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Abstract Local binary image coding for face image

representation is established as a successful methodology

mostly popularized by the well-known local binary pattern

operator (LBP) and its variants. In this paper, an alternative

learning-based binary image coding scheme is introduced

which operates by projecting local image patches linearly

onto a subspace using learnt filters. Most importantly, in-

dependent binarisation of filter responses is justified

theoretically using independent component analysis in the

filter learning stage. The extension of the method to a

multiscale framework makes the feature capable to capture

image content at multiple resolutions, improving its ex-

pressive power. Taking a local feature-based approach, the

coded images are summarised regionally by histograms

exploiting dense correspondences between images. A dis-

criminative face image descriptor is constructed next by

projecting the regional multiscale histograms onto a class-

specific LDA space. The proposed discriminative descrip-

tor can be learnt in an unsupervised fashion and hence

perfectly suited for face recognition in unconstrained set-

tings, including the unseen face pair matching task. Finally,

the proposed MBSIF descriptor is combined with two state-

of-the-art face image representations, namely the multi-

scale LBP and local phase quantisation features to further

enhance the accuracy. The proposed approach has been

evaluated extensively on the extended Yale B, LFW,

FERET and the XM2VTS databases in various scenarios

and shown to perform very favourably compared to the

state-of-the-art methods.

Keywords Unconstrained face recognition � Face image

representation � Binarised statistical image features �
Multiscale representation

1 Introduction

Motivated by its widespread range of practical applications

in surveillance, identification systems, access control, so-

cial networks, etc. face recognition has been an active re-

search topic in pattern recognition over decades. Promoted

by the face recognition grand challenge, recognition rates

under well controlled settings have almost saturated [47].

With this achievement, the recent focus of research has

been directed towards recognizing faces in the presence of

undesired perturbations in imaging conditions such as

variability in lighting conditions, subject pose and ex-

pression, misalignment, occlusion, low resolution, etc [31].

The challenges in this case are caused by the large vari-

ability in appearance of the same subject and small sample

size compared to the dimensionality of the data.

Although not fundamental to the operational logic of a

system, quality of the feature representation adopted in an

algorithm may impose serious limitations on performance.

Consequently, much effort has recently been focused on

designing new low level image descriptors and/or com-

bining multiple features to surpass standard representations

such as SIFT [41], Gabor [40], HOG [22], LBP [61], LPQ

[50], etc. Moreover, many of the current descriptors in

image analysis such as LBP [61], SIFT [41], etc. have a

hand-crafted design, not benefiting much from statistical

learning which limits their representation capacity. An al-

ternative is to develop new features via statistical learning

[17, 32]. In this paper, a new face image representation

based on binarised statistical image features (BSIF) [24] is
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introduced and then extended into a multiscale framework

(MBSIF). Similar to some other common representations in

face image analysis such as LBP [61] and LPQ [50], the

new descriptor converts the local micro-structures of a face

image into a set of discrete codes. This is realised using a

number of different filters and projecting an image/sub-

images linearly onto a subspace, the basis vectors of which

are estimated via unsupervised learning. In other words, the

MBSIF descriptor benefits from a learning stage in contrast

to ad hoc design schemes used in some other alternatives.

The binary string code generation in many descriptors

including LBP and LPQ is achieved by independently bi-

narising each element. A fundamental prerequisite for in-

dependent binarisation of code elements is their statistical

independence. While this condition is only approximately

met in LBP or LPQ descriptors, in the MBSIF descriptor

the justification for independent processing is provided

using independent component analysis (ICA) in the filter

design procedure. Extending the BSIF descriptor into a

multiscale framework increases its representation capa-

bility, enabling the feature to capture image content at

multiple resolutions. It is shown that the extension of the

BSIF representation to a multiscale scheme is fundamen-

tally beneficial, rendering the representation to perform on

par or better than widely employed descriptors in the field.

By stacking the frequency of occurrences of the MBSIF

binary codes into a histogram, one may characterise the

statistical distributions of filter responses at different

scales.

In practice prior to extracting features, an alignment step

is performed on the images. The alignment is usually im-

posed via an affine or similarity transformation using de-

tected facial landmark points. However, such 2D holistic

alignments will be insufficient in presence of out-of-plane

head rotations. Even in frontal poses, an error in the lo-

calisation of a landmark will result in misalignment of the

whole face. To address the problem, two approaches are

pursued in the present work. First, a Markov random field

(MRF) image matching model is embedded at the pixel

level to provide dense alignment between a pair of images

[5, 6]. The benefits of employing such an approach are two

fold. First, it provides dense pixelwise alignment between a

pair of images which is quite useful for face recognition in

unconstrained settings [3]. Second, the matching is dis-

criminative in the sense that two images of the same sub-

ject would most probably provide a good match while

images of different subjects are less likely to be matched

accurately. As a result, the method acts as a discriminative

pre-processing step for the subsequent stages of a recog-

nition pipeline. The MBSIF histogram is then constructed

locally taking into account the correspondences and then

mapped into an LDA space for comparison. Finally, the

regional MBSIF descriptor similarities are summed up to

produce the final similarity score.

