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Abstract In order to obtain more robust face recognition

results, the paper proposes an image preprocessing method

based on local approximation gradient (LAG). The tradi-

tional gradient is only calculated along 0� and 90�; how-
ever, there exist many other directional gradients in an

image block. To consider more directional gradients, we

introduce a novel LAG operator. The LAG operator is

actually calculated by integrating more directional gradi-

ents. Because of considering more directional gradients,

LAG captures more edge information for each pixel of an

image and finally generates an LAG image, which achieves

a more robust image dissimilarity between images. An

LAG image is normalized into an augmented feature vector

using the ‘‘z-score’’ method. The dimensionality of the

augmented feature vector is reduced by linear discriminant

analysis to yield a low-dimensional feature vector. Ex-

perimental results show that the proposed method achieves

more robust results in comparison with state-of-the-art

methods in AR, Extended Yale B and CMU PIE face

database.

Keywords Local approximate gradient � Image

preprocessing � Linear discriminant analysis � Robust
dissimilarity � Face recognition

1 Introduction

Face recognition (FR) is the problem of verifying or iden-

tifying a face from its image. It has received a great deal of

attention from the scientific and industrial communities over

the last three decades due to its wide range of applications in

entertainment, smart cards, information security, law en-

forcement, access control and video surveillance [1, 2].

Various methods have been proposed for facial feature ex-

traction and classification, among which the representatives

include subspace learning methods (e.g., Eigenface [3],

Fisherface [4], Laplacianfaces [5], subspace learning from

image gradient orientations (IGO) [6]), kernel-based sub-

space learning methods [7–10], local binary pattern (LBP)

methods [11, 12], Gabor feature-based classification meth-

ods [13–15], preprocessing-based approaches [16–21, 30,

31, 33, 34], the recently developed sparse representation-

based methods [22–25], and the like. While most of these

methods in controlled conditions have already achieved

impressive performance over large-scale galleries, there still

exist many challenges for FR in uncontrolled environments,

such as partial occlusions, varying lighting conditions, ex-

pressions, poses, and so on.

This paper focuses mainly on the image preprocessing

technology, and the issue of robustness to facial expression

varying, lighting variations and partial occlusions. Prepro-

cessing-based approaches seek to reduce the image to a

more ‘‘canonical’’ form, and many well-known algorithms

have been developed to tackle this problem. Histogram

equalization (HE) is one simple example, but purpose-
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designed methods often exploit the fact that (on the scale of

a face) naturally occurring incoming illumination distribu-

tions typically have predominantly low spatial frequencies

and soft edges so that high-frequency information in the

image is predominantly signal (i.e., intrinsic facial appear-

ance). For example, the Multiscale Retinex (MSR) method

of Jobson et al. [16] cancels much of the low-frequency

information by dividing the image by a smoothed version of

itself. Zhang et al. developed a novel technique called

Gradientfaces (GF) by extracting the illumination insensitive

measure from the gradient domain [17]. Wang et al. [18] use

a similar idea (with a different local filter) in the self-quo-

tient image (SQI). Gross and Brajovic (GB) [19] developed

an anisotropic smoothing method that relies on the iterative

estimation of a blurred version of the original image. More

recently, Xiaoyang Tan and Bill Triggs (TT) [20] present a

simple and efficient preprocessing chain that eliminates

most of the effects of changing illumination while still

preserving the essential appearance details that are needed

for recognition, and B. Wang et al. [21] present a novel

Illumination normalization technique called Weberfaces

(WF) by using Weber’s law. In addition, nonnegative matrix

factorization (NMF) has become a popular data-representa-

tion method and has been widely used in image processing

and pattern-recognition problems [30, 31].

In this paper, we propose an image preprocessing

method based on local approximation gradient (LAG). The

traditional gradient is only calculated along 0� and 90�;
however, there exist many other directional gradients in an

image block. In order to consider more directional gradi-

ents, we introduce a novel LAG operator. The LAG op-

erator is actually calculated by integrating more directional

gradients. Generally, the main purpose of gradient calcu-

lation is to obtain different edges. Because of considering

more directional gradients, LAG captures more edge in-

formation for each pixel of an image and finally generates

an LAG image, which achieves a more robust image dis-

similarity between images. More edge information depicts

higher variances of the image. Intuitively, one often pays

more attention to the regions of higher variances in a given

image as compared with the flat regions. Therefore, the

computation of orientation LAG should play an important

role in a classification task. Then, a LAG image is nor-

malized into an augmented feature vector using the ‘‘z-

score’’ method. The dimensionality of the augmented fea-

ture vector is reduced by linear discriminant analysis to

yield a low-dimensional feature vector. Experimental re-

sults show that LAG achieves more robust results in

comparison with state-of-the-art methods in AR, Extended

Yale B and CMU PIE face database. The rest of the paper

is organized as follows: Section 2 presents our prepro-

cessing method, Sect. 3 reports experimental results, and

Sect. 4 concludes the paper.

