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Abstract This paper introduces principal motion com-

ponents (PMC), a new method for one-shot gesture

recognition. In the considered scenario a single training

video is available for each gesture to be recognized, which

limits the application of traditional techniques (e.g.,

HMMs). In PMC, a 2D map of motion energy is obtained

per each pair of consecutive frames in a video. Motion

maps associated to a video are processed to obtain a PCA

model, which is used for recognition under a reconstruc-

tion-error approach. The main benefits of the proposed

approach are its simplicity, easiness of implementation,

competitive performance and efficiency. We report ex-

perimental results in one-shot gesture recognition using the

ChaLearn Gesture Dataset; a benchmark comprising more

than 50,000 gestures, recorded as both RGB and depth

video with a KinectTMcamera. Results obtained with PMC

are competitive with alternative methods proposed for the

same data set.

Keywords Motion energy maps � PCA � One-shot
learning � Gesture recognition � ChaLearn gesture

challenge

1 Introduction

Gestures are a form of non-verbal communication, which is

highly intuitive and very effective. Because of its rele-

vance, automated gesture recognition is a research topic

with a growing popularity in computer science, see,

e.g., [2, 33]. Traditional approaches for the automated

recognition of gestures learn a model (e.g., a hidden

Markov model, HMM [37]) from a set of sample videos

including the gestures of interests; where, commonly, the

variation of spatial positions from body parts across time

are used as inputs for the models. In general, the more

examples we have for building a model, the better its

performance is in new data [22]. However, in many do-

mains gathering examples of gestures is a time-consuming

and expensive process. Hence, methods that can learn from

few examples are needed. On the other hand, it is also

desirable that gesture recognition methods do not rely on

specialized sensors to estimate body-part positions: it may

not be straightforward to get access to such devices; or on

the output of techniques for associated problems like hand

tracking or pose estimation [11]: these techniques may

introduce noise into the data acquisition process. Un-

doubtedly, methods that can be trained from very few ex-

amples and using unspecialized equipment would make the

applicability of gesture recognition more widespread: e.g.,

anyone with access to a webcam would be able to build

gesture recognizers.

In this paper, we approach the problem of gesture

recognition by using a single example of each gesture to be

recognized. This task, called one-shot gesture recognition,

was proposed in the context of the ChaLearn gesture

challenge [17, 18]. The targets for this type of methods are

user adaptive applications that require the recognition of

gestures from arbitrary and user-defined vocabularies;
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domains where gestures can change with time and models

need to be modified periodically; and scenarios where

gathering data is too expensive or users are not willing to

spend time collecting large amounts of data.

For each gesture to be recognized, the only information

we have for building a model is a single video recorded

with a KinectTMcamera, where both RGB and depth videos

are available. Despite the fact that KinectTMcan record

additional data (e.g., skeleton information), it was disre-

garded in the ChaLearn gesture challenge. This favored the

development of new methods not relying on a first step of

skeleton extraction, which is often not robust to occlusions,

and requires spatial and temporal resolutions not available

in many application settings. The problem is restricted to

single-user gesture recognition, there is little variation in

the background and the user is placed right in front the

sensor. Notwithstanding, the problem is very challenging

as single example is available for each gesture, thus, tra-

ditional methods (e.g., HMMs) cannot be applied directly.

Also, there is a wide diversity of domains of gestures,

ranging from highly dynamic (e.g., ‘‘aircraft-landing’’

signals) to static (e.g., ‘‘Chinese letters’’) and some body

parts may be occluded [16]. Additionally, the sampling

rate is low (of the order of 12fps). Clearly, standard gesture

recognition methods are not directly applicable, and even

though the problem has been simplified, it remains a dif-

ficult task.

We propose a simple and efficient method, yet very

effective, for one-shot gesture recognition called principal

motion components (PMC). The main goal of PMC was to

act as a strong baseline for the ChaLearn gesture chal-

lenge [16–18] and it has inspired several of the top ranking

entries, see, e.g., [44]. The proposed method is based on a

motion map representation that is obtained by processing

the sequence of frames in a video. Motion maps are used in

combination with principal component analysis (PCA)

under a reconstruction-error classification approach. The

proposed method was evaluated in a large database with

54,000 gestures used in ChaLearn gesture challenge [16–

18]. We compare the performance of PMC to a wide va-

riety of techniques. Experimental results show that the

proposed method is competitive with alternative methods.

In particular, we found that the proposed method resulted

very effective for recognizing highly dynamic gestures,

although it is less effective when static gestures are ana-

lyzed. The proposed method can be improved in several

ways and it can be used in combination with other ap-

proaches, see, e.g., [8, 44].

The main contributions of this work are threefold:

– A new representation for motion in video. This

representation can be seen as a bag-of-frames formu-

lation, where each video is characterized by the

(orderless) set of motion maps it contains. The

representation can be used with other methods for

gesture recognition and for other tasks.

– A new one-shot gesture recognition approach based on

PCA. Our method is capable of building a predictive

PCA model from a single video without using any

temporal information.

– The evaluation of the proposed method in a large-scale

heterogeneous database and a comparison of it with a

variety of alternative techniques.

The rest of this paper is organized as follows. The next

section reviews work closely related to our proposed

method. Section 3 introduces the principal motion com-

ponents method. Section 4 describes the experimental

settings adopted in this work and Sect. 5 reports ex-

perimental results. Finally, Sect. 6 presents the conclusions

derived from this paper and outlines future work directions.

2 Related work

This section reviews related work on two key components

of the proposed approach: motion-based representations

and PCA-based recognition.

2.1 Motion-based representations

When it is not possible to track body parts across a se-

quence of images, motion-based representations have been

used for gesture recognition. Different approaches have

been proposed, mainly based on template matching [1, 2].

