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Abstract The purpose of virtual metrology (VM) in

semiconductor manufacturing is to support process moni-

toring and quality control by predicting the metrological

values of every wafer without an actual metrology process,

based on process sensor data collected during the opera-

tion. Most VM-based quality control schemes assume that

the VM predictions are always accurate, which in fact may

not be true due to some unexpected variations that can

occur during the process. In this paper, therefore, we pro-

pose a means of evaluating the reliability level of VM

prediction results based on novelty detection techniques,

which would allow flexible utilization of the VM results.

Our models generate a high-reliability score for a wafer’s

VM prediction only when its process sensor values are

found to be consistent with those of the majority of wafers

that are used in model building; otherwise, a low-reliability

score is returned. Thus, process engineers can selectively

utilize VM results based on their reliability level. Experi-

mental results show that our reliability generation models

are effective; the VM results for wafers with a high level of

reliability were found to be much more accurate than those

with a low level.

Keywords Virtual metrology � Reliability level � Novelty

detection � Semiconductor � Process monitoring

1 Introduction

Semiconductor manufacturing consists of hundreds of indi-

vidual steps that a wafer must pass through in order to

become a final product. Recently, these individual operations

have become more complex and the process dimensions

have become smaller. This has increased the importance of a

precise process monitoring and quality control. In typical

semiconductor manufacturing, process monitoring and

quality control involves an actual metrology process and

statistical process control (SPC) techniques [24, 51, 54].

Although metrology-based SPC is the most widely used

quality control scheme, it has some limitations. First, there

is a trade-off between the effectiveness (high yield) and the

efficiency (cycle time) of the manufacturing process.

Metrology is not a value-added operational process, and it

is only used for process monitoring. If process engineers

implement more frequent metrology processes between

operational processes, the total number of processes

increases. In addition, the remaining wafers must be held

until the investigation of the sampled wafers is completed.

As a consequence, the total production cycle time increases

at the expense of a higher yield rate [13, 55]. Second,

wafer-to-wafer quality control is practically impossible as

long as sampling techniques are utilized in the metrology

process [14, 41]. Sampling-based metrology assumes that

the metrology measurements of the other wafers are con-

sistent with those of one or two wafers sampled from the

same lot. In a real process, however, variations in quality

arise due to many unexpected deviations in the process.

Therefore, there is always a higher risk of both missed

wafers (faulty wafers that are not picked out by the pro-

cess) and false alarms (in which normal wafers are picked

out for being faulty), as compared to a scenario in which

wafer-to-wafer quality control is possible.
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In order to overcome such limitations of metrology-

based SPC, virtual metrology has been highlighted as a

new scheme of advanced process control (APC) that makes

possible wafer-to-wafer quality control in semiconductor

manufacturing [17, 18, 56]. The purpose of virtual

metrology (VM) is to support process monitoring and

quality control by predicting the metrological values of

every wafer without implementing an actual metrology

process, based on process sensor data that is collected

during the operation. The development of an accurate

virtual metrology model offers many benefits. First, pro-

cess engineers can take more appropriate actions to

improve the final yield, such as adjusting operation recipes,

based on information that is richer than produced by an

actual metrology process [11]. Second, once a prediction

model is built, the number of wafers measured by the

actual metrology equipment can be significantly decreased,

because only a few wafers are required in order to maintain

and update the model. Thus, the total production cycle time

and resources required by the actual metrology process is

decreased, resulting in higher production efficiency [13].

Third, real-time process drift detection [41] as well as

wafer-to-wafer (run-to-run; R2R) process control [35]

becomes possible, since virtual metrology provides con-

tinuous process monitoring on a wafer level.

Due to many benefits of virtual metrology, it has been

widely studied since the latest 1990s, and the research in

this area has developed in two main directions. The first

direction is to improve the prediction accuracy of virtual

metrology models by developing new prediction algo-

rithms or by selecting (extracting) relevant input variables

(predictors) [4, 15, 41, 42, 46]. The second direction of

research involves building a real-time process control

system by integrating virtual metrology and an R2R control

scheme [6, 12, 35, 47, 48, 64]. Although previous studies

have achieved noticeable progresses in both directions,

most of them rely on a common but not realistic assump-

tion; VM prediction results are quite accurate and reliable.

However, despite its many benefits, in practice VM is

subject to two types of intrinsic risks. The first risk is model

risk, which is related to inaccurate prediction results. When

R2R control is running, process recipe manipulation or

equivalent proper actions are selectively activated based

upon each wafer’s VM prediction results. If the VM pre-

diction result is accurate, the follow-up actions are appro-

priate. However, if the VM result is inaccurate, the follow-

up actions will cause several additional problems because

the operation is based upon wrong information. The second

type of risk is data risk, which is related to the difference

between the data used to build a VM model (training data)

and the data used for predicting metrological values (test

data). When VM prediction is highly accurate, this means

that the functional relation between the input variables

(process sensor parameters) and target variables (metro-

logical values) of the training data was well-captured by

the model. However, no model can make a very accurate

prediction when highly heterogeneous data, which was not

seen when the model was built, is provided, even though a

certain degree of generalization is possible. As a conse-

quence, this heterogeneous data may increase the uncer-

tainty of the R2R control. As mentioned earlier, a great

deal of research focused upon lowering the model risk.

Only a few works, however, have been devoted to lowering

the data risk [16].

In this paper, in order to reduce the data risk, we propose

a means of evaluating the reliability level of VM prediction

results based upon novelty detection techniques. To do so,

VM prediction models and novelty detection models are

built based upon the same training data. When a new wafer

arrives, its process sensor data is provided simultaneously

to both the VM and novelty detection models. If the sensor

data are similar enough to those of the training wafers, a

high-reliability score is assigned to the wafer’s VM pre-

diction result; if not, a low-reliability score is assigned.

Process engineers can then increase the flexibility of pro-

cess control and enhance overall productivity by selec-

tively utilizing a wafer’s VM prediction results, based on

its reliability level. The main contributions of this paper

can be summarized as follows:

– Reliance level for each VM prediction result is

evaluated.

– Novelty detection algorithms and their combinations

are employed to evaluate the homogeneity of the input

sensor values.

– Practical applicability of the proposed framework is

verified.

The rest of this paper is structured as follows. In Sect. 2,

we briefly review the research articles related to VM and

novelty detection. In Sect. 3, we present the structure of our

reliability evaluation system and its individual components.

In Sect. 4, we explain the experimental settings such as

data description, variable selection methods, VM predic-

tion models, algorithm parameters, and performance mea-

sures. In Sect. 5, we analyze the effect of the reliability

evaluation models in terms of two prediction accuracy

measures. In Sect. 6, along with some concluding remarks,

we discuss areas of future work.

2 Related work

2.1 Virtual metrology

In semiconductor manufacturing, a general process of

metrology-based SPC is as follows. First, 25 wafers in a
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single unit, called a lot, are processed in an individual piece

of operational equipment that is guided by a predefined

operational manual called a recipe. Second, in order to

check whether the wafers in the lot were processed prop-

erly, only one or two wafers are provided as samples to the

metrology equipment. This equipment then measures the

pre-determined parameters that are considered critical to

the yield rate of the final product, such as translation,

rotation, and magnification. If all these measurements of

the sampled wafer meet the process control criteria, then all

the wafers in the same lot are transferred to the next pro-

cess; if not, they either undergo an additional calibration

process or are discarded.

The conceptual difference between actual metrology and

virtual metrology is illustrated in Fig. 1. In actual metrol-

ogy, only a few wafers are sampled when an operating

process is completed, and they are provided to the

metrology equipment in order to measure quality-related

indicators. If the measurements of these indicators are

within the control limit, all the wafers in the same lot pass

the examination and are transferred to the next operational

process. If the measurements are not within the control

limit, then, either an additional operation is conducted or

the wafers are discarded, depending upon the degree of

error. In virtual metrology, on the other hand, a prediction

model is built based upon equipment sensor data that is

collected during the operation (inputs, predictors, inde-

pendent variables) as well as actual metrological values

(outputs, targets, dependent variables). Because sampled

wafers provide both input and output data, the model is

trained with these wafers. Once the model is built, the

sensor data from the process equipment for every wafer are

provided to the model, and its metrological values are

predicted in real time without an actual metrology process.