An appealing characteristic of the proposed approach is

the capability to perform unseen face pair matching. That

is, given a pair of face images which were not available to

the system before, the system should decide whether they

belong to the same subject or to different individuals. The

decision in this case can be made using a class-specific

fisher discriminant analysis (CSLDA) [34]. The employed

class-specific LDA transformation is used to construct

discriminative subspaces for the features extracted from

each image in a pair using a single sample and a fixed set of

training data (imposter set). As will be described, the

CSLDA transformation can be constructed in an unsuper-

vised fashion making it a suitable candidate for the unseen

face matching task. A further characteristic of the proposed

technique is the symmetric face comparison. To this end,

the method computes the similarity between a pair of face

images by symmetrising the MRF matching process and as

a result the LDA space feature construction and matching.

This is in contrast to previous widely employed asym-

metric methods where the similarity is measured only in

one direction, compromising performance. The similarity

score of the proposed MBSIF ? CSLDA descriptor is fi-

nally combined with those of the MLBP [18] and MLPQ

[62] representations via a sum rule to further increase the

accuracy. As will be illustrated, the proposed method

provides better discrimination and robustness than many of

the existing state-of-the-art approaches in the most chal-

lenging situations of real life photos.

In summary the main contributions of the present work

can be summarised as follows.

– A novel discriminative multiscale image descriptor

(MBSIF ? CSLDA) using statistical learning based on

a variant of linear discriminant analysis is proposed.

The discriminative descriptor can be learnt in an

unsupervised fashion, suitable for unseen image pair

matching tasks.

– In order to gauge the similarity of a pair of images, the

face pair matching task is symmetrised. For this purpose,

the discriminative LDA subspace learning is performed

symmetrically, improving recognition performance.

– The proposed descriptor is combined with the MLBP

and MLPQ features in a score level fusion scheme in an

LDA space to further enhance the recognition accuracy.

– Last but not least, a dense pixelwise image pair

matching method embedded at the pixel level makes

the proposed method applicable to the problem of pose

robust recognition of faces.

The rest of the paper is organised as follows. In Sect. 2, we

briefly review the literature. Section 3 presents the details
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of our proposed multiscale local descriptor. In Sect. 4, the

symmetric face matching approach is introduced. An

evaluation of the proposed method including a comparison

to the state-of-the-art methods is presented in Sect. 5 fol-

lowing which the conclusions are drawn in Sect. 6.

2 Related work

A great extent of the early efforts at face recognition made

extensive use of features extracted globally from an image

and mapped onto a lower dimensional space called sub-

space. Two prominent examples in this group are eigen-

faces [67] and fisherfaces [12]. However, as local feature-

based approaches demonstrated a higher degree of ro-

bustness against image perturbation, presently the majority

of the best performing methods widely exploit local fea-

tures for the characterisation of face image data. As an

example, the authors in [17] use vector quantized local

pixels to extract discriminative information from different

face regions. While references [2, 64] use histogram of

local pattern features (such as LBP, LTP etc.), reference

[49] uses spatially localised Gabor filters in a multi-layer

framework for face verification. In [44], the authors pro-

pose to use histogram of local binary patterns extracted

from orientation images, achieving good performance us-

ing a single training sample per subject. A more recent

approach to boosting the performance under unconstrained

settings is to jointly use multiple local descriptors [17, 36,

75], where in the combination is applied via a wide range

of methods from combination at the decision level to

multiple kernel learning (MKL). Some other recent meth-

ods adopt metric-learning approaches for improved simi-

larity comparison [23, 28, 43]. In [72, 73], the authors

propose a two-level classifier, training a small number of

one-shot and two-shot classifiers for each test pair em-

ploying one or both test images as positive samples and an

additional set of negative samples. Employing a set of at-

tribute (race, gender, hair colour, etc.) classifiers, the au-

thors in [35, 36] also make use of this two-level classifier.

Recently, a blur tolerant image descriptor called local

phase quantization (LPQ) operator is introduced by Rahtu

et al. [50]. LPQ has been shown to perform better than the

local binary pattern (LBP) operator in face recognition and

texture classification. In [76], global and local Gabor phase

pattern histograms are proposed for face recognition.

Graph-based approaches constitute a major category in

part-based local face matching. In this framework [5, 7, 70,

71], different subregions of a face are processed indepen-

dently of other non-neighbouring regions. Such a pro-

cessing model is helpful in dealing with local geometrical

distortions and handling occlusions and cluttered back-

ground. In addition, under this framework, good

performance may be achieved even using only one training

image per class. The current work uses a graph-based

method for dense symmetric pixelwise alignment of faces.

After establishing dense correspondences, regional multi-

resolution features are employed for decision making in an

LDA space.

3 Face representation via multiscale binarised
statistical image features (MBSIF)

3.1 BSIF image coding

The binarised statistical image features (BSIF) is a gen-

erative model based on the independent component ana-

lysis (ICA) [32]. ICA represents the data as a linear

transformation of some latent independent components. Let

p denote the pixel grey values in an image patch con-

catenated into a vector. Using ICA, p can be represented

using a feature matrix F as

p ¼ Fr ð1Þ

where the elements of the vector r are some unknown

random variables which differ from one patch to another.

Conversely, the elements of F are constant and the same

for all different image patches. A fundamental assumption

regarding this linear generative model is that the elements

of r are statistically independent. In this case, one may,

using a large enough number of training samples, recover a

reasonable approximation to F up to a multiplicative

constant without explicitly knowing the latent vector r

[32]. Estimation of F is equivalent to determining the

matrix F which produces r as the output of a number of

linear filters as

r ¼ Fp ð2Þ

where each row of F represents a filter to be applied on the

pixels of patch p.

