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Abstract Often captured images are not focussed

everywhere. Many applications of pattern recognition and

computer vision require all parts of the image to be well-

focussed. The all-in-focus image obtained, through the

improved image fusion scheme, is useful for downstream

tasks of image processing such as image enhancement,

image segmentation, and edge detection. Mostly, fusion

techniques have used feature-level information extracted

from spatial or transform domain. In contrast, we have

proposed a random forest (RF)-based novel scheme that

has incorporated feature and decision levels information. In

the proposed scheme, useful features are extracted from

both spatial and transform domains. These features are

used to train randomly generated trees of RF algorithm.

The predicted information of trees is aggregated to con-

struct more accurate decision map for fusion. Our proposed

scheme has yielded better-fused image than the fused

image produced by principal component analysis and

Wavelet transform-based previous approaches that use

simple feature-level information. Moreover, our approach

has generated better-fused images than Support Vector

Machine and Probabilistic Neural Network-based indi-

vidual Machine Learning approaches. The performance of

proposed scheme is evaluated using various qualitative and

quantitative measures. The proposed scheme has reported

98.83, 97.29, 98.97, 97.78, and 98.14 % accuracy for

standard images of Elaine, Barbara, Boat, Lena, and

Cameraman, respectively. Further, this scheme has yielded

97.94, 98.84, 97.55, and 98.09 % accuracy for the real

blurred images of Calendar, Leaf, Tree, and Lab,

respectively.

Keywords Image fusion � Multi-focus � Random forest �
Ensemble � Machine learning

1 Introduction

Image fusion is a process of integrating useful information

from two or more images to get an image which contains

more information [1, 2]. Often captured images are not

well-focussed everywhere due to limited field depth of

optical lens of camera [3, 4]. When image is captured, only

objects at a particular distance are focussed while other

objects at larger distance than specified by the lens formula

are not well-focussed. Thus, the captured image does not

provide clear information, which is necessary for human

visual perception as well as in the applications of pattern

recognition and machine vision. To solve this problem

image fusion approaches are developed. These approaches

combine complementary information contained in the

blurred images to provide more informative and clear

images.

Previously, researchers have proposed several image

fusion techniques in spatial and transform domains. In

spatial domain, image fusion has been performed at pixel

level, feature level, and decision level. The simplest tech-

nique is the pixel-level fusion that constructs the fused

image by calculating pixel-by-pixel average of the blocks

of input images. However, feature-level fusion techniques

use the features information of the source images and

construct the fused image using some fusion rule. Features
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are extracted from principal component analysis (PCA) and

Wavelet transform domains [5]. PCA-based fusion tech-

nique transformation performs conversion of the correlated

variable to uncorrelated variables named as the principal

components. It computes the compact dataset representa-

tion. The first principal component represents the most

important data sample as it accounts for the maximum

variance in the dataset and each succeeding component

represents as much of the rest of the variance as possible.

Discrete Wavelet transform and its variant-based image

fusion techniques are also proposed [6–9]. Multi-resolution

transform-based fusion techniques are also developed using

Laplacian pyramid [7], morphological pyramid [8], bi-

orthogonal wavelet transform [6]. The performance of

multi-resolution transform-based techniques is degraded

due to down sampling. To minimize this effect dual-tree

frame Wavelet-based technique has been developed [10].

The multi-band vector Wavelet-based fusion technique is

proposed that computes the coefficients of high and low

frequency bands. However, this technique produces some

blocking effect in the fused image. Therefore, anisotropic

diffusion arithmetic is also suggested as post-processing to

obtain improved image [11]. The multi-band Wavelet is

more generic compared to the two-band Wavelet trans-

formation. Its performance is found superior than two-band

Wavelet, due to its compact support, orthogonal aspects,

and decomposition properties [11]. Recently, Goodman

et al. [12] have developed vector Wavelet image fusion

technique. This Vector Wavelet-based approach provides

both synthesis and analysis operators. Therefore, this

decomposition offers more design flexibility. It provides

more benefits over scalar Wavelets with respect to short

symmetry, support, and orthogonally [13].

At decision level, image fusion techniques have been

developed using individual Machine Learning (ML) ap-

proaches like Support Vector Machine (SVM) and Artificial

Neural Network (ANN). SVM-based image fusion tech-

nique has been developed using dual tree complex Wavelet

transform [10]. Zhao et al. have suggested SVMs for multi-

source image fusion in [14]. SVM-based models perform

binary classification by finding the decision surface that has

maximum margin between the two closest points. SVM

constructs an optimal hyper-plane that minimizes the error

for unseen test data samples. ANN based fusion technique is

developed using feature-level fusion approach in [15, 16].

Probabilistic Neural Network (PNN) [17] and Radial Basis

Function Neural Network (RBFN) [18], two well-known

variants of ANN, are proposed for multi-focus image fusion.