The seminal work of Bobick and Davis used motion history

images (MHIs) to represent videos [6], where MHIs are

obtained by accumulatively adding (thresholded) binary-

difference images, this type of templates reveals informa-

tion about the history of motion in a video (i.e., how

movement happened). Statistical moments obtained from

the MHIs were used for recognition. Davis [10] extended

the MHI representation to generate histograms of motion

orientation. The MHI is obtained for each video and the

resulting template is divided into spatial regions. Gradients

from motion values are obtained on each region separately,

a histogram is generated per each region using as bins a set

of predefined orientations over the gradients. Per-region

histograms are concatenated to obtain a 1D representation

for each video. A similarity-based approach was used for

recognition in that work.

In [36], sequence of images are represented by a spa-

tiotemporal template. As preprocessing, the object of in-

terest is isolated from the rest of the scene. Then, the

sequence of cropped frames is processed to obtain optical

flow fields. Flow frames are divided into a spatial grid and
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motion magnitudes are added in each cell. In [3], the au-

thors obtained motion vectors (correspondences between

blocks of pixels in adjacent frames) for successive frames

and generated a 2D motion histogram, in which the oc-

currence of motion vectors is quantized. In [45] authors

proposed a representation, called Pixel Change Ration Map

(PCRM), based on motion histograms that account for the

occurrence of specific values of motion in the video se-

quence. That is, the bins correspond to different (normal-

ized) motion values. This approach is very similar to that

in [10]. However, under PCRM, the average of motion

energy in cells of the grid is used instead of the orientation

of gradients. The representation proved to be very effective

for video retrieval, clustering and classification. In [38],

authors proposed a method for key frame extraction from

video shots. The core of the method is a representation

based on motion histograms. Optical flow fields are ob-

tained for each frame, a subset of different combinations of

magnitude and direction of motion values is used as the

bins of the motion histogram. Motion histograms, one per-

frame, are then processed to extract representative frames

of the sequence.

Other approaches define motion histograms in terms of

symbols derived from optical flow analysis [35]; build

classification models using motion histograms over voxels

as features [27]; and generate histograms of gradient ori-

entations for static gesture recognition [14].

In most of the above-described approaches, a single

template based on motion histograms is obtained to rep-

resent a whole sequence of frames. In our proposed rep-

resentation, a motion map, accounting for the spatial

distribution of motion across successive frames, is obtained

per each difference image. This can be thought of as a

relatively low-resolution 2D map, each location accounting

for the amount of motion at a given position, at a given

time. However, we discard the time ordering of the various

maps and time is only taken into account by the fact that

the maps are based on consecutive frame differences. Thus,

by analogy to bag-of-words representations in text recog-

nition that ignore word ordering in text, we can talk of a

‘‘bag-of-frame’’ type of representation, which is neither a

template nor a time-ordered sequence of features. In this

way, we have a set of observations (motion maps) associ-

ated with a single gesture, which can be used for the in-

duction of classifiers. To the best of our knowledge, none

of the above-described methods has been evaluated in one-

shot gesture recognition [17, 18].

In the context of one-shot learning gesture recognition,

template-based methods have been popular. A simple av-

erage template approach was the first baseline proposed by

the organizers of the gesture recognition challenge, and it

remained a difficult baseline to beat during the first weeks

of the competition [18]. In [28], the authors proposed a

template matching approach for one-shot learning gesture

recognition, where three ways of generating templates were

proposed (2D standard deviation, Fourier transform and

MHIs). For recognition, the authors used the correlation

coefficient to compare templates and testing videos. In

[43], an extended MHI that incorporates gait energy in-

formation and inverse recording was proposed, although

the method obtained very good performance, it is difficult

to assess the contribution of the sole recognition approach

as several preprocessing steps were performed beforehand

(the authors mention that preprocessing improves the per-

formance of their method by about 9 %). Other methods

have been proposed in the context of the gesture recogni-

tion challenge, including probabilistic graphical mod-

els [31], methods based on novel descriptors [41], and

techniques from manifold learning [26], these and other

methods are summarized by Guyon et al. [17, 18]. In

Sect. 5, we compare the performance of our proposal to

these methods.

2.2 PCA for gesture recognition

The second component of our proposal is a PCA-based

method for gesture recognition. PCA has been widely used

in many computer vision tasks, including gesture recog-

nition [2, 34, 36], and very efficient implementations are

available (see, e.g., [25]). In most of the times, PCA has

been used to reduce the dimensionality of the representa-

tion or to eliminate noisy and redundant information, see,

e.g., [4]; in fact, this is a common preprocessing step when

facing any machine learning task [19].

Some authors have used PCA for recognition [15, 30,

32, 40]. The most used approach consists of estimating the

reconstruction error obtained after projecting the data into a

PCA model as a measure of the likelihood that an instance

belongs to a class. This recognition method was first re-

ported in the seminal work of Turk and Pentland for face

recognition [40]. A similar approach was adopted in [32]

to classify hand postures to be used for gesture recognition

by a high-level approach. The authors used a large data set

of images with diverse hand postures and used the PCA

reconstruction approach to classify hand postures. This

approach has proved to be very effective in other domains

as well (e.g., spam filtering, [15], and pedestrian detec-

tion, [30]). The reconstruction approach based on PCA has

been also used for one-class classification and outlier de-

tection [20, 39].

The motivation behind using a reconstruction-error ap-

proach for one-shot recognition stems from the fact that we

do not know what are the underlying motion dimensions

associated to a particular gesture, and we would like PCA

to automatically determine what are those dimensions and

to use such information for recognition. One should note
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that previous work has used the PCA-reconstruction ap-

proach considering a data set of labeled instances, where

many instances are available per each class. In our pro-

posal, we have multiple observations taken from a single

instance associated to a class (the bag-of-frames for a

gesture). Another way of thinking of our model is that it

acts as a single-state hidden Markov model for each ges-

ture, the PCA model representing an i.i.d. generating pro-

cess. To the best of our knowledge, PCA has not been used

similarly for recognition, not even for other tasks than

gesture recognition.