2 Image preprocessing method based on local
approximation gradient

2.1 Local approximation gradient

Generally, gradient operator is a first-order derivative op-

erator. For an input image C(x, y), its gradient is a vector:

rCðx; yÞ ¼ Gx

Gy

� �
¼ oC ox

oC oy

� �
: ð1Þ

The amplitude of the vector is expressed as:

magðCÞ ¼ ðG2
x þ G2

yÞ
1=2 ð2Þ

The orientation angle of the vector is expressed as:

bðx; yÞ ¼ arctan
Gy

Gx

� �
ð3Þ

For a discrete image C(x, y), Gx and Gy are usually cal-

culated by different templates. An image template neigh-

borhood T 2 <393 is shown in Fig. 1. We denote by a the

intensity value in the central pixel location and by

bm(m = 1, 2, … 0.8) the mth neighbor of a. The orienta-

tion angle of a can be calculated according to

ba ¼ arctan b3�b7
b1�b5

� �
:

We can see that the traditional gradient is only calcu-

lated along 0� and 90�; however, there exist many other

directional gradients in an image block. To consider more

directional gradients, we design a novel gradient operator

called LAG. The local approximate gradient should also be

calculated in a local image block. Figure 2 shows eight

different directions in 3 9 3 image template neighborhood.

For an input image C(x, y), we can calculate its LAG

vector according to formula (4).

rCLAGðx; yÞ ¼

G0
�

G45
�

G90
�

G135
�

G225
�

G270
�

G315
�

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼

ðb1 � aÞ
ðb2 � aÞ
ðb3 � aÞ
ðb4 � aÞ
ðb5 � aÞ
ðb6 � aÞ
ðb7 � aÞ
ðb8 � aÞ

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

ð4Þ

b4 b3 b2

b5 b1

b6 b7 b8

Fig. 1 Image template

neighborhood
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The amplitude of the vector is expressed as:

magðCLAGÞ ¼ ðG2
0
� þ G2

45
� þ . . .G2

315
� Þ1=2

¼
X8
m¼1

ðbm � aÞ2
 !1=2

ð5Þ

The orientation angle of the vector is expressed as:

bLAG ¼ arctan
1

8

X8
m¼1

bm � a

 ! !
ð6Þ

Suppose there are N pixels in an image. We treat a pixel a
in an image as a center and determine its l neighbor pixels

on a square of radius L using the city-block distance (note

that for the pixel on the margin of an image, we use the

mirror transform to enlarge the image first and then de-

termine its neighbors). These neighbor pixels form a

squarely neighbor set. We denote by XL
a ¼

b1; b2; . . .blf g; l ¼ #ðXL
aÞ the Lth neighbor set of pixel a.

L is radius, and l is the number of neighbor pixel.

Figure 3 illustrates different neighbor sets for different

radius L. Figure 3a shows the first neighbor set Xa
1 (in-

cluding 8 neighbor pixels). Figure 3b shows the second

neighbor set Xa
2 (including 24 neighbor pixels). Figure 3c

shows the second neighbor set Xa
3 (including 48 neighbor

pixels).

For the Lth neighbor set of pixel a, we can calculate the

corresponding orientation angle according to formula (7)

bLAG ¼ arctan
1

l

Xl
m¼1

bm � a

 ! !
; Xa

¼ b1; b2; . . .blf g; l ¼ #ðXaÞ ð7Þ

For each pixel of an image, we consider all neighbor pixels

in a local block, and calculate more directional gradients.

The LAG is actually calculated by integrating more di-

rectional gradients. Generally, the main purpose of gradient

calculation is to obtain different edge information. Because

of considering more directional gradients, LAG should

obtain more edge information. More edge information

depicts higher variances of the image. Intuitively, one often

pays more attention to the regions of higher variances in a

given image compared with the flat regions. So, the com-

putation of orientation LAG should play an important role

in a classification task.

In the following, we will compare the difference dis-

similarity between the different preprocessed images by

different distance metric methods. Let us consider a mo-

tivating example in which different dissimilarity measures

are applied to the images shown in Fig. 4. Figure 4 shows

the different preprocessed images (including Original im-

ages, HE images, GF images, GB images, MSR images, TT

images, WF images, and LAG images), and the resolution

of all images resolution is adjusted to 60 9 60. For GB

[19] we set k = 1. For MSR [16] we set hsiz = [7, 15, 21].

