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Abstract In the past decade, SIFT descriptor has been

witnessed as one of the most robust local invariant feature

descriptors and widely used in various vision tasks. Most

traditional image-classification systems depend on the

gray-based SIFT descriptors, which only analyze the gray

level variations of the images. Misclassification may hap-

pen since their color contents are ignored. In this article, we

concentrate on improving the performance of existing

image-classification algorithms by adding color informa-

tion. To achieve this purpose, different kinds of colored

SIFT descriptors are introduced and implemented. locality-

constrained linear coding (LLC), a state-of-the-art sparse

coding technology, is employed to construct the image-

classification system for the evaluation. Moreover, we

propose a simple ‘2-norm regularized local distance to

improve the traditional LLC method. The real experiments

are carried out on several benchmarks. With the enhance-

ments to color SIFT and ‘2-norm regularization, the pro-

posed image-classification system obtains approximately

2 % improvement of classification accuracy on the Caltech-

101 dataset and approximately 5 % improvement of clas-

sification accuracy on the Caltech-256 dataset.

Keywords CSIFT � Sparse coding � LLC � Image

classification

1 Introduction

Scale invariant feature transform (SIFT) descriptors [1] are

widely used in many vision tasks, such as object recogni-

tion, image classification, video retrieval, etc. It has been

witnessed a very robust local invariant feature descriptors

in respect of different geometrical changes. However, SIFT

was mainly developed for gray images; the color infor-

mation of the objects is neglected. Therefore, two objects

with completely different colors may be regarded as the

same. To overcome this limitation, different kinds of

Colored SIFT (CSIFT) descriptors were proposed and

developed by researchers to utilize the color information

inside the SIFT descriptors [2–6]. With the enhancement of

color information, CSIFT descriptors can achieve better

performances in resisting certain photometric changes. One

example can be found in [3], which shows that CSIFT is

more stable than SIFT in case of illumination changes.

On the other hand, the bag-of-features (BoF) [7, 8]

joined with the spatial pyramid matching (SPM) kernel [9]

has been employed to build the recent state-of-the-art

image-classification systems. In BoF, images are consid-

ered as sets of unordered local appearance descriptors,

which are clustered into discrete visual words for the rep-

resentation of images in semantic classification.

SPM divides an image into 2l � 2l segments in different

scales l ¼ 0; 1; 2, computes the BoF histogram within each
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segment, and finally concatenates all the histograms to build

a spatial location-sensitive descriptor of the image. In order

to obtain better classification performance, a codebook (a set

of visual words), also named dictionary, is constructed to

represent the extracted descriptors. Traditional SPM uses

clustering techniques like K-means vector quantization

(VQ) to generate the codebook. Despite their efficiency, the

obtained codebooks usually suffer from several drawbacks

such as distortion errors and low discriminative ability [10].

A linear SPM based on sparse coding (ScSPM) method [11]

was proposed by Yang et al. for relaxing the restrictive

cardinality constraint of VQ. By generalizing vector quan-

tization to sparse coding followed by multi-scale spatial

max-pooling, ScSPM significantly outperforms the tradi-

tional SPM kernel on histograms and is even better than the

nonlinear SPM kernels on several benchmarks.

Yu et al. [12] demonstrated that under certain assump-

tions, locality is more essential than sparsity for the training

of nonlinear classifiers and proposed a modification of SC,

named local coordinate coding (LCC). However, in both SC

and LCC, the computationally expensive ‘1-norm optimi-

zation problem is to be solved. Wang et al. [13] developed a

faster implementation of LCC, named locality-constrained

linear coding (LLC), which utilizes the locality constraint to

project each descriptor into its local-coordinate system. It

achieves the state-of-the-art image classification accuracy

even by just using a linear SVM classifier.

According to our literature survey, although various

kinds of final representation (fR) based image-classifica-

tion algorithms with state-of-the-art performances have

been developed, most of them use only gray-based SIFT

descriptors [10, 11, 13–16]. Using color information can

improve the robustness of traditional SIFT descriptor in

respect of color variations and the geometrical changes.

However, facing the diverse CSIFT descriptors, the fol-

lowing questions are worthwhile to be studied.

– Which CSIFT descriptor is the best for the FR-based

image classification system?

– To what extent, the performance of fR-based image

classification system can be improved by using CSIFT?

To fully exploit the potential of CSIFT descriptors for image

category recognition tasks, a CSIFT-based image-classifica-

tion system is constructed in this work. As a widely used state-

of-the-art SC-based encoding algorithm, LLC is employed to

encode the CSIFT descriptors for classification. Moreover, a

simple ‘2-norm regularized locality distance method is pro-

posed to enhance the performance of traditional LLC.