3 Principal motion components

The proposed principal motion components (PMC) ap-

proach involves two main steps: (1) obtaining motion maps

from videos and (2) obtaining PCA models to be used for

recognition, these steps are described in detail in this

section.

3.1 Representation: motion maps (bag-of-frames)

Let V be a video composed of N frames, V ¼ fI1; . . .; INg,
where Ii 2 R

w�h is the ith frame, w and h being the width

and height of the image, respectively. We represent a video

by a set of motion energy maps, H1; . . .;HN�1, Hj 2 R
Nb ,

one per each frame. Each map accounts for the movement

taking place in consecutive frames on fixed spatial loca-

tions of the frames.

For obtaining motion maps, we first generate motion

energy images by subtracting consecutive frames in the

video: Di ¼ Iiþ1 � Ii, i ¼ f2; . . .;N � 1g (we set D1 ¼ 0 to

have the same number of difference images as frames in

the video). Next, a grid of equally spaced patches is defined

over the difference images. The size of the patches is the

same for all the images. We denote with Nb the number of

patches in the grid. We estimate for each difference image

Di, the average motion energy in each of the patches of the

grid; this is done by averaging motion values for pixels

within each patch. That is, we obtain a 2D motion map for

each difference image, where each element of the map

accounts for the average motion energy in the image in the

corresponding 2D location. The 2D maps are transformed

into a 1D vector Hi 2 R
Nb . Hence, each video V i is asso-

ciated to a matrix Hi of dimensions N � 1� Nb, with one

row per frame and one column per patch. We call Hi the

bag-of-frames representation for the video, under the mo-

tion maps characterization. Figure 1 shows motion maps

for a subset of frames in a video. In the figure motion, maps

are shown in temporal order, although, in the proposed

approach, order of motion maps is not taken into account.
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Fig. 1 Extraction of motion maps for a video. From top to bottom: frames from the video; difference images; grid over images; 1D motion maps.

Each patch from the grid corresponds to a value in the plot, this value is the average of motion in the corresponding patch
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For the implementation, we adopted a more efficient

approach to generate motion maps. Each motion energy

image Di, i ¼ f1; . . .;N � 1g is downsized (e.g., via cubic

interpolation) up to a specified scale c. Motion maps are

obtained by concatenating the rows from the downsized

images.

One should note that as the proposed representation

captures motion in fixed spatial locations, translation var-

iations may have a negative impact into the motion maps

representation. The extreme case is when considering a

large number of patches (e.g., when having one bin per

pixel), resulting in a fine-grained map for which translation

variance is a critical issue. To overcome this problem, we

expand motion information in each difference image Di as

follows: Di ¼ Di þ Dl
i þ Dr

i þ Du
i þ Dd

i . Where Dl
i, D

r
i , D

u
i ,

and Dd
i are difference images Di translated by a gap of s-

pixels to the left, right, up, and down directions, respec-

tively. Basically, we are growing the region of motion to

make the representation less dependant on the position of

the user with respect to the camera.

Figure 2 shows motion maps extracted from videos

depicting different gestures and performed by different

persons; row 1 shows a very dynamic gesture, whereas row

2 shows a static one. We can see that motion information is

effectively captured by the proposed representation, as

expected, the more dynamic the gesture (as depicted in the

accompanying MHIs), the higher the values of the motion

map. It is interesting that even the representation for the

static gesture shows high motion energy values, which can

be due to unintentional movement from the user that is not

related to the gesture. The PCA model is expected to

capture the main dimensions of motion and to limit the

contribution of such noisy movements. From Fig. 2, we

can also see that the motion expansion emphasizes motion

energy in neighboring patches (compare the leftmost and

center images), which makes the representation slightly

more robust against variance in translation.

3.2 Recognition: PCA-based reconstruction

For recognition, we consider a reconstruction-error ap-

proach based on PCA. Consider a training video repre-

senting a single gesture. We first compute a bag-of-frames

representation H1; . . .;HN�1, (alternatively denoted by

matrix Hi), as explained in the previous section. Here, n ¼
1; . . .;N � 1 does NOT represent a time index and the

frames representing motion (converted in feature vectors)

can be arbitrarily re-ordered. The modeling approach then

consists of treating the Hn feature vectors as training ex-

amples of a PCA model, globally representing the frames

of that gesture. The principal components can be thought of

as ‘‘principal motions’’. Given now a new video also in a
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Fig. 2 Motion maps for selected gestures taken from two different

vocabularies. We show motion maps with (left) and without motion

expansion (center), together with the corresponding MHI (right). The

x-axis of the images show the motion maps for the different frames.

The domains of the depicted gestures are: ‘‘Canada-aviation ground

circulation’’ (top), and ‘‘Gang hand-signals’’ (bottom)
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bag-of-frames representation, its similarity to the training

video can be assessed by the average reconstruction error

of the frames of the video under the PCA model.

Let V ¼ fV1; . . .;VKg be the set of videos corre-

sponding a gesture vocabulary (e.g., ‘‘diving signals’’),

where each video corresponds to a different gesture (e.g.,

‘‘out of air’’ gesture). We apply PCA to each of the bag-of-

frames representations H1; . . .;HK associated to the dif-

ferent training videos in V. We center each matrix Hi:

Hi ¼ Hi �Hi
l where Hi

l is a matrix with each row being

the average of Hi, and apply singular value decomposition:

Hi ¼ USV, we store the top c singular values Sc from S

together with the corresponding eigenvectors Vc (i.e., the

principal components), where Vc is the matrix formed by

the first c-columns of V. Hence for each gesture in the

vocabulary, we obtain a PCA model represented by the pair

ðSc;VcÞf1;...;Kg.
Figure 3 shows the principal motion components for a

particular gesture vocabulary; the figure illustrates the

benefits of the proposed approach. We can appreciate that

the principal motion components indeed capture the in-

trinsic dimensions of motion of each gesture. By compar-

ison, informative motion is not as clearly captured by

competing motion-based representations, e.g., MHI (col-

umn 4) and the sequence of motion maps (column 5). For

this particular vocabulary, the principal motion compo-

nents can be easily associated by visual inspection with the

image that visually describes the gesture (column 6).

