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Abstract This paper explores different multimodal bio-

metric systems based on Gabor–Wigner transform (GWT)

for subject recognition. This transform provides a simul-

taneous analysis of space and frequency components of a

biometric image. GWT was initially proposed in the liter-

ature for signal analysis. In this technique, the GWT is

utilized for extraction of feature vectors from different

biometric modalities. An optimization technique, particle

swarm optimization, is then used to select the dominant

features from the feature vectors. This technique not only

improves the performance of the system but also reduces

the dimension of the obtained feature vectors. A detailed

study has been carried out to investigate the fusion of face

and palmprint images at different levels. The receiver

operating characteristic curve and the equal error rate are

used to evaluate the performance of the technique.

Keywords Biometric recognition � Multimodal biometric

system � Gabor–Wigner transform � PSO

1 Introduction

Biometric recognition is a process to recognize an indi-

vidual using his/her physiological and behavioural bio-

metrics traits [1, 2]. The physiological characteristics

include face, fingerprint, palm print, retina and the

behavioural characteristics include speech pattern, gait,

keystroking and signature. Biometrics is more reliable than

password, token, since they are permanently associated

with the user. Biometrics also offers some advantages over

these security measures such as non-repudiation, accuracy

and security. Numerous biometric recognition systems

have been proposed based on different biometrics [3–9].

Recently, several studies reveal that the walking pattern of

a person can also be used for recognition purpose [7]. Mu

et al. reported a gait recognition technique in which bio-

logically inspired features (BIF) are used to represent the

gait image [8]. BIF is a set of new features obtained from a

feed-forward model of the primate visual object recogni-

tion pathway [9]. To obtain the BIF, the input gait image is

decomposed by a set of Gabor filter. This results in simple

cell receptive field which is further used to get complex

cell [8]. The biologically inspired features are used in face

recognition [10]. When a single biometrics is used for

recognition, then the system is called the unimodal system.

A unimodal biometrics system suffers from several disad-

vantages such as noisy data, intra-class variation, non-

universality and spoof attacks [11]. Some of the limitations

of the unimodal system can be eliminated using multiple

biometrics instead of a single biometrics in the recognition

process [12]. These systems are known as multimodal

biometrics system. Multimodal biometrics systems are

more reliable, since features of the different biometrics of a

single user are used and so more information of a user is

used for recognition.

In a multimodal biometric system, four levels of infor-

mation fusion are possible [11]. They are fusion at the

sensor level, feature extraction level, matching score level

and the decision level. Sensor-level fusion is the combi-

nation of data from the biometric sensor. Feature-level

fusion is the combination of feature vectors obtained either

by different sensors or by applying different feature algo-

rithms on the same data. Score-level fusion is the combi-

nation of different matching scores obtained by different
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biometric systems. Decision-level fusion is the combina-

tion of the decisions taken by the different biometric sys-

tems. A schematic diagram of different levels of fusion of

multimodal biometrics is shown in Fig. 1. Various multi-

modal systems have been proposed in the literature which

differ from one another in terms of their algorithms, use of

biometrics, level of fusion and method of integration of the

multiple biometrics [12–30]. In these techniques, different

transforms are used to extract features from the biometric

images and different projection methods are used to reduce

the dimension of the obtained feature vectors.

In this paper, different multimodal biometric systems

are investigated based on different levels of fusion of face

and palmprint images. Features from these biometric

images are extracted using Gabor–Wigner transform

(GWT) [31]. The GWT is an operational combination of

Gabor transform and Wigner distribution function. In the

present paper, the GWT is used to extract the feature vector

from the biometric images for matching purposes. To select

the significant features and to reduce the dimension of the

feature vector, particle swarm optimization (PSO) tech-

nique is used. Numerical experiments have been carried out

to study the different unimodal and multimodal systems.

2 Related work

Multimodal biometric systems are potentially useful with

higher recognition rates. Since the last decade, a number of

new multimodal biometric systems have been reported to

improve the recognition rate [12–30]. Xu et al. proposed a

feature-level fusion multimodal system in which two

biometrics are used as the real and imaginary part of the

complex matrix [13]. Different types of multimodal system

based on feature- and score-level fusions have been proposed

in which particle swarm optimization has been used to reduce

the dimension of the feature vector [14]. Jing et al. explored a

multimodal biometric system in which different projection

methods are used to extract the features from the biometric

images [15]. An image-based linear discriminant analysis

approach is used to fuse two biometric traits of the same

subject in the form of matrix at the feature level [16]. Various

fusion strategies have been discussed for multimodal systems

[17]. Kumar et al. [18] proposed a multimodal biometric

system in which palmprint and face images are integrated at

feature level. A score-level fusion of electrocardiogram and

unobtrusive biometric has been proposed [19]. Xu et al. [20]

proposed a sparse representation method for bimodal bio-

metrics. Huang et al. [21] reported a face and ear based

multimodal system using sparse representation. Different

hand based multiple biometric systems have been proposed

for better performance of the recognition system [22–23].