Real experiments with different kinds of CSIFT

descriptors demonstrate that significant improvements can

be obtained with the enhancement of color information and

‘2-norm regularized locality distance even by only using

linear SVM classifier.

The rest of this article is organized as follows: In Sect. 2,

a reflectance model for color analysis is presented. In

Sect. 3, different kinds of the CSIFT descriptors and their

properties are discussed. Section 4 introduces the basic

concepts of the LLC. In Sect. 5, we introduce a ‘2-norm

regularized locality distance method. In Sects. 6 and 7, real

experiments are carried out to study the proposed algorithm

in various aspects. Finally, in Sect. 8, conclusions are drawn.

2 Dichromatic reflectance model

A physical model of reflection, named dichromatic

reflection model, was presented by Shafer in 1985 [17] in

which the relationship between RGB-values of captured

images and the photometric changes, such as shadows and

specularities, of environment was investigated. Shafer

indicated that the reflection of a incident light can be

divided into two distinct components: specular reflection

and body reflection. Specular reflection is when a ray of

light hits a smooth surface at certain angle. The reflection

of that ray will reflect at the same angle as the incident ray.

The effect of highlight is caused by the specular reflection.

Diffuse reflection is when a ray of light hits the surface

which will be reflected back in every direction.

Consider an image of an infinitesimal surface patch of

some object. Let the red, green and blue sensors with

spectral sensitivities be fRðkÞ, fGðkÞ and fBðkÞ respectively.

The corresponding sensor values of the surface image are

[17, 18]:

Lðk; n; s; vÞ ¼ mbðn; sÞ
Z

k
fLðkÞeðkÞcbðkÞ dk

þ msðn; s; vÞ
Z

k
fLðkÞeðkÞcsðkÞ dk

ð1Þ

where L 2 fR;G;Bg is the color channel of light, k is the

wavelength, n is the surface patch normal, s is the direction of

the illumination source, and v is the direction of the viewer.

eðkÞ is power of the incident light with wavelength k, cbðkÞ
and cs are the the surface albedo and Fresnel reflectance,

respectively. The geometric terms mb and ms represent the

diffuse reflection and the specular reflection, respectively.

In case white illumination and neutral interface reflec-

tion model holds, the incident light energy eðkÞ ¼ e and

Fresnel reflectance term csðkÞ ¼ cs are both constant values

independent of the wavelength k. By assuming the fol-

lowing holds:

Z
k

fRðkÞ ¼
Z

k
fGðkÞ ¼

Z
k

fBðkÞ ¼ f ð2Þ

Equation (1) can be simplified:

Lðn; s; vÞ ¼ embðn; sÞkL þ emsðn; s; vÞcsf ð3Þ
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where kL ¼
R

k fLðkÞcbðkÞ is a variable that depends only on

the sensors and the surface albedo.

3 Colored SIFT descriptors

On the basis of the dichromatic reflection model, the sta-

bility and reliability of color spaces with regard to various

photometric events such as shadows and specularities are

studied theoretically and empirically [2, 19, 20]. Although

there are many existing color space models, they are cor-

related to intensity; they are linear combinations of RGB;

or they are normalized with respect to intensity rgb [19]. In

this article, we concentrate on investigating CSIFT using

essentially different color spaces: RGB, HSV, YCbCr,

Opponent, rg and color invariant spaces.

3.1 SIFT

The SIFT algorithm was originally developed for gray

images by Lowe [1, 21] for extracting highly discrimina-

tive local image features that are invariant to image scaling

and rotation, and partially invariant to changes in illumi-

nation and viewpoint. It has been used in a broad range of

vision tasks, such as image classification, recognition,

content-based image-retrieval, etc. The algorithm involves

two steps: (1) extraction of the keypoints of an image and

(2) computation of the feature vectors characterizing the

keypoints. The first step is carried out by convolving the

input image with the DoG (difference of Gaussians)

function in multiple scales and detecting the extremas of

the outputs. The second step is achieved by sampling the

magnitudes and orientations of the image gradient in a

patch around the detected feature. A 128-D vector of

direction histograms is finally constructed as the descriptor

of each patch. Since the SIFT descriptor is normalized, it

can invariant to the scale of gradient magnitude. But the

light color changes will affect it, because the intensity

channel is a combination of the R, G and B channels.