In practice, the statistical models are applied on pre-

processed data. Suppose that the pixels of a single patch

after pre-processing are collected into the vector

z ¼ ðz1; . . .; zNÞ. Commonly, for pre-processing a linear

transformation is used. In this case, zi’s would be linear

transformations of the independent components ri’s. This

can be readily observed by multiplying both sides of Eq. 1

by the matrix performing the pre-processing and obtain

z ¼ Ur ð3Þ

where matrix U is obtained by multiplying matrix F by

the pre-processing transformation matrix, V. In practice, a

whitening transformation is used as the pre-processing step

as it is found to be instrumental in contrast gain and lu-

minance control [32]. In this case, for matrix U to be
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invertible, the number of independent components should

be chosen in a way that it equals the number of variables

produced after the whitening transformation. Under this

condition, the system in Eq. 3 would be invertible in a

unique way, producing the vector r as a linear function of z

as

r ¼ Uz ð4Þ

where matrix U is obtained by inverting matrix U. The

filter matrix F in Eq. 2 can then be obtained by multiplying

the linear transformations given by U and V, i.e.

F ¼ UV ð5Þ

As a result, the independent components ri’s of vector r are

obtained as

r ¼ UVp ð6Þ

In summary, given an image p of size d � d pixels, one

applies N filters on the pixels of p using the filter matrix

FN�d2 and obtains N responses which are stacked into the

vector r. As the filter responses ri’s are independent, they

can be processed independently. A useful post-processing

step is binarising ri’s by thresholding at zero to produce the

binarised features bi’s as

bi ¼
1 ri [ 0;

0 otherwise:

�
ð7Þ

The binarised features of bi’s can then be summarised us-

ing aggregate statistics such as histograms.

3.1.1 Training for BSIF filters

The training procedure for filter matrix F can be sum-

marised as follows. Using a training set of image patches

randomly taken from images, their covariance matrix is

estimated and eigen-decomposed. The dimensionality of

each patch is then reduced using N (number of the filters

used) principal eigenvectors of the covariance matrix di-

vided by their standard deviations. At the end of this step,

whitened data samples z are obtained. In more detail, if the

eigen decomposition of the covariance matrix C is

C ¼ YDY>, where D is the diagonal matrix of eigen values

of C in a descending order and the columns of Y are the

corresponding eigen vectors of C, then matrix V which is

used for whitening and dimensionality reduction is given by

V ¼ D�1=2Y
h i

1:N
ð8Þ

where ½:�1:N denotes the first N rows of a matrix. Next,

given the whitened data samples z, the independent com-

ponent analysis is employed to estimate an orthogonal

matrix U. Having estimated the matrices of U and V, the

final filter matrix is obtained as UV. Some sample filters

learnt are depicted in Fig. 1. In the figure, eight BSIF filters

corresponding to a of size 17� 17 are depicted. By ap-

plying the filters, eight filter responses are obtained which

are then binarised to form an 8-bit binary code for each

pixel.

An essential prerequisite in the binarisation is the in-

dependency of filter responses [32, 46]. As ICA is used for

filter design, the dependencies between filter responses in

the binarised statistical image features approach are min-

imised. This is in contrast to some commonly employed

techniques such as local binary patterns where the inde-

pendency holds only approximately.

3.2 Multiscale analysis

Suppose the size of each individual BSIF filter is fixed at

d � d. In this case, using a larger number of filters (in-

creasing N) would include more high frequency compo-

nents into the descriptor. This is because the N

eigenvectors of the covariance matrix of the training data

are sorted in a descending order with respect to their cor-

responding eigenvalues and increasing N would include

more eigenvectors corresponding to smaller eigenvalues

into the whitening transformation. Conversely, using a

fixed number of filters (N), by increasing the size of each

filter, the variations of the signal over a larger support

region are taken into account. In others words, the de-

scriptor now captures large scale image content. It has been

observed that using eight filters (N ¼ 8) results in an ac-

ceptable frequency response, able to capture a wide range

of frequency content of images [24]. Hence, the number of

filters in all experiments in this work is fixed to 8, pro-

ducing an 8 bit binary code for each pixel. As noted earlier,

the other parameter controlling the frequency content of the

feature is the filter size. While smaller filters capture small

scale variations of texture, larger filters are better suited to

deal with blurring effects and low frequency contents. In

this work, the compromise brought about by this trade-off

is moderated via a simple yet powerful texture represen-

tation, called multiscale binarised statistical image feature.

The proposed multi-resolution representation is derived

by varying the filter size, and combining the BSIF de-

scriptors in different scales. However, in this case the

common problem of high dimensionality and small sample

size may result in instability of the representation in the

presence of image noise. The problem, however, can be

minimised using histograms as aggregate statistics which

can capture the most fundamental statistical properties of

the feature. The benefits of employing histograms of the

code words are three fold. First of all, using a histogram

reduces the feature dimension from the image size to that

of the histogram. Moreover, by optimising the dimen-

sionality of histogram and projection onto other spaces, the
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effects of the image noise on the feature can be regulated.

Finally, a histogram summary is more robust to spatial

image transformations such as rotation and translation and

hence the sensitivity to misalignment is decreased [39].