PNN approach develops the decision of focussed/de-fo-

cussed image blocks using Spatial Frequency (SF), visibi-

lity, and edge features [17]. PNN approach based on Bayes

theory utilizes the computational power efficiently. It has

more flexible characteristic than back-propagation neural

networks. PNN organizes its functional structure into four

layers; input, pattern, summation, and decision layer.

However, the fusion decision of ML approaches is limited

for diverse type of images.

To address the issue, ensemble models are developed for

better decision making. In ensemble scheme, individual

models and their diversities can yield better decision. The

deficiency in one model can be replaced with the advan-

tages of others. The ensemble decision is considered more

accurate and generalized than single machine learning

approach [19]. In this study, we proposed random forest

(RF)-based ensemble approach for multi-focus image

fusion. This approach has been used effectively in different

classification and prediction problems [20].

The advantage of RF approach is the generation of di-

verse types of random trees with reduced variance, i.e. weak

learners. Such type of weak learners is primarily required for

ensemble [21]. RF-based ensemble approach could com-

pensate for the deficiency of one tree with the advantages of

other trees. Therefore, RF algorithm can effectively utilize

the diversity of random trees as compared to individual

approaches. RF algorithm randomly generates many tree

classifiers and aggregates their predictions. The generated

trees are trained on bootstrap samples of the training dataset

and employs random sub-sampling of features. This strategy

offers resistance to over training and over-fitting on input

data [22]. RF approach has performed well in high-dimen-

sional feature space, especially, when dataset is small and its

structure is complex.

The combined decision obtained through RF is used for

the construction of decision map for image fusion. That is

why; the proposed RF-based scheme has performed better

on diverse types of blurred images. In the proposed

scheme, useful features information is extracted from both

spatial and transforms domains. These features are then

used to train randomly generated trees by RF algorithm.

The predicted labels of random trees are aggregated to

construct the decision map for better image fusion. The

proposed scheme is evaluated in terms of accuracy,

specificity, sensitivity, F-score, and Mathew Correlation

Coefficient (MCC). However, the quality of fused images

is assessed using Peak Signal to Noise Ratio (PSNR),

Mutual Information (MI), Root Mean Square (RMSE),

correlation, Structure Similarity Index Measure (SSIM),

Spatial Frequency (SF), Mean Gradient (MG), and standard

deviation (STD). Performance of the proposed scheme is

compared to previous image fusion approaches for syn-

thesized and real blurred images. It is found that our pro-

posed scheme has better quality-fused images. The main

novelty of our scheme is the effective development of RF-

based ensemble scheme for multi-focus image problems.

Secondly, this scheme has incorporated both the feature

and decision levels information to fuse multi-focus images.
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The remaining part of this paper is organized as: In

Sect. 2, we have presented various stages of the proposed

scheme, in detail. Experimental setup is explained in

Sect. 3. Results are discussed in Sect. 4. Finally, in Sect. 5

conclusions are given.

2 Proposed scheme

The block diagram of RF-based proposed scheme is given

in Fig. 1. The input dataset is formed by decomposing

each input image into blocks of size M 9 N (Implemen-

tation detail about the blocks is given in Sect. 3). The nine

useful features are extracted from each block of the

blurred/un-blurred images. These useful features provide

blur information contained in these images. The detail

information about these features is given in Sect. 2.3. RF

algorithm efficiently utilized the input dataset to generate

decision/classification trees. The predicted labels of ran-

domly generated trees of random forest are combined

using majority voting to construct the decision map for

the fused image. Finally, various quality measures are

employed to report the performance of fused images.

Now, we will describe different stages of the proposed

scheme.

2.1 Dataset formulation

Input dataset is formed by decomposing two differently

blurred images I1 and I2 into blocks of size M 9 N pixels.

For each image block, B
ðiÞ
I1

2 I1 and B
ðiÞ
I2

2 I2, nine-

dimensional feature vector is constructed, i.e. V
ðiÞ
I1

¼
v11; v12; v13; . . .; v19ð Þ and V

ðiÞ
I2

¼ v21; v22; v23; . . .; v29ð Þ.
Next, we assigned target labels tðiÞ for ith feature vector of

focussed/unfocussed blocks. For this purpose, a binary ar-

ray is created as:

AðiÞ ¼ 1 ifðv1j � v2jÞ for j ¼ 1; 2. . .; 9
0 Otherwise

�
ð1Þ

These values in the array, AðiÞ ¼ 0; 1f gj¼9
j¼1, belong to one of

two classes of focussed/unfocussed blocks, i.e.