If the model can determine the functional relationship

between the process sensor data and the metrological val-

ues, it becomes possible to obtain metrological values for

every wafer in the lot without an actual metrology process.

There are two mainstreams in VM-related research: (1)

to develop new prediction algorithms or by selecting

(extracting) relevant input variables (predictors) to improve

prediction accuracy of virtual metrology systems; and (2)

to integrate virtual metrology and R2R control scheme to

build a real-time process control system.

With regard to the first VM research direction, Cheng

and Cheng [15] employed a 4-layer feed-forward neural

network to build a VM prediction model. A total of 2,356

input variables are utilized to predict three metrological

values (thickness mean, range, and uniformity) of an

advanced 300 mm FAB environment in Taiwan. Despite

the complicated network structure, their VM model

achieved 1.7 % of maximum error rate and 0.39 % of

maximum average projection error (MAPE). Besnard and

Toprac [4] built a regression tree based on various types of

data such as raw FDC data, preceding metrology mea-

surements, and context information. Before training the

regression tree, irrelevant input variables, such as not

normally distributed or highly correlated each other, are

removed. Then, their VM model achieved an 85 % corre-

lation between actual and predicted metrological values.

Lin et al. [41] extracted relevant variables using principal

component analysis (PCA), then built a prediction model

based upon radial basis function (RBF) networks. Their

virtual metrology model achieved a \1 % mean absolute
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Prediction Model 

Process 
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Fig. 1 The conceptual difference between actual metrology (top) and virtual metrology (bottom)
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percentage error (MAPE) in the CVD process environment.

Pang et al. [46] showed that a very low MAPE could be

achieved by taking into account the effects of different

tools in different steps, based upon a combination of

clustering techniques and multivariate analysis of variance

(MANCOVA). Lynn et al. [42] improved the prediction

accuracy of VM models by employing a weighted partial

least squares regression to reflect the relative importance of

process sensor parameters.

With regard to the second VM research direction. Qin

et al. [48] presented a fab-wide R2R control framework

by combining fault detection control (FDC) and VM, and

highlighted critical issues for the success of the frame-

work, such as updating prediction models and embedding

the FDC inside the VM models. Khan et al. [35] tried to

improve the VM prediction accuracy as well as R2R

control flexibility by designing an R2R framework in

which VM models are embedded inside an operational

process, and adjacent VM models are connected and

exchange information on the processes. In order to inte-

gratethe VM models into an R2R control system, statis-

tical or machine learning algorithms are employed. The

(multivariate) linear regression is the simplest R2R con-

troller and it was adopted in early studies such as

photolithograph overlay control [6] and lithography pro-

cess [12]. As a non-linear R2R controller, neural networks

are most commonly used. It was adopted in various

semiconductor processes such as reactive ion etching

[40], chemical vapor decomposition (CVD) [61], chemi-

cal–mechanical planarization [10, 64], and photolitho-

graphic steppers [47].

2.2 Novelty detection

Novel instances or outliers are defined as ‘‘observations

that deviate so much from other observations as to arouse

suspicions that they were generated by a different mech-

anism’’ [29]. The purpose of novelty detection is to

identify those novel observations that occur rarely among

abundant normal instances [33]. For a novelty detection

task, two different learning frameworks are available:

binary classification and one-class classification. The

formal learns both normal and novel classes during the

training, whereas the latter generalizes only normal class

during the training. The class boundary difference gen-

erated by binary classification and one-class classification

is illustrated in Fig. 2. Because a small number of crosses

are located in the right side, binary classification algo-

rithms divide the data space as shown in Fig. 2a.

Assuming that the points A and B are newly given, they

are classified as circles. On the other hand, since only

circles are used to describe the normal class in one-class

classification, the decision boundary becomes a rectangle

that envelops the given observations Fig. 2b. In this

example, the points A and B are determined as novel.

One-class classification is more effective than binary

classification under certain circumstances, such as when

the class imbalance is severe, or when it is practically

impossible to gather data for a certain class. Tax and Duin

[59] pointed out that the sample size and class overlap are

two main features of one-class datasets so when devel-

oping a new classifier, it should be designed to cover these

features as wide as possible. Due to its practical impor-

tance, a number of one-class classification algorithms

have been introduced and they can be grouped into four

major categories: (1) distribution-based, (2) clustering-

based, (3) distance-based, and (4) support vector-based

methods. Distribution-based methods have an assumption

that normal observations are drawn from a specific dis-

tribution so the main task of algorithms is to estimate its

parameters. Gaussian density estimation [3], mixture of

Gaussian density estimator [44], and Parzen window

density estimator [21] belong to this category. Clustering-

based methods relieve the assumption of the shape of

distribution in distribution-based methods. In clustering-

based methods, normal class is defined as a union of some

number of distinctive arbitrary shape of clusters. They can

be grouped into three sub-categories: (1) partitional

clustering, (2) hierarchical clustering, and (3) density-

based clustering. K-Means clustering [9] and K-medoids

clustering [65] are representative partitional clustering

algorithms, whereas BIRCH [66], CURE [25], ROCK

[26], Chameleon [34], and Z-windows [7] are represen-

tative hierarchical clustering algorithms. As density-based

clustering methods, DBSCAN [22], OPTICS [2], and LOF

[8] are commonly used. Distance-based methods employ

nearest neighbor learning for novelty detection. The

novelty score of a new observation is proportional to the

aggregated distance to its nearest neighbors. Based on the

distance measure and the aggregation method, various

algorithms can be possible [1, 27, 33, 37, 49]. Support

vector-based methods generate an arbitrary shape of

closed class boundary that can describe the normal class

well in the input space by mapping the data into a higher

dimensional feature space to achieve a better generaliza-

tion ability. The one-class support vector machine (1-

SVM) [52] and support vector data description (SVDD)

[57] are two well-known support vector-based algorithms.

The former finds the farthest hyperplane from the origin,

above which as many normal observations are placed as

possible, whereas the latter finds the most compact hy-

persphere that envelops as many normal observations as

possible. It has been proved that 1-SVM and SVDD

produce the same class boundary when a Gaussian kernel
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function is used [57]. Due to their high generalization

ability, support vector-based novelty detection algorithms

have been successfully applied to various practical

domains such as image classification [20, 38] and chem-

ical process monitoring [31].

Rather than single novelty detection algorithms, an

ensemble of one-class classification algorithms has been

highlighted as a means of improving the detection perfor-

mance. Krawczyk and Wozniak [39] proposed five diver-

sity measures for selecting effective committee members.

Based on the empirical study with a large number of

datasets, the entropy-based measure returned the best per-

formances, followed by the sphere intersection measure

and the energy measure. Krawczyk and Filipczuk [38]

proposed an efficient medical decision support framework

for breast cancer diagnosis. In their work, the entire dataset

is decomposed to one of the three classes and novelty

detection algorithm is applied to each class. In order to

improve the detection performance, an ensemble of one-

class classification algorithms is constructed for each class.

Cyganek [20] and Yeh et al. [63] attempted to construct

one-class support vector ensembles; the former divided the

training data into some number of homogeneous clusters in

the feature space and applied a 1-SVM in each cluster,

whereas the latter adopted the AdaBoost framework [23].

Wilk and Wozniak [62] extend the binary classification

into multi-class classification by employing a fuzzy infer-

ence system with a set of one-class classifiers. Their

experimental results show that the fuzzy combiner yields

consistently lower error rates than other combination

methods.

In this study, since we assume that all training wafers

are homogeneous, we only have examples of a normal

class, so the one-class classification-based novelty detec-

tion scheme is more suitable than binary classification for

the assignment of a reliability level of VM prediction

results. In addition, we combine a set of one-class classi-

fiers to improve the stability of reliability level produced by

individual novelty detectors.