3.2 RGB-SIFT

As the most popular color model, RGB color space pro-

vides plenty of information for vision applications. In order

to embed RGB color information into the SIFT descriptor,

we simply calculate the traditional SIFT descriptors on the

each channel of RGB color space. By combining the

extracted feature, a 128� 3 dimensions descriptor is built

(128 for each color channel). Compared with conventional

gray-based SIFT, the RGB color gradients (or edges) of the

image are captured.

3.3 HSV-SIFT

HSV-SIFT was introduced by Bosch et al. [22] and

employed for scene classification task. Similar to RGB

SIFT discussed above, they compute SIFT descriptors over

all three channels of the HSV color model and produce a

128� 3 dimensional SIFT descriptor for each point. It is

worth mentioning that H channel of HSV color model is

scale-invariant and shift-invariant with respect to light

intensity. However, due to the combination of the HSV

channels, the entire descriptor has no invariance properties.

The conversion from RGB space to HSV space is defined

by Eqs. (4)–(6).

H ¼

undefined if max ¼ min

60� � G� B

max�min
þ 0� if max ¼ R and G�B

60� � G� B

max�min
þ 360� if max ¼ R and G\B

60� � G� B

max�min
þ 120� if max ¼ G

60� � G� B

max�min
þ 240� if max ¼ B

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4Þ

S ¼
0 if max ¼ 0

max�min

max
¼ 1� min

max
otherwise

(
ð5Þ

V ¼ max ð6Þ

where, max is equal to the maximal one of R;G;B, and min

is equal to the minimal one of R;G;B.

3.4 rg-SIFT

The rg-SIFT descriptors are obtained from the rg color

space. It is the normalized RGB color model, used r and

g channels to describe the color information in the image

(b is constant if r and g are given). rg color space is

already scale-invariant with respect to light intensity. The

conversion from RGB space to rg space is defined as

follows,

r ¼ R

Rþ Gþ B
ð7Þ

g ¼ G

Rþ Gþ B
ð8Þ

3.5 YCbCr-SIFT

As one of the most popular color spaces, YCbCr color

space provides very efficient representation of scenes/

images and is widely used in the field of video compres-

sion. It represents colors in terms of one luminance
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component (Y), and two chrominance components (Cb

and Cr). The YCbCr-SIFT descriptors are computed on

all the channels of YCbCr color space. The YCbCr image

can be converted from RGB images using the equation

below:

Y

Cb

Cr

2
64

3
75 ¼

0:299 0:587 0:144

�0:1687 �0:3313 0:5

0:5 �0:4187 �0:0813

2
64

3
75

R

G

B

2
64

3
75þ

0

128

128

2
64

3
75

ð9Þ

3.6 Opponent-SIFT

The opponent color space was first proposed by Ewald Hering

in the late nineteenth century [23]. It consists of three chan-

nels (O1, O2, O3), in which the O3 channel represents lumi-

nance of the image, while the remainder describe the

opponent color (red–green, blue–yellow) of the image.

Opponent-SIFT descriptor is obtained by computing the SIFT

descriptor over each channel of the opponent color space and

combines them together. The RGB images transformed in the

opponent color space is defined by Eq. (10).

O1

O2

O3

2
64

3
75 ¼

R� Gffiffiffi
2
p

Rþ G� 2Bffiffiffi
6
p

Rþ Gþ Bffiffiffi
3
p

2
66666664

3
77777775

ð10Þ

3.7 Color invariant SIFT

With the inspiration of the dichromatic reflectance model

(see Sect. 2), the color-based photometric invariant scheme

was proposed by Geusebroek [2]. It was first applied to

SIFT descriptor by Abdel-Hakim and Farag [3]. A linear

transformation from RGB to color invariant space is pre-

sented as the following:

Êðx; yÞ
Êkðx; yÞ
Êkkðx; yÞ

2
64

3
75 ¼

0:06 0:63 0:27

0:30 0:04 0:35

0:34 0:60 0:17

0
B@

1
CA

Rðx; yÞ
Gðx; yÞ
Bðx; yÞ

2
64

3
75 ð11Þ

where Êðx; yÞ, Êkðx; yÞ, Êkkðx; yÞ, denote, respectively, the

intensity, the yellow–blue channel, and the red–green

channel. Ê, Êk and Êkk are the spectral differential quo-

tients and represent the same as the above. Measurement of

the color invariants is obtained by Ê, Êk and Êkk.

4 Locality-constrained linear coding

The bag-of-feature (BoF) approach has now played a

leading role in the field of generic image classification

research [11, 13, 15]. It commonly consists of feature

extraction, codebook construction, feature coding, and

feature pooling. Experimental results shown that, given a

visual codebook, choosing an appropriate coding scheme

has significant impacts on the classification performance.