AðiÞ 2 c1; c2f g. Target labels tðiÞ are assigned using the

majority class votes, i.e.

tðiÞ ¼ arg max

cj

X9
k¼1

DðaðiÞk ; cjÞ; for j ¼ 0; 1 ð2Þ

where, D d
ðiÞ
k ; c j

� �
¼ 1 if d

ðiÞ
k ¼ cj

0 otherwise

�
. The image block

is categorized to the class that receives the maximum votes.

2.2 Working of RF algorithm

Figure 2 demonstrates the working diagram of RF algo-

rithm using bootstrap subspace data sampling technique.

During forest growing process, bootstrap technique ran-

domly selects samples without replacement from the input

dataset of nb blocks, S ¼ V ðiÞ; tðiÞ
� �� �i¼nb

i¼1
. We investigated

the performance of RF algorithm by selecting different

number of random trees. However, we found the optimal

Fig. 1 Block diagram of the proposed RF based fusion scheme
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performance for nt ¼ 500 random trees. Each tree is built

by randomly selecting 2/3rds of the input dataset with re-

placement called training dataset Str ¼ V ðiÞ; tðiÞ
� �� �i¼nr

i¼1
.

The remaining 1/3rds testing dataset of ns blocks,

Sts ¼ V ðiÞ; tðiÞ
� �� �i¼ns

i¼1
, is kept for the evaluation.

To determine the best node for split, we selected a

random subset (subspace) of m variables from training

data. In general, the value of m variables is determined

from D-dimensional feature vector, i.e. m �
ffiffiffiffi
D

p
. How-

ever, in the proposed scheme, for nine-dimensional feature

vector, the value of m � 3. These selected variables subset

is used to compute the best node split according to Gini

criteria [22]. This fitness criterion estimates the importance

of variables. This measures the degree of association be-

tween variables and classification results. The lowest value

of this measure is taken as the best split of each node. Gini

measure is computed using the following equation as:

Giniðd; viÞ ¼
Xp
i¼1

ai

ns
IðduiÞ ð3Þ

where, p represents the number of children at node d. Here,

ns shows the number of input feature vectors used for

training. The Gini impurity IðdviÞ gives the distribution of

class label in the node. For a feature variable vi 2 V with

p values at node d, vi ¼ u1; u2; . . .; up
� �

the value of IðduiÞ
is computed as:

IðduiÞ ¼ 1�
Xc
i¼0

nci
ai


 �2

ð4Þ

where, nci is the number of samples with value ui belong to

class ci and ai indicates the number of samples with value

ui at that node d.

After the construction of classification trees on training

dataset, out-of-bag (OOB) testing data Sts ¼ V ðiÞ;
��

tðiÞÞgi¼ns
i¼1 is used to evaluate the predictions performance.

To build diverse type of weak classifiers, for good gener-

alization, we have constructed 500 random classification

trees with average accuracy is kept in the range of 60–

70 %. In the next stage, the whole input dataset of nb

blocks, S ¼ VðiÞ; tðiÞ
� �� �i¼nb

i¼1
, is provided to 500 classifi-

cation trees for the construction of depth map.

Figure 3 demonstrates an exemplary ensemble of ran-

dom tress with associated features and predicted labels. In

this figure, for each vector of input dataset, S ¼
VðiÞ; tðiÞ
� �� �i¼nb

i¼1
, the predicted labels are extracted using

500 RF tress as: t̂i1 ¼ f1 Vi
� �

, t̂i2 ¼ f2 Vi
� �

; . . .t̂i500 ¼ f500 Vi
� �

,

where t̂ij ¼ fj V
i

� �
indicates the predicted value of fj tree for

Fig. 2 Working of RF

algorithm to construct decision

map
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ith feature vectorVi. The predicted labels are aggregated

using well-known majority voting (MV) technique i.e.,

t̂i ¼ MV t̂i1; t̂
i
2; . . .; t̂

i
500

� �
. The predicted values of t̂i are used

to construct the decision map.

2.3 Image fusion using decision map

After construction of decision map, each block of fused

image B
ðiÞ
F is selected from input images I1 and I2 using the

corresponding value of the decision map as:

B
ðiÞ
F ¼ B

ðiÞ
I2

for t̂i¼ 1

B
ðiÞ
I1

for t̂i¼ 0

(
ð5Þ

White and black regions in the binary images of decision

maps, in Figs. 4 and 5, show the complimentary informa-

tion to be picked from two source images. In Fig. 4c, the

black regions indicate the focussed parts of the image in

Fig. 4a and the white regions of the image in the Fig. 4b.

Similar is the case for the Calendar image in Fig. 5. Both

these figures demonstrate that our scheme has accurately

selected the focussed image blocks from the input images.

