, C).

Moreover, D,(A,B) <D,(A,C)and D,(B,C) <D,(A,C)
have been proved in the proof of Theorem 3. So we have
1-D,(A,C)<1-D,(A,B) and 1—-D,(AC)<I1-
D,(B,C). We can finally get: Sp(A,C)<Sr(A,B) and
Sr(A,C) < Sr(B,C).

Thus, Sr(A, B) satisfies all the properties in Definition
5, and it is a similarity measure between IF sets A and
B. ]

Theorem 6 Let Ay,A,,...,Ay denote N (N > 2) IF sets
in the universe of discourse X. The similarity matrix Sr
defined by Sr is a positive definite matrix.

©)

Proof The similarity matrix S can be decomposed as:

1 1
SF - ES() + ESC

where
[So(A1, A1) So(Ar,A2) So(A1,An)
S()(A27A1) Sa(A27A2) S()(A21AN)
SO = . .
_S()(ANvAl) S()(ANvAZ) S()(ANvAN)
[1—D,(A1,A;) 1—D,(A1,Az) 1 —D,(A1,Ay)
1 7D()(A27Al) 1 7D()(A27A2) 1 7D(1(A27AN)
L1 —Dy(An,A1) 1 —D,(An,A2) 1 —D,(An,An)
Cirs(A1,A1)  Cirs(A1,Az) Cirs(A1,Ay)

Cirs(Az,Ar)
Sc= :

Cirs(An, A1)

Cirs(Az,Az)

Cirs(An, A1)

Cirs(Az,A)

Cirs(An, An)

The cosine similarity can be also written as:

Cirs(Aj, Ax)

L, (i) pa, (i) + v, (i) va, ()

= ;Z 2
T (i ) 0 00 G )+ 5

Ha, (i) Ha, (%)
1 \/(HA, (x,-))2+(vA,-(x,-))2 V(a0 + (o, (30)?
- ;; va, (x;) va, ()

+

1 (50 o 50)* V(i 00 ()

@ Springer

So S¢ can be further decomposed as:

1< 1<
c = ZZS#()Q) + ;ZSV(X[)
i=1 i=1

where for i = 1,2,...,n,
Fi(xi) - Fi(xi)  Fi(xi) - Fa(x;) Fi(x;) - Fy(xi)
Fy(x;) - Fi(xi)  Fa(xi) - Fa(x;) Fa(x;) - Fn(x;)
Su(xi) - : . : ’
Fn(x;) - Fi(x;)) Fn(x;) - Fa(x;) Fyn(x:) - Fn(x;)
Gi(x)-Gi(xi)  Gi(xi) - Ga(xy) Gi(x:) - Gy(x:)
Gy(x;) - Gi(x;)  Gaxi) - Ga(x;) Gy (x;) - Gy (x;)
Sy(xi) = : : :
Gy(xi) - Gi(xi) Gn(xi) - Ga(x:) Gn(xi) - Gn(xi)
with  Fj(x;) = F(uA] (xi), va, ( ) = uAf(ji> :
\/(;lAj(Xi)) +(vay ()
and  Gj(x;) G(,uA],(x,) VA (%)) — va; (x) )

forj=1,2,..,N

Let o, = [F[ (xi), Fg(xi), .. .,FN()C,')] and Vi = [G] (x,‘),
G2(x;), ..., Gy(x;)], then we can get:
Su(xi) = ulm,  Su(x;) =vlv;.

So S, (x;) and S, (x;) are positive semidefinite.

And then Sc=13" S,(x;)+15" 8,(x) is also
positive semidefinite.

Considering S, is positive definite and S is positive
semidefinite, we can conclude that Sy = %SO + %Sc is
positive definite. O

5 Ilustrative examples
5.1 Performance of similarity measure Sy

To illustrate the superiority of the proposed similarity mea-
sure, a comparison between the proposed similarity measure
and all the existing similarity measures is conducted. The
comparison is implemented based on the widely used
counter-intuitive examples. Table 2 presents the result with
p = 1forSyp, £, 8, Sy andp = 1t = 2for ;.

From Table 2, We can see that Sc(A, B) = Spc(A,B) =
Cirs(A,B) = 1 for two different IF sets A = (0.3,0.3) and

= (0.4,0.4). This indicates that the second axiom of simi-
larity measure (S2) is not satisfied by Sc(A, B), Spc(A, B) and
Cirs(A,B). This also can be illustrated by Sc(A,B) =
Spc(A,B)=1 when A= (0.5,0.5), B=(0,0) and