Different kinds of coding algorithms are developed [10, 11,

13, 15]; among them, locality-constrained linear coding (LLC)

[13] is considered as one of the most representative methods,

which provides both fast coding speed and state-of-the-art clas-

sification accuracy. It has been widely cited in academic papers

and employed in image classification applications. In this article,

LLC is selected for feature coding in our real experiments.

Let X denote a set of D-dimensional local descriptors in

an image, i.e. X ¼ ½x1; x2; . . .; xN � 2 RD�N . Let B ¼
½b1; b2; . . .; bM � 2 RD�M be a visual codebook with M

entries. The coding methods convert each descriptor into a

M-dimensional code. Unlike the sparse coding, LLC

enforces locality constraint instead of sparse constraint. A

reconstruction for the basis descriptors B can be acquired

by optimizing the following equation:

min
v

XN

i¼1

kxi � Bvik2 þ kkdi � vik2
s:t: 1T vi ¼ 1; 8i ð12Þ

where � denotes the element-wise multiplication, and di 2
RM is the locality adaptor that gives some degree of free-

dom for each basis descriptor. LLC ensures these

descriptors are proportionally similar to the input descrip-

tor xi. Specifically,

di ¼ exp
distðxi;BÞ

r

� �
ð13Þ

where distðxi;BÞ ¼ ½distðxi; b1Þ; distðxi; b2Þ; . . .;

distðxi; bMÞ�, and distðxi; bjÞ is the Euclidean distance

between xi and bj. r is used for adjusting the weight decay

speed for the locality adaptor di.

An approximation is proposed in [13] to accelerate its

computational efficiency in practice by ignoring the second

term in Eq. (12). They directly use the K nearest basis

descriptors of xi to minimize the first term. The encoding

process is simplified by solving a much smaller linear system,

min
v

XN

i¼1

kxi � Bvik2
s:t: 1T vi ¼ 1; 8i ð14Þ

This gives the coding coefficients by only selecting k basis

vectors. The other coefficients are set to zero.

5 ‘2-norm regularized locality distance

In the above section, the details of the traditional LLC

method were presented. It can be seen that the distant
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function (Eq. 13) plays an important role in the coding

scheme. In this paper, we propose a simple ‘2 -norm reg-

ularized locality distance to achieve better classification

accuracy. The distance function is defined as:

edi ¼ exp
distðxi;BÞ

r

� �����
����

l2

ð15Þ

As a result, Eq. (12) is rewritten as follows:

min
v

XN

i¼1

kxi � Bvik2 þ kkedi � vik2
s:t: 1T vi ¼ 1; 8i ð16Þ

6 Experimental results

To evaluate the performances of different kinds of CSIFT

descriptors in a sparse representation based image classi-

fication system, two benchmark datasets: Caltech-101 [24]

and Caltech-256 [25] are employed in the real experiment.

Since color information is the prerequisite for the CSIFT

descriptors computation, to achieve a fair comparison, the

gray images in the Caltech-101 and Caltech-256 are

removed. To enable that colored images of some categories

are sufficient for training a stable classifier (the number of

colored images less than 31), we add some new color

images of the same category to make sure there are at least

31 colored images in each category.

6.1 Implementation

In all the experiments, the same processing chain with

similar the settings is used to ensure consistency.

1. Colored SIFT CSIFT/SIFT descriptors extraction. The

dense CSIFT/SIFT descriptors are extracted as

described in Sect. 3 within a regular spatial grid. The

step-size is fixed at 8 pixels and the patch size is fixed

at 16� 16 pixels. The dimension of gray-based SIFT

descriptor is 128. For CSIFT descriptors, RGB-SIFT,

SIFT, HSV-SIFT, YCbCr-SIFT, opponent-SIFT, rg-

SIFT and color invariance SIFT (C-SIFT) are imple-

mented for the experimentation.

2. Codebooks construction. After the CSIFT/SIFT

descriptors are extracted, a codebook of size 1,024 is

created using the K-means clustering method on a

randomly selected subset (with size 2� 106) of

extracted CSIFT descriptors.

3. Locality-constrained linear coding (LLC). The CSIFT/

SIFT descriptors are encoded by LLC using the above

constructed codebooks. The number of neighbors is set

to 5 with the shift-invariant constraint.

4. Pooling with spatial pyramid matching (SPM) [9]. The

max-pooling operation is adopted to compute the final

descriptor of each image. It is performed with a 3 level

SPM kernel (1� 1, 2� 2 and 4� 4 sub-regions in the

corresponding levels), leaving a same weight at each

layer. The pooled features of the sub-regions are

concatenated and normalized to form the final descrip-

tor of each image.