For GF [17] we set r = 0.75. For TT [20] we set c = 0.2,

r0 = 1, r1 = 2, a = 0.1, and s = 10. For WF [21] we set

r = 0.75, nn = 9, and a = 2. For the proposed LAG, we

set L = 2. Table 1 shows the dissimilarity comparison

between neural expression image and the other images with

different measures. The other images consist of smile ex-

pression image, sunglasses image, scarves image from

same subject and neural expression images from different

subject. These measure methods consist of Euclidean,

Cosine, Correlation and Manhattan [29]. As can be seen in

Table 1, seven methods (including None, HE, GF, GB,

MSR, TT and WF) associate a smaller distance between

the original neural image and a neural image from a dif-

ferent subject. The distance between the original and the

same image with occlusion is larger. In contrast, the usage

of LAG results in a large distance between the original

neural expression image and the image of a different

b4 b3 b2

b5 b1

b6 b7 b8

0°

45°90°135°

180°

225° 270° 315°

Fig. 2 Eight different

directions in image template

neighborhood

Fig. 3 Squarely neighbor sets for radius L. a l = 8 (L = 1), b l = 24 (L = 2), and c l = 48 (L = 3)
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person. Therefore, we can believe that LAG obtains more

robust dissimilarity measure.

2.2 Image normalization

Assume that we are given a set of n input images {Ci},

i = 1, 2, …, n,we can obtain its local approximate gradi-

ent image {Wi}, i = 1, 2, …, n by calculating local ap-

proximate gradient. Let {yi} be the p-dimensional column

vector obtained by writing {Wi} in lexicographic ordering.

All column vectors form a matrix B = [y1…
yn] 2 <p9n. Each gradient image is normalized using the

‘‘z-score’’ method [32]. We denote by di the normalized

vector of yi. The qth dimension of di can be calculated

according to formula (8).

d qð Þ
i ¼ y

qð Þ
i � l qð Þ

� �
=r qð Þ; i ¼ 1; . . .; n; q ¼ 1; . . .; p

ð8Þ

where yi
(q), di

(q) are, respectively, the qth dimension of

column vector y
i
and d

i
.l(q)and r(q) are the correspond-

ing mean and variance respectively, and they can

be calculated according to lðqÞ ¼ 1
n

Pn
i¼1 y

ðqÞ
i and

rðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 ðy

ðqÞ
i � lðqÞÞ2

q
. We can compute all p di-

mensions of column vector d
i
according to formula (8). For

an input image Ci, we can obtain its corresponding nor-

malized vector d
i
.

2.3 Dimensionality reduction

The dimensionality of the normalized vector is reduced

by LDA to yield a low-dimensional feature vector. LDA

searches for feature vectors in the underlying space that

best discriminate among classes. More formally, given a

number of independent features relative to which the

data is described, LDA creates a linear combination of

these which yields the largest mean differences between

the desired classes. Mathematically speaking, for all the

samples of all classes, we define two measures: (1) one

is called within-class scatter matrix, as given by for-

mula (9)

Sw ¼
XC
c¼1

Xlc
h¼1

ðdh;c � mcÞðdh;c;�mcÞT ð9Þ

where dh,c denotes the hth training sample in class c, lc is

the number of training samples in class c, mc is the mean of

the training samples in class c, and C is the number of

class. (2) The other is called between-class scatter matrix,

as given by formula (10)

Sb ¼
XC
c¼1

lcðmc � mÞðmc � mÞT ð10Þ

where m represents the mean of all classes.

The goal is to maximize the between-class measure

while minimizing the within-class measure. The dis-

criminative projection basis W and eigen values K are

obtained by solving the thin linear discriminant analysis

(LDA) eigendecomposition:

ðSw þ eIÞ�1
SbW ¼ WK ð11Þ

where e is a small regularization constant (10-3 below) and

I is the identity matrix. Thus, the original L-dimensional

space is projected onto a final d-dimensional space using

LDA.

Fig. 4 Images used for the dissimilarity measurement. a Original

images, b HE images, c GF images, d GB images, e MSR images,

f TT images. g WF images, h LAG images. Each row from left to

right in turn is the neural expression, smiling expression, occluded

(sunglasses), occluded (scarves) and another person’s neural

expression
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2.4 Robustness to occlusion

In order to evaluate the robustness to occlusion of our al-

gorithm, we considered a single-sample-per-class ex-

periment using neutral face images taken from the AR

database. Our training test consisted of 100 face images of

100 different subjects, taken from session 1. Our testing set

consisted of one image per subject taken from session 2.