3 Reliability evaluation of virtual metrology prediction

results

The conceptual structure of our reliability evaluation sys-

tem for VM, which is illustrated in Fig. 3, differs from a

traditional VM system in the following ways. In a tradi-

tional VM system, a prediction model is trained based on

the process sensor data and the actual metrological values

of wafers that are inspected by actual metrology equip-

ment. When an operation on a wafer is completed, its

process sensor data are provided to the VM model for

prediction of its metrological values. In our reliability

evaluation system, however, a novelty detection model is

also built, in addition to the VM model, and it is based only

on the process sensor data of the training wafers. When an

operation on a new wafer is completed, process sensor data

are provided to the VM model and the novelty detection

model at the same time, in order to predict the metrological

values, and the similarity between the sensor data of the

new wafer and those of the training wafers, respectively. If

the novelty detector determines that the process sensor data

of a new wafer is similar enough to those of the training

wafers, the new wafer is considered to be drawn from the

same underlying distribution as the training wafers, and a

high-reliability score is therefore assigned to its VM pre-

diction results. If the degree of similarity is insufficient, the

new wafer is considered to be drawn from an underlying

distribution that is different from that of the training

wafers, and a low-reliability score is then assigned.

In order to build the reliability evaluation system for

VM, two types of prediction models are necessary: a

regression model for VM and a novelty detection model for

reliability evaluation. Regression models are used in the

generation of continuous outcomes by configuring the

functional relationships between predictors, either discrete

or continuous, and targets. Novelty detection models are

associated with the generation of binary outcomes (0 or 1)

produced by generalizing given data that consist of only

predictors. In order to explore the effects and consequence

×

× ×

A

B

×

× ×

A

B

(a) Binary classification (b) Novelty detection

Fig. 2 The classification

boundary of binary

classification (a) and one-class

classification (b)
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of reliability evaluation, we employed three regression

algorithms for VM prediction and five novelty detection

algorithms for reliability evaluation. In the next subsec-

tions, we briefly introduce the regression and novelty

detection algorithms adopted in our experiments.

3.1 Virtual metrology models

Three regression algorithms were employed for VM pre-

diction in our experiments: multiple linear regression

(MLR), k-nearest neighbor (k-NN) regression, and artificial

neural networks (ANN). MLR [50] estimates the functional

relationship between multiple input variables and single or

multiple target variables of given data in the form of linear

equation. Compared to other complex algorithms, MLR

offers a number of advantages such as a closed analytic

form, computational efficiency, and less user-specific

parameters. However, its performance is degraded when

there is a non-linear relationship between the predictors

and targets.

Let yki denote the ith metrological value of the kth

wafer, while xkj denotes the jth process sensor data of the

kth wafer. Then, the MLR equation with p predictors, d

targets, and n training wafers can be written as:

yki ¼ bk0 þ bk1xi1 þ bk2xi2 þ � � � þ bkpxip;

for k ¼ 1; 2; . . .; d; i ¼ 1; 2; . . .; n:
ð1Þ

This can be rewritten in a matrix form as:

Y ¼ Xb;

Y ¼
y11 � � � y1d

..

. . .
. ..

.

yn1 � � � ynd

0
B@

1
CA;X ¼

1

..

.

1

x11 � � � x1p

..

. . .
. ..

.

xn1 � � � xnp

0
B@

1
CA; b

¼
b10 � � � bd0

..

. . .
. ..

.

b1p � � � bdp

0
B@

1
CA:

ð2Þ

The intercept b of the above equation can be obtained by

minimizing the squared error (residual) between the targets

(Y) and the predictions (Ŷ), as shown in Eq. (3) using the

ordinary least square (OLS) method as follows:

E ¼ 1

2

Xn

i¼1

e2
i ¼

1

2
det ðY� ŶÞTðY� ŶÞ
�� ��

¼ 1

2
det ðY� XbÞTðY� XbÞ
�� ��: ð3Þ

oE

ob
¼ XTY� XTXb ¼ 0; b ¼ ðXTXÞ�1XTY: ð4Þ

ANN [5] is one of the most widely used non-parametric

regression algorithms in many fields, including that of

virtual metrology, due to its ability to capture non-linear

relationships between predictors and targets. A 3-layer

feed-forward neural network was employed in our experi-

ments. In ANN, the targets are expressed as a combination

of input values and weights as follows:

Process equipment

Metrology equipment

Processed wafers

Sampled wafers

UCL

LCL

Metrology result

Prediction Model
Process 

sensor data

Metrology 
data

UCL

LCL

Virtual metrology result

Novelty Detection 
Model

: Reliable VM result

: Unreliable VM result

Fig. 3 The conceptual structure

of our reliability evaluation

system for VM

868 Pattern Anal Applic (2014) 17:863–881

123



yk ¼
Xh

q¼1

w
ð2Þ
kq g

Xd

r¼1

wð1Þqr xr

 !
; k ¼ 1; 2; . . .; d; ð5Þ

where w
ð2Þ
kq , w

ð1Þ
qr , and g(•) denote the weight connected

between the kth output node and the qth hidden node, the

weight connection between the qth hidden node and the rth

input node, and the activation function, respectively.

Training ANN is equivalent to optimizing the weights in

Eq. (5), which are obtained by minimizing the objective

loss function, which is generally done using the least

squared residual in Eq. (3).

k-NN [28] is the most popular memory-based learning

algorithm. Since it does not require a training procedure, it

is employed in a number of tasks that require rapid model

update. k-NN predicts the target values of a new instance

based on the similarity information between the new

instance and its neighbor instances. Once a new instance is

provided, k-NN first searches the k most similar instances

in the reference data set. Next, the weight for each selected

neighbor instance is assigned; the greater the similarity, the

greater the weight. The target values of the selected

neighbors are then aggregated using a predefined combin-

ing rule to produce the target value of the new instance:

ŷ ¼
X

j2NNðxÞ
wjyj; ð6Þ

where NN(x) and wj denote the index set of k-nearest

neighbors of the new instance x, and the weight assigned to

the jth nearest neighbor, respectively. In k-NN learning,

two user-specific parameters must be declared: the number

of nearest neighbors (k), and the weight allocation method.

Here, we adopted the locally linear reconstruction (LLR)

method [32], due to its ability to determine the two

parameters in a structured way, unlike other heuristic-based

approaches. LLR finds the optimal weights for the nearest

neighbors by minimizing the reconstruction error E(w)

between the target instance and the projection made by its

neighbors, which is defined as follows,

EðwÞ ¼ 1

2
xt �

Xk

j¼1

wj ~xj

�����

�����
2

; ð7Þ

where xt, ~xj, and wj are the target instance, jth nearest

neighbor of xt, and the weight assigned to ~xj. By solving

this quadratic programming, LLR can find the optimal set

of weights systematically.

3.2 Novelty detection (one-class classification)

algorithms

In order to assign a level of reliability to a wafer’s VM

prediction results, we performed an evaluation to compare

the homogeneity of the process sensor data for a new wafer

with that of the training wafers based on novelty detection

techniques. Once a set of instances is provided, novelty

detection algorithms characterize and generalize the data,

assuming that they are drawn from the same underlying

distribution. When a new instance is provided, its novelty

score is computed. It is determined as being novel if the

novelty score is greater than the given threshold; if not, it is

considered normal.

A total of five novelty detection algorithms were

employed: a Gaussian density estimator (Gauss), a mixture

of Gaussians (MoG), KMC, k-nearest neighbor (k-NN), and

SVDD. Gauss [3] is the simplest parametric novelty

detection method. It assumes that normal data is generated

from a Gaussian distribution, as shown in Eq. (8).

pðxÞ ¼ 1

ð2pÞ2=djRj1=2
exp � 1

2
ðx� lÞTR�1ðx� lÞ

� �
: ð8Þ

When a set of training instances are given, Gauss esti-

mates its two model parameters, l and R, which are the

mean vector and the covariance matrix of the normal

training data, respectively. Then, whenever a new instance

is provided, its probability is computed using Eq. (8) with

the estimated parameters (l, R). If the probability is high

enough, the new instance is considered to be from the same

distribution as the training data, so it is given a high-reli-

ability score. If the probability is low, the new data are not

considered to be from the same distribution, and is given a

low-reliability score.