A test video VT , depicting a single gesture1 that needs to

be classified, is processed similarly as training videos, thus

it is represented by a matrix of motion maps HT . Matrix HT

is projected into each of the K-spaces induced by the

training PCA models ðSc;VcÞf1;...;Kg, where the projection

of HT under the ith PCA model is obtained as follows [21]:

Ĥi
T ¼ HT �Hi

l

� �
Vc;iS

�1
2

c;i ð1Þ

where subscript i in Sc;i and Vc;i indicates the index of the

associated PCA model. Next projections are reconstructed

back, the reconstruction of HT under the ith-PCA model is

given by:

Ri ¼ Ĥ
i

T S
�1

2

i VT
c;i

� �
þHi

l ð2Þ

where superscript T indicates the transpose of a matrix.

We can measure the reconstruction error for each Ri as

follows:

�ðiÞ ¼ 1

Q

XQ

q¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM
m¼1

ðRi;qm �HT ;qmÞ2
vuut ð3Þ

where q and m are the number of rows and columns of HT ,

respectively, and with i ¼ 1; . . .;K. Finally, we assign VT

the gesture corresponding to the PCA model that obtained

the lowest reconstruction error, that is: argmini �ðiÞ.
Similar reconstruction-error approaches have been

adopted for one-class classification [39], where instances

of the target class are used to generate the PCA model and

a threshold on the reconstruction error is used for classi-

fication. Reconstruction error has been also used for spam

filtering [15], face recognition [40] and pedestrian detec-

tion [30], see Sect. 2. One should note that in previous

work a set of labeled instances has been used to generate

the PCA model of each class, whereas under the proposed

approach the elements of a single instance (the amount of

motion in the frame differences under the bag-of-frames

representation) are used. Besides the granularity, the main

difference stems in that, in previous work, one can assume

each instance is representative of the category, while in our

setting the set of motion maps associated to a gesture are

not necessarily representative of the gesture (e.g., similar

motion maps may be shared by different gestures).

Figure 4 shows the difference image obtained by sub-

tracting original from reconstructed motion maps for a

particular vocabulary (‘‘helicopter’’). Specifically, image

i; j in the array of images depicts the difference between:

the average of motion maps for image i, minus the average

of motion maps for image i reconstructed with PCA model

j (e.g., images in the diagonal show the difference image

obtained by subtracting original representations from the

reconstruction with the correct model). Only differences

exceeding the value of 1� 10�10 are shown in the images.

As expected, gestures reconstructed with the correct PCA

model obtain lower differences than the threshold, while

the reconstruction of gestures using other models results in

large differences across the whole 2D space.

The main motivation for our recognition technique is the

fact that principal components minimize the reconstruction

error when projecting the data into the components’ space;

it can be shown that this is equivalent to finding the di-

rections that maximize the variance of the data, which is

the most known derivation of PCA, see, e.g., [5, 21]. Since

the PCA model for a gesture is the one that minimizes the

average reconstruction error for motion maps belonging to

the corresponding video, this model should be the one

(among the PCA models for other gestures) that better

reconstructs new motion maps belonging to the same

gesture. Clearly, this is not a discriminant classifier, since

the PCA model for a gesture is generated independently of

the models for other gestures, hence no inter-gesture

1 We assume each video to be processed depicts a single gesture.

Gesture segmentation is an open problem by itself that we do not

approach in this paper, although we evaluate the performance of our

method using gestures manually and automatically segmented with a

basic technique.
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Fig. 3 Principal motion components for the gesture vocabulary:

‘‘Helicopter signals’’. Each row is associated with a different gesture,

the first three columns of each row display top 3 principal motion

components of the gesture; columns 4–6 show the MHI, motion maps

and a visual description of the corresponding gesture, respectively
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information is captured by the PCA approach. Neverthe-

less, our experimental study from Sect. 5 reveals that even

with this limitation the proposed approach performs better

than supervised methods that use the bag-of-frames

representation.

4 Experimental settings

We evaluate the performance of the principal motion

components approach in the ChaLearn Gesture Dataset

(CGD) [16]. CGD comprises 54; 000 different gestures

divided into 540 batches of 100 gestures each, gestures

were recorded in RGB and depth video using a

KinectTMcamera. The data set was divided into develop-

ment (480 batches), validation (20 batches) and additional

batches for evaluation (40 batches, referred to as final

batches). Each batch is associated to a different gesture

vocabulary, and it contains exactly one video from each

gesture in the vocabulary for training and several videos

containing sequences of gestures taken from the same vo-

cabulary for testing. Each batch contains 100 gestures, the

number of training videos/gestures ranges from 8 to 12,

depending on the vocabulary. There are 47 videos for

testing in each batch containing sequences from 1 to 5

gestures each; hence, a gesture segmentation method has to

be applied before recognition. The number of test gestures

in each batch ranges from 88 to 92. About 20 different

users contributed for the generation of gestures and there

are about 30 different gesture vocabularies. See [16] for a

comprehensive description of the CGD. It is important to

mention that gesture vocabularies are quite diverse and

come from many domains, e.g., see those mentioned in

Table 1.

