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Abstract Assessing the taxonomy of fish is important to

manage fish populations, regulate fisheries, and remove the

exotic invasive species. Automating this process saves

valuable resources of time, money, and manpower. Current

methods for automatic fish monitoring rely on a human

expert to design features necessary for classifying fish into

a taxonomy. This paper describes a method using evolu-

tion-constructed (ECO) features to automatically find fea-

tures that can be used to classify fish species. Rather than

relying on human experts to build feature sets to tune their

parameters, our method uses simulated evolution to con-

struct series of transforms that convert the input signal of

raw pixels of fish images into high-quality features or

features that are often overlooked by humans. The effec-

tiveness of ECO features is shown on a dataset of four fish

species where using fivefold cross validation an average

classification rate of 99.4 % is achieved. Although we use

four fish species to prove the feasibility, this method can be

easily adapted to new fauna and circumstances.

Keywords Object detection � Feature construction � ECO

features � AdaBoost � Fish taxonomy

1 Introduction

Assessing the taxonomy of fish has become an important

issue for managing fish populations, regulating fisheries,

and especially for the task of removing invasive species.

Reports show that many lakes and rivers of the USA are

threatened by invasive fish species. A notable example is

the Asian carp which was imported to the southern USA to

keep aquaculture facilities clean and to provide fresh fish

for fish markets [1]. Since their escape into the wild in the

1980s, Asian carp have been swimming northward and

present a threat to the Great Lakes because they directly

compete for food with valuable native fish, disturb eco-

logical balances, and even affect environmental and eco-

nomic systems. Investigation shows that the establishment

of Asian carps could cause great economic impact on the

Great Lakes’ commercial, tribal, and sport fisheries, valued

at more than US$7 billion annually [2]. To address exotic

species’ invasions, an estimated US$120–137 billion is

expended annually by the government and commercial

entities in the USA [3].

To address the impact of invasive species and reduce

their populations, commercial fishing techniques have been

implemented in some locations. However, all such opera-

tions are labor-intensive and must manually sort out any

native species that are also incidentally netted. An auto-

mated system for fish monitoring and classification of

invasive species could have a huge impact on the way that

biologists, government agencies, and commercial fishers

operate.

Advances in hardware and image processing as well as

pattern recognition methods in the last two decades have

made computer vision a widely employed technology in

aquaculture [4]. Computer vision-based automatic systems

have been proposed for almost all aquaculture operations
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and inspections, including counting [5, 6], size measure-

ment and mass estimation [7, 8], gender detection and

quality inspection [9, 10], and monitoring welfare [11, 12].

Many of these systems have shown promising results.

Research in the area of assessing taxonomy of fish has

also been published. Zion et al. [13] use an underwater

sorting machine to sort three species of fish in a fishery

pond. They use features that they designed by hand from

fish silhouettes and a Bayes classifier to determine the

species. Rova et al. [14] use deformable template matching

and a support vector machine to differentiate between two

very similarly shaped fish. Lee et al. [15] compared contour

segments between fish and a database to identify four target

species. Chambah et al. [16] use hand-selected shape,

color, texture features, motion features, and a Bayes clas-

sifier to identify fish in an aquarium. Cadieux et al. [17] use

silhouettes and again a set of hand-selected features with a

combination of a Bayes classifier, a learning vector quan-

tization, and a neural network to classify fish.

Although previous research methods for automated fish

identification and taxonomy have achieved promising

results, they have depended on a human expert to design

the features the identification algorithm uses. Adapting to

other environments with a different fauna is difficult, time

consuming, and costly. The various methods that have been

used to obtain high-quality features can be categorized into

three groups: feature selection, feature extraction, and

feature construction. Feature selection is a process that

chooses a subset of features from the original features so

that the feature space is optimally reduced according to a

certain criterion [18]. Feature extraction is a process that

extracts a set of new features from the original features

through some functional mapping. Feature construction is a

process that discovers missing information about the rela-

tionships between features and augments the space of

features by inferring or creating additional features [19]. In

this paper, we proposed modifying and adapting our pre-

vious work on evolution-constructed (ECO) features to

automatically find features that are then used by AdaBoost

to classify different fish species [20]. Using ECO features

allows the system to discover good and useful features to

discriminate fish species without the use of a human expert.