= (0.4,0.2), B = (0.5,0.3). As for Sy, So. Sup, S, S¢ and
Si: , different pairs of A, B may provide the identical results,
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Table 2 The comparison of 1 N 3 4 5 6
similarity measures (counter-
intuitive cases are in bold type) 4 _ (y(y) y(x (0.3,0.3) (0.3,0.4) (1,0) (0.5,0.5) (0.4,0.2) (0.4,0.2)
B = (u(x),v(x (0.4,0.4) (0.4,0.3) (0,0) (0,0) (0.5,0.3) (0.5,0.2)
Sc 1 0.9 0.5 1 1 0.95
Su 0.9 0.9 0.5 0.5 0.9 0.95
St 0.95 0.9 0.5 0.75 0.95 0.95
So 0.9 0.9 0.3 0.5 0.9 0.93
Spe 1 0.9 0.5 1 1 0.95
Sus 0.9 0.9 0.5 0.5 0.9 0.95
N 0.9 0.9 0.5 0.5 0.9 0.95
R4 0.95 0.9 0.5 0.75 0.95 0.95
s 0.933 0.933 0.5 0.67 0.933 0.95
Shy 0.9 0.9 0 0.5 0.9 0.9
82y 0.85 0.85 0 0.38 0.85 0.85
S3y 0.82 0.82 0 0.33 0.82 0.82
Cirs 1 0.96 0 0 0.9971 0.9965
Sy 0.967 0.9 0.5 0.833 0.967 0.95
Sk 0.95 0.93 0.15 0.25 0.948 0.963

which cannot satisfy the application of pattern recognition. It
can be read from Table 2 that Syp =0.9 for both
A=1(03,03), B=(04,04) and A=(0.3,04),
B = (0.4,0.3). Such situation seems to be worse for S}y, S7,y
and S3,,, where all the cases take the same similarity degree
except case 3 and case 4. S seems to be reasonable without
any counter-intuitive results, but it bring new problem with the
choice of parameters p and ¢, which is still an open problem.
Moreover, we can notice an interesting situation when com-
paring case 3 and case 4. For three IF sets A = (1,0), B =
(0.5,0.5) and C = (0, 0), intuitively, it is more reasonable to
take the similarity degree between them as: Sr(A, C) = 0.15,
Sr(B,C) =025 than taking SY(A,C)=0.5 and
SV(B,C) = 0.833. In such a sense, the proposed similarity
measure is the most reasonable one with a relative simple
expression, and has none of the counter-intuitive cases. Three
IFsetsA = (0.4,0.2), B = (0.5,0.3) and C = (0.5,0.2) can
be written in forms of interval values as: A = [0.4,0.8], B =
[0.5,0.7] and C = [0.5, 0.8], respectively. In such a sense, we
can say that the similarity degree between A and C is greater
than the similarity degree between A and B.

Therefore, our proposed similarity measure is in agree-
ment with this analysis. The proposed similarity measure is
the most reasonable similarity measure without any counter-
intuitive cases. That is because that our proposed similarity
measure combines cosine similarity C;rs and distance-in-
ducing similarity (1 —D,). If we take IF sets A =
(uq(x),va(x)) and B = (ug(x),vp(x)) as two vectors,
Cirs(A, B) and D, (A, B) represent the angle which quantifies
how orthogonal two IF sets are and the distance between IF
sets can quantify how close two IF sets are from each other,
respectively. Generally, the relationship between two

vectors can be determined by angle and distance. So the
combination of Cirs(A,B) and (1 —D,(A,B)) can be
applied to define similarity measure for IF sets without any
counter-intuitive cases. Moreover, there is no need to
determine other parameters. Such analysis is also potentially
applicable to any IF sets on arbitrary universe
X ={x1,x2,.., %}

Besides the satisfaction of the definitional axioms and
the avoidance of counter-intuitive cases, the discrimination
capability of a measure is another important property for
similarity measures, which is very useful in pattern
recognition applications. To study the effectiveness of the
proposed similarity measure for IF sets in the application of
pattern recognition, the widely used pattern recognition
problem discussed in [8, 17] will be considered.

Suppose there are m patterns, which can be represented by

IF sets A; = {<xi,uAj(xi),vA/(xi)>|xi € X}, Aj € IFSs(X),
j=1,2,...,m.Letthe sample to be recognized be denoted as
B = {{x;, ug(xi),vp(x:))|x; € X}. According to the recogni-
tion principle of maximum degree of similarity between IF
sets, the process of assigning B to A, is described by:

(10)

To illustrate the discrimination capability of our pro-
posed similarity measure, comparisons with the measures
proposed earlier by other authors will be carried out based
on the example analyzed in [22].

Example 1 Assume that there are three IF sets in X =
{x1,x2,x3} representing three patterns. The three patterns
are written as follows:
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Table 3 The similarity

measures between the known S(41,B) S(42,B) S(43, B) S(A1, B) 5(42, B) S(43, B)
patterns. and the unknown Se 1 1 1 s 1 0.967 0.900
pattern in Example (Patterns »
not discriminated are in bold St 1 1 1 Sh 1 0.956 0.867
type Y 1 0.967 0.9 Shy 1 0.967 0.8
So 1 0.918 0.784 82y 1 0.898 0.713
Spc 1 1 1 Sy 1 0.875 0.667
Sus 1 0.933 0.8 Cirs 1 1 1
N 1 0.933 0.8 sP 1 0.978 0.933
p=1for Syp, £, %, 8 andp = 1,1 =2 for
Fig. 1 Evolution of the 0.16
smallest eigenvalue of Sy with
100 replications 0.14 f
.
a otz .
o
Q
2 o1l -
-5 0.08°
3
= 0.06
g
2 L
£ 004
0.02 - E
0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

A1 = {<)C1, 03, O3>, <)C2, 02, 02>, <X3, 01,01>},
Ay = {(x1,0.2,0.2), (x,0.2,0.2), (x3,0.2,0.2)},
Az = {(x1,0.4,0.4), (x2,0.4,0.4), (x3,0.4,0.4) }.