The CGD was developed in the context of ChaLearn

gesture challenge2, an academic competition that focused

in the development of gesture recognition systems under

the one-shot-learning scenario [17, 18]. During the chal-

lenge, participants had access to the labels of all the de-

velopment batches (1–480), although most participants

used only twenty batches (1–20) when developing their

systems. This can be due to the fact that for those batches
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Fig. 4 Differences of the cumulative sum of reconstructed gestures and the original data

2 http://gesture.chalearn.org/.
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additional information was provided by the organizers

(e.g., manual segmentation of test videos, hand tracking

information, body-part estimates, etc.). Validation data

were used by the organizers to provide immediate (online)

feedback on the performance of participants’ methods.

Final batches were used to evaluate the performance of the

different methods. See [17] for more details on the Cha-

Learn gesture challenge.

The evaluation measure used in the challenge was the

Levenshtein’s distance (normalized by the length of the

truth labeling), which accounts for the number of edits that

must be performed for taking a sequence of predictions into

the ground truth labeling for a gesture. In the next section,

we report experimental results on the CGD benchmark to

evaluate the effectiveness of the principal motion compo-

nents approach.

5 Experimental results

In this section, we report results from experiments that aim

at evaluating different aspects of the proposed approach.

First, we evaluate the performance of our method in the

whole CGD collection. Next, we evaluate the method un-

der different parameter settings. Then, we compare the

proposed approach to a number of related techniques we

implemented. Finally, we compare the performance of the

principal motion components technique to other methods

developed in the context of ChaLearn’s gesture challenge.

As explained previously, videos must be segmented to

isolate gestures prior to recognition. We report results of

experiments using both: manually segmented (batches

01–20 for development and validation only) and auto-

matically segmented (all the batches) videos. For automatic

segmentation, we used a simple method based on dynamic

time warping, which is also based on the motion maps

representation (a time-ordered version at a very coarse

resolution). This method was provided by the organizers of

the ChaLearn gesture challenge; it is publicly available

from the challenge website.

5.1 Performance over the whole collection

In a first experiment, we applied the principal motion

components approach to the whole GRC database of

54,000 gestures using both RGB and depth video. Results

in terms of the Levenshtein score are shown in Table 2. For

this experiment, all the videos were automatically seg-

mented. The translation gap was set to s ¼ 5 pixels, the

scale for image downsizing was fixed to c ¼ 0:1, while the

number of principal components was set to c ¼ 10; our

choices were based on the results obtained in a preliminary

study, see Sect. 5.2.

The performance of our method in the 480 development

batches was worst than that obtained in the final and valid

batches. This can be due to the difference in number of

batches and the diversity of their vocabularies. In devel-

opment batches, results using depth video are slightly

worse than those obtained with RGB video, nevertheless,

the difference in performance is not statistically significant

according to a two-sample t test (p value = 0.8713). The

corresponding differences for the validation (p val-

ue = 0.9879) and final (p value = 0.8607) batches were

not statistically significant neither. Thus, we can conclude

that the proposed method performs similarly, regardless of

the type of information used: either RGB or depth video.

This is advantageous as we do not need a Kinect sensor to

achieve acceptable recognition performance with our

method; one should note, however, that the standard de-

viation of performance is lower for depth video (in the 480

batches and for validation batches), hence, when available

it would be preferable to use it.

The proposed approach took an average of 41.23 s to

entirely process a batch3 (i.e., training the PCA models

from the training videos and labeling all the test videos, the

time includes feature extraction and gesture segmentation).

This means that a test video is processed in approximately

1 s, which makes evident the efficiency of our proposed

method and can be used in real-time applications. One

should note that we are using a standard PCA implemen-

tation, more efficient implementations of PCA could also

be adopted if necessary (see, e.g., [25]).

The performance of our method in validation and final

batches followed the same behavior as in development

batches, although it is better. In fact, the performance of

our method on validation and final batches is competitive

with methods proposed by participants of the GRC. For

Table 1 A few same vocabularies from the different batches

Referee wrestling signals Motorcycle signals Diving signals

Surgeon signals Taxi South Africa Gang hand signals

Tractor operation signals Chinese numbers Mudra signals

Table 2 Average (and standard deviation) of performance obtained

by the proposed approach on the development (48,000 gestures),

validation (2000 gestures) and final batches (4000 gestures)

Data set/type RGB DEPTH

Devel01–480 0.4079 (0.2387) 0.4103 (0.2068)

Valid01–20 0.3178 (0.2030) 0.3189 (0.1891)

Final01–20 0.2747 (0.1842) 0.2641 (0.1971)

Final21–40 0.2124 (0.1404) 0.2263 (0.1362)

3 Experiments were performed in a workstation with Intel�

CoreTMi7-2600 CPU at 3.4 GHz and 8GB in RAM.
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example, the results on the final batches 1–20 from Table 2

would be ranked 9th for the first round of the challenge,

whereas for the final batches see 21–40 would be ranked

7th, see Sect. 5.3. One should note, however, that this

method was not designed to handle all cases (e.g., static

gestures). Competitive methods also used some handshape

features to recognize static gestures, and that is beyond the

scope of this paper.

We now evaluate the impact of gesture segmentation in

the performance of the principal motion components

technique. Table 3 compares the performance obtained in

batches 1–20 for development and validation data when

using manually segmented gestures and the automatic

segmentation approach. As expected, using manual seg-

mentation improves the performance of our approach,

nevertheless the achieved improvements are modest. In

fact, statistical tests did not reveal that the differences were

statistically significant for both modalities (RGB and depth

video) and batches (development and validation). There-

fore, we can conclude that we can apply the principal

motion approach using automated methods for gesture

segmentation and still obtain competitive performance.

5.2 Performance under different parameter settings

Recall the only parameters of the proposed formulation

are c (the scale for downsizing the image, see Sect. 3.1),

which is related to the size of the patches to generate

motion maps, and c, the number of principal components

used to generate PCA models, see Sect. 2.2. In a third

experiment, we aimed to determine to what extent vary-

ing the values of such parameters affects the performance

of the proposed approach. We proceeded by fixing the

value of a parameter and then we evaluated the perfor-

mance of our approach when varying the second

parameter.

