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Abstract Plant classification based on the leaf images is

an important and tough task. For leaf classification prob-

lem, in this paper, a new weight measure is presented, and

then a dimensional reduction algorithm, named semi-su-

pervised orthogonal discriminant projection (SSODP), is

proposed. SSODP makes full use of both the labeled and

unlabeled data to construct the weight by incorporating the

reliability information, the local neighborhood structure

and the class information of the data. The experimental

results on the two public plant leaf databases demonstrate

that SSODP is more effective in terms of plant leaf clas-

sification rate.

Keywords Plant leaf classification � Dimensionality

reduction � Orthogonal discriminant projection �
Semi-supervised orthogonal discriminant projection

1 Introduction

Plant classification based on the leaf images is very

important and necessary with respect to agricultural

information, ecological protection and plant automatic

classification systems. It is well known that how to validly

extract classification features is central to the plant recog-

nition based on leaf images. Currently, the widely used

features for plant recognition based on leaf image can be

divided into color, shape, and texture features [1–13].

However, these techniques have not fully considered the

following characteristics of plant leaf image data. (1)

Diversity: plant leaf images differ from each other in a

thousand ways. On the one hand, the same kind of plant

leaves appear in many different colors, shapes and sizes (as

shown in Fig. 1a); on the other hand, different plants

sometimes have a similar shape (as shown in Fig. 1b). (2)

Nonlinearity: plant leaves vary with period, location, and

illumination conditions, and make them distributed under

some nonlinear manifold. These properties lead to the

existing plant classifying methods difficult to achieve sat-

isfactory recognition results.

In plant leaf recognition and classification tasks, a key

process is to reduce the dimensionality of these high-di-

mensionality unorganized leaf image data. Effective

dimensional reduction algorithm can help to avoid the

‘‘curse of dimensionality’’ problem in making decisions

and analyzing data efficiently. Over the past several dec-

ades, many dimensional reduction methods have been

proposed. These methods could be divided into three cat-

egories according to whether utilizing the class information

of the input samples: unsupervised, supervised and semi-

supervised. Supervised methods have been proven to be

more suitable for classification tasks than those unsuper-

vised ones. In classification problems, the label information

can be used to guide the procedure of dimensionality

reduction. Among the existing methods, LDA [14] is one

of the most commonly used linear supervised methods and

has been widely applied to many high-dimensional classi-

fication problems. It encodes discriminant information by

finding directions that maximize the ratio of between-class

scatter to within-class scatter. However, there are two

major drawbacks with LDA: the small-sample-size (SSS)
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problem and the Gaussian distribution assumption. Mar-

ginal fisher analysis (MFA) [15] is a supervised manifold

learning-based method, which without the prior informa-

tion on data distributions, the inter-class margin can better

characterize the separability of different classes than the

inter-class variance as in LDA. However, a disadvantage of

MFA is that there are many parameters to be set empiri-

cally. In contrast to MFA, only one K-nearest-neighbor

criterion is introduced to define the neighborhood graph in

locality sensitive discriminant analysis (LSDA) [16].

Orthogonal discriminant projection (ODP) is another

supervised manifold learning method [17]. ODP follows

the supervised techniques and the label information is

taken to model the manifold. In ODP, the weight between

any two points is defined by using both local information

and non-local information to explore the intrinsic structure

of original data and to enhance the recognition ability.

It is well known that it is much easier to collect the

unlabeled data than the labeled samples. Recently, semi-

supervised learning has emerged as a hot topic in pattern

recognition area. The semi-supervised learning algorithms

effectively utilize a limited number of labeled samples and

a large amount of unlabeled samples for real-world appli-

cations. Cai et al. [18] proposed a semi-supervised dis-

criminant analysis (SDA), in which the labeled data points

are used to maximize the discriminating ability, while the

unlabeled data points are used to maximize the locality

preserving power. Based on LSDA, Zhao et al. [19] pro-

posed a locality sensitive semi-supervised (LSSS) feature

selection method. Like LSDA, LSSS does not effectively

consider the global information of the data. Zhang et al.