It is capable of constructing non-intuitive features that are

often overlooked by human experts. Although we use four

species of fish from the dataset to prove the feasibility, this

method can be easily adapted to new fauna and

circumstances.

The rest of this paper is structured as follows. Section 2

explains the ECO features in detail. The dataset and

experimental results are presented to show the feasibility of

this method in Sect. 3. To demonstrate how the ECO

works, the visualization of ECO features and discussion are

provided in Sect. 4. Finally, our conclusions are given in

Sect. 5.

2 ECO features

2.1 What is an ECO feature?

An ECO feature, as defined in Eq. 1, is a series of image

transforms, where the transforms and associated parame-

ters are determined by a genetic algorithm. In Eq. 1, V is

the ECO feature output vector, n the number of transforms

the feature is composed of, Ti the transformation at step i,

Vi the intermediate value at step i, ui the transformation

parameter vector at step i and I x1; y1; x2; y2ð Þ a subregion of

the original image, I, indicated by the pixel range x1, y1, x2,

y2.

V ¼ Tn Vn�1;unð Þ
Vn�1 ¼ Tn�1 Vn�2;un�1ð Þ
. . .

V1 ¼ T1 I x1; y1; x2; y2ð Þ;u1ð Þ:

ð1Þ

Almost any image transformation (or image processing

technique) is possible, but we are mostly interested in those

transforms that can be found in a typical image processing

library. Table 1 lists the set of image transforms used, w,

along with the number of parameters associated with that

transform. The values that these parameters can take on for

a given transform Ti make up the set nTi
. The number of

transforms used to initially create an ECO feature, n, varies

Table 1 A list of image transforms available to the genetic algorithm

for composing ECO features and the number of parameters the

genetic algorithm must set for each transform

Image

transform

uj j Image transform uj j Image transform uj j

Gabor filter 6 Integral image 1 Hough lines 2

Gradient 1 Canny edge 4 Fourier transform 1

Square root 0 Rank transform 0 Histogram

equalization

0

Gaussian

blur

1 Resize 1 Laplacian edge 1

Histogram 1 Log 0 Distance

transform

2

Hough

circles

2 Sobel operator 4 Morphological

dilate

1

Normalize 3 Difference of

Gaussians

2 Harris corner

strength

3

Convert 0 Morphological

erode

1 Census transform 0

Median blur 1 Adaptive

thresholding

3 Pixel statistics 2
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from 2 to 8 transforms. With the datasets that were used in

testing it was found that the average ECO feature contained

3.7 transforms with a standard deviation of 1.7 transforms.

The range two to eight transforms allowed the search to

focus where it was more likely to find results.

We wanted ECO features to be able to be long and

complicated if it yielded good results, but found through

experimentation that longer ECO features were less likely

to yield good results. Figure 1 shows an example of two

ECO features. The transformations of a feature are applied

to a subregion of the image which can range from a 1 9 1

pixel area to the whole image. Rather than making any

assumptions about what the salient regions of the image are

and defining the criteria for their selection, the genetic

algorithm is used to search for the subregion parameters x1,

y1, x2 and y2.

In this way, the saliency of a subregion is not deter-

mined by the subregion itself, but in its ability, after being

operated on by the transforms, to help classify objects.

Subregions allow both global and local information to be

captured. Local features are those located at a single point

or small region of an image, whereas global features cover

a large region or the entire image [21]. The use of subre-

gions allows each ECO feature to specialize at identifying

different aspects of the target object.