2.4 Feature extraction stage

To form diverse type of training data for RF model, we

have selected the most informative/discriminative features

both from spatial and frequency domain. These futures are

used effectively in the literature to measure the image blur

[18, 23–27]. The dataset contains nine features in which

five features are taken from the spatial domain and re-

maining four features are extracted from the frequency

domain. Spatial domain features consist of visibility, spa-

tial frequency, energy of gradient, variance, and edges. The

remaining four frequency domain features include one

discrete cosine transform (DCT) high frequency and three

detail bands of DWT. The details of these features are

given as:

Visibility (VIS): This feature is derived from human

visual system [23]. It measures the difference among in-

tensities of the block pixels and mean intensity value of the

image block and shows the clarity of image block. It is

given by:

VIS ¼
XM
m¼1

XN
n¼1

Bðm; nÞ � lB
laþ1
B

����
���� ð6Þ

where a is a constant and lb is mean intensity value of

image block.

Spatial Frequency (SF): This is a measure of activity

level in the image [24]. It computes the difference of fre-

quency among the rows and columns of image blocks. The

larger value of SF shows greater focus in the image block.

This frequency is given as:

SF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRFÞ2 þ ðCFÞ2

q
ð7Þ

Here, RF and CF are the row and column frequencies,

respectively. The RF and CF are computed as:

Fig. 3 Ensemble tress along with associated features and final predicted label
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RF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MN

XM
m¼1

XN
n¼2

Bðm; nÞ � Bðm; n� 1Þð Þ2
vuut ð8Þ

CF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MN

XM
m¼1

XN
n¼2

Bðm; nÞ � Bðm� 1; nÞð Þ2
vuut ð9Þ

Edges: Edge feature indicates focus of an image. The fo-

cussed image blocks consist of more edges than the cor-

responding de-focussed image blocks. In our current work

we have used Canny edge detection algorithm, as proposed

in [25], to detect the edges in the image blocks.

Energy of Gradient (EOG): EOG is used to measure

focus of an image. The smaller value of EOG shows the

block is de-focussed and focussed image block has the

greater value of EOG [26]. It is calculated as:

EOG ¼
XM
i¼1

XN
j¼1

B2
i þ B2

j

� �
ð10Þ

where, Bi ¼ B iþ 1; jð Þ � B i; jð Þ and Bj ¼ B i; jþ 1ð Þ
�B i; jð Þ

Variance: Variance measures focus of the image by

computing the gray level contrast between the pixels of

image block and mean value of block. The value of vari-

ance is given as:

VAR ¼ 1

MN

XM
m¼1

XN
n¼1

Bðm; nÞ � lBð Þ2 ð11Þ

where, lb is mean value of the image block.

Discrete Wavelet Transform (DWT): DWT coefficients

show the focus of image. The activity level of this transform

can be measured at coefficients level by treating each co-

efficient separately [27]. Another approach computes win-

dow-based activity (WBA) by averaging the coefficients

over blocks of the image [18, 27]. DWT decomposition of

image blocks gives three detail sub-bands and one ap-

proximation sub-band. The approximation sub-band does

not contain much of the edge information. Therefore, it does

not contain useful information about the focus of the image.

Hence, the approximation band is not included in the feature

set for RF training. Only three detail sub-bands HL, LH, and

HH are used in the construction of feature space. The ac-

tivity level is computed by averaging the Wavelet coeffi-

cients over image blocks for each detail sub-band.

High Frequency Energy: Discrete Cosine Transform

(DCT) coefficients highlight the variation in frequency

information of the image. The high frequency coefficients

Fig. 4 Real blurred leaf image (a) image 1 (b) image 2 (c) corresponding binary image of the decision map

Fig. 5 Real blurred Calendar image (a) image 1 (b) image 2 (c) corresponding binary image of the decision map
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of this transform give the focus measure of the image

blocks, which can be obtained by removing the direct

components. The input image Bðu; vÞ in DCT domain is

defined as:

Bðu; vÞ ¼ 2

L
cðuÞcðvÞ

XL�1

i¼0

XL�1

j¼0

Bði; jÞ cos ð2iþ 1Þpu
2L

cos
ð2jþ 1Þpv

2L

ð12Þ

here, c(0)=1=
ffiffiffi
2

p
, c(u) = 1, and u, v = 0,1,…L-1.

DCT high frequency energy (E) is computed as:

E ¼
XL�1

u¼0

XL�1

v¼0

B2ðu; vÞ
" #

� B2ð0; 0Þ ð13Þ

2.5 Performance measures

To demonstrate the comparative performance of multi-

resolution transforms, individual learners, and combine

decision model, we used several performance measures.

They are explained as follows:

Accuracy (Acc): The prediction Acc of a classifier is

calculated as:

Acc ¼ TPþ TN

TPþ FPþ FNþ TN
� 100 ð14Þ

where, TP (True Positive) is number of correctively pre-

dicted labels of positive class and FP is number of incor-

rectly predicted labels of positive class. TN is number of

correctively predicted labels of negative class and FN is

number of incorrectly predicted labels of negative class.