Gauss requires a very strict assumption of unimodality,

which is often violated in practice. To obtain a more

flexible density estimate, MoG [44] allows more than one

modal, and the probability is estimated by a linear com-

bination of K individual distribution components as

follows:

pðxÞ ¼
XK

k¼1

PðkÞpkðxÞ: ð9Þ

where K, P(k), and pk(x) are the number of components in a

mixture model, the prior probability of the kth component,

and the conditional probability of x for the kth component,

respectively. When a new instance is provided, the prob-

ability is computed, and it is determined as being normal

only if the probability is high enough. In MoG, each

component is assumed to be a Gaussian distribution, and

the parameters of each Gaussian are optimized by an

expectation–maximization algorithm [5].

KMC [57] is similar to MoG in that it groups the normal

data into K clusters, where instances within the same

cluster are homogeneous, while those in different clusters

are heterogeneous. However, KMC does not require a

Gaussian assumption for each cluster. With a given normal
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data set, KMC finds K centroids that minimize the within-

cluster sum of the squared error,

arg min
C

XK

i¼1

X
xj2Ci

jjxj � cijj2; ð10Þ

where ci is the centroid of Ci, and C is the union of all

clusters (C = C1[…[CK). When a new instance xn is

provided, its novelty score is determined based on the

distance to the nearest cluster, as follows:

Novelty score ðxnÞ ¼ jjxn � cijj; where

jjxn � cijj � jjxn � cjjj; for all k; i 6¼ j:
ð11Þ

In k-nearest neighbor learning, when a new instance is

provided, its k most similar instances are selected based on

a certain similarity metric, such as the Euclidean distance.

Then, the novelty score is computed by aggregating this

similarity information. Among various similarity combi-

nation methods, we adopted a hybrid novelty score [33],

due to its ability to consider distance and local topology

simultaneously, which are computed as follows:

dhybridðxÞ ¼ davgðxÞ �
2

1þ expð�dc�hullðxÞÞ

� �
; ð12Þ

where davg is the average distance to the k-nearest neigh-

bors, and dc-hull is the distance to the convex hull made by

the neighbors as shown in Eq. (13).

davgðxÞ ¼
1

k

Xk

i¼1

jjx� xijj; dc�hullðxÞ ¼ jjx�
Xk

i¼1

wix
ijj;

ð13Þ

where xi is the ith nearest neighbor, and wi is its corre-

sponding weight obtained by solving LLR.

SVDD [57, 58] is a novelty detection algorithm that is

based on structural risk minimization [60], and it solves a

problem in feature space using a kernel trick [45, 53].

SVDD finds a hypersphere with a minimum volume that

encloses as many normal instances as possible in the fea-

ture space. Let R and a denote the radius and the center of

the hypersphere, respectively, in an optimization problem

to be solved that is stated as:

min R2 þ C
Xn

i¼1

ni;

s:t: jjUðxiÞ � ajj2�R2 þ ni; ni� 0; 8xi; ð14Þ

where UðxiÞ and a are a transformed input data and the

center of the normal class instances in the feature space,

respectively. The solution can be found by formulating it as

a Wolfe’s dual problem and utilizing a kernel trick. When a

new instance xn is provided, its novelty score can be

measured as follows:

Novelty score ðxnÞ ¼ R2 � jjUðxiÞ � ajj2: ð15Þ

As an attempt to improve the stability of reliance

level obtained by individual novelty detection models,

we construct a fusion model of novelty detectors. Since

the main purpose of this study is to verify the practical

applicability of novelty detection algorithms as a reli-

ability indicator for VM prediction results, we adopted a

simple majority voting scheme for aggregating the nov-

elty detection algorithms rather than sophisticated meth-

ods discussed in Sect. 2.2.

NIFusionðxnÞ ¼ d
Xp

j¼1

NIjðxnÞ[
p

2

 !
; ð16Þ

where p is the number of individual novelty detectors

(p = 5 in our experiment). NIFusion and NIj denote the

novelty indicator of the fusion and jth individual novelty

detector that returns 1 if xn is determined as novel or

returns 0 if it is determined as normal. d is an indicator

function that return 1 if the condition in the parenthesis is

met, otherwise return 0.

4 Experimental settings

4.1 Data

In order to analyze the effect of the proposed reliability

evaluation models, at an actual semiconductor manufac-

turing company in South Korea, we collected the data from

117 process sensors in two pieces of photo-lithography

equipments as inputs, and eight metrological values as

outputs. Since preventive maintenance (PM) was per-

formed seven times during the data collection, we divided

the entire data into eight segmented periods, using the

occasions of PM as the points of separation. The number of

wafers collected in each period for each piece of equipment

is summarized in Table 1. The first 100 wafers in each

period were used for training the VM prediction models

and novelty detection algorithms (including cross-valida-

tion for selecting algorithm parameters and variable

selection), and the remaining wafers were used for per-

formance evaluation.

Table 1 The number of wafers

collected in each period for each

equipment

Equipment no. Prd. 1 Prd. 2 Prd. 3 Prd. 4 Prd. 5 Prd. 6 Prd. 7 Prd. 8

EQ1 230 172 137 167 452 818 138 195

EQ2 226 180 136 170 450 816 138 195
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4.2 Variable selection

In our experiments, a total of 117 input variables (process

sensor parameters) were collected. Not only was this too

many compared to the number of training wafers, but a

number of irrelevant variables were also included in the

raw data set. Therefore, we reduced the dimensions of the

input in order to improve the prediction performance and

the model training efficiency. We adopted stepwise vari-

able selection and a genetic algorithm (GA) in order to

select the most relevant variables. Stepwise variable

selection process begins with the single most relevant input

variable, and the following two procedures are conducted

alternately until every significant variable is included: (1)

among the candidates, one that most improves the predic-

tion accuracy is added (selection); (2) and among the

selected variables, one that is most irrelevant to improve

the prediction accuracy is removed (elimination). Note that

it is not necessary to remove a variable in the elimination

step. A selected variable is removed again if and only if the

prediction performance can be maintained without it. Fig-

ure 4a illustrates an example of stepwise variable selection.

In steps 2 and 4, no variable is eliminated because there is

no prediction performance improvement. However, vari-

able xi is removed in step 6 since the prediction perfor-

mance is enhanced when it is excluded from the selected

variable set. In step 9, when there are no variables to add,

the stepwise variable selection is finalized. Although the

stepwise variable selection can rapidly converge to a subset

of significant variables, it is usually not an optimal subset

when a large number of input variables are considered. In

this circumstance, GA can be a better alternative. GA finds

the optimal set of input variables based upon an evolu-

tionary procedures such as selection, crossover, and

mutation [19, 30]. Figure 4b illustrates the process of GA

variable selection. Initially, a sufficient number of chro-

mosomes, called a population, are created. Each chromo-

some has the form of binary vector where each element,

called a gene, designates the usage of the corresponding

input variable: 1 for used, 0 for not used. Next, VM models

and novelty detection algorithms are trained with the

candidate variables in each chromosome and its fitness

value is evaluated. Since the purpose of our study is to

discriminate the normal and novel wafers well in a VM

process for flexible process control, it is more desirable

when the difference of VM prediction errors between

highly reliable wafers and unreliable wafers is maximized.

Thus, we define the fitness function of the GA as follows,

Fitness functions ¼ MAEðWLÞ �MAEðWHÞ; ð17Þ

where MAE is the mean absolute error (MAE) that is

defined as Eq. (18), while WL and WH denote a set of

wafers that are classified as novel (low reliability) and

normal (high reliability), respectively. Chromosomes with

high fitness values survive and generate a new population

by imitating biological reproductive processes such as

crossover and mutation. Crossover is associated with

exchanging some genes between two chromosomes,

whereas mutation is associated with reversing the value of

certain genes (ex: from 0 to 1) with a low probability. In

Step 1: Step 2: Step 3: Step 4: Step 5: Step 6: Step 7: Step 8: Step 9:

Selection Elimination Selection Elimination Selection Elimination Selection Elimination Selection

x1 xi xi xi xi xi

x2 xj xj xj xj xj xj xj

x3 xk xk xk xk xk

. xl xl xl

.