2.2 Constructing ECO features

ECO features are constructed using a standard genetic

algorithm (GA) [22]. GAs, in general, are used for opti-

mization and searching large spaces efficiently. They start

with a population of creatures, representing possible solu-

tions, which then undergo simulated evolution. Each

creature is made up of genes which are the parameters of

that particular solution. A fitness score, which is designed

specifically for the problem, is computed for each creature

and indicates how good the solution is. At each generation,

creatures are probabilistically selected from the population

to continue on to the next generation. Creatures with higher

fitness scores are more likely to be selected. Other crea-

tures are made through crossover, which combines the

genes of two creatures to form one. Finally, the genes of

Fig. 1 Two example ECO features. The first example shows an ECO feature where the transforms are applied to the subregion where x1 ¼ 12,

y1 ¼ 25, x2 ¼ 34, and y2 ¼ 90 from Eq. 1. The values below the transforms are the parameter vectors ui also from Eq. 1

Fig. 2 Examples of crossover and mutation
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each creature in the population can possibly be mutated

according to a mutation rate, which effectively creates a

slightly different solution. The algorithm then ends at some

predefined number of generations or when some criteria are

satisfied.

In our algorithm, GA creatures represent ECO features

(examples are shown in Fig. 1). Genes are the elements of

an ECO feature which includes the subregion

x1; y1; x2; y2ð Þ, the transforms T1; T2; . . .; Tnð Þ, and the

parameters for each transform ui. The number of genes that

make up a creature (or ECO feature) is not of fixed length,

since the number of transforms can vary and each trans-

form has a different number of parameters. Initially, the

genetic algorithm randomly generates a population of ECO

features and verifies that each ECO feature consists of a

valid ordering of transforms. To assign a fitness score to

each ECO feature, a weak classifier is associated with it. A

single perceptron is used as the weak classifier as defined in

Eq. 2. The perceptron maps the ECO feature input vector V

to a binary classification, a, through a weight vector W and

a bias term b. If the sample belongs to the specific class that

is being detected, a is set to 1. It is set to 0 otherwise:

a ¼ 1 if W� Vþ b [ 0

0 else

�
ð2Þ

Training the perceptron generates the weight vector W

according to Eq. 3. Training images are processed

according to Eq. 1 and the output vector V is the input to

the perceptron. The error, d, is found by subtracting the

perceptron output, a, from the actual image classification b.

The perceptron weights are updated according to this error

and a learning rate k.

d ¼ b� a

W½i� ¼W½i� þ k� d� V½i�
ð3Þ

A fitness score, s, is computed using Eq. 4, which

reflects how well the perceptron classifies a holding set. In

Eq. 4, p is a penalty, tp is the number of true positives, fn is

the number of false negatives, tn is the number of true

negatives, and fp is the number of false positives. The fit-

ness score is an integer in the range ½0; 1000�.

s ¼ tp � 500

tp þ fn

þ tn � 500

tn þ p� fp

ð4Þ

After a fitness score has been obtained for every

creature, a portion of the population is selected to con-

tinue to the next generation. A tournament selection

method is used to select which creatures move to the next

generation. A tournament selector takes N creatures at

random and the creature with the best fitness score con-

tinues to the next generation. By adjusting N, the ability

of creatures with lower fitness scores to move to the next

generation can be tuned. Higher values of N mean more

creatures compete for one surviving spot and hence pro-

hibit creatures with low fitness scores to move on to the

next generation. Currently, N is set to 2 which allows

weaker creatures to move on. After selection has taken

place, the rest of the population is composed of new

creatures created through crossover (replacing transforms)

as shown in Fig. 2. Through the process of crossover, it is

possible for ECO features to have a transform length, n,

longer than 8 which is the cap placed on gene length

when they are being created. Once the next generation is

filled, each of the parameters in the creatures can be

mutated (using different parameters), as also shown in

Fig. 2. This whole process of finding features is summa-

rized in Algorithm 1.

Algorithm 1 FFindingψFeaturesψψ

Input: Size of population, images of training set and holding set, set of image transforms, 

number of generations, bias term b , learning rate λ , parameter for tournament selection  

N , fitness score threshold;

for Size of population do

Randomly create ECO feature. Select 1x , 1y , 2x , 2y , ( )1 1T φ ,…, ( )Tn nφ .