Michael et al. [22] have used multiple hand features such as

palm veins, palmprint, finger vein, knuckle print and hand

geometry to achieve better accuracy. A multimodal hand

vein biometric system which comprises of dorsal and palmer

vein have been implemented [23]. Sedai et al. [24] proposed

fusion of shape and appearance features of a human pose to

achieve a discrimination between different subjects. Islam

et al. [25] reported a multi-biometric human recognition

using three-dimensional ear and face features. Gait features

have been fused with cumulative foot pressure image for

recognition [26]. Several multimodal systems have been

reported in which Gabor filters are extensively used [27–30].
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Fig. 1 Levels of fusion in

multimodal biometrics system,

a sensor-level fusion, b feature-

level fusion, c matching score-

level fusion and d decision-level

fusion
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Yao et al. [27] proposed a multimodal biometric recognition

system in which Gabor filters and principle component

analysis methods have been used to extract the features from

face and palmprint modalities. A multimodal system has

been reported in which Gabor filtered images were fused at

pixel level and Kernel discriminative common vectors-radial

basis function (KDCV-RBF) is used to classify the subjects

[28]. Yang et al. [29] proposed a feature-level fusion multi-

modal system in which fusion of fingerprint and finger vein

has been used for personal identification. A face recognition

technique has been proposed in which Gabor face images

have been fused with face images to improve the perfor-

mance of the system [30]. Discriminative K-SVD (D-KSVD)

algorithm has been applied on Gabor face features for facial

expression recognition [32]. Recently, several techniques

have been proposed in which multiple features of a scene

from different views have been used [33–39]. These features

are called as multi-view data [33]. Yu et al. [34] proposed a

semi-supervised multi-view distance metric learning tech-

nique for cartoon synthesis. A multi-view technique in which

dimension of these fused features is reduced by learning a

unified low-dimensional subspace [35]. A multi-view hyper

graph-based learning method has been reported in which

click data with varied visual features were adaptively inte-

grated [36]. Yu et al. [37] used multiple features to synthesize

new cartoons. A new multi-view Hessian regularization

(mHR) technique is presented to address different problems

in Laplacian regularization-based image annotation [38]. Liu

et al. [39] presented a multi-view Hessian discriminative

sparse coding (mHDSC) technique in which Hessian regu-

larization is seamlessly integrated with discriminative sparse

coding for multi-view learning problems. These techniques

are different from the proposed technique because in most of

these techniques, projections of the features have been used

for the reduction of the dimension but in the present tech-

nique, PSO has been used for the selection of dominant

features from the feature vector. This results in reduction in

the intraclass distance and increase in the interclass distance.

The proposed technique is also very different from the

techniques in which Gabor filters are used for the feature

representation [8–11, 27–30]. As explained earlier, biologi-

cal inspired features are obtained by decomposing the image

using Gabor filters with varied orientation and scaling [8–

11]. Simple cells are obtained which are further used to

achieve complex cells. The Gabor filter has drawback of low

resolution because of use of the Gaussian window with fixed

width. In the present techniques, features are extracted using

the Gabor–Wigner transform in which Gabor image is

combined with the Wigner transformed image to improve the

resolution problem. The GWT has a better resolution, since

there is an improvement in resolution because of the inclu-

sion of the Wigner transform.

3 Gabor–Wigner transform

Extraction of distinct and informative features from the

biometric images is a fundamental requirement of the

biometric system. Different transforms provide different

representations of biometric images which can be further

used for matching purposes. One of the transforms, which

can represent a biometric image in space and frequency

variables simultaneously, is the Wigner distribution func-

tion (WDF). The WDF has the ability to provide a local

frequency spectrum of an image. The WDF W x; fð Þ, of a

continuous function f xð Þ can be written as [40–42]:

W x0; fð Þ ¼
Z 1

�1
f x0 þ x

2

� �
f � x0 � x

2

� �
e�i2pxf dx ð1Þ

where f � xð Þ is the complex conjugate of f xð Þ. The discrete

version of WDF of a discrete signal f l½ � is defined as:

W l; fð Þ ¼ 2
X1

n¼�1 f l þ nð Þf � l � nð Þe�i2pnf ð2Þ

Further modifications result in pseudo-Wigner distribu-

tion (PWD) which is defined as [41]:

W l; fð Þ ¼ 2
XN

2�1

n¼�N
2

f l þ nð Þf � l � nð Þw nð Þw �nð Þe�i2 2pn
Nð Þf ð3Þ

where w nð Þ is a window function of size N. The detailed

explanation is given by Gabarda et al. [41]. By scanning

the image using a one-dimensional window of size N, the

PWD of each pixel is calculated in its local neighbourhood.

