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Abstract Nowadays, it is extremely simple to manipulate

the content of digital images without leaving perceptual

clues due to the availability of powerful image editing

tools. Image tampering can easily devastate the credibility

of images as a medium for personal authentication and a

record of events. With the daily upload of millions of

pictures to the Internet and the move towards paperless

workplaces and e-government services, it becomes essen-

tial to develop automatic tampering detection techniques

with reliable results. This paper proposes an enhanced

technique for blind detection of image splicing. It extracts

and combines Markov features in spatial and Discrete

Cosine Transform domains to detect the artifacts intro-

duced by the tampering operation. To reduce the compu-

tational complexity due to high dimensionality, Principal

Component Analysis is used to select the most relevant

features. Then, an optimized support vector machine with

radial-basis function kernel is built to classify the image as

being tampered or authentic. The proposed technique is

evaluated on a publicly available image splicing dataset

using cross validation. The results showed that the pro-

posed technique outperforms the state-of-the-art splicing

detection methods.

Keywords Multimedia security � Image forensics �
Authentication � Forgery detection � Image splicing �
Markov features � Support vector machine

1 Introduction

Photographs are widely used as a rich and clear informa-

tion source in many areas including forensic investigation,

medical imaging, journalism, and e-services. But with the

increased growth of technology and availability of pow-

erful image editing software packages like Adobe Photo-

shop and Corel Draw, it is getting easier to manipulate and

distribute forged images that are difficult to authenticate

visually. The digital image world is tremendously popu-

lated with tampered contents and it increases day by day.

Image forgery can alter the semantic content of the image

and thus can have a severe negative social impact, e.g. a

person can appear in an awkward situation or be accused

by crimes which he/she never committed. This can lead to

catastrophic consequences when people mistrust the

authenticity of the images.

Image splicing deals with cut and paste from one or

more images to create fake images which did not happen in

reality. Figure 1 shows two examples of incidents of forged

images. The first example shows splicing from two images

to create a third image, a news photo of John Kerry, a

former democratic candidate for US presidency, with Jane

Fonda, a Hollywood actress and anti-war activist [22]. This

photo was manipulated in 2004 during the American

presidential election campaign to raise the question about

John Kerry’s patriotism. The second example has been

recently published in an Egyptian newspaper; a forged

photograph showing Mubarak (President of Egypt at the

time of the event) leading the Middle Eastern peace talks
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while in fact the US President Obama was walking ahead

leading the pack. It demonstrates splicing within the same

image (also known as copy-move forgery).

Due to the advances and sophistication in image forgery, it

is becoming crucial to develop more reliable and efficient

image forensic methods that can differentiate tampered ima-

ges from authenticated images. A number of methods have

beenproposed in the literaturewhich can be classified as being

active or passive/blind. In active methods, a watermark or

signature is embedded in the source image to be used later to

check the credibility of the image [2, 7]. Embedding is per-

formed by either the acquisition device (such as a digital

camera) or an authorized person. This can limit its application

as most digital cameras and other image acquisition devices

may not havewatermarking capabilities.Moreover, the image

quality can be degraded by the embedded watermark. On the

other hand, passive or blind methods do not need prior

information about the original image but they use the traces

left by the forgery operation [1, 21].

In this paper, we present a technique for the blind

detection of image splicing based on Markov features and

support vector machine (SVM) classifiers. Unlike earlier

work, e.g. [24], we not only extract Markov features in

DCT domain but also in spatial domain. Merging features

from both domains has helped the detection technique to

achieve better results in terms of accuracy, specificity and

sensitivity. To reduce the dimensionality of the search

space, we used PCA to select the most relevant features for

constructing the computational model.

The organization of the paper is as follows. Section 2

gives some preliminary background and reviews work

related to different splicing detection methods. Section 3

describes the details about the proposed technique includ-

ing feature extraction and reduction, and pattern classifi-

cation. In Sect. 4, experimental work is described and

simulation results are discussed and compared. Finally,

Sect. 5 concludes the paper and Sect. 6 highlights the

originality and contribution of the paper.