[20] proposed a semi-supervised locally discriminant pro-

jection (SSLDP). SSLDP is sensitive to noise points. In our

paper, like many manifold learning-based dimensionality

reduction methods, the noise points are the leaves with

poor quality, which may be caused by period, location,

illumination, or other factors. Figure 2 illustrates some

samples from the cherry blossoms leaves, where the first

and second are normal, the others are noise points, which

are very different from the normal samples.

All the above-mentioned methods are summarized in the

following Table 1.

Inspired by semi-supervised learning and ODP, we

proposed a semi-supervised orthogonal discriminant pro-

jection (SSODP) method for plant leaf classification

problem. In contrast to the original ODP algorithm, SSODP

has the following desirable properties: (1) SSODP defi-

nitely utilizes the unlabeled sample information; (2)

SSODP improves the weight construction by incorporating

the reliability information.

The rest of the paper is organized as follows: ODP is

briefly introduced in Sect. 2. SSODP is proposed in

Sect. 3. Section 4 reports some experimental results based

on two real plant leaf databases to demonstrate the effec-

tiveness of the proposed method. Finally, conclusions and

future work are drawn in the last section.

2 Orthogonal discriminant projection (ODP)

Assume there are n D-dimensional data points

X1;X2; . . .Xn, it is desirable to project these points into a

linear subspace where the points with the same label are

Fig. 1 Sample images of plant

leaves. a Large within-class

difference, b large between-

class similarity

Fig. 2 Two normal and four noisy samples of cherry blossom leaves
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clustered closer and the points belonging to different

classes are located farther. Let Y1; Y2; . . .; Yn denote the

projections of X1;X2; . . .;Xn in d-dimensional subspace,

thus the projection can be expressed by Yi ¼ ATXi, where

A is a linear transformation matrix. ODP seeks to find the

linear transformation through the following steps.

Firstly, an adjacency graph G ¼ V ;E;Hð Þ is constructed
using k nearest neighbor criterion, where G denotes the

graph, V is the node set and E is the edge set. H is an

adjacency matrix, whose elements are defined based on

their both local information and class information:

where EðXi;XjÞ ¼ exp �d2ðXi;XjÞ=b2
� �

, dðXi;XjÞ denotes

the Euclidean distance between points Xi and Xj, NðXiÞ is
the k nearest neighborhoods of Xi, Ci is the label of Xi, and

b is a parameter which is used as a regulator.

By introducing the weight matrix H ¼ fHijg, the local

scatter can be expressed to:

JL Að Þ ¼ 1

2

1

n

1

n

Xn

i¼1

Xn

j¼1

Hij Yi � Yj
� �2

¼ 1

2

1

n

1

n

Xn

i¼1

Xn

j¼1

Hij A
TXi � ATXj

� �T

¼ 1

2

1

n

1

n
AT

Xn

i¼1

Xn

j¼1

Hij Xi � Xj

� �
Xi � Xj

� �T
A

¼ ATSLA

ð2Þ

where SL ¼ 1
2
1
n
1
n

Pn
i¼1

Pn
j¼1 Hij Xi � Xj

� �
Xi � Xj

� �T
.

After characterizing the local scatter, the non-local

scatter can be characterized by the following expression,

JN Að Þ ¼ 1

2
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n

1

n

Xn

i¼1

Xn

j¼1

ð1� HijÞ Yi � Yj
� �2

¼ 1

2

1

n

1

n

Xn

i¼1

Xn

j¼1

Yi � Yj
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Hij Yi � Yj
� �2

¼ ATSTA� ATSLA;

ð3Þ

where ST ¼ 1
2
1
n
1
n

Pn
i¼1

Pn
j¼1 Xi � Xj

� �
Xi � Xj

� �T
.

After the local scatter and the non-local scatter have

been constructed, an optimization objective function is

devised to maximize the difference between them with the

constraint of ATA ¼ I. The objective function can be

expressed as follows:

argmax
ATA¼I

ATðð1� aÞST � aS
L
ÞA; ð4Þ

where a is an adjustable parameter.