By shifting this window over each of the possible position

in the image, a pixel-wise PWD of the whole image is

produced. This gives ‘N’ PWD representations of the input

image. As seen from Eqs. 1, 2 and 3, the WDF is the

Fourier transform of the autocorrelation of the given

function. A cross term is also produced in the WDF which

limits the use of WDF for various applications.

Another transform that also has an ability to represent an

image in the space and the frequency domain simulta-

neously is the Gabor transform. In the Gabor transform, the

input image is space selected using a Gaussian window and

the Fourier transform is performed on it for frequency

analysis. The Gabor transform (GT) of a one-dimensional

function can be defined as [43]:

G x0; fð Þ ¼
Z 1

�1
f xð Þe�p x�x0ð Þ2

e�i2pfxdx ð4Þ

where Gðx0; f Þ is the Gabor transform of function f ðxÞ. The

discrete version of the Gabor transform for a finite function

f ðlÞ is defined as follows [44]:

f l½ � ¼
XM

m¼0

XN

n¼0

Cm;nhm;n l½ � ð5Þ

The discrete Gabor coefficients Cm;n are obtained as

follows:
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Cm;n ¼
XL�1

l¼0
f l½ �c�m;n l½ � ð6Þ

where c l½ � is a dual basis of h l½ � and both of them form a

biorthogonal basis. The discrete Gabor transform is defined

as:

G m; nð Þ ¼
XL�1

l
f l½ �c l � mDM½ �W�nDNl

L ð7Þ

where c k½ � ¼ epk2

, Wkl
L ¼ ei 2p

Lð Þkl, DM, and DN are the time

and frequency sampling intervals, respectively. M and N

are the number of samples used in time and frequency

domains, and DM � M ¼ DN � N ¼ L. The Gabor trans-

form has a drawback of low resolution which is caused

because of the use of the fixed width of the Gaussian

window. A wide Gaussian window gives a good frequency

resolution but poor spatial resolution. With decrement in

the width of the Gaussian window, frequency resolution

decreases and spatial resolution increases.

Both these transforms have advantages as well as dis-

advantages. The combination of the Gabor transform and

the Wigner distribution function can overcome the disad-

vantages of both the transforms. The cross-term problem of

the Wigner transform and the low clarity problem of the

Gabor transform can be reduced using the Gabor–Wigner

transform. The GT and WDF are combined into GWT by

the following ways [31, 43, 45]:

GWTf ¼ GTf � WDFf ð8Þ

GWTf ¼ min GTf

�� ��2; WDFf

�� ��n o
ð9Þ

GWTf ¼ WDFf f GTf

�� ��[ 0:25g ð10Þ

GWTf ¼ GT2:6
f � WDF0:6

f ð11Þ

4 Particle swarm optimization

Particle swarm optimization (PSO) is a computational

technique which is utilized to find an optimal solution of a

problem in a search space [14, 46–49]. The PSO has a

population of particles in search space with random posi-

tions and velocities. At every step, each particle updates

itself by the best positions associated with its own positions

and its neighbours which are found out using a fitness

function. If the position and the velocity of the ith particle

can be represented as Xi ¼ Xi1;Xi2; . . .Xidf g and

Vi ¼ Vi1;Vi2;Vi3. . .Vidf g, respectively. At each step, the

velocity and the positions of the particles are updated

according to the following equations [46]:

Vnew
id ¼ w � Vold

id þ c1 � rand1ðÞ � pbestid � Xidð Þ þ c2

� rand2ðÞ � gbestid � Xidð Þ ð12Þ

Xid ¼ Xid þ Vnew
id ð13Þ

where c1 and c2 are two positive constants, rand1() and

rand2() are two random functions in the range [0,1], and

w is the inertia weight.

In the proposed technique, PSO is used to select the

dominant features from the face and the palmprint images.

To select the features from the feature vector, binary PSO

is used [14, 48, 49]. In binary PSO, the particle positions

are the random binary bit strings of length ‘N’ with ones

and zeroes which show the selection or denial of bits. The

velocity of each particle is updated according to a sigmoid

function as given below:

SðVnew
id Þ ¼ 1

1 þ e �Vnew
id

� � ð14Þ

If rand\S Vnew
id

� �� �
then Xid ¼ 1; else Xid ¼ 0; ð15Þ

where Vid is the particle velocity obtained from Eq. 12 and

SðVidÞ is a sigmoid transform and rand is the random

number in the range [0,1].