2 Related work

A lot of research has been carried out to detect image

forgery. Ng and Chang [18] and Ng et al. [19], motivated

by the work of Farid [10] on detecting human speech

splicing, proposed a model using high-order bi-coherence

features (both phase and magnitude) to detect image

splicing. Bi-coherence is a normalized bi-spectrum of three

harmonically related Fourier frequencies of a signal and are

effective for the detection of discontinuity caused by

splicing. This method was tested on Columbia Image

Splicing Detection Evaluation Dataset [20]. However, due

Fig. 1 Examples of tampered images: a Original image of a former

presidential candidate (John Kerry), b original image of an actress and

anti-war activist (Jane Fonda), c forged image of John Kerry with

Jane Fonda, d original image with Obama leading the pack, e forged
image with Mubarak leading the pack
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to the difference of statistical distributions of audio signals

from digital images, the obtained results were not satis-

factory with a maximum detection accuracy of 72 %.

Dong et al. [9] investigated the coherency and discon-

tinuity in image pixel correlation in the tampered image

using features based on image run-length representation

and sharp image characteristics with 76.52 % detection

accuracy of the the Columbia University dataset which was

further improved by He et al. [14, 15].

In [11], Farid et al. used high-order wavelet features and

applied SVM for classification between photorealistic

images and photographic images where photorealistic

means images created using editing tools. Fu et al. [12]

generated features by exploiting the non-linearity and non-

stationarity nature of splicing operation using Hilbert–

Huang Transform (HHT). In addition, moments of char-

acteristic functions were calculated and used as features in

wavelet domain at various decomposition levels of the

spliced image. Both of these features were used with SVM

for classification between spliced and authentic images.

The detection accuracy of that method was 80.15 %.

In [6], Chen et al. proposed 2D phase congruency and

moments of characteristic functions in the wavelet domain

as robust features to detect the sharp transitions in terms of

edges, lines and corners introduced during splicing. The

dimension of the feature vector was 120 out of which 96

were moment-based and 24 were phase-related features.

The algorithm was tested on the Columbia University

dataset with detection accuracy of 82.32 %. In [24], Shi

et al. suggested a model using moments and Markov sta-

tistical features. Moment features were based on 1D and

2D moments of characteristic functions as an improved

version of the method used in steganalysis [23]. These

moments based features are computationally expensive.

The overall efficiency and effectiveness of the scheme

were due to the Markov features in the DCT domain. The

detection accuracy of this method was evaluated as

91.87 % on the Columbia University dataset.

To adapt to JPEG compression which can attenuate the

characteristics of local correlation patterns, Li et al. [17]

proposed a model using color filter array (CFA) interpo-

lation. The frequency characteristics of the posterior

probability map are calculated and combined then com-

pared to a threshold to classify the image as tampered or

not. Zhao et al. [25] used a conditional co-occurrence

probability matrix (CCPM) to detect splicing. PCA was

used to reduce the dimensionality of features. Their

approach performed well in block DCT (BDCT) domain as

well as Markov features.

In [26], Zhongwei et al. used enhanced Markov features

calculated from the transition probability matrices [24] to

capture the inter-block correlation among DCT blocks in

addition to intra-block correlation as discussed in [5].

Similar to moment features as discussed in [23], Markov

random process is effective in determining these statistical

changes occurred due to the splicing operation [24]. More

features in wavelet domain were also calculated. To make

it computationally efficient, feature dimension is reduced

using SVMRFE, a recursive feature elimination technique

using SVM and weight magnitude as a ranking criterion

[13]. For classification between authentic and forged ima-

ges, SVM with Radial-basis function (RBF) kernel was

used. Comparison with other state of the art methods, the

highest accuracy achieved was 93.55 %.

3 The proposed technique

The task of classifying an image from a group of

authenticated and tampered images is casted as a two-

class pattern recognition problem. Since splicing opera-

tion changes the smoothness, regularity, continuity and/or

periodicity, correlations among the pixels of authenti-

cated images also change. The distinguishing features are

captured by a Markov process in both spatial and DCT

domains. The proposed technique uses a pre-labelled

dataset to construct a computational model capable of

detecting image splicing. It starts with feature extraction

to represent each image in the dataset with a feature

vector. Then, it applies PCA to reduce the dimension-

ality of the vector space and to select the most relevant

features for detecting clues of changes due to splicing.

Using supervised learning, an optimized support vector

machine is trained using a Gaussian radial basis function

kernel to generate a score between 0 and 1 which is

compared with a decision threshold to declare authentic

or tampered. The details of these steps are explained in

the following subsections.

3.1 Feature extraction

A key issue in pattern recognition is feature extraction

which should provide a set of discriminative features with

low correlation to each other. For image splicing detection,

the extracted features depend on the observation that

splicing changes the correlation pattern among pixels. In

our case, we extract features from spatial domain and

merge them with features extracted in the DCT domain. In

each domain, we model the statistical changes through a

Markov process. The outline for calculating these features

is shown in Fig. 2 and the details are described next.