The projecting matrix A is composed of the d eigen-

vectors associated with the d top eigenvalues of the fol-

lowing eigenvalue equation,

ðð1� aÞST � aS0
L
ÞA ¼ kA: ð5Þ

Thus, the optimal linear features Y can be obtained by the

following linear transformation:

Y ¼ ATX: ð6Þ

Table 1 Summary of the dimensionality reduction methods

Name of methods Disadvantages

Linear discriminant analysis (LDA) The small-sample-size (SSS) problem and the Gaussian distribution assumption

Marginal fisher analysis (MFA) There are many parameters needed to be set empirically

Locality sensitive discriminant analysis (LSDA) The global information of data is not taken into account

Orthogonal discriminant projection (ODP) It does not use the unlabeled sample information

Semi-supervised discriminant analysis (SDA) The SSS problem and the Gaussian distribution assumption

Locality sensitive semi-supervised (LSSS) It does not effectively consider the global information of the data

Semi-supervised locally discriminant projection (SSLDP) It is sensitive to noise points

Hij ¼
EðXi;XjÞ; If Xj 2 NðXiÞ or Xi 2 NðXjÞ and Ci ¼ Cj

EðXi;XjÞ � 1� EðXi;XjÞ
� �

; If Xj 2 NðXiÞ or Xi 2 NðXjÞ and Ci 6¼ Cj

0; otherwise

8
<

:
; ð1Þ
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3 Semi-supervised orthogonal discriminant
projection (SSODP)

Motivated by Eq. (1), we present a new weight between

any two points as follows:

where Di ¼ 1
k

P
Xj2NðXiÞ EðXi;XjÞ is the reliability of Xi

(i ¼ 1; 2; . . .; n), MaxiðDiÞ and MiniðDiÞ is the maximum

and minimum of Di(i = 1,2,…,n), respectively.

MeanXj2NðXiÞ or Xi2NðXjÞEðXi;XjÞ ¼
1
2k

P
Xj2NðXiÞ or Xi2NðXjÞ EðXi;XjÞ is the weight mean of Xj in

NðXiÞ or Xi in NðXjÞ, and make Wii = 0 to avoid the self-

similarity of data points.

Figure 3 shows the typical plot of Wij as a function of

d2ðXi;XjÞ=b2, where supposing Di = 1(i = 1, 2,…,n), so

MaxiðDiÞ ¼ MiniðDiÞ ¼ MeanðDiÞ ¼ 1.

In Fig. 3, the curve A1 denotes Xj is among the k nearest

neighborhoods of Xi or Xi is among the k nearest neigh-

borhoods of Xj and they belong to the same class. The

curve A2 denotes Xj is among the k nearest neighborhoods

of Xi or Xi is among the k nearest neighborhoods of Xj and

they do not belong to the same class. The curve A3 denotes

Xj is among the k nearest neighborhoods of Xi or Xi is

among the k nearest neighborhoods of Xj and Xi or Xj is

unlabeled. The curve A4 denotes the other cases, including

Wij = 0 to avoid self-loops.

According to the Eq. (7), Wij indicates that the

neighboring points have more impact on the weight than

the far-apart points. Wij reflects not only the class

information and reliability information of the data, but

also the basic neighborhood relation between two points.

This property demonstrates the discriminant similarity of

the data. Since the Euclidean distance dðXi;XjÞ is in the

exponent, the parameter b is used to prevent d2ðXi;XjÞ
from increasing too fast when d2ðXi;XjÞ is relatively

large. The properties of Wij can be summarized as

follows:

1. By using the same neighborhood size for all points in a

data set the neighborhood is just large enough to

include at least two neighbors in each neighborhood

The justification for using local neighborhoods is based

on the argument that the weights should depend on the

local geometry rather than the global structure of the

whole data set.

2. In Eq. (7), Di expresses the reliability information;

EðXi;XjÞ expresses local neighbor information; 1þ
EðXi;XjÞ and 1� EðXi;XjÞ express the discriminant

information.

3. Di of Xi is large if its k nearest neighbors are all closer

to its vicinity, and small if they are far from its

vicinity.

4. Since 1\1þ EðXi;XjÞ\2 and 0\1� EðXi;XjÞ\1,

when the Euclidean distance is equal, the within-class

weight is larger than the between-class weight. This

characteristic provides a certain chance to thepoints in the

sameclass to have the largerweight than those in different

classes, which is preferred for classification tasks.