We evaluated the performance of our algorithms for the

case of synthetic occlusions. Our algorithms consisted of

LAG, and LAG with LDA (LAG-LDA). All test images

were artificially occluded by a dinosaur patch of increasing

size at random location. Figure 5 shows the corresponding

corrupted images. Figure 6 shows the recognition rates of

different algorithms without LDA. Figure 7 shows the

recognition rates of different algorithms with LDA. As

shown in Figs. 6 and 7, our algorithms (including LAG and

LAG-LDA) consistently outperform the compared meth-

ods. As we may observe, LAG and LAG-LDA obtain more

robust performance with a recognition rate over 75 % even

when the percentage of occlusion is about 4 %. In addition,

LAG achieves also better accuracy on FR than the com-

pared methods without LDA and with LDA.

Figure 8 shows the recognition rates of LAG and LAG-

LDA. As shown in Fig. 8, the two results are approximate.

Figure 9 shows the running time of all methods (including

with LDA and without LDA). It’s worth noting that the

methods with LDA achieves achieve faster running time

than that without LDA.

3 Experiments

In this section, we evaluate the robustness of our method

for the application on FR. Three publicly available face

databases, namely, AR [26], Extended Yale B [27], and

CMU PIE [28] are used for experimental evaluation. For

AR, Extended Yale B and CMU PIE, we resize them to

Table 1 Dissimilarity comparison between neural expression image and the other images with different measures

Measure Image None HE GF GB MSR TT WF LAG

Euclidean Smile 0.1404 0.2264 0.5147 0.2621 0.1090 0.1593 0.2595 1.0181

Sunglasses 0.5153 0.5363 0.6150 0.4189 0.2513 0.3188 0.425 1.0859

Scarves 0.3912 0.6090 0.5921 0.2707 0.2084 0.2015 0.343 1.1507

Different 0.3283 0.4653 0.6116 0.3654 0.2193 0.2691 0.3166 1.2571

Cosine Smile 0.0943 0.0256 0.1325 0.0344 0.0059 0.0127 0.0337 0.5412

Sunglasses 0.5419 0.1438 0.1891 0.0877 0.0316 0.0508 0.0903 0.6898

Scarves 0.7851 0.1855 0.1753 0.0366 0.0217 0.0203 0.0588 0.6160

Different 0.3927 0.1082 0.1832 0.0668 0.0240 0.0362 0.0501 0.8258

Correlation Smile 0.0931 0.0996 0.5207 0.3868 0.2026 0.2499 0.3018 0.5306

Sunglasses 0.5405 0.5586 0.6674 0.8451 0.6886 0.7359 0.6665 0.7207

Scarves 0.7857 0.7226 0.7168 0.4381 0.4692 0.4063 0.4620 0.6544

Different 0.3917 0.4213 0.7087 0.7207 0.6126 0.6856 0.5114 0.8710

Manhattan Smile 5.1683 8.5085 17.2237 8.6717 3.5439 6.1040 9.7176 38.4434

Sunglasses 17.6365 24.1771 24.9745 15.1932 9.5082 12.4320 16.8066 49.5127

Scarves 22.6849 28.1592 24.4500 10.7663 8.6399 8.7246 14.1940 46.3281

Different 14.4169 20.4238 24.7419 14.3901 8.5778 11.8163 13.1678 57.9166

Bold values indicate the maximum distance in certain distance measure

Fig. 5 Artificial occlusion images using a dinosaur patch of increas-

ing size at random location

0.0 0.2 0.4 0.6 0.8

0

10

20

30

40

50

60

70

80

90

100

R
ec

og
ni

tio
n 

ra
te

s(
%

)

Percentage of Occlision

 None
 HE
 GF
 GB
 MSR
 TT
 WF
 LAG
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(without LDA)
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60 9 60. To verify the effectiveness of the proposed

method, in this series of experiments we evaluate the

performance of the proposed method and compare it to that

of several methods using the LDA and 1-NN classifier. In

order to evaluate the performance of our algorithm for the

case of synthetic occlusions, a series of similar experiments

were also performed. In these experiments, all test images

were artificially occluded by a dinosaur patch at random

position. We used dinosaur patch of resolution 30 9 30.

3.1 Parameter selection

For GB [19] we set k = 1 for all experiments. For MSR

[16] we set hsiz = [7, 15, 21]. For GF [17] we set

r = 0.75. For TT [20] we set c = 0.2, r0 = 1, r1 = 2,

a = 0.1, and s = 10. For WF [21] we set r = 0.75,

nn = 9, and a = 2. For the proposed LAG, we set the

neighbor radius L = 2 for AR and Extended Yale B. In

CMU PIE, the neighbor radius is set to 4. In addition, in

1-NN classifier, the dissimilarity measure based on cosine

distance is adopted. In LDA, PCA ratio is set to 1, so all the

non-zero eigenvalues will be kept.