.

xd

(a) Stepwise selection

1 0 1 1 0

0 1 0 1 1

1 1 0 1 0

0 1 0 0 0

Population

A

B

C

D

1 0 1 1 0

0 1 0 1 1

0 1 1 1 0

1 0 0 1 1

0 1 1 1 0

1 0 1 1 1

Fitness Evaluation Selection

CrossoverMutation

(b) genetic algorithm (GA)

Fig. 4 Variable selection based

on the stepwise selection and

genetic algorithm (GA)
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doing so, input variables with high prediction performance

are kept throughout the generation process, while those

with low performance naturally die out. Once this cycle

(selection, crossover, and mutation) is repeated a sufficient

number of times, we can identify a pseudo-optimal set of

variables.

The number of selected input variables in each period

for each VM prediction model is summarized in Table 2. It

was observed that there was significant redundancy among

the process sensor parameters. At most, 38 input variables

were selected for EQ1’s first and third periods by GA with

MLR, which still represented a 67 % reduction of the

original variables. In an extreme case, only two input

variables were selected for EQ1’s third period by stepwise

selection with k-NN. We would note that, regardless of the

prediction algorithm used, fewer input variables were

selected with the stepwise selection than by GA for both

pieces of equipment; the number of input variables selected

by GA for the same equipment/period/prediction algorithm

pair was more than twice the number obtained by stepwise

selection. The reason for this is that GA has a larger cov-

erage of the search space than stepwise selection, so an

individual variable has a greater chance of being consid-

ered for selection.

4.3 Algorithm parameters and performance measures

In our experiments, three regression algorithms (MLR, k-

NN, ANN) were employed for VM prediction, and five

novelty detection algorithms (Gauss, MoG, KMC, k-NN,

SVDD) were employed for reliability evaluation. Besides

MLR and Gauss, each of the adopted algorithms required

that algorithm-specific parameters be determined. The

parameters for each algorithm and their candidate values

are summarized in Table 3. k-NN regression and k-NN

novelty detection requires the number of nearest neighbors

(k), while MoG and KMC require the number of clusters

K. H is the number of hidden nodes for ANN. With the

Gaussian kernel, two parameters must be optimized for

SVDD: the width of the Gaussian kernel (r) and the cost of

the errors (C). Note that although SVDD can take other

form of kernels such as linear kernel or polynomial kernel,

we adopted the Gaussian kernel since it has been most

commonly adopted and reported better performance for

practical use [36, 43, 67]. These algorithm parameters are

optimized by fivefold cross-validation process using the

training dataset. Initially, a set of parameters for regression

algorithms and novelty detectors are fixed. Then, the var-

iable selection is conducted with these fixed parameters. As

a result, the best variable sets are obtained for each set of

algorithm parameters. Finally, the best parameter–variable

set combination is determined using the same fitness

function used in the GA.

When a new wafer is provided, a binary reliability

outcome (low or high) for VM prediction is determined by

the novelty detection model as follows. Once a novelty

detection model is trained with the same wafers used for

building a VM prediction model, the novelty scores of the

training wafers are computed and sorted in descending

order. Next, the 5 percentile value is set at a cut-off value

(threshold). If the novelty score of the new wafer is higher

than the threshold, its VM prediction results are labeled as

low; if not, its prediction results are labeled as high. This

Table 2 The number of

selected input variables
Prd. EQ1 EQ2

Stepwise GA Stepwise GA

MLR k-NN ANN MLR k-NN ANN MLR k-NN ANN MLR k-NN ANN

1 10 6 9 38 23 15 13 6 6 17 13 16

2 12 6 7 31 23 19 14 4 7 24 18 20

3 7 2 6 38 21 8 8 3 6 26 18 17

4 11 5 6 27 18 22 13 6 6 25 19 15

5 8 6 6 28 11 15 12 4 7 34 14 10

6 9 3 6 18 13 11 4 5 7 12 8 5

7 8 5 6 22 18 17 4 4 7 15 20 21

8 8 5 6 16 18 15 14 4 6 37 21 18

Table 3 The algorithm-specific parameters for each algorithm and

the candidate values

Purpose Algorithm Parameter Candidates

Regression k-NN k [1,2, …, 10,15,20]

ANN H [1,2,…,10,15,20]

Novelty detection MoG K [1, 3, 5, 7,10]

KMC K [1, 3, 5, 7,10]

k-NN k [1,2,…,10]

SVDD r [2-5,2-4,…,24,25]

C [2-5,2-4,…,24,25]
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means that if the process sensor data of a new wafer are

similar to more than 95 % of training wafers, the training

wafers and the new wafer are considered homogeneous,

and the VM prediction results of the new wafer are con-

sidered highly reliable because the new wafer’s sensor data

were sufficiently learned by the VM model. In the opposite

case, the training wafers and the new wafer are considered

heterogeneous, so the VM prediction results of the new

wafer are considered unreliable because the VM model did

not have enough learning opportunities.

Based on the evaluated reliability level, the perfor-

mance of VM is analyzed in terms of two accuracy

measures: the MAE and the percentage of absolute range

error (PARE). MAE is based on computing the absolute

difference between the actual and the predicted metrol-

ogy values as.

MAE ¼ 1

n

Xn

i¼1

jyi � ŷij; ð18Þ

where n is the total number of test wafers, and yi and ŷi are

the actual and predicted metrological values, respectively,

of the ith wafer. Since the scale of actual metrological

values is very small, i.e.,\10-2, we used an adjusted MAE

by multiplying Eq. (18) by 100. PARE is defined as the

proportion of wafers whose prediction error is within the

level of tolerance, and is computed as:

PARE ¼ 1

n

Xn

i¼1

I yi � ŷij j\hð Þ; ð19Þ

where I(•) is an indication function that returns 1 if the

condition in the parenthesis is satisfied, and returns 0 if it is

not. h is the tolerance level determined by the process

recipe. In our experiments, h was set to 0.003 because the

same value was used in the actual manufacturing process.

5 Experimental results

Note again that we use the term WH to refer to wafers

whose reliability level is labeled high and WL for wafers

whose reliability level is labeled low. The summary sta-

tistics of the proportions of WL, as determined by indi-

vidual novelty detection algorithms and their fusion model,

are summarized in Table 4, and their distributions are

shown in Fig. 5. We would note that there were a total of

48 cases for each novelty detection algorithm for each

piece of equipment: 8 periods � 3 VM prediction mod-

els � 2 variable selection methods. Although we used the

same cut-off threshold for both the high and low reliability

levels, i.e., the top 5 % novelty score of the training wafers,

the distributions of the proportions of WL were quite dif-

ferent, depending upon the novelty detection algorithm. It

Table 4 The summary

statistics of the proportion of WL

Algorithm EQ1 EQ2

Mean Median SD Q3–Q1 Mean Median SD Q3–Q1

Gauss 0.0589 0.0270 0.0745 0.077 0.0431 0.0264 0.0524 0.043

MoG 0.0711 0.0597 0.0523 0.0751 0.0621 0.0526 0.0511 0.0548

KMC 0.0282 0.0243 0.0259 0.0395 0.0212 0.0148 0.0209 0.0337

k-NN 0.0546 0.0443 0.0486 0.0619 0.0480 0.0296 0.042 0.0450

SVDD 0.1482 0.1187 0.0933 0.1447 0.1247 0.0947 0.0875 0.1172

Fusion 0.0434 0.0327 0.0380 0.5260 0.0309 0.0250 0.0275 0.0361

Gauss MoG KMC k-NN SVDD Fusion
-0.1

0.0

0.1

0.2

0.3

0.4

Gauss MoG KMC k-NN SVDD Fusion
-0.1

0.0

0.1

0.2

0.3

0.4

EQ2(b)EQ1(a)

Fig. 5 The proportion of WL

determined by each novelty

detection algorithm
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was observed that KMC assigned a low level of reliability

to the wafers most strictly, as only 2:82 % (EQ1) and

2:12 % (EQ2) of the test wafers were labeled as low, on

average. In addition, the variation of the proportions

obtained using KMC was the smallest among the novelty

detection algorithms. Gauss and k-NN assigned low reli-

ability to 4–6 % of the test wafers on average, and these

proportions were consistent with the threshold setting, i.e.,

5 %. In general, MoG and SVDD were found to over-fit the

training data, because they assigned low reliability to more

test wafers than was expected, and the variations were also

large. MoG assigned low reliability to 7:11 % (EQ1) and

6:21 % (EQ2) of the test wafers, on average. The dis-

crepancy between the proportions of WL in the training data

versus the test data was the greatest when SVDD was used.