We start by analyzing the results in terms of the scale

parameter (c). For this experiment, we fixed the number of

principal components to c ¼ 10. Results of this experiment

are shown in Fig. 5. It can be seen that for both modalities

there is not too much variation in the performance of the

method for the different values we consider. This is due in

part to the region growing preprocessing described in

Sect. 3.1. The best results were obtained when

c ¼ f0:5; 0:1g. Lower values of c are preferred because the

dimensionality of the motion maps is reduced and the

proposed approach can be applied faster. Besides, the

smaller the value of c, the larger the size of the patches for
the motion maps and the more robust is the approach to

variations in the position of the user with respect to the

camera. For instance, for c ¼ 0:1, the dimensionality of the

motion maps is 192, the corresponding size of the patches

is � 15� 27. Nevertheless, it can be seen from Fig. 5 that

for smaller values than c ¼ 0:1 the performance of prin-

cipal motion components is worse.

Table 3 Performance of our method on batches 1–20 for the devel-

opment and validation data sets using manual and automatic

segmentation

Segmentation Manual Automatic

Data set/type RGB DEPTH RGB DEPTH

Devel01–20 0.2944 0.2741 0.3022 0.3016

Valid01–20 0.3151 0.3134 0.3178 0.3189
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Fig. 5 Average performance of principal motion components for different scale values. For the top plots manual segmentation was used, while

for the bottom ones automatic segmentation was performed
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For analyzing the influence of the number of compo-

nents on the proposed technique, we fixed the value of the

scale to c ¼ 0:1 and varied the number of principal

components when building PCA models, experimental re-

sults are shown in Fig. 6. It can be seen from these plots

that, in general, the performance of principal motion

components is poor when using few components,

c 2 f1; . . .; 5g, for all the combinations of batch-

es/modalities. The best performance for all the batch-

es/modalities was obtained when using a number of

components c 2 f10; . . .; 15g; the performance is some-

what stable for c 2 f10; . . .; 25g and then it decreases

considerably. This result may suggest that the best value

for c is related to the number of gestures in the vocabularies

(f8; . . .; 12g). Actually, the average vocabulary lengths for

development and validation batches are 9.7 and 9.5, re-

spectively. Nevertheless, we did not find significant cor-

relation between the best value for c and the size of the

vocabulary (q ¼ �0:0529).

We also evaluated the correlation between the best value

of c and the average and standard deviation of the length of

training gestures, the minimum and maximum duration, the

entropy on the duration of training gestures among other

statistics. However, we did not find a statistically sig-

nificant correlation value either. Thus, other aspects that

have to do with the difficulty of vocabularies may have an
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Fig. 6 Average and standard deviation of the performance obtained

by the proposed approach for different number of principal compo-

nents. The top plot shows results when manual segmentation was

used, whereas the bottom graph shows results obtained with

automatic segmentation

Table 4 Sorted results for batches 1–20 of the development and validation data sets along with some characteristics of each batch

Devel01–20 Valid01–20

B M T c LS V B M T c LS V

d05 S D 4 1.09 Gestuno-Disaster v02 D D 5 1.10 Helicopter

d08 S D 19 2.25 Gestuno-Topography v16 S S 6 3.26 Referee-Volleyball2

d01 D D 17 4.44 Canada-Aviation v05 D D 7 3.37 Tractor-Operation

d13 S S 26 6.82 Crane-Hand v17 S S 8 8.70 Body-Language-Dom.

d04 D S 12 8.89 Diving2 v10 S D 8 11.96 Pantomime-Objects

d09 D S 3 12.09 Referee-Volleyball1 v11 S D 5 14.44 McNeill-Gesticulation2

d14 S D 10 16.85 Diving v04 S S 10 16.30 Swat-Hand2

d07 D S 12 19.57 Referee-Volleyball1 v13 S D 7 19.78 Gestuno-Small-Animals

d17 S S 10 19.78 Gang-Hand-Signals2 v06 D S 32 21.11 Dance-Aerobics

d16 S D 44 21.74 Gestuno-Landscape v20 D D 5 24.44 Canada-Aviation2

d20 S S 7 22.99 Diving1 v12 S D 22 31.11 Gestuno-Colors

d02 D S 12 24.18 Referee-Wrestling1 v07 S S 23 33.33 Referee-Wrestling2

d12 S S 4 26.67 Italian-Gestures v19 S S 39 34.44 Taxi-SouthAfrica

d15 S S 8 29.35 Swat-Hand1 v01 S D 24 36.36 Motorcycle

d11 S S 8 30.43 Music-Notes v15 S D 7 37.08 Italian-Gestures

d06 S D 10 32.22 Diving3 v03 D D 10 46.67 Diving2

d18 S S 22 34.44 Taxi-SouthAfrica v18 S S 28 53.26 Music-Notes

d19 S S 34 47.25 Mudra2 v08 D D 11 54.35 Action-Objects

d10 S S 11 48.35 Surgeon v14 S S 11 56.67 Mudra1

d03 S S 8 60.87 Gang-Hand1 v09 S S 10 67.42 Chinese-Numbers

Column B shows the id of the batch (either development, d, or validation, v) and its number. Column M indicates whether the body of the user

moves significantly (D) or not (S) when performing the gesture. Column T specifies the type of the gesture, which can be either static (S) or

dynamic (D). Column c indicates the number of principal components used for the corresponding batch. Column LS shows the obtained

Levenshtein score and column V, indicates the name of the vocabulary, see [16]

Pattern Anal Applic (2017) 20:167–182 177

123



impact into the optimal value for c. In this regard, Table 4

shows information of the performance on each batch when

using the optimal number of principal components for each

of the development and validation batches (manual seg-

mentation and RGB video were used).