3.1.1 Block DCT

The image is first divided into non-overlapping blocks and

the DCT coefficients are computed for each block. The
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DCT coefficients are then truncated to integer absolute

values and stored in BDCT 2D array Fðu; vÞ 8u; v which

has the same size as the original image Iðu; vÞ 8u; v.

3.1.2 Difference 2D arrays

Since the splicing operation introduces sharp edges in

the tampered image, and splicing detection methods are

basically based on capturing the artifacts introduced in

the edges. For this purpose, the edge images are calcu-

lated in horizontal, vertical, major diagonal and minor

diagonal directions. Any suitable edge detection algo-

rithm can be used but here for simplicity we preferred to

subtract the pixel value from its neighboring pixel value

in all directions to get the edge images using Eqs. (1–4):

Ehðu; vÞ ¼ Iðu; vÞ � Iðuþ 1; vÞ;
1� u� Su � 1; 1� v� Sv

ð1Þ

Evðu; vÞ ¼ Iðu; vÞ � Iðu; vþ 1Þ;
1� u� Su; 1� v� Sv � 1

ð2Þ

Edðu; vÞ ¼ Iðu; vÞ � Iðuþ 1; vþ 1Þ;
1� u� Su � 1; 1� v� Sv � 1

ð3Þ

Emðu; vÞ ¼ Iðuþ 1; vÞ � Iðu; vþ 1Þ;
1� u� Su � 1; 1� v� Sv � 1

ð4Þ

where Iðu; vÞ 8u; v is the source image in the spatial

domain and Su; Sv denote the dimensions of the spatial

image. Figure 3 shows a numerical example to illustrate

calculation of the 2D difference arrays in all directions.

For DCT based Markov features, difference arrays for

truncated absolute DCT coefficients are calculated in all

directions in a similar manner to spatial domain using Eqs.

(5–8). The difference 2D arrays reflect the correlation

between DCT coefficients with its neighbors.

Fhðu; vÞ ¼ Fðu; vÞ � Fðuþ 1; vÞ
1� u� Su � 1; 1� v� Sv

ð5Þ

Fvðu; vÞ ¼ Fðu; vÞ � Fðu; vþ 1Þ
1� u� Su; 1� v� Sv � 1

ð6Þ

Fdðu; vÞ ¼ Fðu; vÞ � Fðuþ 1; vþ 1Þ
1� u� Su � 1; 1� v� Sv � 1

ð7Þ

Fmðu; vÞ ¼ Fðuþ 1; vÞ � Fðu; vþ 1Þ
1� u� Su � 1; 1� v� Sv � 1

ð8Þ

where Fðu; vÞ 8u; v is the absolute value of BDCT 2D

array.

3.1.3 Thresholding

To reduce the dimension of the transition probability

matrix (TPM), to be calculated in the next subsection, a

threshold T is assumed and the elements of the difference

arrays above and below þT and �T are set to þT and �T ,

respectively, using Eq. (9):

Fig. 2 Block diagram for the

Markov features extraction

process
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Tðu; vÞ ¼
þT Xðu; vÞ� þ T

�T Xðu; vÞ� � T

Xðu; vÞ Otherwise

8
><

>:
ð9Þ

where Xðu; vÞ stands for Ehðu; vÞ, Evðu; vÞ, Edðu; vÞ,
Emðu; vÞ, Fhðu; vÞ, Fvðu; vÞ, Fdðu; vÞ, or Fmðu; vÞ. Hence,
the values of the difference arrays of DCT coefficients and

edge images, are limited to the range ½�T ;þT� with only

ð2T þ 1Þ possible values. This is an important step to

reduce the feature vector space dimensionality as well as

the computational complexity. Special care must be taken

in selecting the threshold value T , which should not be too

small or too large. As T increases, the number of elements

in the TPM matrix increases and hence the complexity

increases. Moreover, changes resulting from the edges in

the original image will interfere with that from the splicing

operation and the detection performance will deteriorate. In

our experimental, we tried different values for T starting

from 2 to 15 and we found that the best accuracy occurred

at T ¼ 4. So, we preferred to select a threshold to be either

3 or 4 to have a compromise between computational effi-

ciency and classifier performance.

