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Abstract We present a method to recognize gestures

made by Chinese traffic police in complex scenes based on

a max-covering scheme for driver assistance systems and

intelligent vehicles. Gesture recognition is made possible

by upper-body-part detection with a five-part body model.

First, the police’s torso and arms are extracted from a

complex traffic scene as the foreground region by using

dark channel prior and kernel density estimation. Then the

coordinates of pixels in the upper arms and forearms are

determined using the proposed max-covering scheme,

which is based on a key observation that body-part tiles

maximally cover the foreground region and satisfy a body

plan. Finally, the rotation joint angle or Gabor feature-

based two-dimensional principal component analysis is

used to recognize the gestures made by Chinese traffic

police. A comparative study is proposed with other human

pose estimation methods, which demonstrates that better

recognition results can be obtained using the proposed

method on a number of video sequences.

Keywords Gesture recognition � Chinese traffic police �
Dark channel prior � Max-covering � Five-part body model

1 Introduction

Gesture recognition of Chinese traffic police has important

meanings for driver assistance systems and intelligent

vehicles. However, this is a daunting task and is rare in the

literature. This is mainly because it is hard to accurately

detect traffic police in an unpredictable environment,

which makes the problem both complex and limited.

As we will describe shortly in more detail, gesture

recognition of Chinese traffic police generally faces two

challenges. One is detecting Chinese traffic police in a

complex traffic environment. The problem is very hard

because of the possibility of high-density crowds and

vehicles in the scene. The other challenge involves

choosing appropriate features for recognizing the traffic

police’s gestures. In this work, we detect traffic police in a

complex scene as the foreground region to constrain the

arms in a max-covering manner in order to generate a five-

part body model, which we used to determine the relative

position and orientation of the arms, and then recognize

gestures through rotation joint angles or Gabor feature-

based two-dimensional principal component analysis

(2DPCA).

The remainder of this paper describes our algorithm in

more detail. We begin by reviewing existing works on

gesture recognition. In Sect. 3, we explain the data flow

diagram in our system. The detailed procedure to recognize

the gestures of traffic police is described in Sects. 4, 5, and

6, whereas in Sect. 7, we illustrate our experimental results.

At the end of this paper, we draw our conclusions about

this study.

2 Previous work

Gesture recognition can be divided into roughly two cate-

gories: the on-body sensor-based method and the vision

sensor-based method. The on-body sensor-based method

uses MEMS inertial sensors such as accelerometers and

gyroscopes to measure motion and posture. For example, in

Yuan et al. [1], on-body sensors were fixed on the back of
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each hand of the police to extract gesture data. Although

the method can achieve a good recognition rate, the extra

hindrance to the performer and the relatively high cost

limit its use in police gesture recognition. Because of its

convenience and relatively low cost, the vision sensor-

based method has been widely used in gesture recognition.

The method commonly follows two steps: The first step

involves acquiring the gesture video by using a digital

camera and locating human features, then estimating

human poses from these obtained features. The second step

is gesture recognition based on the extracted human pos-

ture and movement. The vision sensor-based method has

achieved both scientific and economic success. For exam-

ple, Singh et al. [2] used the Radon transform to recognize

hand gestures used by air marshals for steering aircraft on

the runway. However, a relatively stationary background of

video sequence is a must for this method, which is not true

for a traffic scene. Kang et al. [3] used upper-body gestures

as the interface between a video game and its player and

achieved an average success rate of 93.36 % for the rec-

ognition of 10 gesture commands. Jin et al. [4] developed a

video-based system for recognizing characters written with

a finger. It allows one to enter characters into the computer

program by using the movement of a fingertip.

On the other hand, gesture recognition and human body

modeling can be closely related problems since acquiring

the motion of arms implicitly solves gesture recognition

and constructing a good human body model actually

ensures a high recognition rate. Although gesture recog-

nition of traffic police has not been the focus of the liter-

ature, substantial advances in human body modeling have

been reported. Researchers also propose a tree structure

model to represent the human body and reconstruct 3-D

human motion poses. The model consists of rigid parts

connected by joints [5, 6]. State-of-the-art pose estimation

methods [7–9] typically represented the human body as a

graphical model composed of ten major body parts corre-

sponding to the head, torso, and upper and lower limbs.

Meanwhile, human body models have also been used for

body-part detection as in [10].

3 Overview

The basic idea of our algorithm is to recognize police

gestures from the corresponding body parts on the image

plane. The positions of the upper arms and forearms in

each frame of the video are located with a local search by

using the max-covering scheme technique.