3.2 AR database

The AR database consists of more than 4000 frontal view

face images of 126 subjects. Each subject has up to 26

images taken in two sessions. The first session contains 13

images, numbered from 1 to 13, including different facial

expressions (1–4), illumination changes (5–7), and differ-

ent occlusions under different illumination changes (8–13).

The second session duplicates the first session 2 weeks

later. We randomly select a subset with 100 subjects.

Figure 10 shows a sample of images used in our ex-

periments. Figure 10a shows the non-occluded images of

session 1. Figure 10b shows the non-occluded images of

session 2. Figure 10c shows the corresponding artificial

occlusion images of (b). Figure 10d shows the face images

occluded by the scarf or sunglasses.

We investigate the robustness of our scheme for the case

of facial expression varying, illumination variations, oc-

clusions(sunglasses)-illumination changes, and occlu-

sions(scarves)-illumination changes. Table 2 provides the

detailed information of each experiment (referred to as

Exp.). The best recognition rates are shown in Table 3,

Tables 4 and 5. The dimension that results in the best

performance for each method is given in parentheses.

From Exp. 1 to Exp. 4, we use images 1–4 of session 1

for training. As can be seen from Table 3, LAG-LDA

achieves better recognition rate compared with other

methods. LAG-LDA achieves 93.25 % recognition rate for

different expressions (Exp. 1). For Exp. 2, LAG-LDA
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achieves 89.33 % recognition rate for the case of illumi-

nation changes. For Exp. 3 and Exp. 4, which are more

difficult experiment on the AR database, LAG-LDA

achieves 67 % recognition rate for the case of occlu-

sions(sunglasses)-illumination changes, and achieves

67.33 % recognition rate for the case of occlusions

(scarves)-illumination changes.

Furthermore, from Exp. 5 to Exp. 8, we use im-

ages 8–13 of session 1 for training, and they are also very

difficult experiment on the AR database. As can be seen

from Table 4, LAG-LDA achieves also better recognition

rate compared with other methods. LAG-LDA achieves

75.25 % recognition rate for different expressions (Exp. 5).

For Exp. 6, LAG-LDA achieves 90.67 % recognition rate

for the case of illumination changes. Due to the use of the

occlusion images as the training set, in Exp. 7, LAG-LDA

has also achieved better results, and achieves 92 %

recognition rate for the case of occlusions(sunglasses)-

illumination changes. For Exp. 8, LAG-LDA achieves

73.33 % recognition rate for the case of occlusions

(scarves)-illumination changes.

In order to evaluate the performance of our algorithm

for the case of synthetic occlusions, we carried out four

additional experiments (including Exp. 9, Exp. 10, Exp. 11

and Exp. 12) in AR database. Exp. 9, Exp. 10, Exp. 11 and

Exp. 12 are similar experiments to Exp. 1, Exp. 2, Exp. 5

and Exp. 6. The only difference is that all test images were

artificially occluded by a dinosaur patch at random posi-

tion. Table 5 shows the corresponding results. As can be

seen from Table 5, the proposed LAG-LDA performs

better than other state-of-the-art methods. The perfor-

mances of these compared methods are not satisfying. It

appears that those compared seven methods are sensitive to

an artificial occlusion image. In contrast, LAG-LDA is

more robust to artificial occlusion image and thus achieves

better results.

Fig. 10 Face images of the

same subject taken from the AR

database. a Shows the non-

occluded images of session 1.

b Shows the non-occluded

images of session 2. c Shows the
corresponding artificial

occlusion images of b. d Shows

the face images occluded by the

scarf or sunglasses

Table 2 Detailed information of all experiments of the AR database

Exp. Training set (session 1) Test set (session 2)

Exp. 1 1–4 1–4 expressions (neural, smile, anger and scream)

Exp. 2 1–4 5–7 illumination variations

Exp. 3 1–4 8–10 sunglasses-illumination

Exp. 4 1–4 11–13 scarves-illumination

Exp. 5 8–13 1–4 expressions (neural, smile, anger and scream)

Exp. 6 8–13 5–7 illumination variations

Exp. 7 8–13 8–10 sunglasses-illumination

Exp. 8 8–13 11–13 scarves-illumination

Exp. 9 1–4 1–4 expressions (neural, smile, anger and scream) ? dinosaur occlusion

Exp. 10 1–4 5–7 illumination variations ? dinosaur occlusion

Exp. 11 8–13 1–4 expressions (neural, smile, anger and scream) ? dinosaur occlusion

Exp. 12 8–13 5–7 illumination variations ? dinosaur occlusion
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3.3 Extended Yale B database

The Extended Yale B database contains 2414 front-view

face images of 38 individuals. For each individual, about

64 pictures were taken under various laboratory-controlled

lighting conditions. Figure 11 shows partial face images

used in our experiments. Figure 11a shows the non-oc-

cluded images of one subject. Figure 11b shows the cor-

responding artificial occlusion images of (a).