5. With the decrease of the Euclidean distance, the

between-class weight decreases toward 0. It means for

the closer points from different classes that the larger

EðXi;XjÞ, the smaller 1� EðXi;XjÞ and the smaller

value of weight.

With the new definition of the weight Wij, the new semi-

supervised dimensionality reduction algorithm is proposed

as follows:

Due to the above properties of Wij, we apply W = [Wij]

to the original ODP for improving the discriminant ability

of the dimensionality reduction methods. Given n D-di-

mensional data points X ¼ ðX1;X2; . . .;XnÞ, each column

vector Xi represents a sample, we can construct an undi-

rected full connected graph G ¼ V ;E;Wð Þ, where each

vertex represents a sample in X and the element Wij defined

as Eq. (7) in matrix W is the weight of edge between node

Xi and Xj. Wij can reflect the similarity between Xi and Xj.

Considering a linear projection A 2 Rn�d that maps each

point Xi in the original space to a lower dimensionality

vector Yi 2 Rd; Yi ¼ ATXi, the local scatter J0L and non-lo-

cal scatter J0N can be defined as follows:

Wij ¼

Max
i

ðDiÞ � EðXi;XjÞ � 1þ EðXi;XjÞ
� �

; If Xj 2 NðXiÞ or Xi 2 NðXjÞ and Ci ¼ Cj; i 6¼ j

Min
i
ðDiÞ � EðXi;XjÞ � 1� EðXi;XjÞ

� �
; If Xj 2 NðXiÞ or Xi 2 NðXjÞ and Ci 6¼ Cj

Mean
Xj2NðXiÞ or Xi2NðXjÞ

½EðXi;XjÞ� � EðXi;XjÞ; If Xj 2 NðXiÞ or Xi 2 NðXjÞ and Xi or Xj is unlabeled

0; otherwise;

8
>>>><

>>>>:

ð7Þ
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J0L Að Þ ¼
Xn

i¼1

Xn

j¼1

Wij Yi � Yj
� �2 ð8Þ

J0N Að Þ ¼
Xn

i¼1

Xn

j¼1

ð1�WijÞ Yi � Yj
� �2 ð9Þ

By simple algebraic formulation, Eq. (8) can be for-

mulated as:

1

2
J0LðAÞ ¼

1

2

X

i

X

j

Wij A
TXi � ATXj

� �2

¼
Xn

i¼1

Xn

i¼1

ATXiDiiX
T
i A�

Xn

i¼1

Xn

j¼1

ATXiWijX
T
j A

¼ ATXS0LX
TA ð10Þ

where S0L ¼ D�W is the graph Laplacian of the within-

class graph and W ¼ fWijg, D is a diagonal matrix with

entries Dii ¼
P

j Wij.

Similarly, Eq. (9) can be formulated as:

1

2
J0NðAÞ ¼

1

2

X

i

X

j

1�Wij

� �
ATXi � ATXj

� �2

¼ ATXðEii � FijÞXTA

¼ ATXS
0

NX
TA;

ð11Þ

where S
0
N ¼ E � F is the graph Laplacian of the between-

class graph and, F ¼ f1�Wijg, E is a diagonal matrix with

entries E ¼
P

j ð1�WijÞ.
After the local scatter J0L and the non-local scatter J0N

have been constructed, the objective function is written as:

argmax
A

tr ATXS0NX
TA

� �

tr ATXS0LX
TAð Þ

s:t:ATA ¼ I:

ð12Þ

The Lagrangian function of the problem Eq. (10) is

argmax
A

tr ATXS0NX
TA

� �

tr ATXS0LX
TAð Þ � kðATA� IÞ ¼ 0: ð13Þ

In order to get the dth orthogonal basis vector, we maxi-

mize the following objective function:

argmax
A

tr ATXS
0
NX

TA
� �

tr ATXS
0
LX

TAð Þ ð14Þ

with the constraints aTd a1 ¼ aTd a2 ¼ � � � ¼ aTd ad�1 ¼ 0,

where d is the output reduction dimensionality.