1x ∈[0, image width-2],        1y ∈ [0, image height-2],

2x ∈[ 1x +1, image width-1],    2y ∈[ 1y +1, image height-1],

( )1 1T [ ]ϕ ψ∈ ,…             , ( )T [ ]n nϕ ψ∈ ,

11 [ ]Tϕ ξ∈ ,…                , [ ]
nn Tϕ ξ∈

end for

for number of generations do

for every ECO feature do

for every training image do

Process image with feature transforms

Train creature’s perceptron

end for

for every holding set image do

Process image with feature transforms

Use perceptron output to update fitness score

end for

Assign fitness score to the creature

Save creature if fitness score >ψthreshold

end for

Select creatures to go to next generation

Create new creatures using crossover

Apply mutations to the population

end for

Output: ECO features and corresponding perceptrons
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2.3 Training AdaBoost

After the genetic algorithm has completed finding good

ECO features, AdaBoost is used to combine the weak

classifiers to make a stronger classifier. Algorithm 2

outlines how AdaBoost is trained. X represents the max-

imum number of weak classifiers allowed in the final

model. The normalization factor in Algorithm 2 is set so

that the sum of the error over all the training images is

equal to 1.0. After training, the resulting AdaBoost model

consists of a list of perceptrons and coefficients that

indicate how much to trust each perceptron. The coeffi-

cient for each perceptron, q, is calculated using Eq. 5

where dw is the error of the perceptron over the training

images,

q ¼ 1

2
ln

1� dw

dw

ð5Þ

2.4 Using the AdaBoost model

For every single class, to classify it from other classes, at

least one ECO Feature must be constructed. Each ECO

feature accompanies its perceptron works as a weak clas-

sifier. All ECO features are then combined into one

stronger classifier by AdaBoost for classification. Figure 3

shows an example of classifying an image with an Ada-

Boost model containing three ECO features. The figure

shows each feature operating on its own subregion of the

image (see Eq. 1). Also as the subregions pass through the

transforms, the intermediate results may vary in size from

one to the next. Each feature is accompanied by its trained

perceptron. The output of each perceptron is combined

according to Eq. 6 where X is the number of perceptrons in

the AdaBoost model, qx is the coefficient for the perceptron

x (see Eq. 5), ax is the output of perceptron x (see Eq. 2), s
is a threshold value, and c is the final classification given

by the AdaBoost model. The threshold s can be adjusted to

vary the trade-off between false positives and false

negatives:

c ¼ 1 if
PX
x¼1

qx � ax [ s

0 else

8<
: ð6Þ

3 Experiment and results

The fish images used are from field study images taken by

the biology department of Brigham Young University. The

fish were captured, photographed, and released. There are

four fish species represented in the dataset: Yellowstone

cutthroat, cottid, speckled dace, and whitefish. Samples of

each species from the dataset are shown in Fig. 4. There

are 246 Yellowstone cutthroat, 121 cottids, 140 speckled

dace, and 174 whitefish in this dataset. The raw images

were pre-processed to make a dataset appropriate for object

recognition. The image was rotated so that the head of the

fish was on the right side of the image. Then, each image in

the fish dataset was cropped and resized to standard

161 9 46 pixels. No color information was used, because

in many fish species’ recognition applications, color is

either not present or not reliable due to water opaqueness

and inability to control lighting conditions. The ECO fea-

tures then have to key into shape information to distinguish

one species from another.

Fivefold cross validation was performed to test the

ability of ECO features to distinguish each fish species.

Each image in the dataset of a chosen species was treated as

the positive example and all the other species made up the

negative examples. Using fivefold cross validation, onefold

is treated as the test set and the remaining fourfold is used

for training the ECO features. For each fold and species,

10–16 ECO features are found before error rates rise above

Algorithm 2 TTrraainψψAAdaBoostψψ

Input: Set of training images M , ECO features and corresponding perceptrons, the 

maximum number of weak classifiers X ;

for every training image, m do

Initialize [ ] 1 | |M m Mδ =

end for

for 0x = to X do

for every perceptron, w , do

for every training image, m do

if wrongly classified then

[ ]w M mδ δ+ =

end if

end for

end for

Select perceptron with minimum error, Ω

if [ ] 50%wδ Ω >= then

BREAK

end if

Calculate coefficient of perceptron using Equation 5

for every training image, m do

1 if classified correctly by 
1 else

c
Ω⎧

= ⎨−⎩

[ ][ ]
Normalization Factor

c
M

M
m em

ρδδ
− ⋅∗=

end for

end for

Output: coefficients corresponding to ECO features ρ .
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50 % during AdaBoost training. Once the ECO features

were found, the images in the current fold were used to

compute the classification accuracy. Table 2 shows the

classification accuracy when doing fivefold cross validation

(onefold for testing and four for training) for each species.