Sensitivity (Sn) and Specificity (Sp): These measures

show the capability of classifier to predict the positive

(negative) class. These measures are calculated as:

Sn ¼ TP

TPþ FN
� 100 ð15Þ

Sp ¼ TN

FPþ TN
� 100 ð16Þ

Mathew Correlation Coefficients (MCC): This measure is

discrete form of Pearson’s correlation coefficient. It accounts

for both overprediction and underprediction. Its value varies

between -1 and 1. If MCC value is 1, it indicates the clas-

sifier makes no mistakes in prediction and if -1 then it shows

the classifier prediction is wrong. However 0 MCC value

means random prediction. MCC is calculated as:

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½TPþ FP�½TPþ FN�½TNþ FP�½TNþ FN�

p
ð17Þ

F-Score: F-score evaluates the statistical tests. It uses Precision

and Recall to compute the prediction accuracy and can be

considered as weighted average of precision and recall.

Precision is number of correct prediction divided by total

number of returnedpredictions and recall is correct predictions

divided by number of predictions. Its value is computed as:

F - score ¼ 2� Precision� Recall

Precisionþ Recall
ð18Þ

where, Precision ¼ TP

TPþFP and Recall ¼ TP

TPþFN

Standard Deviation (STD): STD measures the contrast

in the fused image. An image with high contrast would

have a greater STD value. Its value is computed as:

STD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
i¼1

ði� i0Þ2hFðiÞ

vuut ð19Þ

where, L is the number of gray levels and i0 ¼
PL
i¼1

ihF and

hF is the normalized histogram of fused image.

Mean Gradient (MG): MG is the mean value of the

gradient of the final fused image. Gradient usually repre-

sents the image details and clear image regions. Then, a

larger value of mean gradient indicates that the image

contains more image details and clear image regions. The

mean gradient is calculated as:

MG ¼ 1

ðM � 1ÞðN � 1Þ
XM�1

i¼0

XN�1

j¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oBFði; jÞ

oi


 �2

þ oBFði; jÞ
oj


 �2
s

ð20Þ

Spatial Frequency (SF): It is an important measure of the

image details. The higher spatial frequency value indicates

the more image details and further details are given in

previous Sect. 2.3.

Root Mean Square Error (RMSE): The RMSE measure

calculates the deviation of fused image from the original

image. The lesser deviation shows the more similarity

between the fused image and the original image. The

RMSE value is calculated as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MN

XM
i¼1

XN
j¼1

Oði; jÞ � Fði; jÞð Þ2
vuut ð21Þ

where, M, N represents the size of the original image O and

the fused image F.

Mutual Information (MI): MI calculates the similarity

between the fused image and the original Image. The larger

MI value indicates greater similarity between the fused and

original images. MI is computes as:

MI ¼
XL
l1¼1

XL
l2¼1

hO;Fðl1; l2Þ log2
hO;Fðl1; l2Þ
hOðl1ÞhFðl2Þ

ð22Þ

where, hO; hF; and hO;F are original, fused, and joint, image

histograms, respectively. L is number of intensity levels in

the original and fused images.
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Peak Signal to Noise Ratio (PSNR): PSNR value is used

to measure the resemblance between the original and fused

image. PSNR value is computed as:

PSNR ¼ 20 log10
L2

1
MN

PM
i¼1

PN
j¼1

Oði; jÞ � Fði; jÞð Þ2
ð23Þ

Correlation (Corr.): The Corr value indicates the simi-

larity between the original image and fused image. Its

values vary between 0 and 1. The larger correlation

value indicates the greater similarity between the ori-

ginal and fused images. The value of Corr is calculated

as:

Cor ¼
2
PM
i¼1

PN
j¼1

Oði; jÞFði; jÞ

PM
i¼1

PN
j¼1

Fði; jÞð Þ2 þ
PM
i¼1

PN
j¼1

Oði; jÞð Þ2
ð24Þ

Structural Similarity Index Measure (SSIM): SSIM mea-

sure computes the similarity between two images. The

SSIM is calculated by combining a comparison of lumi-

nance, contrast, and structure. It is applied locally in an

8 9 8 square window. The window is moved pixel-by-

pixel over the whole image. At each step, the local statis-

tics and the SSIM index are calculated within the window.

SSIM values range between [0 1]. Values close to 1 show

Fig. 6 a Right focussed, b left focussed, c original image, d fused using RF
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the highest similarity between original and fused Images

[28]. SSIM is calculated as:

SSIMðO;FÞ ¼ 2lOlF þ C1ð Þ 2rOF þ C2ð Þ
l2O þ l2F þ C1

� �
r2O þ r2F þ C2

� � ð25Þ

l0 and lf are mean intensities of original and fused images,

respectively. rO and rF are the standard deviations of ori-

ginal and fused images, respectively. rOF is combine

standard deviation of fused and original image. Here,

C1 = 6.5 and C2 = 58.5 are constants.