The proposed algorithm is divided into three major steps

as shown in Fig. 1. The first step is to detect traffic police in

a complex scene. The reflective traffic vest can be detected

using dark channel prior on the police’s torso, and the upper

arms and forearms of police are also obtained with kernel

density estimation (KDE) as part of the foreground region.

In the second step, the upper arms and forearms of

traffic police are located using a five-part body model

following two steps: (1) obtaining the closed region inside

the foreground silhouette on the base of morphological

operation and (2) estimating the upper arms and forearms

by doing the rotation around the shoulder and elbow joints

in a max-covering manner (Fig. 2).

In the last step, some typical gestures of traffic police are

recognized in two ways. On the one hand, the rotation angles

of the shoulder and elbow joints of each frame are used to

match the defined rotation angles of standard gestures [11]. On

the other hand, besides our previous work, we propose to use

Gabor feature-based 2DPCA to extract the effective features

of the traffic police gestures and calculate the shortest

Euclidean distance with the highest degree of similarity from

the result of the arms’ detection to recognize police gestures in

this paper. A comparative study and a quantitative evaluation

are proposed with other algorithms, which demonstrate that

better quality results can be obtained by the proposed method.

4 Traffic police detection and foreground modeling

Locating the traffic police is the foundation of analyzing

his/her gestures, which can be achieved through two steps:

(1) police feature extraction and (2) police foreground

modeling.

4.1 Police feature extraction

To the best of our knowledge, the detection of traffic police

in a complex traffic environment has not been directly

tackled before. The problem involves the possibility of

high-density crowds and vehicles in the image. Therefore,

we provide a robust solution that makes use of a unique

feature of Chinese traffic police, which works efficiently

even under such sophisticated scenarios.

According to Chinese regulations, traffic police must

wear a reflective vest while they are on duty. Thus, we rely

on the vest to capture the position of traffic police in the

image. Two distinctive features of reflective vest are con-

sidered here: (1) its apple green color and (2) its strong

reflective capacity. The reflective vest can be roughly

extracted with color threshold segmentation, which uses

the chromaticity coordinates to be more insensitive to small

changes in illumination that arise because of shadows.

Given three color variables, R, G, and B, the chromaticity

coordinates are r = R/(R ? G ? B), g = G/(R ? G ? B),

and b = B/(R ? G ? B), where r ? g ? b = 1. We have

used the relation between the components. Thus, the color

threshold has the following expression:
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Thus, in Fig. 3a, for example, the vest, the tree, and the

plant are green. Because of that, these objects were

extracted by color thresholding. One example of thres-

holding can be observed in Fig. 3b. Note that some false

detection is not easy to eliminate by only using color

threshold segmentation because the operation might also

extract other objects with a similar color. Therefore,

reflective capacity as another important feature is con-

sidered here. We notice that the intensities of the reflec-

tive vest in three color channels, R, G, and B, all have

very high values because of the strong reflective capacity,

whereas for other colorful objects or surfaces (e.g., the

green grass, the tree, the plant), at least one color channel

has very low intensity in some pixels. Thus, the dark

channel prior [12], which was proposed to solve the de-

hazing problem, is used here to further extract the vest.

Formally, for an image J, its dark channel Jdark is defined

by

JdarkðxÞ ¼ min
c2fr;g;bg

ð min
y2XðxÞ

ðJcðyÞÞÞ; ð2Þ

where Jc is a color channel of J and X(x) is a local patch

centered at x. The dark channel of Fig. 3b is shown in

Fig. 3c. A detected pixel, x, will be considered to be part of

the reflective vest only if Jdark (x) [ T, as shown in Fig. 3d.

The value of T is application based. We have decided to

keep it fixed at 85 for all results reported in this paper.

Figure 3e shows the result in the red bounding box. Note

that if the height of the bounding box is too small (e.g.,\1/

20 of the image height), which means no police is detected,

then there is no need to do the following steps.

4.2 Police foreground modeling

For many researchers, the human body can be regarded as

an example of perfect proportions. According to their

theory, a perfect body is eight heads high. The shoulder is

two head lengths wide. The upper arm is one and a half

heads long, and the forearm is one and a quarter heads

long. Thus, it can be deduced that the whole arm is about

three heads long. We use these proportions to narrow the

Each frame in
video sequence

Extraction of the
color feature of

reflective traffic vest

The torso of
traffic police

Estimating the
candidate area of arms

through body proportion

Extraction of the
color feature of
police uniform

Foreground
modeling
by KDE

The police upper
body in the image

5-part body
model

Arms locating by
max-covering

scheme

The coordinates of
shoulder and elbow
joints in the image

The rotation angles of
shoulder and elbow

joints
Estimation of the

coordinates of pixels in
upper and lower arms

Estimating similarity
using Gabor feature-

based 2DPCA

Outputting the shortest Euclidean
distance with highest degree of
similarity as recognition results

Outputting recognition results
according to the defined rotation

angles of standard gestures

Fig. 1 Diagram of data flow in

our system

Extracted
foreground

Located
arms

5-part body
model

Fig. 2 Arm location by using a five-part body model
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search area for the arms of traffic police. The proportion of

the human upper body and the search area is depicted in

Fig. 4.