More than 10 % of the test wafers were determined as WL,

and with the highest degree of variation, as shown in

Fig. 5. When it comes to the Fusion model, it assigned low

reliability to the wafers slightly lower than the threshold;

4:34 % and 3:09 % of the test wafers are determined as

unreliable for EQ1 and EQ2, respectively. Based on these

results, we are able to make an immediate suggestion

regarding the adoption of a novelty detection algorithm. If

process engineers require strict process control, it would be

better to use a novelty detection algorithm that sounds an

alarm frequently, such as SVDD. If they require a lesser

degree of control, then a novelty detection algorithm that

seldom assigns low reliability to wafers, such as KMC,

should be employed.

The VM prediction performance according to the reli-

ability level, in terms of the adjusted MAE, is summarized

in Table 5. Theoretically, 64 MAEs for both WH and WL

can be obtained for each VM model-novelty detector

algorithm pair, because there were two pieces of equip-

ment, eight periods, and four targets. However, for a cer-

tain equipment–period–target variable cases, all wafers

resulted in high reliability level so that the MAE(WL)

cannot be obtained. We discarded those cases when com-

puting the statistics for WL. In addition, Table 6 shows the

proportion of the equipment-period-target variable pairs

that resulted in lower adjusted MAEs for WH than those

for WL. If this proportion is large, we can conclude that the

novelty detection algorithm is effective, because the wafers

with high reliability resulted in smaller errors than those

with low reliability. In other words, the greater the pro-

portion, the more effective the novelty detection algorithm.

Based on Tables 5 and 6, the following observations can

be made. First, WL resulted in a much higher MAE than

WL, regardless of the VM models, novelty detection algo-

rithms, or variable selection methods. On average, the

MAE of WL was more than 50 % higher than that of WH for

the same VM model/variable selection/novelty detection

pair, with just a few exceptions. We would note that there

were a few extremely high adjusted MAEs for WL, which

would make the average adjusted MAEs biased. In terms of

the median value of the adjusted MAEs, however, WL still

resulted in more than 20 % higher MAEs than WH for most

pairs. This finding supports our hypothesis that a VM

prediction result would not be reliable when a test wafer’s

input data and those of the training wafers are

heterogeneous.

Second, among the variable selection methods, the

average adjusted MAEs for WH and WL is generally lower

with the stepwise selection when MLR and ANN are

employed as VM models, whereas the average adjusted

MAEs for WH are not significantly different, but those for

WL is much lower with GA selection than stepwise selec-

tion when k-NN is employed. Therefore, the proportions in

Table 6 are greater with GA than with stepwise selection

for MLR and ANN for most cases, whereas stepwise

selection and GA selection resulted in higher proportions

for three cases, respectively. We would note that in gen-

eral, the input variables selected by GA selection out-

numbered those obtained by stepwise selection. Looking at

the adjusted MAEs of the training data, we see that the

error rates with GA selection were lower than those with

stepwise selection for all VM prediction models. However,

their levels of performance with the test data were reversed

with an only exception of k-NN for WL. A possible

explanation for this is that because GA selection takes a

broader search space into account than stepwise selection,

GA selection brings a higher risk of over-fitting, in

practice.

Third, among the VM prediction models, MLR and k-

NN resulted in a similar level of performance in terms of

the adjusted MAE for WH and the adjusted MAE difference

between WH and WL, while ANN was not as accurate as the

others. However, when we look at the adjusted increase in

MAE shown in Table 6, MLR and ANN were more

effective than k-NN. We would note that in an ideal situ-

ation, the value in each cell in Table 6 should be 1, because

a good VM model with a proper novelty detection algo-

rithm always makes more accurate predictions for WH than

WL. However, for some equipment/period/target pairs, only

a few wafers, such as a number of less than five, were

identified as WL, and some of them were false alarms in

practice. In such cases, the MAE of WL could be smaller

than WH. Although k-NN made fairly accurate predictions

for WH, it failed to distinguish WL from WH. ANN, on the

other hand, succeeded in distinguishing WL from WH, but

its MAE for WH is lower than that of MLR. Overall, when

considering both the MAE for WH and the adjusted increase

in MAE, MLR was found to be the best model using our

experimental settings. However, we should recall that only

100 training wafers were used in our experiment, due to the

difficulty of acquiring actual data. If a sufficient number of
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Table 5 The summary