Along with the performance obtained in each batch, the

optimal value of c and some characteristics about the dy-

namism of gestures in batches are shown. Interestingly, a

few principal components are enough to obtain outstanding

performance for some batches [e.g., ‘‘Referee-Volleyball1’’

(3), ‘‘Gestuno-disaster’’ (4), and ‘‘Helicopter’’ (5)], while a

large value for c is used for some batches and yet the

performance is poor (e.g., ‘‘Taxi-SouthAfrica’’ (39), and

‘‘Mudra2’’ (34)). It seems that easier vocabularies (too

much motion, movement across the whole image, small

inter-class similarity) require of less components than dif-

ficult ones (little motion, motion happening in small re-

gions of the image, large inter-class similarity). Although is

not easy to define what an easy/difficult vocabulary is.

Other interesting findings can be drawn from the results

of this experiment. First, it can be seen that the principal

motion components approach is very effective for some

gestures. For example, performance similar to that of hu-

mans was obtained for ‘‘Helicopter’’, ‘‘Gestuno-disaster’’,

‘‘Gestuno-topography’’, ‘‘Tractor-Operation’’ and

‘‘Canada-Aviation’’ vocabularies. These are highly dy-

namic gestures where motion happens in different regions

of the image, thus the proposed approach can effectively

capture the differences among gestures in the same vo-

cabulary. In general, acceptable performance was obtained

with the proposed approach when either the gesture is

dynamic or the body of the user moves significantly when

performing the gesture. The worst results were obtained

when facing static gestures and users remained static when

performed the gesture. This is a somewhat expected result

as our approach attempts to exploit motion information.

Table 5 shows the average performance one would ob-

tain when selecting the optimal value for c in each batch.

The (hypothetical) relative improvements over the results

reported in Table 3 range from 7.2 to 20 %. Hence, it is

worth pursuing research on methods for selecting the

number of principal components for each particular batch

or gesture. Although one should note that the raw differ-

ences in performance are small: an improvement of 20.1 %

(RGB/Devel/MANUAL) corresponds to a raw difference

of �0.06 in Levenshtein score. Development batches have

a larger room for improvement than validation ones, the

result is consistent with previous ones.

Summarizing, the principal motion components ap-

proach is rather robust to parameter selection. The scale

parameter set to c ¼ 0:1 achieved the best results for most

of the configurations we evaluated. Although, other values

obtained competitive performance as well. Selecting the

number of principal components remains a difficult chal-

lenge, yet acceptable performance can be obtained by fix-

ing c ¼ 10. Finally, we showed evidence suggesting that

the principal motion components method is particularly

well suited to vocabularies involving a lot of motion, and

when motion happens in different locations of the image.

5.3 Comparison with alternative methods

We now compare the performance of the principal motion

approach to that obtained with alternative methods to solve

the same one-shot learning problem. First, we compare the

performance of principal motion components to that of

other techniques that are based on similar ideas/features.

Next, we compare the performance of the proposed tech-

nique to that obtained with other methods that were pro-

posed during the ChaLearn gesture challenge [17, 18].

For the first comparison, we implemented the methods

described in Table 6. The goal of this comparison is

assessing whether using different features to represent the

video, under the bag-of-frames formulation, could improve

the performance of the one based on motion maps. We

extracted the following (state-of-the-art) features widely

used in computer vision: histograms of oriented gradients

(HOG) [9]; histograms of oriented optical flow (HOF) [7];

space–time interest points with 3D HOG and HOF fea-

tures [42]; and motion history images [6]. 2D HOG and

HOF features were extracted from the frames themselves

(HOG-I, HOF-I) and from difference images (HOG-M,

HOF-M). For STIP-based features, we tried HOG-only,

HOF-only and HOG?HOG 3D representations [42]. The

variants of HOG, HOF and STIP-based features were

represented under the bag-of-frames representation. Addi-

tionally, two variants of motion history images were im-

plemented: the standard approach (MHI) [6] and another

Table 5 Optimum performance

that can be obtained with

principal motion components

when selecting the optimal

value for c in each batch

Segmentation Manual Automatic

Data set/type RGB DEPTH RGB DEPTH

Devel01–20 0.2351 (20.1 %) 0.2351 (14.2 %) 0.2749 (9.1 %) 0.2635 (12.6 %)

Valid01–20 0.2876 (8.7 %) 0.2876 (8.23 %) 0.2949 (7.2 %) 0.2832 (11.1 %)

It is shown between parentheses the relative improvement over the corresponding results from Table 3 (i.e.,

when using c ¼ 10 for all batches)
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version that accounted for non-motion (SMHI). The latter

variant aimed to be helpful for highly static gestures.

The different bag-of-frames representations were used

for gesture recognition under the proposed PCA-based re-

construction-error technique. Also, we evaluated the

recognition performance of supervised approaches using

the same representations. For these methods, each vector of

features (either motion maps, HOG, HOF, of 3D-HOG/

HOF) is treated as an instance of a classification problem,

where the class of the instance is the gesture from which

the corresponding vector was extracted. In preliminary

experimentation, we tried several classification methods

including (linear discriminant analysis, neural networks,

random forest, etc.), we report results for the best methods

we found. For motion and static-motion history images, we

used a template matching approach for recognition (cor-

relation). Experimental results obtained with the consid-

ered variants and with the principal motion components

approach are shown in Fig. 7.

From Fig. 7, it can be seen that principal motion com-

ponents obtains the best performance for all but one of the

configurations. HOG-M obtained the best results when

using automatic segmentation and RGB video, the relative

improvement was of 1.8 %. This result indicates the suit-

ability of the reconstruction approach for one-shot gesture

recognition under the bag-of-frames representation, which

is not tied to a particular type of features. In fact, when

using automatic segmentation the three methods: HOG-M,

HOG-I and PMC obtained very similar results.

When manual segmentation was used, our approach

outperformed the other methods by a considerable margin.