5. Classification. A one-versus-all linear SVM classifier

[26] is used to train the classifier for its good

performances.

6.2 Assessment of color descriptors on the Caltech-101

dataset

The proposed algorithm is carried out using the color

images of Caltech-101 dataset, which contains 101 object

categories including animals, flowers, vehicles, shapes

with significant variance, etc. Some color images are

added to avoid insufficient of training data in certain

categories as discussed before. The number of original

images in every category still varies from 31 to 800. In

order to test the performance with different sizes of

training data, different numbers (5, 10, . . ., 30) of training

images per category are evaluated. In each experiment,

we randomly select n images per category for training

and leave the remainder for testing. The images were

resized to keep the maximum size of height and width no

larger than 300 pixels with a conserved aspect ratio. For

the sake of simplicity, the codebook size is fixed at 1,024

(the performance of different codebook sizes will be

studied in Sect. 7.1). The corresponding results using

different kinds of CSIFT descriptors (RGB-SIFT, SIFT,

HSV-SIFT, YCbCr-SIFT, opponent-SIFT, rg-SIFT and

color invariance SIFT (C-SIFT)) are illustrated in

Table 1 and Fig. 1. According to the experimental

results, all the CSIFT/SIFT descriptors achieve their best

classification accuracy with 30 training images per class.

It indicates that more training data may bring better

classification accuracy in testing, while the improvement

became slight when the size of the number of training

images is more than 20. Both RGB-SIFT and YCbCr-

SIFT outperform the state-of-the-art gray-based SIFT on

this dataset. The YCbCr-SIFT achieves the best perfor-

mance. For instance, when 30 images of each category

are used for training, YCbCr-SIFT obtains the average

classification accuracy of 69:1 %; RGB-SIFT provides the

second best average classification accuracy (68:6 %). It is

worth mentioning that even without color information,

SIFT achieves third best average classification accuracy

of 68:17 %. Approximately 1 % improvement in average

classification accuracy can be obtained by employing

CSIFT descriptors.
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6.3 Assessment of color descriptors on the Caltech-256

dataset

A more complex dataset, Caltech-256 [25], is also employed

for the experiments. It consists of 256 object classes and a

total of 30,607 images, which have much higher intra-class

variability and object location variability compared with the

images in Caltech-101. Similar to Sect. 6.2, the gray images

are also removed for fair comparison of various CSIFT/SIFT

descriptors. Since there are at least 80 color images per

category, no more image is added.

In each experiment, we randomly select n

(n 2 f15; 30; 45; 60g is fixed for each experiment) images

from every category for training and leave the remainder for

testing. For the sake of simplicity, the codebook size is fixed

at 4,096 (according to our experience, it produces the best

classification performance). The images were resized to keep

the maximum size of height and width no larger than 300

pixels with conserved aspect ratio. The details of classifica-

tion results are shown in Table 2 and Fig. 2. Among all these

descriptors, YCbCr-SIFT produces the best performance as

well. In case 60 random selected training images of each

category are used, YCbCr-SIFT achieves the average classi-

fication accuracy of 41:3 %; moreover, RGB-SIFT also pro-

vides the second best average classification accuracy

(38:7 %). Compared with the performance of gray-based

SIFT descriptors, CSIFT brought approximately 4 %

enhancement with regard to average classification accuracy,

which can be significant in many image classification tasks.

6.4 Assessment of ‘2-norm regularized locality

distance on the Caltech-101 and Caltech-256

dataset

In Sects. 6.2 and 6.3, different kinds of CSIFT descriptors

are implemented and evaluated by traditional LLC method.

In this section, ‘2-norm regularized locality distance and

CSIFT descriptors are combined together to obtain better

performance. The datasets we used are the same as in

Sects. 6.2 and 6.3. Since YCbCr-SIFT descriptor and

RGB-SIFT descriptor achieved the top two classification

accuracies, they are employed for comparison. The size of

the codebook is set at 1,024. We randomly selected the

training images and repeated the experiments 10 times. The

corresponding average results are listed in Tables 3 and 4.