3 Experimental setup

Several experiments are conducted using a pair of multi-focus

images to analyze the performance of the proposed scheme.

Performance is evaluated using both synthesized and real

blurred images. To obtain the synthesized blurred images, we

blurred the left half of original image to form image I1, and

right half of original image to form image, I2 with the

Gaussian blur of radius 5. Further, we blurred blocks of dif-

ferent sizes (80 9 80 and 64 9 64) of the original image to

Fig. 7 a Right focussed, b left focussed, c original image, d fused using RF
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form the image I1 and I2, with Gaussian blur of radius 7. Real

blurred images are obtained from www.imagefusion.org.

Since multi-focus images, have non-uniform magnitude of

focussed pixels, as a result, the block-based fusion techniques

may affect the quality of the fused image at the block

boundary. To minimize this effect, we used suitable block

size of 3 9 3 for real blurred images. Further, block size of

8 9 8 pixels is used for the synthetic blurred images. If we

further reduce block size, the computational time increases

without appreciable increase in image quality. To develop

SVM-based fusion model, we computed the optimal value of

model parameters (c = 70) that controls the model com-

plexity and c = 0.05 of RBF function. PNN-based fusion

model develops using the optimal value of spread parameter

(r = 0.9). PCA-based image fusion technique is employed

by arranging input images into two column vectors as pro-

posed in [5]. The values of empirical means, eigenvalues, and

eigenvectors are calculated. The eigenvectors that have the

larger eigen values are obtained. The normalized components

P1 and P2 (i.e., P1 ? P2 = 1) are calculated to obtain the

fused image as:

Fðx; yÞ ¼ P1I1ðx; yÞ þ P2I2ðx; yÞ ð26Þ

Fusion techniques are developed in Wavelet domain by

decomposing the input images into detail and approxima-

tion bands as proposed in [5]. These details and

Fig. 8 a Right focussed, b left focussed, c original image, d fused using RF
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approximation coefficients are fused according to the

fusion rule. The fused image is obtained by applying the

inverse transform. Image fusion in Wavelet domain is

performed using stationary Wavelet transform with

‘‘symlet’’ function of 2nd order. Input images are decom-

posed to first level.

4 Results and discussion

In this section, we have compared the qualitative and

quantitative performance of the proposed fusion scheme

with other approaches based on Wavelet [27], PCA [27],

SVM [29], and PNN [17].

The qualitative performance is demonstrated in the

Figs. 6, 7, 8, 9 for the images Barbara, Boat, Elaine, and

Couple, respectively. These figures show that, for syn-

thesized blurred images, the fused images using the pro-

posed scheme have produced better quality and they have

greater similarity with the original images. Further,

Figs. 10, 11, 12 highlight the visual quality of the real

blurred images fused using our RF-based scheme. It is

observed that the fused image obtained through our

scheme have better quality than the Wavelet-, PNN-, and

PCA- based fusion techniques. From Fig. 10 it is ob-

served that the fused Leaf’s image obtained through PCA

approach keep the blurring effects. On the other hand, our

scheme has produced better quality fused image than the

Fig. 9 Couple Image a blurred image 1, b blurred image 2, c original Image, d fused using RF
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images fused using PNN- and Wavelet-based approaches.

We observed in Fig. 12 the blurring effects in fused im-

ages obtained through the Wavelet and PCA approach.

However, it is noted from this figure that the proposed

scheme has better quality-fused images than previous

Wavelet-, PCA-, and SVM-based approaches. It is clear

Fig. 10 a Blurred image 1, b blurred image 2, c fused using Wavelet, d fused using PNN, e fused using PCA, f fused using RF

Fig. 11 a Blurred image 1, b blurred image 2, c fused using Wavelet, d fused using PCA, e fused using SVM, f fused using RF
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from Table 1 that our scheme has exhibited sufficient

higher Acc values of 98.97, 97.78, 98.14, and 96.48 for

Elaine, Barbara, Boat, Boat, Lena, Cameraman, and

Couple images, respectively. However, for these images,

PNN and SVM approaches give relatively lower values of

Acc measure.

Our scheme has demonstrated higher Sn values of 98.88,

97.41, 98.88, 97.95, 98.44, and 98.25 for these images. On

the other hand, for these images, PNN and SVM ap-

proaches give relatively lower values of Sn measure.