To solve the above optimization problem, we use the

Lagrangian multiplier:

f ¼ aTd ðXS0NXT � dXS0LX
TÞad � k1a

T
d a1 � k2a

T
d a2 � � � �

� kd�1a
T
d ad�1 ð15Þ

where d is a number to be determined.Set the partial

derivative of f with respect to ad to zero and obtain

2ðXS0NXT � dXS0LX
TÞad � k1a1 � k2a2 � � � � � kd�1ad�1 ¼ 0

ð16Þ

Multiplying the left side of Eq. (14) by aTd , we obtain

aTd ðXS0NXT � dXS0LX
TÞad ¼ 0 ) d ¼

tr ATXS0NX
TA

� �

tr ATXS0LX
TAð Þ :

ð17Þ
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Fig. 3 Typical plot of Wij as a

function of d2ðXi;XjÞ=b2
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According to the paper [21, 22], the orthogonal iterative

algorithm of solving the orthogonal vectors of SSODP is

summarized as follows:

1. Initialize A as an arbitrary column-orthogonal matrix.

2. Compute the trace ratio value d ¼ tr ATXS0NX
TAð Þ

tr ATXS0
L
XTAð Þ.

3. Form the trace difference problem as A0 ¼
maxATA¼I trðATðXS0NXT � dXS0LX

TÞAÞ.
4. Establish A0 by the d eigenvectors of XS0NX

T � dXS0LX
T

corresponding to the d largest eigenvalues.

5. Update A by A0.
6. Iteratively perform steps (2)–(5) until convergence.

7. Output the final linear transformation matrix.

From the above iterative processes, we obtain the

mapping matrix A ¼ ða1; a2; . . .; adÞ. The low-dimensional

representation in the SSODP subspace is defined as

follows:

X ! Y ¼ ATX ð18Þ

4 Experiments

In this section, we apply the proposed method to plant leaf

classification in two public leaf databases. One is ICL-Plant

Leaf database (http://www.intelengine.cn/source.htm),

which contains more than 30,000 leaf images of 362 plant

species. All leaf images were captured in different seasons,

and at different locations and natural illuminations.

Another is Swedish leaf dataset. The Swedish leaf dataset

[23] contains 1125 images of leaves uniformly distributed

in 15 species. The Swedish leaf dataset is very challenging

because of its high inter-species similarity.

In the two databases, the original leaf images contain

footstalks or petioles, which are not suitable for robust leaf

recognition, since the length and orientation of those

footstalks may heavily depend on the collection process. So

we crop and normalize (in scale and orientation) and resize

them to 32 9 32 pixels by histogram equilibrium with 255

gray levels per pixel and with the white background. All

leaf images are represented as points in vector space. A

typical image of size 32 9 32 describes a point in

1024-dimensional vector space.

In the two databases, although all leaf images are pro-

vided with class labels, for each experiment, we randomly

draw several samples from every database as a training set,

among them, a random subset is used with labels as the

labeled subset, and the remained are used as the unlabeled

subset.

To verify the effectiveness of the proposed method, we

compared it with RLDA [24], ODP [17], SDA [18], and

SSLDP [20]. ODP only makes use of the labeled data

points. However, SDA, SSDR and our proposed method

make use of both labeled and unlabeled data points. The

training set is used to learn the low-dimensional subspace

with the projection matrix. The testing set is used to obtain

the final recognition rate. In every experiment, firstly, we

randomly select an amount of images from all selected

images as training set and the rest as testing set; secondly,

we execute the dimensionality reduction method on the

training dataset and obtain the mapping matrix; then the

testing set is projected into the low-dimensional feature

subspace; finally, the plant leaf images of the testing set are

recognized by a suitable classifier. The parameters k and b
are determined empirically. In the following experiments,

the 1-nearest-neighbor (1-NN) classifier with Euclidean

distance is adopted to classify plant leaf images. In these

methods, PCA is used for data preprocessing (dimension

reduction) in order to avoid the singular matrix problem

and improve the computational efficiency.