The YCbCr-SIFT descriptor still provides the best perfor-

mances. With the enhancement of ‘2-norm regularized

locality distance, the classification accuracy increases

Table 1 Classification rate (%) comparison on Caltech-101

Training images 5 10 15 20 25 30

RGB-SIFT 45.77 ± 1.02 55.90 ± 0.69 61.26 ± 0.84 64.84 ± 0.68 66.70 ± 0.81 68.65 ± 1.13

SIFT 45.01 ± 0.76 55.39 ± 0.42 60.51 ± 0.60 64.25 ± 0.72 66.29 ± 0.71 68.17 ± 0.98

HSV-SIFT 33.96 ± 0.96 44.06 ± 0.40 50.48 ± 0.60 54.42 ± 0.63 57.76 ± 0.94 59.47 ± 1.31

YCbCr-SIFT 46.48 ± 0.91 56.97 ± 0.60 62.09 ± 0.31 65.45 ± 0.63 68.17 ± 0.76 69.18 ± 1.19

Opponent-SIFT 27.00 ± 0.48 35.07 ± 0.58 39.31 ± 0.55 41.93 ± 0.99 44.21 ± 1.06 45.87 ± 0.74

rg-SIFT 32.51 ± 0.56 41.70 ± 0.88 46.82 ± 0.48 50.35 ± 0.40 53.15 ± 0.83 55.18 ± 1.09

C-SIFT 32.67 ± 0.52 41.90 ± 0.43 47.87 ± 0.56 51.02 ± 0.59 54.05 ± 0.69 55.72 ± 0.88

Fig. 1 The different numbers of training images per class on the

classification performance

Table 2 Classification rate (%)

comparison on Caltech-256
Training images 15 30 45 60

RGB-SIFT 26.70 ± 0.33 33.04 ± 0.22 36.56 ± 0.32 38.71 ± 0.38

SIFT 25.06 ± 0.07 31.22 ± 0.24 34.92 ± 0.39 37.22 ± 0.35

HSV-SIFT 21.95 ± 0.30 28.18 ± 0.22 31.79 ± 0.28 34.03 ± 0.29

YCbCr-SIFT 28.58 ± 0.32 35.20 ± 0.18 38.97 ± 0.34 41.31 ± 0.27

Opponent-SIFT 14.37 ± 0.24 17.92 ± 0.22 20.0 ± 0.20 21.43 ± 0.45

rg-SIFT 18.16 ± 0.24 22.98 ± 0.26 25.88 ± 0.36 27.63 ± 0.31

C-SIFT 14.56 ± 0.18 19.30 ± 0.22 22.13 ± 0.19 24.19 ± 0.27
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steadily (about 0:6 %). In Table 3, when 30 training images

of each category are used, YCbCr-SIFT achieves the

average classification accuracy of 69:74 %; approximately,

1:57 % enhancement is obtained. In Table 4, when 60

training images of each category are used, YCbCr-SIFT

achieves the average classification accuracy of 41:78 %;

the combination method obtains approximately 4:56 %

enhancement compared with traditional LLC.

7 Further evaluations

The experimental results in Sects. 6.2 and 6.3 show that,

among the different CSIFT descriptors, YCbCr-SIFT and

RGB-SIFT achieve better image classification performance

than the state-of-the-art gray-based SIFT. While, it is well

known that choosing different codebook sizes, different

numbers of neighbors in LLC and different pooling

methods will affect the final classification results. In this

section, further evaluations are carried out for more com-

prehensive studies of these two CSIFT descriptors.

7.1 Impact of codebook size

Firstly, we test the impacts of different codebook sizes

(512, 1,024 and 2,048) using the Caltech-101 dataset. As

discussed in Sect. 6, the codebooks are trained by the K-

means clustering algorithm. Different numbers (5, 10,

. . ., 30) of training images per category are evaluated.

Fig. 2 The different number of training images per class on the

classification performance

Table 3 Classification rate (%) comparison on Caltech-101

Training images 5 10 15 20 25 30

LLC

RGB-SIFT 45.77 ± 1.02 55.90 ± 0.69 61.26 ± 0.84 64.84 ± 0.68 66.70 ± 0.81 68.65 ± 1.13

SIFT 45.01 ± 0.76 55.39 ± 0.42 60.51 ± 0.60 64.25 ± 0.72 66.29 ± 0.71 68.17 ± 0.98

YCbCr-SIFT 46.48 ± 0.91 56.97 ± 0.60 62.09 ± 0.31 65.45 ± 0.63 68.17 ± 0.76 69.18 ± 1.19

LLC ? ‘2-norm

RGB-SIFT 45.94 ± 0.84 55.92 ± 0.72 61.33 ± 0.83 64.92 ± 0.61 66.77 ± 0.83 68.76 ± 1.14

SIFT 45.01 ± 0.80 55.81 ± 0.40 61.22 ± 0.30 64.09 ± 0.96 66.34 ± 0.88 68.65 ± 1.1

YCbCr-SIFT 47.18 ± 0.91 57.39 ± 0.46 62.41 ± 0.56 65.98 ± 0.51 68.17 ± 0.68 69.74 ± 0.87