Fig. 12 a Blurred image 1, b blurred image 2, c fused using RF

Table 1 Performance comparison of the proposed scheme with SVM

[27] and PNN [17]

Images Models Acc Sn Sp F-Score MCC

Elaine SVM 94.04 92.77 95.31 0.9397 0.677

PNN 94.53 95.31 93.75 0.945 0.691

Proposed 98.83 98.88 98.78 0.988 0.703

Barbara SVM 91.92 95.17 88.67 0.922 0.696

PNN 69.14 54.69 83.59 0.639 0.825

Proposed 97.29 97.41 97.17 0.973 0.698

Boat SVM 94.214 93.457 94.97 0.942 0.681

PNN 92.19 92.97 91.41 0.923 0.681

Proposed 98.97 98.88 99.07 0.990 0.703

Lena SVM 89.99 87.40 92.58 0.897 0.655

PNN 72.66 92.19 53.13 0.771 0.671

Proposed 97.78 97.95 97.61 0.978 0.700

Cameraman SVM 89.45 88.09 90.82 0.8931 0.658

PNN 96.88 93.75 99.99 0.968 0.678

Proposed 98.14 98.44 97.85 0.982 0.701

Couple SVM 92.35 97.25 98.23 0.9723 0.536

PNN 93.25 92.36 97.25 0.9623 0.640

Proposed 96.48 98.25 96.99 0.985 0.703

Table 2 Comparison of proposed scheme with Wavelet [27], PCA

[25], SVM [29], and PNN [17]

Image Model PSNR MI RMSE Corr SSIM

Elaine Wavelet 39.62 5.520 2.60 0.998 0.997

PCA 36.48 4.016 3.63 0.997 0.9520

SVM 40.06 19.88 2.41 0.999 0.986

PNN 41.35 20.16 2.08 0.999 0.990

Proposed 47.87 21.50 0.98 0.999 0.997

Barbara Wavelet 37.72 4.86 3.17 0.998 0.994

PCA 30.74 3.60 7.07 0.992 0.955

SVM 33.28 19.55 5.33 0.995 0.974

PNN 32.19 14.19 6.04 0.994 0.963

Proposed 38.13 21.4 0 3.05 0.998 0.992

Boat Wavelet 38.12 4.65 3.09 0.998 0.995

PCA 34.50 3.55 4.59 0.995 0.963

SVM 37.94 18.60 3.23 0.998 0.985

PNN 39.33 18.08 2.75 0.998 0.988

Proposed 46.57 20.33 1.20 0.999 0.997

Cameraman PCA 32.39 4.15 6.04 0.995 0.968

Wavelet 32.71 4.41 5.83 0.996 0.977

SVM 31.75 6.25 6.54 0.995 0.973

PNN 38.15 6.78 3.13 0.999 0.990

Proposed 41.39 6.86 2.16 0.999 0.994

Lena PCA 37.37 4.40 3.22 0.998 0.979

Wavelet 39.31 5.41 2.59 0.998 0.996

SVM 38.34 18.59 2.97 0.998 0.984

PNN 37.35 16.41 3.32 0.998 0.986

Proposed 42.74 20.93 1.79 0.999 0.996

Couple PCA 32.29 3.25 5.01 0.9886 0.9549

Wavelet 26.17 2.45 10.34 0.9455 0.7843

SVM 30.65 4.89 5.26 0.9825 0.9726

PNN 36.25 4.35 4.02 0.9566 0.9825

Proposed 41.62 6.14 2.02 0.9980 0.9941
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Similarly, our scheme has sufficient improved values

than SVM and PNN approaches in terms of Sp, F-score,

and MCC measures. It is pertinent to mention that proposed

scheme observe little bit lower Sp and MCC values of

97.85 and 0.698 for Cameraman and Barbara images, re-

spectively. However, values of Acc, Sn, and F-Score cal-

culated by proposed scheme are much higher than that of

PNN for the same images.

It can also be observed from Table 1 that for Elaine,

Boat, and Lena images the performance of proposed

scheme is much better than PNN and SVM. Overall result

of our proposed scheme is better.

Table 2 mimics the performance comparison of pro-

posed scheme with previous PCA-, Wavelet-, PNN-, and

SVM-based approaches for different blurred images. It is

depicted from Table 2 that our proposed scheme has suf-

ficient higher PSNR values of 47.87, 38.13, 46.57, 41.39,

42.74, and 41.62 for Elaine, Barbara, Boat, Cameraman,

Lena, and Couple images, respectively. However, for these

images, PCA-, Wavelet-, PNN-, and SVM-based ap-

proaches give relatively lower values of PSNR measure.