3.3 MBSIF face descriptor

In the proposed approach to multi-resolution analysis,

BSIF operators at Z scales are first applied to a face image

after photometric normalisation [64]. A grey level code for

each pixel at each resolution is thus obtained, Fig. 2. The

c–j coded images are obtained by applying eight BSIF

filters each. The coded image of (c) in the figure corre-

sponds to the finest scale, i.e. the result of applying 3� 3

filters while the coded image of (j) represents the output of

applying BSIF filters at the coarsest scale, i.e. using filters

of size 17� 17. The resulting BSIF code images are

divided into non-overlapping rectangular regions G0;

G1; . . .;GJ�J�1 after cropping to the same size. The BSIF

pattern histogram for region j in the scale of s, hj;s, is

computed by

hj;s ¼ h0j;s; h
1
j;s; . . .; h

L�1
j;s

h i

hij;s ¼
X
m2Gj

1l BSIFsðmÞ ¼ if g

j 2 0; 1; . . .; J � J � 1½ �;
s 2 1; 2; . . .; Z½ �; L ¼ 256

ð9Þ

where 11 :f g is the indicator function equal to one when its

argument is true and zero otherwise. L is the number of

histogram bins (determined by the number of filters used)

and the size of the BSIF filter at scale s is d � d where

d ¼ 2� sþ 1. By concatenating all the histograms com-

puted at different scales for each region into a single vec-

tor, the final multi-resolution regional face descriptor is

obtained

qj ¼ hj;1; hj;2; . . .; hj;Z
� �> ð10Þ

3.4 Single sample model construction using

class-specific LDA

In order to obtain a discriminative regional descriptor, we

use a client-specific linear discriminant analysis (CSLDA)

[34] to project the multi-resolution features onto a dis-

criminative subject-specific subspace. The client-specific

LDA operates in a two-class framework. That is, when

comparing a pair of images, one of them is assumed to be

the model (f ) and the likelihood of the second image (f 0)
belonging to the first one and not to a class of imposters is

measured. The two-class linear discriminant transformation

for region j taking f as the model, afj , is given by

afj ¼ S�1
j lfj � lj
� �

ð11Þ

where S�1
j denotes inverse of the within-class scatter ma-

trix for region j while lfj and lj are the mean histograms of

the model image f and training data for the same region,

respectively. In [34], it has been shown if the number of

training samples excluding those belonging to the subject f

are large enough, the inverse of the within-class scatter

matrix can be approximated as

S�1
j � WjU

�1
j W>

j ð12Þ

where Wj is the matrix of leading eigenvectors of the

mixture covariance matrix and Uj is the diagonal matrix of

corresponding eigenvalues for region j. The reasons sup-

porting the use of client-specific LDA are its perfect

adaptability to the unseen face pair matching, computa-

tional efficiency, ease of training and lower error rates in

classification [34]. Once a regional linear discriminant

transformation is estimated, the similarity of two

Fig. 1 Sample 17� 17 BSIF

filters (N ¼ 8)
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corresponding regions is measured as the cosine similarity

measure
ðaf

j
Þ>qj f

0

kaf
j
kkqj f

0 k and the final similarity between a pair of

images, Simðf ; f 0Þ, is measured as the sum of regional

similarities, i.e.

Sim f ; f 0ð Þ ¼
X
j

afj

� �>
qj

f 0

afj

��� ��� qj
f 0

�� �� ð13Þ

3.4.1 Discussion

The rationale for using CSLDA is to obtain a discriminative

compact descriptor for face representation and matching.

However, the common fisher discriminant analysis is a su-

pervised technique requiring class labels of training exam-

ples. Thus, at the first glance it might seem that for a pairwise

facematching taskwhere the goal is to gauge the similarity of

a pair of images, labelled training data of images belonging

to both subjects is required. This is a rather restrictive as-

sumption in practical applications where the two images are

never seen before [31]. However, the problem is easily cir-

cumvented using the CSLDA approach as follows. Assume

there is a set of random training face images. We call this set

the imposter set. There is no restriction on this set except that

if by any chance a number of images belonging to either one

of the subjects to be compared exists in the training set, the

number of such samples should be small compared to the

total number of training images. This requirement can be

easily fulfilled by choosing a large number of training images

of random subjects in the imposter set. This condition is

studied in [34] and using it the approximation to the within-

class scatter matrix in Eq. 12 is derived. Once the imposter

set is selected, the within-class scatter matrix for the class-

specific LDA can be approximated using Eq. 12. Note that

the approximation in Eq. 12 does not require any labels as it

only entails an eigen decomposition of the features extracted

from the imposter set. Next, we construct a class-specific

LDA transformation using Eq. 11, taking lf to be the feature
extracted from the first image and l the mean over the im-

poster set. That is, the transformation for the CSLDA can be

constructed using only a single model sample. In this case,

the second image would either belong to the imposter set or

to the class represented by the first image. The probability of

the second image belonging to the first image and not the

Fig. 2 a Original image,

b normalised and cropped

image, c–j BSIF coded images

at different scales
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class represented by imposters is then measured by Eq. 13.