4.1 Experiments on ICL-plant leaf database

In experiments, we select 500 leaf images from 20 kinds of

plants and each plant has 25 leaf images. Figure 4 shows

20 representative leaf images of 20 plant species.

The classifying experiments are conducted to evaluate

the effectiveness of the proposed method and to examine

the effectiveness of the training number and the number of

labeled points in training set on the performance. After all

images preprocessed, from each kind of plant, we ran-

domly select m leaf images as the training set, the rest

(25 - m) is regarded as the test set, among them, l(l = 1,

2, 3, 4, 5, 6) labeled leaf images and m - l unlabeled leaf

images. For each given m and l, a trial is independently

performed 50 times. The maximal average result of every

experiment is recorded. The average recognition rate

means the performance of the classifier with the best set of

fitted parameters. The final result is the average correct

recognition rate and standard derivation over 50 random

Fig. 4 The representative leaf images of 20 plant species
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splits. We find that the proposed method is not sensitive to

b when it is enough large, so we set b = 200. The other

parameters k and d are decided by the maximal correct

recognition results. Table 2 shows the performance of

RLDA, ODP, SDA, SSLDP, and the proposed algorithm.

As can be seen, our algorithm achieved 97.12 % recogni-

tion rate when six leaf labeled images per class were used

for training, which is the best out of the six algorithms. We

test the influence of selecting different dimensions in the

reduced subspace on the recognition rate, as shown in

Fig. 5, where m = 10 and l = 4. In general, the perfor-

mance of all these methods varies with the number of

dimensions. At the beginning, the recognition rates

increase greatly as d increases. However, more dimensions

do not lead to higher recognition rate after these methods

attain the best results.

4.2 Experiments on Swedish leaf database

The Swedish leaf data set comes from a leaf classification

project at Linköping University and the Swedish Museum

of Natural History [23]. The data set contains the isolated

leaves from 15 different Swedish tree species, with 75

leaves per species. Figure 6 shows the representative leaf

images of 15 different Swedish trees.

The experimental design is the same as before. In every

experiment, this procedure is also repeated 50 times and we

obtain 50 maximal results for the proposed algorithm and

each of the compared methods. The average recognition

rates and standard derivations are recorded, as seen in

Table 3. From Table 3, we can see three main points. First,

OLDSE-ISSODP outperforms the other algorithms among

Table 2 Average correct

recognition rates and standard

derivation comparing with LPP,

ODP, SDA, SSDR, SSLDP on

the ICL-plant leaf database,

where k = 15 and b = 200

Method m = 10

l = 1

m = 10

l = 2

m = 10

l = 3

m = 10

l = 4

m = 10

l = 5

m = 10

l = 6

RLD2 0.2338

±0.021

0.6379

±0.051

0.7104

±0.042

0.7843

±0.053

0.8586

±0.038

0.8764

±0.045

ODP 0.2174

±0.058

0.5882

±0.024

0.7372

±0.048

0.7923

±0.048

0.8712

±0.042

0.8947

±0.032

SD2 0.5815

±0.053

0.7145

±0.052

0.7859

±0.046

0.8243

±0.032

0.9423

±0.042

0.9223

±0.034

SSLDP 0.6712

±0.026

0.7529

±0.039

0.8584

±0.037

0.9183

±0.023

0.9385

±0.023

0.9582

±0.024

SSODP 0.7528

±0.047

0.7744

±0.022

0.8963

±0.036

0.9318

±0.023

0.9638

±0.035

0.9714

±0.031

Fig. 6 The representative images of 15 different species in Swedish

leaf database, one image per species. Note that some species are quite

similar, e.g., the first, third, and ninth images
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Fig. 5 Plant leaf recognition

rates versus the reduction

dimensionality, where m = 10

and l = 4
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all the cases. For example, when the ten leaf images per

species are used for training, SSODP leads RLDA, ODP,

SDA, and SSLDP up to 1.12, 4.05, 3.11, and 0.69 %,

respectively. Second, SDA, SSLDP, and SSODP perform

better than RLDA and ODP. The reason is that the semi-

supervised methods make use of all the training images

(including labeled and unlabeled images).