3.1.4 One-step transition probability matrix (TPM)

After thresholding, the elements are now integers between

½�T ;þT� and can be modelled as a finite-state machine

(FSM) to capture inter-pixel dependencies within DCT

blocks and edge image pixels. A Markov random process is

used as a tool to describe this correlation. The Markov

process can be characterized by a transition probability

matrix (TPM) computed from the thresholded arrays. Here,

we used the one-step TPM. Consequently, this matrix has

ð2T þ 1Þ � ð2T þ 1Þ elements for each direction. We used

these elements as features; hence, the total number of

Markov features in all directions for a spatial image is

4� ð2T þ 1Þ � ð2T þ 1Þ and similar number for DCT

(a)

(b)

(c)

(d)

Fig. 3 Example for calculating the difference arrays. a Horizontal difference 2D array, b vertical difference 2D array, c major diagonal

difference 2D array and d minor diagonal difference 2D array
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based Markov features. As shown in Table 1, this number

increases dramatically with the increase of T .

The one-step transition probability matrices in hori-

zontal, vertical, major diagonal and minor diagonal direc-

tions are calculated using Eqs. (10)–(13):

P½Thðuþ 1; vÞ ¼ jjThðu; vÞ ¼ i� ¼
PSu�2

u¼1

PSv
v¼1 dðThðu; vÞ ¼ i; Thðuþ 1; vÞ ¼ jÞ
PSu�2

u¼1

PSv
v¼1 dðThðu; vÞ ¼ iÞ

ð10Þ

P½Tvðu; vþ 1Þ ¼ jjTvðu; vÞ ¼ i� ¼
PSu

u¼1

PSv�2
v¼1 dðTvðu; vÞ ¼ i; Tvðu; vþ 1Þ ¼ jÞ
PSu

u¼1

PSv�2
v¼1 dðTvðu; vÞ ¼ iÞ

ð11Þ

P½Tdðuþ 1; vþ 1Þ ¼ jjTdðu; vÞ ¼ i� ¼
PSu�2

u¼1

PSv�2
v¼1 dðTdðu; vÞ ¼ i; Tdðuþ 1; vþ 1Þ ¼ jÞ
PSu�2

u¼1

PSv�2
v¼1 dðTdðu; vÞ ¼ iÞ

ð12Þ

P½Tmðu; vþ 1Þ ¼ jjThðu; vÞ ¼ i� ¼
PSu�2

u¼1

PSv�2
v¼1 dðTmðuþ 1; vÞ ¼ i; Tmðu; vþ 1Þ ¼ jÞ
PSu�2

u¼1

PSv�2
v¼1 dðTmðuþ 1; vÞ ¼ iÞ

ð13Þ

where

dðA ¼ i;B ¼ jÞ ¼
1 A ¼ i;B ¼ j

0 Otherwise

�

8i; j 2 f�T;�T þ 1; . . .; 0; . . .; T � 1; Tg.

3.2 Feature reduction

The most discriminative features are selected using

Principal Component Analysis (PCA). It converts the

feature vectors into a lower-dimensional space by taking

the largest eigenvalues from the covariance matrix. The

resulting features are those which have the highest

contribution in the variance in the data. For example,

when T ¼ 3 and T ¼ 4, the number of Markov features

are 392 and 648, respectively. Using PCA, we have

reduced these numbers to 30, 50, 100 and 150

dimensions.

3.3 Tampering detection

After the features have been extracted and the most rele-

vant have been selected, we built an optimized SVM as a

classifier. SVM has gained great importance in pattern

recognition in a variety of fields [3, 4, 8, 16]. The under-

lying idea of SVM is to map the feature space into a

higher-dimensional space where data points become line-

arly separable using a kernel function. The training algo-

rithm of SVM constructs a maximum margin hyper-plane

in the new space of mapped features to separate the data

points; as illustrated in a 2D example in Fig. 4. The closest

points to the hyper-plane are called support vectors. The

optimal separation hyper-plane is found by solving a con-

strained optimization problem using the Lagrangian

multipliers.

SVM can handle feature vectors spaces whether they are

linearly or non-linearly separable. We have represented

training data as pairs xi;xi where xi 2 RN is the feature

vector, N represents the feature dimensions and xi ¼ �1

for two class patterns. In our case, we considered xi ¼ þ1

for spliced images and xi ¼ �1 for authenticated images.