Exchanging the roles of the two images, we construct a

secondCSLDA transformation using the second image as the

model and measure the probability of the first image be-

longing to the second image and not to the class represented

by the imposter set. Finally, the similarity of the two images

is taken as the average of the two similarity scores thus ob-

tained. In practice, we alsomake use of themirrored versions

of both images in a pair to reduce the effect of self-occlusion

in inconsistent poses. As we use both images and their

horizontally flipped versions as model images, four CSLDA

transformations would be required. In addition, a pair of

images and their horizontally mirrored versions can be

matched in eight different ways by exchanging the roles of

the model and the test images in each pair. As a result, four

CSLDA subspaces and eight image pair comparisons are

performed for each pair of images.

Note that the preceding approach for comparing a pair

of images is completely unsupervised as no class labels are

utilised in obtaining the CSLDA transformation, thanks to

the approximation given by Eq. 12. This is extremely ad-

vantageous and different from most commonly employed

approaches based on linear discriminant analysis in com-

paring a pair of face images.

4 Dense image alignment

Alignment prior to recognition has a fundamental impact on

performance. This has fuelled the research leading to a

growing number of methods for object alignment [4, 10, 13,

16, 20, 25, 51, 53, 54, 59, 66, 68, 77]. However, obviously

aligning a non-planar object using a 2D transformation such

as similarity or affine can only partly correct for the

misalignment existing objects. This shortcoming is suc-

cessfully approached via 2D or 3D methods such as the

well-known active appearance model (AAM) [20] or the 3D

morphable model (3DMM) [14]. An alternative to these

methods is the dense image matching approaches using

Markov random fields which estimate pixelwise alignment

between a pair of images. For dense image alignment we

adopt the method proposed in [4, 6, 7]. The reasons sup-

porting such a choice are as follows. First of all, it provides

dense pixelwise alignments between a pair of images. This

has been found to be quite advantageous in pose-invariant

and also frontal pose face recognition. Second, unlike most

MRF-based methods which are rather slow due to high

computational complexity of the optimisation problem in-

volved, the method in [4, 7] uses a variety of different

techniques including multi-resolution analysis and GPU

acceleration to perform matching much faster than many

other alternatives. Next, the matching is performed in a

discriminative way. That is, unlike other 2D or 3D

approaches such as AAMs [20] or 3DMMs [14] which try to

fit a generic model to an image, the method in [4, 7] tries to

find the best alignment between a pair of images without

using a pre-learnt generic model. As a result, one expects to

have good alignment (smooth deformation maps) when the

two images belong to the same subject and poor alignment

when the images are from different subjects. This in effect

is likely to lead to high similarity scores in the subsequent

stages of a recognition system between images of the same

subject and low similarity between images of different in-

dividuals. Last but not least, the procedure can be modified

to compare a pair of face images symmetrically. Some

matching results of this method are depicted in Fig. 3. In

this work, we symmetrise the process of matching two

images as follows. Initially, the template is matched to the

target and then the roles of the two images are exchanged.

The procedure is also repeated for the horizontally mirrored

versions of both images. As a result, for each pair of images

we perform eight matchings. The MBSIF histograms are

then computed taking into account the correspondences

thus obtained. Once the similarity between each pair of

images is computed, the final score is obtained by averaging

the similarity scores of all the eight pairs of matches. As will

be illustrated in the experiments, the symmetric matching

serves to improve the performance by a great extent.

5 Experiments

5.1 Implementation details

In the following experiments, after geometrically normal-

ising the images (the details will be given separately) be-

fore extracting features, the cropped face images are pre-

processed using an effective photometric normalisation

scheme [64]. The applied method is designed to decrease

Fig. 3 Some results of dense image-to-image matching using the

method of [6, 7]
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the effects of changes in illumination conditions, highlights

and local shadowing, while keeping the fundamental visual

information. In the multi-resolution analysis, the numbers

of scales for the multiscale local binary pattern (MLBP)

and the multiscale local phase quantisation (MLPQ) op-

erators are set to 10 and 7 respectively, as advocated in

[19]. For the BSIF descriptor, while applying the BSIF

operator in a small number of scales does not provide

sufficient discriminatory information for face representa-

tion, an operator with a larger filter size captures lower

frequency components which tend to be influenced by the

illumination conditions more severely. Here, the number of

scales is optimised empirically and is set to 8. The other

parameter to tune is the number of local regions (J � J)

from which the histograms are extracted. While using

fewer regions provides robustness against misalignment, in

the case of dense correspondences, using a larger number

of regions a larger amount of spatial information becomes

available for classification. We investigate the effect of

varying J on system performance. Finally, for the con-

struction of within scatter matrices, the dimensionality of

the Wj’s and Uj’s is chosen in a way that 95% of the

variation in the training data is preserved.

5.2 Comparison of different descriptors: combined

Yale database B and the extended Yale face

database B

In this section, a face identification experiment is performed

on the combined Yale database B [27] and the extended

Yale database B [37] under varying illumination conditions

to compare the single scale BSIF descriptor to the proposed

discriminative multiscale representation and the multiscale

local binary pattern and the multiscale local phase quanti-

sation histograms. The data set consists of 2432 images of

38 subjects under 64 different illumination conditions. For

each of the 38 individuals in the database, a single image

corresponding to the normal illumination condition is se-

lected as the gallery and all the remaining images are

considered as the test samples. Each image in this data set is

cropped to a of size 192� 160 (rows � columns) and then

divided into 16� 16 non-overlapping rectangular regions.