Table 4 Classification rate (%)

comparison on Caltech-256
Training images 15 30 45 60

LLC

RGB-SIFT 26.70 ± 0.33 33.04 ± 0.22 36.56 ± 0.32 38.71 ± 0.38

SIFT 25.06 ± 0.07 31.22 ± 0.24 34.92 ± 0.39 37.22 ± 0.35

YCbCr-SIFT 28.58 ± 0.32 35.20 ± 0.18 38.97 ± 0.34 41.31 ± 0.27

LLC ? l2-norm

RGB-SIFT 27.26 ± 0.15 33.32 ± 0.18 36.91 ± 0.19 39.06 ± 0.39

SIFT 26.54 ± 0.35 32.59 ± 0.13 35.85 ± 0.33 38.20 ± 0.39

YCbCr-SIFT 29.24 ± 0.28 35.68 ± 0.25 39.29 ± 0.18 41.78 ± 0.44

Table 5 The codebooks of size 512

Training images 5 10 15 20 25 30

SIFT 46.01 ± 0.65 55.81 ± 0.41 60.98 ± 0.50 63.99 ± 0.97 66.23 ± 0.49 67.10 ± 1.10

RGB-SIFT 46.57 ± 0.59 56.28 ± 0.60 60.92 ± 0.45 64.10 ± 0.62 66.01 ± 0.82 67.10 ± 1.26

YCbCr-SIFT 46.81 ± 0.81 57.18 ± 0.39 62.25 ± 0.56 65.53 ± 0.65 67.62 ± 0.61 69.16 ± 0.80
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The number of neighbors in LLC is set at 5. The cor-

responding results are presented in Tables 5, 6, 7 and

Fig. 3. YCbCr-SIFT descriptor outperforms the others in

all the tests. In most cases, the highest classification

accuracy is obtained by using codebook of size 1,024.

However, when the codebook of size 2,048 is utilized,

the classification accuracies decrease (except YCbCr-

SIFT descriptor with 30 training images per category). It

may be caused by the over-completeness of the code-

books, which results in large deviations in representing

similar local features. It is interesting to notice that, by

using more training data, the problem of over-com-

pleteness might be overcome. For instance, YCbCr-SIFT

descriptor with codebooks of size 2,048 and 30 training

images per category achieves the highest average clas-

sification accuracy.

7.2 Impact of different numbers of neighbors

The performances of the proposed algorithm using differ-

ent numbers of neighbors K in LLC are also estimated. The

codebook size is fixed at 1,024, and the number of training

images per category is 30. The results are shown in Table 8

and Fig. 4. With the increase of the neighbor number K in

LLC, the classification accuracy takes on the trend of rising

first, then drops after K� 25. The highest average classi-

fication accuracy is obtained by using YCbCr-SIFT

descriptor (72:59 %). In contrast to the highest classifica-

tion result of SIFT (69:18 %), more than 3 % improvement

is achieved.

7.3 Comparison of pooling methods

Besides the max-pooling method, sum-pooling is another

choice which can also be used to summarize the features of

each SPM layer. Tables 9 and 10 show the experimental

results using the two methods, respectively. In Fig. 5 they

are illustrated together for comparison. The codebook size

is 1,024. The number of neighbors used in LLC is 5. It can

be noticed that the max-pooling method significantly out-

performs sum-pooling.

Table 6 The codebooks of size 1,024

Training images 5 10 15 20 25 30

SIFT 45.01 ± 0.76 55.39 ± 0.42 60.51 ± 0.60 64.25 ± 0.72 66.29 ± 0.71 68.17 ± 0.98

RGB-SIFT 45.77 ± 1.02 55.90 ± 0.69 61.26 ± 0.84 64.84 ± 0.68 66.70 ± 0.81 68.65 ± 1.13

YCbCr-SIFT 46.48 ± 0.91 56.97 ± 0.60 62.09 ± 0.31 65.45 ± 0.63 68.17 ± 0.76 69.18 ± 1.19

Table 7 The codebooks of size 2,048

Training images 5 10 15 20 25 30

SIFT 43.56 ± 0.78 54.18 ± 0.78 60.08 ± 0.72 63.18 ± 0.54 65.68 ± 0.63 67.91 ± 1.21

RGB-SIFT 43.79 ± 0.91 54.33 ± 0.55 59.89 ± 0.73 63.07 ± 0.94 65.77 ± 0.73 67.94 ± 0.79

YCbCr-SIFT 44.62 ± 0.75 55.21 ± 0.51 61.42 ± 0.33 65.13 ± 0.66 67.42 ± 0.64 69.45 ± 0.84