We carried out the following two experiments in Ex-

tended Yale B database. In Exp. 1, a random subset with

d(=15, 20, 25, 32) images per individual is taken with la-

bels to form the training set, and the rest of the database is

considered to be the testing set. We summarize the best

recognition rates of these methods in Table 6. The di-

mension that results in the best performance for each

method is given in parentheses. In Exp. 2, we performed a

similar experiment with the Exp. 1, and the only difference

is that all test images were artificially occluded by a di-

nosaur patch at random position. We summarize the best

recognition rates of these methods in Table 7. The di-

mension that results in the best performance for each

method is given in parentheses.

As can be seen from Table 6, LAG-LDA obtains better

recognition rate compared to the other algorithms. In all

experiments, LAG-LDA has more than 99 % recognition

Table 3 Best recognition rate

comparison on AR face

database with different methods

(from Exp. 1 to Exp. 4)

Method Exp. 1 Exp. 2 Exp. 3 Exp. 4

None-LDA 88 % (89) 51.33 % (97) 16 % (85) 34 % (92)

HE-LDA 89 % (97) 53.33 % (99) 19 % (95) 20 % (95)

GF-LDA 88.25 % (99) 82 % (99) 39 % (62) 45.33 (99)

GB-LDA 61.5 % (93) 52.33 % (99) 20.33 % (97) 36.33 % (97)

MSR-LDA 71.75 % (87) 68.3 % (92) 12 % (99) 27 % (87)

TT-LDA 76.25 % (92) 73.67 % (95) 25.67 % (96) 50 % (99)

WF-LDA 68.5 % (99) 62.67 % (99) 31.67 % (99) 35.67 % (86)

LAG-LDA 93.25 % (91) 89.33 % (93) 67 % (96) 67.33 % (99)

Bold values indicate the best recognition rate

Table 4 Best recognition rate

comparison on AR face

database with different methods

(from Exp. 5 to Exp. 8 and with

LDA)

Method Exp. 5 Exp. 6 Exp. 7 Exp. 8

None-LDA 57.25 % (92) 80 % (97) 78.67 % (89) 65.67 % (96)

HE-LDA 58 % (97) 77.33 % (99) 77.67 % (98) 53.33 % (98)

GF-LDA 64 % (97) 87.33 % (93) 86 % (97) 60 % (92)

GB-LDA 37 % (99) 41.67 % (98) 50 % (91) 37.67 % (85)

MSR-LDA 46.5 % (99) 55.67 % (98) 67.33 % (98) 39 % (81)

TT-LDA 50.5 % (99) 68 % (99) 66 % (94) 50.33 % (99)

WF-LDA 40.25 % (90) 51.67 % (91) 59 % (99) 36.67 % (96)

LAG-LDA 75.25 % (97) 90.67 % (95) 92 % (84) 73.33 % (99)

Bold values indicate the best recognition rate

Table 5 Best recognition rate

comparison on AR face

database with different methods

(from Exp. 9 to Exp. 12)

Method Exp. 9 Exp. 10 Exp. 11 Exp. 12

None-LDA 26.5 % (98) 11.67 % (98) 17.5 % (88) 22.33 (96)

HE-LDA 30.5 % (97) 11 % (46) 17 % (92) 25 % (85)

GF-LDA 66.75 % (95) 48.67 % (92) 38.25 % (98) 54 % (97)

GB-LDA 14.75 % (98) 11 % (93) 8.75 % (74) 11 % (74)

MSR-LDA 10 % (85) 6 % (75) 6.25 % (64) 8 % (51)

TT-LDA 10.5 % (97) 7.3 % (98) 7.5 % (97) 8.3 % (94)

WF-LDA 25.2 % (97) 17 % (70) 13.5 % (98) 17 % (98)

LAG-LDA 80.5 % (97) 75.67 % (98) 61.75 % (97) 75 % (97)

Bold values indicate the best recognition rate
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rate. For each method, we calculate the standard deviation

for all the recognition rates. As can be seen from Table 6,

LAG-LDA obtains smaller standard deviations compared

to the other methods, so the performance of our algorithm

is more stable. Therefore, for illumination changes, our

algorithm is more robust.