For the construction of the imposter set for the class-specific

LDA, frontal images of the XM2VTS database [42] are

used. The BSIF filters used in this experiment are learnt

using an external set of natural images, provided by the

authors of [24]. As a result, the generalisation capability of

the method is also evaluated. A number of investigations are

made in this experiment. The 8-bit single scale BSIF de-

scriptor with varying filter sizes using a v2 distance measure

is examined. The multiscale BSIF descriptor using the v2

distance measure is also evaluated and compared to the

single scale BSIF descriptors. In addition, we have also

evaluated the multiscale LBP and the multiscale LPQ de-

scriptors for comparison using a v2 distance measure. Fi-

nally, we have also included the results obtained using the

client-specific LDA using the multiscale LBP, multiscale

LPQ and the multiscale BSIF descriptor. For the client-

specific LDA, for each probe-gallery pair, four client-

specific LDA subspaces, two corresponding to the probe

and the mirrored probe image and two for the gallery and

the mirrored gallery image are learnt. As noted earlier, for

each pair of images eight scores are obtained which are

averaged to produce the final score. The results obtained are

reported in Table 1. A number of observations from the

table are in order. First, the proposed multiscale descriptor

using a v2 distance measure consistently performs better

than the single scale versions using the v2 distance measure

by a large margin. Second, the MBSIF descriptor with a v2

measure outperforms both the MLBP and MLPQ repre-

sentations using the same distance metric. Third, all the

three multiscale descriptors using a client-specific LDA

perform better than the v2 distance measure. The proposed

MBSIF ? CSLDA approach while performing much better

than the MBLP ? CSLDA also outperforms the

MLPQ ? CSLA approach by nearly 6 percent. The im-

proved representational capacity achieved in the new de-

scriptor can be analysed from different viewpoints. First,

the filters used in constructing the MBSIF descriptor are

estimated using statistical analysis of image properties in

contrast to other ad hoc design schemes such as those used

in LBP. Second, the redundancy in the input data is min-

imised via a whitening transform using PCA in the filter

learning procedure. And finally, by using an independent

Table 1 Comparison of the

performance of different de-

scriptors on the combined Yale

database B and the extended

Yale face database B

Method Accuracy

BSIF3 ? v2 88.34

BSIF5 ? v2 87.46

BSIF7 ? v2 86.55

BSIF9 ? v2 88.13

BSIF11 ? v2 89.22

BSIF13 ? v2 89.05

BSIF15 ? v2 88.17

BSIF17 ? v2 88.55

MBSIF ? v2 93.19

MLPQ ? v2 89.05

MLBP ? v2 81.99

MBSIF ? CSLDA 97.07

MLPQ ? CSLDA 91.10

MLBP ? CSLDA 84.58

BSIFd denotes a single scale

BSIF filter of size d � d
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component analysis in the filter design, the codes generated

become statistically independent, thus suitable for further

processing under independence assumptions. It can be ob-

served that the proposed discriminative multiscale regional

descriptor (MBSIF ? CSLDA) improves the performance

of the single scale BSIF descriptor to a large extent making

it comparable to other alternatives, also emphasised by the

following experiments.

5.3 Experiment in unseen pair matching: LFW

Recently with the development of the LFW data set [31]

studying the performance of face recognition methods in

unconstrained settings has been facilitated. The LFW data

set includes real-world variations in facial images such as

pose, illumination, expression, occlusion, low resolution,

blur etc. It contains 13,233 images of 5749 subjects. The

task is to determine whether a pair of images belongs to the

same person or not. We evaluate the proposed approach on

the ‘‘View 2’’ of the data set consisting of 3000 matched and

3000 mismatched pairs divided into 10 sets. The evaluation

is performed in a leave-one-out cross-validation scheme on

the entire test sets. The aggregate performance of the

method over tenfolds is reported as the mean accuracy and

the standard error on the mean. There are different

evaluation settings on this database: the image restricted

setting and the unrestricted setting. The restricted setting

provides training data for the image pairs as ‘‘same’’ or ‘‘not

same’’. The image unrestricted setting in addition provides

the identities of the subjects in each pair. There is also the

unsupervised setting where no training data in the form of

same/not same pairs are provided. We evaluate the pro-

posed approach on the most restricted protocol where

strictly LFW data are used, without any outside training

data. In addition, as our method is unsupervised (both the

MBSIF filter learning and the CSLDA approach are unsu-

pervised), it is equally comparable with the results in this

setting. In each of the ten experiments on the LFW data set,

one out of ten subsets is used as the test set and the

remaining nine as the training data. We use one of the nine

training subsets to learn the projection matrix of the class-

specific LDA. Two separate subsets of the remaining eight

subsets are used to learn filters for the BSIF descriptor.