The first column, for example, lists the classification accu-

racy values when using the samples in Fold-1 for test and

the samples in Fold-2 to -5 for training, while the value in

the first row of first column shows the classification accu-

racy when Yellowstone Cutthroat is chosen as positive

sample and the other three species as negative samples.

The results are given in Table 2 with the average clas-

sification accuracy being 99.4 %, and a standard deviation

of 0.64 %. This shows that the ECO features performed

very well in discriminating between the four fish taxono-

mies. It took approximately 3 min using a desktop com-

puter to find the ECO features for a single fold during cross

validation. Finding the ECO features is an off-line process

and only needs to be run as the location and fauna change,

as new species are added, or some other phenomena occur

that change the environment. This makes using ECO fea-

tures very adaptable and easy to use, without sacrificing the

accuracy of the system. Another advantage of ECO fea-

tures is that it does not require human experts to determine

what are significant features for classification. Compared

with our previous works, which depended on a human

Fig. 4 Examples of the four fish species. From the top row to the bottom row, the species are Yellowstone cutthroat, cottid, speckled dace, and

whitefish

Fig. 3 ECO features and their

corresponding perceptrons are

combined using AdaBoost to

classify an image as object or

non-object
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expert to design the features [23], the method proposed in

this paper is able to construct efficient and non-intuitive

features that are often overlooked by human experts.

4 Discussion

As has been presented, the performance of ECO features on

fish classification is promising, and generalizes well across

BYU fish datasets. However, the entire process works like

a ‘‘black box’’. As stated previously, the main advantage of

ECO features is that they can be constructed automatically

without any manual process or human intervention. To

prove that our theory is valid and the whole ECO features

concept is efficient, we turned our focus from the raw

performance to taking a closer look at how ECO features

are composed and what the genetic algorithm is finding.

Since ECO features are performing a series of image

transforms, what the genetic algorithm is doing can, in

many cases, be understood by analyzing the images pro-

duced after each transform, Vi (Eq. 1). These images are

produced by averaging all the positive or negative exam-

ples, after each transform, and then normalizing the result

so it can be viewed as an image. Normalization is done

according to Eq. 7. While the normalization is necessary to

view the average output of the transforms as an image, it

also has some negative effects. The normalization causes

the perceived contrast differences to be relative and the

actual image intensity magnitudes are not evident. The

normalization of the average over the positive and negative

examples is done separately, which makes some compari-

sons between the two difficult. Despite the disadvantages,

the images do provide very clear information about what

the genetic algorithm finds:

Vi x; yð Þ ¼ Vi x; yð Þ �min Við Þ
max Við Þ �min Við Þ

ð7Þ

The output of the final transform, V, becomes the input

to the perceptron of the ECO feature. Those inputs are

multiplied by the perceptron weights, W. The greater the

magnitude of the perceptron weight, the more important is

the input that is connected to that weight. So if the per-

ceptron weights are viewed as an image, in the same way

that the output of the other transforms is viewed as an

image, the relative importance of the inputs to the per-

ceptron can be viewed. The positive and negative magni-

tude weights are viewed separately so that the importance

of the weights for classifying the image as object or non-

object can be seen. The visualizations give an under-

standing of what information the ECO features found.

Figure 5 shows a visualization of four ECO features that

have been trained on the BYU fish dataset using the species

whitefish as the positive examples and the other three

species as the negative examples. The visualizations show

the shape information that is extracted and separates the

fish species from each other.