5 Discussion

From Tables 2, 3 and Fig. 5, we can see that the semi-

supervised methods outperform ODP. The reason is that

the semi-supervised methods make use of all the training

images (including labeled and unlabeled images), while

ODP only use the labeled data points. It is worth pointing

out that the recognition rates in the optimizing procedure

mainly depend on the ways of splitting the given training

data set and the number of the labeled points. From

Tables 2 and 3, as more leaf images and the labeled data

points split from the given data set are used for training, the

recognition rates increase for all the compared algorithms.

This demonstrates that all the algorithms are capable of

learning from these data points. Particularly, when l = 1,

the recognition rates of SSLDP and SSODP are more than

70 %, so the intrinsic image manifold can still be estimated

even with a single labeled leaf image per class.

From Tables 2, 3 and Fig. 5, we can see our method

outperforms the other methods. A possible explanation is

that our method is more robust. In fact, there are some

irregular-shaped leaf images in the two plant leaf data-

bases, which were taken from the same tree or from the

same leaf in different sessions, so the similarity (or weight)

of intra-leaf may be smaller than that of inter-leaf, as seen

Fig. 1. As a result, nearest neighborhood points may

belong to the different classes. Moreover, the leaf images

were taken during two different sessions, so that the

appearance of the same leaf image may look different,

resulting in different distributions of the data points in the

two sessions. The nearest neighbors of a point are more

likely to belong to different classes. If points within the

same nearest neighborhood are treated from the same class

as ODP or SDA does, the recognition accuracy may be

seriously affected. In our proposed method, we use

MaxiðDiÞ, MiniðDiÞ, and MeanXj2NðXiÞ or Xi2NðXjÞ to weaken

the impact of the irregular-shaped or distorted leaves. In

order to explain this conclusion, the experiments include

several irregular-shaped leaf images in the training set and

test set. To test whether our method is sensitive to such

irregular-shaped leaf images, we remove them from the

training set and conduct the experiments. The results

indicate that the recognition rates are slightly affected by

this kind of phenomenon. The reason might lie in the

robust path-based similarity measurement [25]. In [25], the

similarity expression ai ¼
P

Xj2NðXiÞ EðXi;XjÞ is adopted to

improve the robustness of the algorithm to noise points.

6 Conclusions and future works

Semi-supervised manifold learning-based methods have

aroused a great deal of interest in dimensionality reduction.

In this paper, a semi-supervised dimensionality reduction

algorithm named semi-supervised orthogonal discriminant

projection (SSODP) was proposed and applied successfully

to leaf classification. SSODP utilizes all labeled and

unlabeled samples to construct the weight between any

pairwise points. The experiment results on leaf images

demonstrated that SSODP is effective and feasible for leaf

classification.

In SSODP, the common assumption is that we only have

a limited number of labeled training samples. Developing

an adaptive algorithm to automatically adjust the parame-

ters k and b is our future work. In addition, in this paper,

we focus on developing a semi-supervised manifold

learning technique for leaf classification but do not

Table 3 Average recognition

correct rates and standard

derivation comparing with LPP,

ODP, SDA, SSDR, SSLDP on

the Swedish leaf database,

where k = 10 and b = 200

Method m = 10

l = 1

m = 10

l = 2

m = 10

l = 3

m = 10

l = 4

m = 10

l = 5

m = 10

l = 6

RLDA 0.651

±0.035

0.702

±0.041

0.712

±0.043

0.793

±0.045

0.841

±0.038

0.905

±0.035

ODP 0.614

±0.037

0.724

±0.042

0.732

±0.038

0.796

±0.038

0.854

±0.031

0.912

±0.042

SDA 0.705

±0.032

0.756

±0.047

0.792

±0.036

0.843

±0.034

0.942

±0.041

0.964

±0.034

SSLDP 0.747

±0.036

0.791

±0.029

0.912

±0.037

0.948

±0.033

0.963

±0.037

0.978

±0.042

SSODP 0.783

±0.037

0.802

±0.038

0.922

±0.037

0.955

±0.033

0.987

±0.025

0.988

±0.036
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systematically analyze the stability and robustness of the

SSODP. This is a problem deserving further investigation.
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