statistics of the adjusted MAE

with respect to WH and WL

An asterisk (*) denotes that the

average adjusted MAE of WL is

greater than that of WH at the

significant level of 0.05

Variable selection Stepwise GA

VM ND Reliability Mean Median SD Q3–Q1 Mean Median SD Q3–Q1

MLR Gauss WH 0.1270* 0.1220 0.0271 0.0300 0.1337* 0.1284 0.0294 0.0271

WL 0.3229 0.1866 0.4691 0.1644 0.3826 0.2409 0.4706 0.2459

MoG WH 0.1259* 0.1231 0.0262 0.0319 0.1348* 0.1284 0.0339 0.0241

WL 0.2205 0.1704 0.1973 0.1081 0.4069 0.2075 0.6270 0.2110

KMC WH 0.1281* 0.1238 0.0275 0.0318 0.1406* 0.1330 0.0460 0.0266

WL 0.2660 0.1867 0.2213 0.1518 0.5535 0.2658 0.8426 0.3510

k-NN WH 0.1264* 0.1240 0.0267 0.0311 0.1376* 0.1309 0.0452 0.0282

WL 0.2376 0.1796 0.1728 0.1414 0.5078 0.2426 0.8511 0.2857

SVDD WH 0.1255* 0.1218 0.0264 0.0298 0.1371* 0.1308 0.0418 0.0271

WL 0.1884 0.1581 0.1033 0.0841 0.2937 0.1814 0.4550 0.1129

Fusion WH 0.1277* 0.1235 0.0275 0.0319 0.1376* 0.1314 0.0418 0.0266

WL 0.2709 0.2025 0.2250 0.1633 0.4140 0.2169 0.6219 0.2944

k-NN Gauss WH 0.1254* 0.1244 0.0258 0.0323 0.1242* 0.1283 0.0261 0.0359

WL 0.2311 0.1578 0.3548 0.0857 0.1544 0.1450 0.0715 0.0883

MoG WH 0.1254* 0.1240 0.0270 0.0315 0.1241* 0.1263 0.0261 0.0347

WL 0.1993 0.1500 0.2933 0.0638 0.1653 0.1556 0.0792 0.0915

KMC WH 0.1265* 0.1241 0.0269 0.0306 0.1261* 0.1294 0.0268 0.0337

WL 0.1825 0.1490 0.1615 0.0806 0.1547 0.1348 0.0919 0.0748

k-NN WH 0.1246* 0.1216 0.0268 0.0313 0.1248* 0.1277 0.0265 0.0337

WL 0.1950 0.1627 0.1756 0.0755 0.1740 0.1587 0.0814 0.0761

SVDD WH 0.1268* 0.1245 0.0291 0.0347 0.1258* 0.1266 0.0276 0.038

WL 0.1435 0.1302 0.0817 0.0514 0.1351 0.1313 0.0418 0.0424

Fusion WH 0.1261* 0.1245 0.0284 0.0332 0.1251* 0.1275 0.0265 0.0331

WL 0.1919 0.1588 0.1861 0.0813 0.1612 0.1443 0.0822 0.0835

ANN Gauss WH 0.1311* 0.1283 0.0263 0.0308 0.1343* 0.1293 0.0303 0.0317

WL 0.3028 0.1876 0.3178 0.1776 0.2954 0.1879 0.5418 0.1495

MoG WH 0.1302* 0.1277 0.0267 0.032 0.1339* 0.1297 0.0324 0.0344

WL 0.2213 0.1771 0.1989 0.1209 0.2354 0.1730 0.3808 0.076

KMC WH 0.1336* 0.1280 0.0346 0.0303 0.1355* 0.1298 0.0316 0.0339

WL 0.2645 0.1737 0.2626 0.1881 0.3452 0.1912 0.8132 0.1835

k-NN WH 0.1326* 0.1270 0.0343 0.0315 0.1341* 0.1293 0.0312 0.0346

WL 0.2356 0.1735 0.1707 0.143 0.3530 0.1831 1.0109 0.0687

SVDD WH 0.1317* 0.1270 0.0283 0.0336 0.1329* 0.1269 0.0326 0.0380

WL 0.1888 0.1470 0.1942 0.0646 0.2540 0.1650 0.5103 0.0768

Fusion WH 0.1319* 0.1280 0.0274 0.0314 0.1346* 0.1295 0.0306 0.0327

WL 0.2944 0.1795 0.4195 0.1706 0.3292 0.1908 0.8145 0.1200

Table 6 The proportion of

equipment–period–target pairs

where the adjusted MAE

increase is greater than 0

VM model Variable selection Gauss MoG KMC k-NN SVDD Fusion

MLR Stepwise 0.8500 0.9063 0.7500 0.9063 0.8000 0.9063

GA 0.9375 0.8750 0.8750 0.9583 0.8167 0.9843

k-NN Stepwise 0.6786 0.7292 0.7000 0.7250 0.5000 0.7500

GA 0.6250 0.7000 0.5000 0.7857 0.5385 0.8281

ANN Stepwise 0.7500 0.7000 0.9000 0.8750 0.6000 0.9063

GA 0.9063 0.8958 0.8333 1.0000 0.7500 0.9841
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training wafers were provided, it is possible that more

complex regression algorithms such as k-NN or ANN

would perform better than a simple linear model.

Fourth, the best novelty detection algorithm depended

upon the VM prediction model. Gauss was found to be the

best for MLR in terms of the median adjusted MAE, the

difference between the MAE in WH and WL, find the

proportion of adjusted MAE increase. For the other two

VM models, k-NN was found to be the best when using the

same criteria. It is interesting that the simplest novelty

detection algorithm, i.e., Gauss, was best suited for the

simplest (linear) VM model, while the more complicated

novelty detection algorithm, i.e., k-NN, went well with

non-linear VM models. It is worth noting that although the

fusion of individual novelty detectors did not result in the

lowest adjusted MAEs for WH, it gave a remarkable per-

formance in terms of the proportion of adjusted MAE

increase. For the six VM model-variable selection pairs,

the fusion novelty detector resulted in the highest propor-

tions of the adjusted MAE increase (Table 6), with an

exception of ANN–GA pair. Even in the ANN–GA pair, its

adjusted MAE increase proportion is 0.9841, which is very

close to the best result (1, MLR) and much higher than the

others. This implies that the fusion novelty detectors can

reduce the variation of individual novelty detectors so a

more stabilized performance can be achieved. We would

also note that among the novelty detection algorithms,

SVDD displayed behavior that was different from that of

the other algorithms. Its mean and median adjusted MAE

of WH was as low as that of the other algorithms, but the

gap between WH and WL was significantly narrower. As

explained earlier, SVDD rejected many wafers as it gave a

high reliability level. Some of these rejected wafers were

actually not similar to the training wafers, but the others

were labeled low even though they were actually drawn

from the same underlying distribution. The MAE of those

wafers was not as large as that of an actual novel wafer;

thus, this diluted the MAE of WL. As a consequence, we

would not recommend the use of a conservative novelty

detection algorithm such as SVDD unless one wishes a

very strict process monitoring and is willing to accept a

number of alarms.

The VM prediction performance according to the reli-

ability level, in terms of PARE, are summarized in Table 7.

First of all, similar to the results obtained in terms of the

adjusted MAE, WH resulted in higher average PAREs

(better performance) than WL, regardless of the VM model,

variable selection algorithm, or novelty detection algo-

rithm. The average PARE of WH for a certain VM model/

variable selection/novelty detection algorithm pair is at

least 10 % higher than that of WL. With stepwise selection,

the performance of MLR and ANN seemed indistinguish-

able from one another, since the PAREs of WH were always

[0.9, but those of WL were smaller than 0.8, except for

SVDD. Although k-NN resulted in similar PAREs for WH,

the PAREs for WL were greater than those obtained with

the other VM models. Therefore, the difference in the

PARE for WH versus WL became narrower. This is not

desirable unless a VM model can predict both WH and WL

very well, so the reliability level for the prediction results

becomes of no use. When we looked back at Table 5, it

seemed unfortunate that, k-NN did not have as a good

prediction power for WL as for WH. Therefore, we can

conclude that the high PARE for WL obtained with k-NN

was not so much due to the fact that many of its predictions

were accurate, but rather, that they were marginally within

the threshold h in Eq. (18).

Second, it is worth pointing out that the variable selec-

tion with GA was comparable to the stepwise variable

selection only when MLR was adopted as a VM model.

With the other two regression models, the average PARE

of WH was not significantly greater than that of WL, and

was even lower in some cases. We suspect that because GA

covers a broader search space than stepwise selection, it

was likely to over-fit the training data. Since MLR is a

linear model, it has a relatively lower degree of complexity

than k-NN and ANN, and this low level of complexity

compensates for the over-fitted variable selection results. k-

NN and ANN, on the other hand, are models with a higher

level of complexities, which are able to generate the arbi-

trary shape of a curve for regression fitting. Thus, the over-

fitted variable selection results were not controlled by the

VM model, which resulted in prediction performance

degradation.

Third, among the VM model-novelty detection pairs,

MLR with Gauss was found to be the best combination.

Although the average PARE was not the highest with the

MLR–Gauss pair, the difference between the best PARE

and that of the MLR–Gauss pair was negligible. However,

the difference between the PARE of WH and WL was

maximized with the MLR–Gauss combination. However,

similar to the results in terms of adjusted MAE, the fusion

of novelty detectors results in the best when looking at the

performance stability. Table 8 shows the proportion of

equipment–period–target pairs in which the average PARE

of WH is greater than that of WL among a total of 64 pairs.

It is confirmed that the fusion model was outstanding for all

VM model-variable selection combinations. At least 70 %

of pairs resulted in a higher average PARE of WH than WL

(k-NN-GA), while more than 92 % of them resulted in a

higher average PARE of WH than WL when MLR-GA

combination is employed.

In summary, in terms of adjusted MAE and PARE,

we can make the following observations. First, every

novelty detection algorithm was useful in detecting

wafers that would produce less reliable VM predictions.
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Table 7 The summary