As can be seen from Table 7, we can see that the perfor-

mances of all methods degrade compared with Table 6.

However, LAG-LDA still obtains a better recognition rate as

compared to the other algorithms. In all experiments, LAG-

LDA has also more than 99 % recognition rate. For each

method, we also calculate the standard deviation for all the

recognition rates. As can be seen from Table 7, LAG-LDA

still obtains a smaller standard deviation as compared to the

other methods, so the performance of our algorithm is more

stable. Therefore, we can believe that our algorithm is more

robust to illumination changes with different occlusions.

3.4 CMU PIE database

The CMU PIE database consists of more than 41,000 face

images of 68 subjects. The database contains faces under

varying pose, illumination, and expression. We used the

five near frontal poses (C05, C07, C09, C27, C29) and a

total of 170 images for each subject. Figure 12 shows

partial face images used in our experiments. Figure 12a

Fig. 11 Partial face images of the same subject taken from the Extended Yale B database. a Shows the non-occluded images of one subject, and

the corresponding images were artificially occluded by a dinosaur patch at random position in (b)

Table 6 Best recognition rate

comparison on Extended Yale B

face database with different

methods

Method Exp. 1

15 20 25 32 Std.

None-LDA 90.89 % (37) 88.82 % (34) 92.01 % (37) 89.73 % (37) 0.0139

HE-LDA 46.26 % (37) 43.11 % (37) 39.55 % (36) 40.65 % (35) 0.0298

GF-LDA 99.51 % (36) 99.7 % (32) 99.86 % (35) 99.92 % (21) 0.0018

GB-LDA 99.57 % (37) 99.82 % (35) 99.8 % (30) 100 % (19) 0.0018

MSR-LDA 99.95 % (29) 100 % (28) 99.93 % (31) 100 % (14) 0.0004

TT-LDA 99.89 % (22) 100 % (24) 100 % (31) 100 % (18) 0.0006

WF-LDA 99.78 % (34) 99.4 % (36) 99.8 % (31) 100 % (17) 0.0025

LAG-LDA 99.95 % (30) 100 % (32) 100 % (37) 100 % (18) 0.0003

Bold values indicate the best recognition rate

Table 7 Best recognition rate

comparison on Extended Yale B

face database with different

methods (dinosaur occlusion)

Method Exp. 2

15 20 25 32 Std.

None-LDA 78.69 % (34) 81.62 % (37) 83.74 % (37) 86.39 % (37) 3.2615

HE-LDA 26.46 % (37) 25.39 % (37) 27.39 % (37) 30.26 % (36) 13.8527

GF-LDA 95.98 % (37) 96.92 % (37) 97.61 % (37) 98.58 % (37) 1.0982

GB-LDA 91.90 % (37) 93.22 % (37) 93.78 % (37) 95.47 % (37) 1.4791

MSR-LDA 86.75 % (37) 89.32 % (37) 90.81 % (37) 90.94 % (37) 1.9473

TT-LDA 75.09 % (37) 70.63 % (37) 78.09 % (37) 78.13 % (37) 3.5360

WF-LDA 94.62 % (37) 94.79 % (37) 96.24 % (36) 97.41 % (37) 1.3157

LAG-LDA 99.40 % (37) 99.46 % (26) 99.59 % (36) 99.66 % (31) 0.1187

Bold values indicate the best recognition rate
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shows the non-occluded images of one subject. Figure 12b

shows the corresponding artificial occlusion images of (a).

We carried out the following two experiments in CMU

PIE database. In Exp. 1, a random subset with d(=10,15,20

and 25) images per individual is taken with labels to form

the training set, and the rest of the database is considered to

be the testing set. We summarize the best recognition rates

of these methods in Table 8. The dimension that results in

the best performance for each method is given in paren-

theses. In Exp. 2, we performed a similar experiment with

the Exp. 1, and the only difference is that all test images

were artificially occluded by a dinosaur patch at random

position. We summarize the best recognition rates of these

methods in Table 9. The dimension that results in the best

performance for each method is given in parentheses.

As can be seen from Table 8, we can see that our

method LAG-LDA achieves the best performance among

all methods, irrespective of the variations of training

sample size. In all experiments, LAG-LDA has more than

92 % recognition rate. For each method, we calculate the

standard deviation for all the recognition rates. As can be

seen from Table 8, our method obtains the second smallest

standard deviation as compared to the other methods;

however, we can see that our method outperforms the first

smallest standard deviation method (HE-LDA) in terms of

recognition accuracy for approximately up to 84, 85, 86

and 86 % in different training sample sizes (10, 15, 20 and

25). In addition, LAG-LDA outperforms the second best

method (MSR-LDA) in terms of recognition accuracy for

approximately up to 6, 4, 5 and 5 % in different training

sample sizes (10, 15, 20 and 25). Therefore, we can believe

that our algorithm is more robust to pose changes.