Assume that a sample B = {(x1,0.3,0.3), (x2,0.2,
0.2), (x3,0.1,0.1)} is to be classified.

The similarity degrees of S(A;, B), S(A,, B) and S(A3, B)
calculated for all similarity measures listed in Table 1 are
shown in Table 3.

The proposed similarity measure Sg can be calculated by
Eq. 7 as:

Sr(A1,B) = 1, Sp(A2,B) = 0.959, Sr(As,B) = 0.892.

It is obvious that B is equal to A, which indicates that
sample B should be classified to A;. However, the simi-
larity degrees of S(A1,B), S(A2,B) and S(Asz, B) are equal
to each other when S¢, Sy, Spc and Cjrs are employed.
These four similarity measures cannot capable of dis-
criminating difference between the three patterns.

@ Springer

Replication times

Fortunately, the results of Sr(A;,B) (i =1,2,3) can be
used to make correct classification conclusion. This means
that the proposed similarity measure shows an identical
discrimination capability with majority of the existing
measures.

5.2 Properties of similarity matrix S

As an illustration of Theorem 6, the positive definiteness of
the similarity matrix Sy will be verified by number of IF
sets. Without any loss of generality, we investigate the
similarity matrix Sr among a group of five IF sets. For the
sake of persuasiveness, all IF sets are generated randomly,
with 100 replications. The evolution of the smallest
eigenvalue of Sy is displayed in Fig. 1. We observe that all
the smallest eigenvalues are strictly positive, which indi-
cates that similarity matrices between random IF sets are
all positive definite. Such result is identical to the proof of
Theorem 6. So we have enough confidence to claim that
the similarity matrix defined based on our proposed simi-
larity measure is positive definite.
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6 Conclusion

The definition of similarity measure between two IF sets
has been researched for decades. Even though researchers
have defined mounts of similarity measures to depict the
similarity degree between IF sets, most of them are stuck
with counter-intuitive results. After analyzing these simi-
larity measures critically, a new similarity measure is
proposed in this paper. To explore the properties of our
proposed similarity measure, the similarity matrix is also
defined. A comparison between our proposed similarity
measure and other existing measures is carried out based
on the widely used counter-intuitive cases. It is illustrated
that the proposed similarity measure is more reasonable,
without any counter-intuitive results. It has also been
proved that the similarity matrix defined by our proposed
similarity measure is positive definite, which is significant
for the application of similarity matrix.

One case worth mentioning is that our proposed simi-
larity measure is not the only similarity measure that can be
used to define positive definite similarity matrix. Besides
the combination of cosine similarity and Euclidean dis-
tance, cosine similarity can be also combined with Ham-
ming distance to define a new similarity in a similar way.
So much work remains to be done for a better exploration
and exploitation of IF set theory.

Appendix 1: Definitions and properties
about positive definite matrix

When proving theorems concerning positive definite matri-
ces, we use some properties of positive definite matrix. For
ease of reference, some background knowledge related to
positive definite matrix is shown in this part. Since all the
results given below are well known, we mainly present
definitions and theorems with an absence of their proofs.

Definition 9 An n x n real symmetric matrix A is posi-
tive semidefinite (PSD) if it holds that xTAx >0 for every
n x 1 column vector x # 0.1t is (strictly) positive definite
(PD) if additionally: xTAx=0=x=0.

Theorem 7 FEigenvalues of real symmetric matrix A are
all real numbers.

Theorem 8 A is PSD iff its eigenvalues are nonnegative
and A is PD iff its eigenvalues are strictly positive.

Theorem 9 If two matrices A and B are both PSD,
A + B is also PSD.

Consequently, the sum of PSD matrices is PSD. The
result is PD if there is at least one PD matrix among the
PSD matrices.

Theorem 10 A set of necessary and sufficient conditions
for an n x n symmetric matrix A to be PSD is that all the
principal leading minors Ap,(p =1,2,...,n) of A must be
nonnegative. Additionally, A is PD iff Ay, (p =1,2,...,n)
is strictly positive.

Theorem 11 Let x be an n x 1 column vector, x # 0.
Then A = xxT is PSD.

Theorem 12 [f A is square, symmetric and positive def-
inite, then A can be uniquely factorized as A = UTU where
U is upper triangular with positive diagonal entries (called
Cholesky decomposition).

Definition 10 Let A = (a;),x, denote an n x n real
matrix, the area defined by |z — a;;| < Z;’Zl#i ‘a,-j| is called
the ith Gerschgorin circle of A.

Theorem 13 Let A = (a),x, denote an n x n real
matrix. Then all of its eigenvalues are in the union of its n
Gerschgorin circles (known as Gerschgorin theorem).

Let / be an arbitrary eigenvalue of A, we have:

n
i—ai| <> ag|, Jie{1,2,...,n}.
1;11"
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