ECO feature A performs an adaptive threshold and then

resizes the image to make it smaller. To make it easier to

be viewed in Fig. 5, the visualization of the resize trans-

form and the perceptron weights are shown in the original

size before the resize transform. ECO feature A looks at the

shape of the head and some of the shape of the body as

evidenced in the visualization of the positive perceptron

weights. ECO feature B performs a Gabor filter followed

by a single erode transform along a long strip across the

spine of the fish. The result of the Gabor filter and erode

transform is a silhouette of that part of the fish. From the

silhouette, the positive perceptron weights are strongest

when the dorsal fin is in a particular position and the

negative weights are strongest when the adipose fin is in a

particular position.

ECO feature C takes a fairly large subregion of the fish

that includes basically all of the fish except the head. It first

performs a difference of Gaussians that really emphasizes

the shape of the fish along the spine. It then performs a

census transform and then a Harris corner strength trans-

form. The positive perceptron weights show a bright spot at

the point where the tail connects to the rest of the body,

indicating that its position is important. The negative

weights show if an anal fin shows up at a certain location in

the image that it is not a whitefish. ECO feature D performs

a Harris corner strength transform with a large window size

followed by a discrete Fourier transform. Because of the

Fourier transform, the visualization is hard to interpret. The

dimensionality of the output image and of the perceptron is

high, but very little of it contains useful information. ECO

features do not attempt to reduce the dimensionality of its

output.

Genetic algorithms discard creatures with the lowest

fitness scores in each generation, which eventually leads to

the convergence of the entire population. In general, if the

fitness truly reflects the strength of the solution, this is the

desired behavior. There are situations, however, where

certain types of solutions evolve slower than other types of

Table 2 The classification accuracy when doing fivefold cross vali-

dation (onefold for testing and four for training) for each species

Species 1 2 3 4 5

Y. Cutthroat 99.3 99.3 100 100 100

Cottid 100 100 100 99.3 98.4

Speckled dace 99.3 99.3 100 100 99.3

Whitefish 97.8 100 98.6 98.6 99.2

One species is treated as the positive example and the other species

form the negative examples
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solutions, but if given the opportunity could eventually

evolve to have a similar or even better fitness score. For

example, Fig. 6 shows an example search space. Searches

starting at randomly chosen locations will most likely

converge on solution A, because of the gradient and size in

the hill of fitness score provided around solution A. Sear-

ches that start off the hill around point A could find point

B, which has a slightly higher fitness score, but takes

longer and cannot be discarded too soon because of its low

fitness score. Speciation preserves diversity and innovation

by allowing creatures to compete in niches rather than

competing against the entire population [24–26].

For speciation to occur, ECO features must be allowed

to compete in niches, rather than against a large population.

One way to allow speciation to occur would be to define

species and only allow ECO features to compete if they

were from the same species. With 27 possible transforms

and millions of possible combinations of those transforms,

defining species is very difficult. It is hard to determine a

distance measure between sequences of transforms that do

not divide the ECO features arbitrarily. A simpler method

to provide speciation, which does not alter the genetic

algorithm, is to train ECO features in smaller populations.

In large populations, certain combinations of transforms

were observed to appear frequently. If, however, those

combinations of transforms were not present, other

transform combinations over time could mature into solu-

tions with equally high fitness scores. This observation

shows that some combinations of transforms mature much

faster within the genetic algorithm, but do not necessarily

perform any better than other combinations of transforms

that mature more slowly.

5 Conclusion

This paper employs ECO features to provide an effective

way to perform fish taxonomy classification. Compared

with our previous works, which depended on a human

expert to design the features the identification algorithm

uses, the method proposed in this paper is able to construct

efficient and non-intuitive features that are often overlooked

by human experts. No human expert was needed to design

the features used to discriminate between fish taxonomies.

If new fish species are added to the environment, no human

expert is needed to design a new feature set. If a radically

different shaped fish is introduced, new ECO features can

be found automatically rather than waiting for an expert to

make the necessary changes. Our experiments showed that

ECO features obtained an average of 99.4 % classification

accuracy with a standard deviation of 0.64 % on our pro-

posed dataset of four distinct fish species. The time needed

to set up the system to recognize the fish taxonomies is

minimal. Despite the advantage of constructing useful and

meaningful features automatically, the recognition accuracy

of our method is not compromised.
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