Table 8 Comparison on the sizes of the neighborhood size

Number of K 5 10 15 20 25 30

SIFT 67.91 ± 1.21 68.41 ± 1.03 68.74 ± 0.94 68.31 ± 0.84 68.99 ± 0.86 68.51 ± 1.17

RGB-SIFT 67.94 ± 0.79 68.61 ± 0.82 68.72 ± 0.89 68.99 ± 0.71 69.18 ± 1.1 68.78 ± 0.13

YCbCr-SIFT 69.45 ± 0.84 70.44 ± 1.03 71.37 ± 0.72 72.59 ± 0.63 72.56 ± 1.22 72.39 ± 1.47

Fig. 3 The different numbers of training images per class on the

classification performance
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Max : vj ¼ maxðv1; v2; . . .; viÞ ð17Þ

Sum : vj ¼ v1 þ v2 þ � � � þ vi ð18Þ

As can be seen from Fig. 5, the best performance is

achieved by the combination of ‘‘max-pooling’’ and ‘‘‘2-

normalization’’.

8 Conclusion

In this article, CSIFT descriptors are introduced to improve

the state-of-the-art locality-constrained linear coding

(LLC) based image classification system. Different kinds

of CSIFT descriptors are implemented and evaluated with

varying settings of the parameters. Real experiments have

demonstrated that, by utilizing color information, consid-

erable improvements can be obtained. Among the CSIFT

descriptors, YCbCr-SIFT descriptor achieves the most

stable and accurate image classification performance.

Compared with the highest average classification accuracy

achieved by using gray-based SIFT descriptors, YCbCr-

SIFT descriptor acquired approximately 1 % increase on

the Caltech-101 dataset (see Sect. 7.2) and approximately

4 % increase on the Caltech-256 dataset (see Sect. 6.3).

Besides the YCbCr-SIFT descriptor, RGB-SIFT descriptor

also provides favorable performance. As one of the most

representative FR-based image-classification algorithms,

the improvements achieved on LLC show that using CSIFT

descriptors is an approach with good potential to enhance

state-of-the-art FR-based image-classification systems. On

the other hand, although be reported can achieve invariant

or discriminatory object recognition, we found that the

performances of some others CSIFT descriptors are not as

good as expected. On the other hand, although be reported

can achieve invariant or discriminatory object recognition,

we found that the performances of some others CSIFT

descriptors are not as good as expected. Moreover, we

obtain a steady rise in the classification accuracy by

introducing a simple ‘2 -norm regularized locality distance.

Fig. 4 The different numbers of training images per class on the

classification performance

Table 9 The performance of max-pooling

Training images 5 10 15 20 25 30

SIFT 45.01 ± 0.76 55.39 ± 0.42 60.51 ± 0.60 64.25 ± 0.72 66.29 ± 0.71 68.17 ± 0.98

RGB-SIFT 45.77 ± 1.02 55.90 ± 0.69 61.26 ± 0.84 64.84 ± 0.68 66.70 ± 0.81 68.65 ± 1.13

YCbCr-SIFT 46.48 ± 0.91 56.97 ± 0.60 62.09 ± 0.31 65.45 ± 0.63 68.17 ± 0.76 69.18 ± 1.19

Table 10 The performance of sum-pooling

Training images 5 10 15 20 25 30

SIFT 22.14 ± 0.78 30.14 ± 0.85 36.38 ± 0.47 38.98 ± 1.03 41.86 ± 0.61 45.0 ± 1.06

RGB-SIFT 22.67 ± 0.73 30.64 ± 0.63 36.26 ± 0.87 40.04 ± 0.41 42.71 ± 0.82 45.24 ± 0.77

YCbCr-SIFT 22.42 ± 1.06 31.04 ± 0.65 36.12 ± 0.62 39.83 ± 0.83 43.28 ± 0.87 45.10 ± 1.33

Fig. 5 Impact of different pooling methods
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The combination of YCbCr-SIFT descriptor and the ‘2 -

norm regularized locality distance provides the best per-

formance. It achieves approximately 2 % improvement of

classification accuracy on the Caltech-101 dataset and

approximately 5% improvement of classification accuracy

on the Caltech-256 dataset. Our future work will investi-

gate the combinations of learning-based color descriptors

[27], different kinds of distance functions and sparse cod-

ing technologies to achieve better image classification

performance.
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