Filter learning is performed using 20,000 randomly sampled

image patches. Filters are learned in eight scales, i.e. m ¼
f3; 5; . . .; 17g and in each scale, eight filters are learned

(N ¼ 8) giving rise to an 8-bit BSIF code. The remaining

training subsets are used to set the acceptance/rejection

threshold. We use the funnelled and aligned versions of the

LFW data set and after computing the LBP, LPQ or BSIF

code images, crop the images and keep an area of 80� 96

pixels in the centre of the code image. In the experiments on

the LFW, a number of investigations are made. First of all,

the proposed MBSIF descriptor is compared against two

other commonly used texture representations for face

recognition, namely the MLBP [18] and MLPQ [62] against

a varying J. The results are obtained using the proposed

method described in earlier sections, i.e. using the sym-

metric matching and the client-specific LDA approach on

the MBSIF histograms. The results are shown in Fig. 4. A

number of observations can be made from the figure. First,

it can be seen that the proposed MBSIF descriptor outper-

forms both MLPQ and MLBP representations. Second, by

increasing J and as a result the number of regions, the

performance of all three descriptors is improved. This is due

to the fact that the underlying MRF matching method pro-

vides good pixelwise alignment and by increasing J more

spatial information becomes available for recognition. The

boost in performance with increasing J is better observed

from J ¼ 2 to J ¼ 8 than from J ¼ 8 to J ¼ 16 with the

performance being almost saturated around J ¼ 16.

Next, we study the effect of symmetric MRF matching

on recognition performance. We compare the mean accu-

racies obtained using each descriptor with the proposed

symmetric matching method versus the non-symmetric

approach. The results are illustrated in Fig. 5. It is observed

that irrespective of the value of J, the proposed symmetric

face matching method consistently performs better than the

Fig. 4 Comparison of mean

recognition accuracies between

MBSIF, MLPQ and MLBP

descriptors on the LFW data set

against varying J
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conventional non-symmetric approach. The improvement

is more pronounced with a fewer number of subregions yet

with the largest number of regions used (J ¼ 16), the im-

provements for MLBP, MLPQ and MBSIF compared to the

non-symmetric approach are more than 3.5 , 4 and 1.4 %,

respectively.

Next, as the MLBP, MLPQ and MBSIF descriptors

provide different representations, it is expected that the

information they provide would be complementary to each

other and that the recognition performance can be boosted

by combining them. For combination, a sum rule over

scores obtained in different regions using different de-

scriptors is employed. The result of fusion along with other

state-of-the-art results on the LFW data set (J ¼ 16) in the

most restricted protocol is presented in Table 2. From the

table, it is observed that by using only the proposed MBSIF

descriptor one can achieve a comparable performance to

the previous best results under this setting. Fusing the three

MLBP, MLPQ and MBSIF descriptors together we achieve

an impressive mean performance of 88.19 %, ranking the

proposed approach first under this setting. As noted earlier,

our method is unsupervised and can be compared to other

approaches under this protocol. In this case, we ran the

experiment on the aligned version of the LFW data set

[63]. The results of this comparison are provided in Table

3. It can be observed that the proposed approach achieves

the best result in this setting.

5.4 Experiment in identification: FERET

In real-world scenarios in-depth rotation of faces is com-

monly present in face images. In this experiment, we

evaluate the proposed method on the rotation shots of the

Fig. 5 Effect of symmetric

MRF matching on mean

recognition accuracy using

different descriptors on the

LFW data set against varying J

Table 2 Comparison of the performance of the proposed approach to

the state-of-the-art methods on the LFW database in the most re-

stricted setting (strict LFW, no outside training data used)

Method l� SE

Eigenfaces, original [67] 0.6002 ± 0.0079

Nowak, original [45] 0.7245 ± 0.0040

Nowak, funnelled [45] 0.7393 ± 0.0049

Hybrid descriptor-based, funnelled [72] 0.7847 ± 0.0051

3� 3 multi-region histograms (1024) [52] 0.7295 ± 0.0055

Pixels/MKL, funnelled [49] 0.6822 ± 0.0041

V1-like/MKL, funnelled [49] 0.7935 ± 0.0055

APEM (fusion), funnelled [29] 0.8408 ± 0.0120

MRF-MLBP, funnelled [3] 0.7908 ± 0.0014

Fisher vector faces [33] 0.8747 ± 0.0149

MRF-MLBP-CSLDA, funnelled 0.8196 ± 0.0145

MRF-MLPQ-CSLDA, funnelled 0.8336 ± 0.0170

MRF-MBSIF-CSLDA, funnelled 0.8493 ± 0.0126

MRF-fusion, funnelled 0.8819 ± 0.0079

Table 3 Comparison of the performance of the proposed approach to

the state-of-the-art methods on the LFW database in the unsupervised

setting

Method l� SE

SD-MATCHES, 125� 125, aligned [60] 0.6410 ± 0.0062

H-SX-40, 81� 150, aligned [60] 0.6945 ± 0.0048

GJD-BC-100, 122� 225, aligned [60] 0.6847 ± 0.0065

LARK unsupervised, aligend [56] 0.7223 ± 0.0049

LHS, aligned [58] 0.7340 ± 0.0040

I-LPQ*, aligned [1] 0.8620 ± 0.0046

Pose adaptive filter (PAF) [21] 0.8777 ± 0.0051

MRF-MLBP, aligned [3] 0.8008 ± 0.0013

DFD [38] 0.8402 ± 0.0044

VMRS [11] 0.8857 ± 0.0037

MRF-fusion, aligned 0.8935 ± 0.0079
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FERET database [48] i.e. the b series in an identification

scenario. For this experiment, frontal images of 200 clients

of the XM2VTS [42] data set are used as the imposter set.