The improvement over the nearest technique in perfor-

mance (HOG-M) was of 36.12 and 45.9 % for RGB and

depth video, respectively. The widely used STIP features

were not very useful for gesture recognition under neither

the bag-of-frames nor the bag-of-visual-words formula-

tions. This can be due to the fact that a single video is not

enough to capture discriminative features. Actually, none

of the supervised approaches to one-shot-gesture recogni-

tion performed decently. This is not surprising as we are

using as labeled samples to features that may have high

overlap with several gestures. It is interesting that the static

history images outperformed the standard MHI

technique [6].

Finally, we also compare the performance of principal

motion components to that obtained by other authors that

have used the ChaLearn Gesture Dataset [16]. We con-

sidered methods that have been already described in a

scientific publication for this comparison. The performance

of the considered methods as well as a brief description for

each of them can be seen in Table 7.

It can be observed from Table 7 that the performance of

the proposed approach is competitive with that obtained by

the different methods. The best performance reported so far

in a scientific publication is that reported by Wu et al.

[44]. It is interesting that such method uses principal mo-

tion components as a preliminary step in their multi-layer

architecture. Roughly, our method is used to determine if a

gesture is dynamic or static. Dynamic gestures are treated

with a method based on particle filtering and a tailored

dynamic time warping; static ones are processed with a

novel method that incorporates contextual information.

The performance of our automatic approach is close to

that obtained by Malgireddy et al. [31] and Liu [26]. The

former authors implemented a graphical model inspired in

hidden Markov models that have been used for keyword

spotting, both modalities (RGB and depth video) are used

by the model. On the other hand, [26] represents videos

with using a method based on higher-order singular value

decomposition, recognition is done via least-squares re-

gression for manifolds. Both approaches obtained out-

standing performance in state-of-the-art data sets for

human activity recognition and standard gesture recogni-

tion, besides they achieved acceptable results in data from

ChaLearn Gesture challenge. The principal motion com-

ponents approach obtained comparable performance to that

techniques, hence, it is worth exploring the performance of

our method on other closely related tasks.

Regarding the ChaLearn Gesture Challenge, the latest

version of principal motion components would be ranked

9th and 7th in stages one4 and two5, respectively. Principal

motion components was proposed as a baseline method,

whose simplicity and easy of implementation motivated

Table 6 Description of the alternative methods we implemented for

one-shot gesture recognition

ID Representation Recog.

PMC Motion maps PCR

HOG-I HOG features from frames PCR

HOG-M HOG features from difference of frames PCR

HOF-I HOF features from frames PCR

HOF-M HOF features from difference of frames PCR

STIP-F STIP-HOF features PCR

STIP-H STIP-HOG features PCR

STIP-HF STIP-HOG ? HOF features PCR

PMC-SVM Motion maps SVM

HOG-SVM HOG features from difference frames SVM

HOF-SVM HOG features from difference frames SVM

STIP-BOW STIP-HOG ? HOF bag-of-features KNN

MHI Motion history image TM

SMHI Static-motion history image TM

4 http://www.kaggle.com/c/GestureChallenge/leaderboard.
5 http://www.kaggle.com/c/GestureChallenge2/leaderboard.
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participants to develop better methods. In this aspect, we

accomplished our goal and exceed it by motivating other

researchers to build better methods on top of our proposal.

6 Conclusions

We introduced a novel gesture recognition approach for the

one-shot learning setting called principal motion compo-

nents. The proposed approach represents the frames of a

video by means of maps that account the amount of motion

happening in spatial regions of the video. The bag of

motion maps is used with a PCA-based recognition ap-

proach in which recognition error is used as a measure of

gesture affinity.

We report experimental results in a large data set with

54,000 gestures, and two video modalities. Experimental

results show that the proposed approach is very com-

petitive, despite being simple and very efficient. The pro-

posed method can work with RGB or depth video and

obtain comparable performance. Likewise, the perfor-

mance of the method does not degrade significantly when

using manual or automatic gesture segmentation. We

compare the performance of our approach to alternative

methods we implemented ourselves and those reported by

other researchers. Our approach compared favorably with

some techniques and obtained close performance to others.

We analyze the performance of our approach under dif-

ferent parameter settings and show characteristics of ges-

tures that can be effectively recognized with it. This study

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Automatic segmentation

Method

Le
ve

ns
ht

ei
n 

sc
or

e

P
M

C

H
O

G
−

I

H
O

G
−

M

H
O

F
−

I

H
O

F
−

M

S
T

IP
−

F

S
T

IP
−

H

S
T

IP
−

H
F

P
C

M
−

S
V

M

H
O

G
−

S
V

M

H
O

F
−

S
V

M

S
T

IP
−

B
O

W

M
H

I

S
M

H
I

RGB
DEPTH

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Method

Le
ve

ns
ht

ei
n 

sc
or

e

Manual segmentation

P
M

C

H
O

G
−

I

H
O

G
−

M

H
O

F
−

I

H
O

F
−

M

S
T

IP
−

F

S
T

IP
−

H

S
T

IP
−

H
F

P
C

M
−

S
V

M

H
O

G
−

S
V

M

H
O

F
−

S
V

M

S
T

IP
−

B
O

W

M
H

I

S
M

H
I

RGB
DEPTH

Fig. 7 Levenshtein score for

the methods of Table 6 in the

Development01–20 data set
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revealed that the proposed approach is well suited for

highly dynamic gestures.

There are several future work directions we would like to

explore. First, we would like to study the suitability of the

principal motion components approach for related tasks [12,

13, 23, 24], including gesture segmentation/spotting, key

frame extraction and motion-based retrieval. Also, we are

interested in developing alternative recognitionmethods that

use the bag-of-frames representation. Other interesting areas

for research include developing a hierarchical principal

motion components formulation, and extending the pro-

posed representation to spatiotemporal features.
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