Feature selection is done by optimizing the fitness

function. A fitness function is defined for the system by

which the performance of the system can be improved. In

the proposed technique, the minimum EER is used as the

fitness function. Different parameters are important for the

optimization of the fitness function. All these parameters

are first optimized and the parameters which give best

performance are fixed. For the present study, the maximum

velocity Vmax ¼ 6 is chosen. The inertia weight and the

constants C1 and C2 are chosen to be as 1.2, 0.9 and 1,

respectively. A population size of the swarm is chosen as

25 which also plays an important role in the optimization.

5 Proposed algorithm

Different types of multimodal biometrics system are

investigated in which the face and palmprint images of a

person in combination are used for the recognition. These

systems are categorized based on the fusion of the different

biometrics at different levels of fusion. The first multi-

modal system is based on the feature-level fusion and the

second type of multimodal system is based on the score-

level fusion. The algorithms are further described in detail

one by one.

5.1 Unimodal biometric system

To understand the multimodal system, first, the face and

palmprint unimodal systems are described in detail. In both

the unimodal systems, the same type of architecture is

used. A block diagram for the unimodal system is shown in
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Fig. 2. For the unimodal system, a biometric image of size

50 � 50 is taken. The features of the biometric image are

then extracted using the Gabor–Wigner transform. As

explained earlier, GWT is the combination of Gabor

transform and the Wigner distribution function. To perform

the Gabor transform, a Gaussian window of size 10 � 10 is

used. A feature vector of dimension 62; 500 ¼ 25 � 50 �
50 is obtained. For the Wigner distribution, a window of

size twenty-five is chosen and a combined feature vector of

dimension 62; 500 ¼ 25 � 50 � 50 is obtained. The

Gabor–Wigner feature vectors are obtained using Eqs. 8–

11. The obtained feature vector is of dimension

62; 500 � 1. To reduce the dimension of the GWT feature

vector, a binary PSO is used to select the dominant features

from the feature vector. Using the PSO, there is a reduction

in the dimension of the feature vector. The obtained feature

vectors are then stored. In the verification process, the

feature vector of test images is matched with the feature

vector of the reference images.

5.2 Multimodal system based on feature-level fusion

In the proposed multimodal biometrics system, the two

biometrics of a single user are integrated at the feature

level. To design the system, in the enrolment process, the

system is first trained with the training data base. The entire

algorithm involves two stages, the enrolment and the ver-

ification processes which are further described in detail.

5.2.1 Enrolment process

In the enrolment process, 300 (2 � 150) face images and

300 (2 � 150) palmprint images of a user are used to train

the system. Out of the three hundred images, one-fifty

images from each biometrics are selected as the reference

images and the other one-fifty images are used for

matching. The feature vectors from both the biometrics are

extracted using the GWT similar to unimodal systems. The

obtained feature vectors of both the biometrics are com-

bined using the following equation:

Multimodal Feature ¼ a� Face þ ib� Palmprint ð16Þ

where a and b are the weight factors for the face and

palmprint feature vectors, respectively. The sum of the

weight factors is always unity because it shows the con-

tribution of each of the biometrics to the total score. The

PSO is then used to select the dominant features from the

obtained combined feature vector. The block diagram for

this technique is shown in Fig. 3. An extensive study has

been carried out to find out the values of the weight factors.

The weight factor can be calculated by different means [38,

39]. In the present paper, the weight factors are varied in

such a way that their sum gives unity and for each value of

the weight factor the performance of the system is evalu-

ated and finally the values of weight factors are fixed for

which the system performs the best. The obtained weight

factors are then used for verification. The obtained multi-

modal feature vector is binarized and stored as the refer-

ence feature vector for further verification.

5.2.2 Verification process

The verification is demonstrated using the entire set of test

images. The set of test images contains 600 (4 � 150) face

images and 600 (4 � 150) palmprint images. This set of

database can be called as the verification data base. Similar

to the enrolment process, in the verification process, a set

of verification feature vectors are extracted using the set of

verification face images and the verification palmprint

images. The set of verification feature vectors is then
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matched with the stored reference feature vectors for both

the biometrics using Hamming distance as the discrimi-

nation factor. The Hamming distance between the two

vectors is the number of pixels that have different values in

the two vectors.