This experiment is designed particularly to explore the

capabilities of the proposed methodology for recognition in

varying pose conditions. This part of the database consists

of 200 subjects captured under 9 different yaw angles

ranging from nearly �60� to þ60�. We use the ba image of

each subject (almost frontal) as the gallery image and all

the rest as test images. Frontal gallery images are cropped

using manually annotated eye coordinates to a size of

128� 144 pixels with an interocular distance of 70 pixels.

The test/evaluation images are detected using the Viola and

Jones [69] method and scaled so that the face area roughly

corresponds to an area of 128� 144 pixels. Hence, the

method is evaluated subject to misalignments and moderate

scale deviations. Region parameter J is set to 16. Table 4

reports the correct identification rates obtained on this data.

The results of some other methods are also included for

comparison. From the table, it can be observed that the

proposed approach outperforms all alternative methods in

most poses, except the bb pose (corresponding to an ex-

treme pose deviation of þ60� from frontal) in which losing

only by approximately 1 %.

5.5 Experiments in verification: XM2VTS

We also evaluate our method on the rotation shots of the

XM2VTS database [42]. In the XM2VTS rotation data set

the evaluation protocol is based on 295 subjects consisting

of 200 clients, 25 evaluation imposters and 70 test im-

posters. The performance of a verification system is often

stated in equal error rate (EER) in which the false accep-

tance and false rejection rates are equal and the threshold

for acceptance or rejection of a claimant is set using the

true identities of test subjects. In this experiment, frontal

training images are cropped using manually annotated eye

coordinates to a size of 128� 144 pixels so that the dis-

tance between the eyes is 70 pixels. As in the FERET

experiment, the test/evaluation images are detected and

cropped using the Viola and Jones [69] method. After face

detection, each image is scaled so that the face area roughly

corresponds to an area of 128� 144 pixels. Parameter J is

set to 16. This experiment enables one to compare the

proposed method to other similar pose-invariant ap-

proaches in a verification scenario subject to challenging

settings of face misalignment and pose variation. The rest

of the procedure is as described in Sect. 5.1. As in the

previous experiment on the FERET database, the imposter

set is chosen to be the frontal images of the 200 clients of

the XM2VTS database. The best results obtained on this

data set are listed in Table 5. It can be observed from the

table that the proposed approach obtains the lowest error

rate on the rotation shots of the XM2VTS [42] database. In

addition to the multi-resolution nature of the descriptors

employed, the achieved high performance is attributed to

the dense pairwise matching provided by the symmetric

matching process and the functionality of the client-

specific LDA transformation employed.

Table 4 Comparison of the

performance of the proposed

approach to the state-of-the-art

methods on the FERET

database

Pose bi bh bg bf be bd bc bb

Horizontal deviation angle �60� �40� �25� �15� þ15� þ25� þ40� þ60�

MRF [30] na 91.0 97.3 98.0 98.5 96.5 91.5 na

PAF [74] 93.75 98.0 98.50 99.25 99.25 98.50 98.0 93.75

Sarfraz [55] 79.2 92.4 89.7 100 98.6 97.0 89.0 82.5

CLS [57] 79.0 85.0 94.0 96.0 95.0 90.0 82.0 70.0

PAN [26] 52.0 78.5 91.5 98.5 97.0 93.0 81.5 44.0

3D Morph. model [15] 90.7 95.4 96.4 97.4 99.5 96.9 95.4 94.8

Prob. stack flow [8] 	 43 	 65 	 89 	 95 	 93 	 82 	 57 	 34

3D pose norm. [9] na 90.5 98 98.5 97.5 97.0 91.5 na

MRF-MLBP [4] 92.0 98.5 99.5 100.0 99.5 99.0 99.5 91.0

MRF-MLBP-CSLDA 92.5 98.5 99.0 100.0 100.0 99.0 99.5 92.0

MRF-MLPQ-CSLDA 93.0 98.0 99.5 100.0 100.0 99.0 99.0 93.0

MRF-MBSIF-CSLDA 93.0 98.5 99.5 100.0 100.0 99.5 99.5 93.5

MRF-fusion 94.0 99.0 99.5 100.0 100.0 99.5 99.5 93.5

Table 5 Comparison of the

performance of the proposed

method to the state-of-the-art

methods on the XM2VTS

database

Method EER

3D correc. [65] 7.12

Face matching [5] 4.85

MRF-MLBP [3] 4.27

MRF-MLBP-CSLDA 3.87

MRF-MLPQ-CSLDA 3.62

MRF-MBSIF-CSLDA 3.37

MRF-fusion 3.12

Pattern Anal Applic (2017) 20:113–126 123

123



6 Conclusion

The paper presented a novel discriminative multiscale

image descriptor (MBSIF ? CSLDA) using statistical

learning based on a variant of linear discriminant analysis.

The discriminative descriptor which can be learnt in an

unsupervised fashion, was shown to be a suitable solution

for the unseen image pair matching tasks. Next, in order to

gauge the similarity of a pair of images more effectively,

the face pair matching task was symmetrised. For this

purpose, the discriminative LDA subspace learning was

performed symmetrically, improving recognition perfor-

mance. A dense pixelwise image pair matching method

embedded at the pixel level made the proposed technique

applicable to pose robust recognition of faces. Finally, the

proposed descriptor was combined with the MLBP and

MLPQ features in a score level fusion scheme in an LDA

space to further enhance the recognition accuracy.
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