As can be seen from Table 9, we can see that the per-

formances of all methods degrade compared with Table 8.

However, we can see that our method LAG-LDA still

achieves the best performance among all methods, irre-

spective of the variations of training sample size. In all

experiments, LAG-LDA has more than 84 % recognition

rate. For each method, we also calculate the standard de-

viation for all the recognition rates. As can be seen from

Table 9, our method does not obtain the smallest standard

deviation as compared to the other methods; however, we

can see that our method outperforms the first smallest

standard deviation method (HE-LDA) in terms of recog-

nition accuracy for approximately up to 76, 79, 79 and

80 % in different training sample sizes (10, 15, 20 and 25).

In addition, LAG-LDA outperforms the second best

method (GF-LDA) in terms of recognition accuracy for

approximately up to 21, 21, 22 and 20 % in different

training sample sizes (10, 15, 20 and 25). Therefore, we

can believe that our algorithm is more robust to pose

changes with different occlusions.

As can be seen from Tables 8 and 9, we can observe that

LAG-LDA obtains better results with or without occlusion;

however, the other methods are very sensitive to artificial

occlusion. Therefore, LAG-LDA is a more stable method.

Fig. 12 Partial face images of the same subject taken from the CMU PIE database. a Shows the non-occluded images of one subject, and the

corresponding images were artificially occluded by a dinosaur patch at random position in (b)

Table 8 Best recognition rate

comparison on Extended Yale B

face database with different

methods

Method Exp. 1

10 15 20 25 Std.

None-LDA 82.98 % (67) 86.22 % (67) 88.73 % (66) 88.88 % (59) 2.7654

HE-LDA 8.9 % (55) 10.34 % (61) 10.78 % (66) 11.41 % (64) 1.0663

GF-LDA 82.21 % (66) 86.69 % (67) 89.41 % (67) 89.82 % (67) 3.5022

GB-LDA 81.80 % (66) 87.02 % (67) 88.28 % (67) 90.18 % (67) 3.5899

MSR-LDA 86.58 % (66) 91.14 % (66) 91.23 % (64) 91.82 % (65) 2.4271

TT-LDA 84.63 % (67) 88.61 % (67) 89.61 % (67) 90.12 % (66) 2.4887

WF-LDA 86.07 % (67) 89.79 % (67) 90.88 % (67) 91.65 % (66) 2.4724

LAG-LDA 92.35 % (66) 95.17 % (63) 96.13 % (57) 96.71 % (62) 1.9339

Bold values indicate the best recognition rate
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3.5 Parameter analysis

In this section, we will discuss the influence of parameter

setting of the neighbor radius L. The performances of LAG-

LDA with different neighbor radius are evaluated on the

face image databases mentioned above. The first session of

each individual is used for the training and the second ses-

sion for tests in the experiment on the AR database. The

random 15 images per class of Extended Yale B database

are chosen for training, and the rest for testing. In addition,

the random 15 images per class are selected for training, and

the remaining images for test on the CMU PIE database.

The recognition rates of LAG-LDA with respect to

different neighbor radius on the three databases are shown

in Table 10. As can be seen from Table 10, LAG-LDA

achieves better result when L is set to 2 in AR and

Extended Yale B. It is worth nothing that LAG-LDA

achieves better result when L is set to 4 in CMU PIE.

Therefore, we generally choose the neighbor radius L = 2.

For face database with pose changes, we intuitively believe

that the larger neighbor radius can deal with larger local

image block, and can better adapt to pose changes. In this

paper, we choose the neighbor radius L = 4 for CMU PIE.

4 Conclusions

In this paper, we propose an image preprocessing method

based on LAG. The LAG operator is actually calculated

by integrating more directional gradients. Because of

considering more directional gradients, LAG captures

more edge information for each pixel of an image and

finally generates an LAG image, which achieves a more

robust image dissimilarity between images. Then, the

LAG image is normalized into a normalized feature vector

using the ‘‘z-score’’ method. The dimensionality of the

normalized feature vector is reduced by linear dis-

criminant analysis to yield a low-dimensional feature

vector. Our experiments show that the proposed method is

robust to different facial expressions, illumination varia-

tions and occlusions changes (including random occlusion

position and different occlusion sizes), and achieves better

recognition rate.
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