statistics of the PARE with

respect to WH and WL

An asterisk (*) denotes that the

average adjusted PARE of WH

is greater than that of WL at the

significant level of 0.05

Variable selection Stepwise GA

VM ND Reliability Mean Median SD Q3–Q1 Mean Median SD Q3–Q1

MLR Gauss WH 0.9332* 0.9490 0.0587 0.0485 0.9211* 0.9343 0.0602 0.0527

WL 0.7104 0.8000 0.3535 0.4143 0.6685 0.7500 0.2430 0.3417

MoG WH 0.9356* 0.9474 0.0563 0.0461 0.9186* 0.9374 0.0647 0.0475

WL 0.7854 0.8947 0.2871 0.2971 0.7037 0.7778 0.2633 0.4231

KMC WH 0.9313* 0.9452 0.0581 0.0527 0.9130* 0.9252 0.0660 0.0557

WL 0.7582 0.8333 0.2888 0.3667 0.6054 0.6333 0.3429 0.3990

k-NN WH 0.9350* 0.9464 0.0561 0.0504 0.9164* 0.9322 0.0652 0.0506

WL 0.7455 0.9161 0.3598 0.3056 0.6467 0.7500 0.3172 0.4183

SVDD WH 0.9360* 0.9524 0.0552 0.0474 0.9178* 0.9313 0.0651 0.0568

WL 0.8387 0.8949 0.1696 0.2582 0.7980 0.8333 0.1761 0.2246

Fusion WH 0.9319* 0.9453 0.0586 0.0495 0.9163* 0.9268 0.0626 0.0536

WL 0.7270 0.8571 0.3400 0.3750 0.7044 0.7813 0.3001 0.5000

k-NN Gauss WH 0.9279* 0.9353 0.0558 0.0734 0.9266 0.9352 0.0573 0.0750

WL 0.8029 1.0000 0.3065 0.2500 0.8822 1.0000 0.1618 0.2000

MoG WH 0.9282 0.9423 0.0600 0.0700 0.9280 0.9358 0.0537 0.0760

WL 0.8338 0.8571 0.2325 0.2153 0.8527 0.9393 0.2154 0.1875

KMC WH 0.9253 0.9367 0.0585 0.0794 0.9239 0.9281 0.0556 0.0855

WL 0.8394 0.9375 0.2207 0.2917 0.8917 1.0000 0.2387 0.1214

k-NN WH 0.9298 0.9394 0.0586 0.0750 0.9257 0.9343 0.0550 0.0821

WL 0.8130 0.8411 0.2053 0.2788 0.8573 0.9129 0.2036 0.1951

SVDD WH 0.9262 0.9393 0.0617 0.0791 0.9239 0.9310 0.0598 0.0870

WL 0.8732 0.9166 0.1896 0.1484 0.9147 0.9179 0.0935 0.1002

Fusion WH 0.9278* 0.9362 0.0573 0.0710 0.9255 0.9366 0.0561 0.0736

WL 0.7981 0.8889 0.2726 0.2667 0.8723 1.0000 0.1995 0.2000

ANN Gauss WH 0.9226* 0.9380 0.0561 0.0706 0.9166* 0.9253 0.0627 0.0774

WL 0.6817 0.7750 0.3510 0.5000 0.7437 0.8333 0.3200 0.3333

MoG WH 0.9256* 0.9369 0.0563 0.0755 0.9181* 0.9291 0.0648 0.0731

WL 0.7822 0.8333 0.2189 0.3205 0.8149 0.8297 0.1669 0.2609

KMC WH 0.9210* 0.9358 0.0594 0.0825 0.9151* 0.9250 0.0638 0.0727

WL 0.7088 0.9000 0.3442 0.5000 0.7281 0.8333 0.3133 0.5000

k-NN WH 0.9235* 0.9390 0.0600 0.0815 0.9179* 0.9302 0.0617 0.0687

WL 0.7270 0.8063 0.2998 0.3979 0.7571 0.8571 0.2949 0.3333

SVDD WH 0.9222 0.9400 0.0594 0.0832 0.9190* 0.9301 0.0633 0.0675

WL 0.8513 0.9191 0.1740 0.2321 0.8049 0.8633 0.2166 0.2230

Fusion WH 0.9214* 0.9376 0.0582 0.0820 0.9166* 0.9246 0.0628 0.0675

WL 0.7163 0.8452 0.3215 0.4167 0.7413 0.8462 0.2804 0.5000

Table 8 The proportion of

equipment–period–target pairs

where the PARE of WH is

greater than that of WL

VM model Variable selection Gauss MoG KMC k-NN SVDD Fusion

MLR Stepwise 0.8500 0.8438 0.7500 0.6875 0.7250 0.8750

GA 0.9375 0.8750 0.8750 0.8333 0.7667 0.9219

k-NN Stepwise 0.7143 0.7083 0.6500 0.7000 0.4500 0.7302

GA 0.5750 0.6750 0.4375 0.6429 0.5000 0.7031

ANN Stepwise 0.6429 0.7250 0.7000 0.8750 0.6750 0.8438

GA 0.6563 0.8125 0.7083 0.7500 0.6923 0.8281
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Second, stepwise variable selection resulted in better

reliability estimation performance than GA selection in

general, because it prevented over-fitting of the training

data. Third, among the candidate regression models and

novelty detection algorithms, the MLR–Gauss pair pro-

duced effective reliability evaluation as well as accurate

VM prediction. Fourth, constructing a fusion model can

improve the stability of the proposed framework since

the proportion of the equipment–period–target variable

pairs that result in better performance for WH than WL

in terms of both adjusted MAE and PARE is higher with

the fusion model than the other individual novelty

detectors.

Figure 6 shows a number of VM prediction results

and their corresponding reliability levels for certain

equipment/period/target pairs with certain VM model/

variable selection/novelty detection pairs. We would note

that the small circles represent actual metrological val-

ues, while the empty squares and large circles represent

the predicted metrological values of WH and WL,

respectively. We would also note that, in general, the

variation of the predicted metrological values is smaller

than that of the actual values, because none of the

regression models was designed to learn the natural

noise. In Fig. 6a there are four wafers (wafer ID 7, 11,

12, and 21) with low reliability, and their actual and

predicted metrology values are notably different from

those of the wafers with high reliability, except for one

wafer (wafer 12). In Fig. 6b, c, two wafers with low

reliability have VM values that are very different from

the actual ones, while the other two wafers have VM

predictions that are similar to the actual ones, despite the

low reliability. In Fig. 6d, only one wafer turned out to

be unreliable, and its prediction value is very different

from its actual metrology value. With these VM pre-

diction results and the evaluated reliability, a process

engineer could take appropriate action as follows. Let us

assume that a wafer’s reliability level is high. If its

predicted metrology value is within the control limit, we

can conclude that the process is operating properly, and

no action need to be taken. If, on the other hand, its

predicted metrology value is outside the control limit,

one can conclude that something has gone wrong during

the operation. In this case, proper follow-up action such

as tool adjustment or recipe modification should be

performed. If, however, a wafer’s reliability level turns

out to be low, then no further action should be taken,

based on its predicted VM values alone, until its actual

metrology value is measured, because the prediction is

not trustworthy. If the predicted metrology value is

outside the control limit but it turns out that its actual

metrology value is within the control limit, we are able

to avoid the performance of additional unnecessary

operations. The problem with the reliability evaluation

occurs when a wafer’s reliability level is low, but its

predicted VM value is within the control limit and its

actual metrology value is also within the limit. The cost

of this is the resource needed to provide additional actual

metrology. However, by updating the novelty detection
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Fig. 6 The actual VM results (small circle) and the VM prediction of

WH (empty square) and WL (large circle)
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model with the inclusion of that wafer, we can improve

the reliability evaluation model in the long run.

6 Conclusion

In this paper, we have proposed a framework for evaluating

the reliability of VM predictions to support the selective

usage of VM results, in order to facilitate flexible process

control. In order to determine the reliability level, we

propose the use of novelty detection algorithms that

determine the homogeneity between a test wafer and

training wafers. If the test wafer is determined to be similar

to the training wafers, its VM prediction is considered

highly reliable; if not, it is considered unreliable. In order

to analyze the effect of the proposed reliability evaluation

methods, we conducted extensive experiments using two

variable selection methods, three VM prediction models,

and five novelty detection algorithms as well as their fusion

model, based on actual process and metrology data. The

experimental results showed that every novelty detection

algorithm could satisfy our purpose, but specifically, the

MLR–Gauss or MLR–fusion pair with stepwise variable

selection was outstanding. We also demonstrated that,

based on the evaluated reliability level and predicted me-

trological values, an appropriate follow-up action can be

taken that will facilitate accurate and flexible process

control.

Apart from a number of experimental results which we

noted, there are a few limitations of the present work that

suggest further directions for research. First, there is no

clear definition of the outlier in an actual manufacturing

control system; we cannot evaluate the performance of

novelty detectors using more diversified measures, such as

the rejection ratio of normal class (false alarm) and the

acceptance ratio of novel class (miss). Thus, what we have

done is to evaluate the latent effect of outliers indirectly by

comparing the performances for the normal and novel

classes determined by the novelty detectors. Therefore, it

should be worth applying our framework to a process

control system which has a clear definition of outliers.

Second, because we had difficulty collecting actual data

from a semiconductor manufacturing process, we could not

investigate the long-term effect of the reliability evaluation

models. Therefore, long-term-based VM prediction and

reliability evaluation models should be developed and

analyzed. Third, although we provided a general guideline

for the selective usage of the reliability evaluation results,

its practical impact should be studied by implementing a

reliability evaluation methodology in a wafer-to-wafer

control scheme.
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