Our scheme has yielded quite lower RMSE values for these

images, as well. On the other hand, for these images, PCA-,

Wavelet-, PNN-, and SVM-based approaches have given

relatively higher values of RMSE. Similarly, in terms of

MI, Corr, and SSIM measures, our scheme has demon-

strated significant improvement than that of PCA-,

Table 3 Performance comparison of the proposed scheme with PCA,

Wavelet, PNN, and SVM approaches for real images

Image Method SF MG STD

Leafs PCA 13.959 0.017 40.781

Wavelet 20.727 0.051 6.970

PNN 23.241 0.036 43.539

SVM 22.071 0.001 44.101

Proposed 27.014 0.037 44.921

Lab PCA 16.393 0.192 44.891

Wavelet 19.830 0.006 0.0660

PNN 19.834 0.197 45.672

SVM 34.700 0.190 44.922

Proposed 20.519 0.226 45.693

Calendar PCA 12.887 0.316 61.702

Wavelet 13.203 0.017 1.551

PNN 11.635 0.327 62.254

SVM 22.891 0.317 62.645

Proposed 23.914 0.353 64.617

Tree PCA 21.423 0.107 34.409

Wavelet 37.087 0.276 3.9555

PNN 24.002 0.336 39.875

28.000 0.137 38.306

Proposed 32.961 0.358 39.953

Fig. 13 Performance comparison of proposed scheme with PNN and

SVM in terms of Acc

Table 4 Performance comparison of the proposed scheme with

Wavelet-based recent approaches [11]

Image Model PSNR MI RMSE

Cameraman Four-band Wavelet 33.238 3.036 5.554

Vector Wavelet 31.808 3.100 6.548

Multi-band vector Wavelet 34.423 3.610 4.846

Proposed 41.390 6.860 2.160

Lena Four-band Wavelet 34.575 2.937 4.762

Vector Wavelet 34.162 3.181 4.993

Multi-band vector Wavelet 36.968 3.654 3.615

Proposed 42.740 20.930 1.790

Fig. 14 Performance comparison of the proposed approach in terms

of MI
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Wavelet-, PNN-, and SVM-based approaches. The higher

values of MI and Corr highlight that our scheme has

transferred more effectively useful information from multi-

focus images to fused images. The higher value of SSIM

indicates that images fused through the proposed scheme

preserve structure similarity more effectively. Figure 14

visually shows that our proposed scheme has higher MI

value for various images.

Table 3 shows the comparison of proposed scheme with

PCA, Wavelet, PNN, and SVM approaches for real blurred

images. It is observed from the table that, our proposed

scheme has sufficient higher SF values of 27.01, 20.51,

23.91 and 32.96, for Leafs, Lab, Calendar, and Tree, im-

ages, respectively. However, for these images, PCA,

Wavelet, PNN, and SVM approaches give relatively lower

values of SF measure. This indicates our scheme preserves

spatial information more effectively than PCA, Wavelet,

PNN, and SVM approaches. Our scheme has given quite

higher MG values for these images. While, for the same

images, PCA, Wavelet, PNN, and SVM approaches ob-

served relatively lower values of MG. Similarly, proposed

scheme has significant improved values of STD than that of

PCA, Wavelet, PNN, and SVM approaches. Figure 13

shows that our proposed scheme has more accuracy value

as compared to SVM and PNN approaches for various real

blurred images.

Table 4 shows the performance comparison of the pro-

posed scheme with recent Wavelet-based image fusion

approaches of four-band Wavelet, vector Wavelet, and

multi-band vector Wavelet proposed in [11]. It is observed

from Table that proposed scheme outperforms these

Wavelet-based approaches in terms of PSNR, MI, and

RMSE measures.

It is clear from Table 4 that our proposed scheme has

noteworthy higher PSNR values of 41.39 and 42.74 for

Cameraman and Lena images, respectively. However, for

these images, four-band Wavelet, vector Wavelet, and

multi-band vector Wavelet approaches give relatively

lower values of PSNR. Similarly proposed scheme has

provided higher MI values that that of four-band Wavelet,

vector Wavelet, and multi-band vector Wavelet approach-

es. The proposed scheme has yielded lowest RMSE values

of 2.16 and 1.79 for the same images. On the other hand,

for these images, Wavelet-based recent approaches, give

relatively higher values of RMSE. Figure 14 indicates that

our proposed scheme has produced very good results in

terms of MI than previous fusion approaches.

5 Conclusion

In this paper, we have studied the performance of RF based

ensemble scheme for multi-focus image fusion in terms of

various quality measures. The proposed scheme has ef-

fectively incorporated both feature and decision level in-

formation. The feature-level information is extracted from

both spatial and frequency domains. These informative

features are tailored, during RF algorithm, for useful

ensemble of diverse type of random trees. The predicted

labels of ensemble trees are aggregated to construct the

image fusion. The proposed scheme has yielded improved

performance on various standard images and real blurred

images. Our scheme has demonstrated better-fused image

than feature-level approaches in PCA and wavelet trans-

form. Moreover, our novel ensemble approach has given

better-fused images than SVM- and PNN-based approaches

under various qualitative and quantitative measures.

It is anticipated that that our scheme can be used as a

useful tool for other applications of multi-focus image

fusion. In future, we intend to extend our study for medical

image fusion.
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