5.3 Multimodal system based on matching score-level

fusion

In this multimodal system, the matching score of the

palmprint image and the face image of a user are inte-

grated. The basic block diagram for the proposed technique

is shown in Fig. 4. Similar to feature-level multimodal

system, first the system has been trained with the training

images in the enrolment process. As shown in Fig. 4, the

feature vectors for both the biometrics are extracted using

the GWT. Dominant features from the obtained feature

vectors are selected using the PSO. To integrate both the

biometrics, matching scores are calculated for the bio-

metrics. Hamming distance is used as matching score for

both the biometrics. As explained earlier, two images of

each subject (two face and two palmprint images) are used

to train the system. Two sets of feature vectors of each

image are obtained. One of the set of feature vectors is

stored as reference vectors for both the biometrics. The

other set of feature vectors of each biometrics is matched

with the stored set of feature vectors. A matching score of

both the biometrics is obtained for each of the subjects. The

matching score obtained by both the biometrics is inte-

grated using the sum fusion method [14]. First, the

matching score obtained by each of the biometrics is nor-

malized and then added using a weight factor. A weighted

sum rule can be written as:

Sfuse ¼ w1 � Sface þ w2 � Spalmprint ð17Þ

where Sfuse denotes the fused score, Sface and Spalmprint are

the matching scores for the face and the palmprint images,

respectively, and w1 and w2 are the weight factors associ-

ated with the face and the palmprint images, respectively.

Similar to feature-level fusion-based multimodal system,

numerical computation is carried out to find out the values

of the weight factors.

5.4 Hybrid multimodal system

The basic idea for the hybrid multimodal system is the

fusion of the scores obtained from individual unimodal

systems with the score obtained from the feature-level

fusion multimodal system. The block diagram for the

proposed system is shown in Fig. 5. The obtained multi-

modal system is the combination of two unimodal and a

feature-level multimodal system and it is named as the

hybrid multimodal system. In this system, the matching

scores obtained from all the three systems are integrated

using the weight sum rule as given below:

Shybrid ¼ wface � Sface þ wpalmprint � Spalmprint þ wFF � SFF

ð18Þ

where Shybrid is the matching score obtained for the hybrid

multimodal system. wface, wpalmprint, and wFF are the weight

factors for the face, palmprint unimodal and feature-level

fusion multimodal system, respectively. Sum of all the

three weight factors is unity. Sface, Spalmprint and SFF are the

scores obtained from the face, palmprint unimodal and

feature-level fusion multimodal system, respectively.

Similar to the feature-level and the score-level fusion

multimodal systems, numerical computations are carried

out to calculate the values of the weight factors.

6 Experimental results and analysis

The numerical experiments are carried out on face and

palmprint databases. To investigate the proposed tech-

nique, a large database is composed by combining the

different standard databases for face images. The face

database consists of a set of 900 images of 150 subjects

with six images per subject. These images are from ORL

[50], Yale-B [51] and Essex database [52]. The ORL face

database consists of 400 images of 40 subjects each with 10

images. A subset of 40 subjects each with six images is

chosen from the ORL database. The extended Yale B

database contains a set of 2,432 images (64 images of 38

subjects) which are manually aligned, cropped and resized

to 168 �192. A subset of 38 subjects each with six images
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Transform

Matching Decision
Feature
Selection
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Gabor-Wigner 
Transform

Face Feature + i* Palm Feature

Fig. 3 Block diagram for the feature-level fusion multimodal system
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is chosen from the extended Yale-B database. The

remaining subset of database of 72 subjects each with six

images is taken from the Essex face database. This data-

base consists of 7,900 images of 395 subjects each with 20

images. From the ORL database and the Essex database,

only the face images are cropped. The whole database

(900) images are resized to a pixel size of 50 � 50.

The palmprint database also consists of 150 subjects

each with six images taken from the IIT Delhi Touchless

Palmprint Database version 1.0 [53]. This database is

captured using a digital CMOS camera. This database

contains left- and right-hand images from more than 230

subjects. A set of automatically segmented and normalized

palmprint regions are also available in this database. We

have chosen a set of 900 images of 150 subjects each with

six images from the automatically segmented database of

right hand. The automatically segmented images are of size

150 � 150. The whole database 900 images of palmprint

are also resized to 50 � 50. The 900 images of face and

palmprint are randomly paired to obtain a multimodal

biometrics set for each of the 150 users.

For the unimodal systems (face and palmprint systems),

900 feature vectors are obtained from 150 subjects each

with six images. So the total match of genuine to genuine is

900 and total match of genuine to imposter is 134,100. For

the multimodal system, 300 vectors of each biometrics’

face and palmprint are obtained from 150 subjects in the

enrolment process. In the verification process, 600 feature

vectors of each biometrics’ face and palmprint are obtained

from 150 subjects. So the total match of genuine to genuine

is 600 and total match of genuine to imposter is 89,400.