For the linearly separable case, SVM looks for a hyper-

plane H : wTyþ b ¼ 0 and two hyper-planes H1 : w
Tyþ

b ¼ 1 and H2 : w
Tyþ b ¼ �1 parallel to, and with equal

distances to H with the condition that there are no data

points between H1 and H2 and the distance between H1 and

H2 is maximized, where w and b are the parameters to be

optimized (see Fig. 4). For the non-linearly separable case,

input feature vectors are transformed in to a higher-

dimensional space, by using a kernel function, where a

linear hyper-plane is located. There are three common

kernels: polynomial, radial-basis function (RBF) and

Fig. 4 SVM decision hyperplane

Table 1 Number of Markov features as given by 4� ð2T þ 1Þ2

T ¼ 3 T ¼ 4 T ¼ 5 T ¼ 8

Spatial 196 324 484 1,156

DCT 196 324 484 1,156

Total 392 648 968 2,312
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sigmoid. The Gaussian RBF kernel is selected in our work

because of its good performance.

4 Evaluation

4.1 Dataset description

For our proposedmethodology,Markov features are calculated

and classified on a publicly available andwell renowned image

dataset, the Columbia Image Splicing Detection Evaluation

Dataset. This dataset is created by Digital Video and Multi-

media Lab (DVMM) at Columbia university [20]. It consists of

1,845 images of diverse content from which 933 are authentic

and 912 are spliced images. These images are gray-scaled in

bitmap format with dimension 128� 128. The splicing oper-

ation has been carried out by cut-and-paste along object

boundaries or horizontal/vertical strips, from the same or other

image. Figure 5 shows some example images from this dataset;

authentic images are in the top rowwhereas spliced images are

in the bottom row.

4.2 Experimental settings

The experimental procedure for the proposed methodol-

ogy is summarized in the block diagram as shown in Fig.

6. It starts by reading the authentic and spliced images

from the dataset one by one. Then, the Markov features in

both spatial and DCT domains are calculated. The tran-

sition probability matrix is calculated using the threshold

T for all directions. The class label is appended in the last

column of the feature vector. The dimensionality of the

feature space is reduced using PCA. After that, tenfold

cross-validation is used to avoid bias in the classification

process. The dataset is randomized and divided into ten

blocks. Then training occurs on nine blocks and tested on

the remaining block then it repeats 9 more times taking a

different block for testing each time. The total numbers of

Markov features for spatial as well as DCT domain for

certain threshold are listed in Table 1 for various values

of T .

We utilized the LIBSVM [4] library with MATLAB to

build the SVM classifier with RBF kernel for our experi-

mental work. To tune the SVM parameters, we used ten-

fold grid search. An example of the grid search is shown in

Fig. 7 for T ¼ 4 and N ¼ 50. The SVM model attained

from training the SVM classifier is then used for predicting

the class labels for the testing data.

4.3 Performance metrics

The detection performance is first evaluated in terms of the

detection accuracy (Acc), true positive rate (TPR) and true

negative rate (TNR). We have considered spliced image as

positive and authentic image as negative. TPR and TNR

are also known as sensitivity and specificity, respectively.

The metrics are calculated as follows:

Acc ¼ ðTPþ TNÞ
ðTPþ TNþ FNþ FPÞ ð14Þ

Fig. 5 Examples of images from DVMM: authentic images (top row) and tampered images (bottom row)
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TPR ¼ TP

ðTPþ FNÞ ð15Þ

TNR ¼ TN

ðTNþ FPÞ ð16Þ

where TP, TN, FP, and FN stand for true positive (tam-

pered predicted as tampered), true negative (authentic

predicted as authentic), false positive (authentic predicted

as tampered), and false negative (tampered predicted as

authentic), respectively.

We also used the Receiver Operating Curve (ROC)

and the Area Under the Curve (AUC) to plot the

changes in TPR and FPR as the decision threshold

changes from 0 to 1.

4.4 Experiments and results

The classifier performance is evaluated using spatial and

DCT Markov features individually as well as a combina-

tion of both for different values of the threshold T . Table 2

shows the tenfold cross validation results for T ¼ 3 and

T ¼ 4 for different dimensions N ¼ 150; 100; 50; and 30 in

terms of accuracy (Acc), true positive rate (TPR), true

negative rate (TNR), and area under the curve (AUC). The

results show that as using DCT based Markov features has

better performance than spatial domain based features.

Moreover, when both domains are combined, the results

have improved significantly. Reducing the feature space

from 150 to 30 does not degrade much the performance

when using combined features. The best performance is

attained when N ¼ 50. Increasing T from 3 to 4 slightly

improves the results. The ROC curves depicting the

changes of the FPR versus TPR are shown in Fig. 8 for

spatial, DCT and combined based Markov features. These

results are averaged over 20 runs of the experiment. The

ROC curve for combined features is very close to the

upper-left corner indicating the highest performance with

log
2
(C)

lo
g 2(γ

)

Cross−Validation Accuracy

 

 

Acc = 98.82 %
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Fig. 7 Grid search for tuning

the SVM parameters for T ¼ 4

Fig. 6 Experimental procedure block diagram
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area under the curve closer to 1. To clearly show the dif-

ferences, the upper-left part of Fig. 8 is zoomed-in and the

resulting plot is shown in Fig. 9.

Table 3 compares the proposed technique with T ¼ 4

and N ¼ 50 with other state-of-the-art methods in the lit-

erature on the same dataset. These results demonstrate the

better performance of the proposed method yet at a reduced

feature space. Figure 10 compares the ROC curves of the

proposed technique with T ¼ 4 and N ¼ 50 with the best

methods given in Table 3. We also tested other values of

the threshold T and the attained accuracies are drawn in

Fig. 11. This supports the choice of T ¼ 4. We also tested

our proposed technique to classify the original and forged

images given in Fig. 1 and it was able to classify them

correctly.

5 Conclusion

A blind technique for image splicing detection is proposed

and evaluated in this paper. The idea is to combine Markov

features calculated from edge images in the spatial domain

and difference array of block DCT coefficients of the image.

Feature reduction using PCA and an optimized SVM with

RBF kernel as a classifier have proved an efficient combi-

nation. The results show that detection accuracy is tremen-

dously increased when spatial features are combined with

DCT based features. The test results validate the perfor-

mance of our method as compared to the highest detection

accuracy attained up till now from existing tampering

detection methods on the same dataset and with the only 50

features which is also the lowest dimension used so for. The

performance is assessed and compared in terms of detection
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0

0.1
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Fig. 8 ROC curves for Markov features with threshold T ¼ 4 and

N ¼ 50
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Fig. 9 Zoom-in of the upper left part of Fig. 8

Table 2 Summary of results for

Markov features with threshold

T ¼ 3 and 4

T ¼ 3 T ¼ 4

Feature Dimensions Accuracy TPR TNR AUC Accuracy TPR TNR AUC

Spatial 150 0.7752 0.7796 0.7709 0.8543 0.7615 0.7666 0.7565 0.8378

100 0.7737 0.7840 0.7636 0.8455 0.7708 0.7774 0.7643 0.8537

50 0.7740 0.7902 0.7582 0.8371 0.7741 0.7874 0.7612 0.8575

30 0.7642 0.7833 0.7456 0.8346 0.7668 0.7873 0.7467 0.8425

DCT 150 0.8883 0.9062 0.8708 0.9528 0.8940 0.9056 0.8826 0.9573

100 0.8864 0.9055 0.8676 0.9430 0.8958 0.9071 0.8847 0.9579

50 0.8818 0.9040 0.8601 0.9483 0.8927 0.9074 0.8784 0.9577

30 0.8775 0.9016 0.8539 0.9509 0.8940 0.9089 0.8795 0.9547

Spatial ?

DCT

150 0.9831 0.9862 0.9801 0.9986 0.9869 0.9889 0.9849 0.9993

100 0.9815 0.9852 0.9779 0.9980 0.9881 0.9905 0.9860 0.9989

50 0.9825 0.9868 0.9783 0.9976 0.9882 0.9906 0.9859 0.9989

30 0.9803 0.9843 0.9764 0.9978 0.9847 0.9894 0.9801 0.9986
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accuracy, true positive rate and true negative rate, ROC

curve, and area under the ROC curve. With 50 features, the

combined approach is able to achieve 98.82 % accuracy,

99.06 % TPR, 98.59 % TNR and 99.89 % AUC.

6 Originality and contribution

This paper proposes a novel effectivemethod for image content

authentication against image splicing forgery. With the wide

availability of powerful editing tools and massive digital con-

tent online, this problem is becoming important due to its cat-

astrophic consequences on authenticity. The essence of the

proposed method is blind detection of image change by

extending theMarkov transition probability features from both

spatial and frequency domains to reveal the dependencies

between adjacent pixels when there is a change due to splicing.

The characterizationof each imageby integrating various types

of features can significantly lead to improving the tampering

detection rate. However, due to the increased dimensionality of

the feature, we applied PCA to select themost relevant features

before building the detection model. We then developed an

optimized support vectormachinewith RBF kernel to improve

the detection accuracy. The experimental results demonstrated

that the new method can yield considerably better detection

performance, with more than 98 % accuracy, even with less

number of features as compared with the state-of-the-art

splicing detection methods tested on the same dataset.
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