Performance of the biometric systems has been evalu-

ated in terms of the FAR, the FRR and the EER. FRR is the

ratio of the false rejected genuine population to the total

population of genuine and FAR is the ratio of the false

accepted impostor population to the total population of

impostors. The EER is the point where FRR and FAR are

equal. The ROC curves are plotted between FRR and the

FAR for varying values of threshold. As described earlier,

GWT is a combination of Gabor transform and the Wigner

distribution function in different manners [31]. Experi-

ments are further carried out for all the three transforms

separately for the unimodal system using the four equations

of GWT (Eqs. 8–11). The results for all the four equations

of GWT for both the unimodal system are shown in terms

of the minimum EER in Table 1. As it is observed from

Table 1, the first three equations of GWT (Eqs. 8–10) give

higher EER values in comparison to the Gabor and Wigner

distribution individually. It means that these equations of

GWT do not work for the proposed system. But the fourth

Fig. 4 Block diagram for the score-level fusion-based multimodal system

Fig. 5 Block diagram for the hybrid multimodal system
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equation of GWT is able to improve the performance

results when used in the form as given below:

GWTf ¼ GT0:8
f � WDF0:2

f ð19Þ

As seen from Table 1, the unimodal system based on

Gabor transform performs better than the system based on

Wigner distribution. Thus, the system based on GWT

performs better when the contribution of the Gabor trans-

form is higher than the Wigner distribution. In the present

paper, for all the studies, GWT in the form of Eq. 19 is

used for the feature extraction from the biometrics. ROC

curves corresponding to both the unimodal biometric sys-

tems are shown in Fig. 6.

As described earlier, different types of multimodal

biometric systems are discussed in this paper. An extensive

study has been carried out to show the performance of the

techniques when PSO is used for feature selection and

when PSO is not used for feature selection. Results in terms

of EER for different multimodal and unimodal systems are

shown in Table 2 when PSO is not used. For all the mul-

timodal system, the weight factors are shown along with

the EER values. The weight factors are for face, palmprint

and fused feature (in hybrid multimodal system), respec-

tively. In the case when PSO is not used, the feature vectors

of dimension 62; 500 � 1 are used for matching. The ROC

curves corresponding to different types of unimodal and

multimodal systems based on Gabor, Wigner and GWT are

shown in Fig. 7. As seen from Table 2, for all types of

systems, the GWT gives good results in comparison to the

Gabor and Wigner distribution separately. The values of

EER obtained for feature-level, score-level and hybrid

multimodal system are 4.28, 3.07 and 2.07, respectively.

This shows that for all types of multimodal systems, the

EER decreases significantly in comparison to unimodal

biometric systems. The hybrid multimodal system gives

better results for all the three transforms and the hybrid

multimodal system based on GWT performs the best.

To reduce the dimension of the feature vectors, PSO is

used for all the biometric systems. Results for the different

biometric systems when PSO is used are given in Table 3.

The ROC curves corresponding to the different unimodal

and multimodal biometric systems based on different

transforms using PSO for feature selection are shown in

Fig. 8. It is observed from Fig. 8, that for all the transforms

all the multimodal systems give better results in compari-

son to the unimodal systems. It can also be observed from

Table 3, that the EER values for all the multimodal sys-

tems reduce significantly in comparison to both the uni-

modal systems individually. From Table 2 and 3, it is seen

that for all the types of biometric systems, when PSO is

used, not only is there a reduction in the dimension of the

feature vector but also the performance of the system

improves in all the cases. The dimensions of the feature

vectors reduce to around half of the original feature vector.

Reduction in the dimension results in reduction in com-

putational time while improving the performance level. It

is observed from Table 3, that for all the three transforms

the score-level fusion multimodal system and the hybrid

multimodal system perform better than the feature-level

multimodal systems. For all the three transforms, the best

results are obtained from the hybrid multimodal system.

The minimum values of EER 1.66, 3.55 and 3.72 are

obtained for GWT, Gabor and Wigner transform, respec-

tively, for hybrid multimodal system. Thus, it can be

concluded that the hybrid multimodal system performs best

when GWT is used as feature extraction transform. This

Fig. 6 ROC curves for face and

palmprint unimodal systems for

all the three transform as feature

extraction

Table 1 EER values obtained

from both the unimodal system

for all the transforms

Data base Gabor transform Wigner distribution Gabor–Wigner transform

GWTI GWTII GWTIII GWTIV

Face 7.0757 8.8072 9.0318 11.9577 8.6425 5.7701

Palmprint 13.7413 15.9451 14.5115 14.0044 15.6617 11.8956
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shows that GWT can extract the features of the biometrics

more efficiently in comparison to the Gabor and Wigner

distribution individually. This is because the GWT pro-

vides a high resolution and without cross-term represen-

tation of a biometric image in space and frequency domain

simultaneously. As explained earlier, for all the multimodal

systems, the weight factors are shown along with the EER

values. The weight factors are for face, palmprint and fused

feature (in hybrid multimodal system), respectively.

To compare the proposed multimodal system with

existing techniques, a comparative chart is shown in

Table 4. For comparison purpose, only those multimodal

systems are employed which are constituted using inte-

gration of face and palmprint modalities. As observed from

Table 4, the proposed technique performs well in com-

parison to the techniques existing in the literature [13, 27,

28] except the technique given in [15]. In this technique,

multiple projection methods were used to improve the

results at the cost of computational complexity. A com-

parable result is obtained for the proposed technique with

the existing technique [14]. As shown in Table 4, the face

unimodal system gives lower EER in comparison to the

Fig. 7 ROC curves for different biometric systems for Gabor, Wigner and Gabor–Wigner transform, respectively, when PSO is not used for

feature selection

Table 2 EER values obtained

from different systems for all

the transforms when PSO is not

used

Proposed systems Gabor Wigner Gabor–Wigner

Face unimodal system 7.07 8.81 5.77

Palmprint unimodal system 13.74 15.95 11.67

Feature-level fusion

multimodal system

5.63 (0.62, 0.38) 6.61 (0.80, 0.20) 4.28 (0.60, 0.40)

Score-level fusion

multimodal system

4.23 (0.69, 0.31) 6.46 (0.58, 0.42) 3.07 (0.61, 0.39)

Hybrid multimodal system 3.98 (0.39, 0.27, 0.34) 3.89 (0.35, 0.30, 0.35) 2.07 (0.33, 0.33, 0.33)

Pattern Anal Applic (2015) 18:921–932 929

123



palmprint unimodal system. It shows that GWT provides

distinct features when it is used for gradually changed

biometric image such as face in comparison to compara-

tively varying biometric such as the palmprint image.

7 Conclusion

In this paper, different multimodal biometric systems are

explored in which Gabor–Wigner transform is used to

extract the features from the face and palmprint modalities.

Particle swarm optimization technique is then used to

select the dominant features from the obtained feature

vectors. An extensive study has been carried out to show

the performance of these systems when three different

transforms: Gabor, Wigner and Gabor–Wigner transforms

are used to extract the features from the biometrics. For all

the three transforms, results obtained for the multimodal

systems give good results in comparison to the unimodal

systems because of the use of the multiple information for

recognition purpose. It is analysed that the best results are

obtained from the hybrid multimodal system. For a hybrid

Fig. 8 ROC curves for different biometric systems for Gabor, Wigner and Gabor–Wigner transform, respectively, when PSO is used for feature

reduction

Table 3 EER values obtained from different systems when PSO is used to reduce the dimension of feature vector for all the transforms

Proposed systems Gabor Wigner Gabor–Wigner

Face unimodal system 6.290 (31,096 bits) 6.77 (31,253 bits) 4.88 (31,357 bits)

Palmprint unimodal system 11.60 (31,243 bits) 10.88 (31,245 bits) 8.85 (32,600 bits)

Feature-level fusion multimodal system 4.67 (0.60, 0.40) (31,215 bits) 5.74 (0.80, 0.20) (31,250 bits) 3.36 (0.60, 0.40) (31,183 bits)

Score-level fusion multimodal system 3.84 (0.689, 0.311) 3.84 (0.48, 0.52) 1.89 (0.56, 0.44)

Hybrid multimodal system 3.55 (0.35, 0.23, 0.42) 3.72 (0.44, 0.24, 0.32) 1.66 (0.353, 0.311, 0.336)
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multimodal system based on GWT, an EER of values 2.07

and 1.65 is obtained without PSO and with PSO for feature

selection. The results show that the Gabor–Wigner trans-

form performs better in comparison to the Gabor and the

Wigner distribution function separately. Results show that

the PSO is able to improve the performance of the system

with reduced dimension of the feature vector.

References

1. Soutar C, Roberge D, Stoianov A, Gilroy R, Vijaya Kumar BVK

(1999) Biometric Encryption. http://www.bioscrypt.com/assets/

documents/whitepapers/Biometric_Encryption.pdf

2. Soutar C, Roberge D, Stoianov A, Gilroy A, Vijaya Kumar BVK

(1998) Biometric encryption using image processing. Proc SPIE

3314:178–188

3. Kim Y, Teoh ABJ, Toh K-A (2010) A performance driven

methodology for cancellable face templates generation. Pattern

Recogn 43:2544–2559

4. Huang D-S, Jia W, Zhang D (2008) Palmprint verification based

on principal lines. Pattern Recogn 41:1316–1328

5. Lee EC, Park KR (2011) Image restoration of skin scattering and

optical blurring for finger vein recognition. Opt Lasers Eng

49:816–828

6. Ibrahim MT, Khan TM, Khan SA, Khan MA, Guan L (2012) Iris

localization using local histogram and other image statistics. Opt

Lasers Eng 50:645–654

7. Tao D, Li X, Wu X, Maybank SJ (2007) General tensor dis-

criminant analysis and gabor features for gait recognition. IEEE

Trans Pattern Anal Mach Intell 29:1700–1715

8. Mu Y, Tao D (2010) Biologically inspired feature manifold for

gait recognition. Neurocomputing 73:895–902

9. Meyers E, Wolf L (2008) Using biologically inspired features for

face processing. Int J Comput Vis 76:93–104

10. Mu Y, Tao D, Li X, Murtagh F (2009) Biologically inspired

tensor features. Cogn Comput 1:327–341

11. Ross A, Jain AK (2004) Multimodal biometrics: an overview.

Proc. of 12th European Signal Processing Conference (EUS-

IPCO), (Vienna, Austria), Sept 2004 pp 1221–1224

12. Ross A, Jain AK (2003) Information fusion in biometrics. Pattern

Recogn Lett 24:2115–2125

13. Xu Y, Zhang D, Yang J-Y (2010) A feature extraction method for

use with bimodal biometrics. Pattern Recogn 43:1106–1115

14. Raghavendra R, Dorizzi B, Rao A, Kumar GH (2011) Designing

efficient fusion schemes for multimodal biometric systems using

face and palmprint. Pattern Recogn 44:1076–1088

15. Jing X-Y, Li S, Li W-Q, Yao Y-F, Lan C, Lu J-S, Yang J-Y

(2012) Palmprint and face multi-modal biometric recognition

based on SDA-GSVD and its kernelization. Sensors

12:5551–5571

16. Xu Y, Zhang D (2010) Represent and fuse bimodal biometric

images at the feature level: complex-matrix based fusion scheme.

Opt Eng 49:037002

17. Atrey PK, Hossain MA, Saddik AE, Kankanhalli MS (2010)

Multimodal fusion for multimedia analysis: a survey. Multimedia

Syst 16:345–379

18. Kumar A, Zhang D (2009) User authentication using fusion of

face and palmprint. Int J Image Graphics 9:251–270

19. Singh YN, Singh SK, Gupta P (2012) Fusion of electrocardio-

gram with unobtrusive biometrics: an efficient individual

authentication system. Pattern Recogn Lett 33:1932–1941

20. Xu Y, Fan Z, Qiu M, Zhang D, Yang J-Y (2013) A sparse rep-

resentation method of bimodal biometrics and palmprint recog-

nition experiments. Neurocomputing 103:164–171

21. Huang Z, Liu Y, Li C, Yang M, Chen L (2013) A robust face and

ear based multimodal biometric system using sparse representa-

tion. Pattern Recogn 46:2156–2168

22. Michael GKO, Connie T, Teoh ABJ (2012) A contactless bio-

metric system using multiple hand features. J Vis Commun Image

R 23:1068–1084

23. Khan MHM (2012) A multimodal hand vein biometric based on

score level fusion. Proc Eng 41:897–903

24. Sedai S, Bennamoun M, Huynh DQ (2013) Discriminative fusion

of shape and appearance features for human pose estimation.

Pattern Recogn 46:3223–3237

25. Islam SMS, Davies R, Bennamoun M, Owens RA, Mian AS

(2013) Multibiometric human recognition using 3D ear and face

features. Pattern Recogn 46:613–627

26. Zheng S, Huang K, Tan T, Tao D (2012) A cascade fusion

scheme for gait and cumulative foot pressure image recognition.

Pattern Recogn 45:3603–3610

27. Yao Y-F, Jing X-Y, Wong H-S (2007) Face and palmprint feature

level fusion for single sample biometrics recognition. Neuro-

computing 70:1582–1586

28. Jing X-Y, Yao Y-F, Zhang D, Yang J-Y, Li M (2007) Face and

palmprint pixel level fusion and Kernel DCV-RBF classifier for

small sample biometric recognition. Pattern Recogn 40:3209–3224

29. Yang J, Zhang X (2012) Feature-level fusion of fingerprint and

finger-vein for personal identification. Pattern Recogn Lett

33:623–628
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