For the purposes of discussion, we define the torso and

the arms of traffic police in the scene as the foreground and

other parts of the scene as the background. The search area

covers the possible positions of the arms. However, the

background regions contained in the area do not provide

any information about the arms. In fact, the background

context causes ambiguity, which eventually results in false

body model construction. Several segmentation methods

could be used to separate the regions of the background

from the regions of the police’s arms and torso. However,

we found in our experiments that it is better to estimate one

distribution for the background and one distribution for the

foreground using a kernel density estimator [13]. Assuming

that the police’s torso will be centered in the red bounding

box (Fig. 5a), we first extract the pixels that satisfy the

color threshold constraints: b-g [ 0.05 and b-r [ 0.05,

as shown in Fig. 5b. All the pixels that belong to the blue

color that appear outside the bounding box are sought in

the search area. Then as shown in Fig. 5c, we use the top

20 pixels that are close to the center point of the box as the

samples to estimate the probability distribution function

(PDF) of the foreground. Let x1, x2,…, x20 be a sample of

intensity values for a pixel. Given the intensity of target

pixel xt, we can estimate the density as

PrðxtÞ ¼
1

20

X20

i¼1

Y3

j¼1

1
ffiffiffiffiffiffiffiffiffiffi
2pr2

j

q e
�1

2

ðxtj
�xij
Þ2

r2
j : ð3Þ

In Eq. 3, rj is a suitable bandwidth for R, G, and B three-

color channel. In our experiment, rj is set to 2=0:68
ffiffiffi
2
p

.

Consequently, we compute pixel probabilities for the

foreground and assign every pixel outside the bounding

box to its most probable distribution. An illustrative

example is shown in Fig. 5d.

5 Body model and location of the arms

Given the police foreground image, the location of the

arms can be simulated as a jigsaw puzzle problem. In the

following, we show how the location of the arms can be

formulated as a max-covering problem. Here, we do not

require the traffic police to wear special clothing or be

instrumented with marks as is common in the pose

estimation.

Fig. 3 Reflective vest

extraction

Fig. 4 The proportion of the human upper body
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5.1 Body model

We represent traffic police by using a five-part body, which

is inspired by the widely used 10-part body model, which

includes the head, the torso, the upper arms, the forearms,

and the upper and the lower legs. The upper body is our

focus. Thus, our five-part body only includes the torso,

upper arms, and forearms. Each body part is represented as

a rectangle. The five-part body model and the tree structure

of the five-part body model are shown in Fig. 6. Notice that

the body model consists of rigid parts connected by joints,

in which J1 is the root joint corresponding to the clavicle.

Information about other joints is provided in Table 1.

Figure 6 shows that the basic body plan follows a tree

structure. A local coordinate system is attached to each

body part. The orientation of the local coordinate system is

also shown in Fig. 6, and the origin of the coordinates is

located at the position of each shoulder or elbow joint.

We use the bottom-up method to locate the arms. For this

method, body-part candidates are first detected and then

assembled to fit the image observations and a body plan. In our

proposed method, we first locate the potential torso in target

images so that we can use it in the max-covering scheme.

Then we use simple box detectors to find arm candidates.

Since we have a rough foreground image, the arm candidates

can be pruned; we only keep the candidates that completely

cover the foreground pixels. Here, an arm candidate is rep-

resented as a rectangle with a start side and an end side.

5.2 Locating arms with the max-covering scheme

Each arm candidate covers some pixels in the foreground

image. Intuitively, the arm tiles should cover foreground

Fig. 5 Estimated police

foreground image

5J

4J

3J

2J

1J

Local coordinate system

5J

4J

3J

2J 1J

y

x

Fig. 6 Left: five-part body

model; right: the tree structure

of the five-part body model

Table 1 Information related to the joints of the five-part body model

ID J1 J2 J3 J4 J5

Joint Clavicle Left

shoulder

Left

elbow

Right

shoulder

Right

elbow
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pixels as much as possible. Thus, locating the arm is per-

formed with local research in the foreground image by

using a max-covering scheme. The whole location process

is broken down into two steps: (1) estimating a closed

region inside the foreground silhouette based on a mor-

phological operation and (2) locating the position of the

upper arms and forearms by rotating around the shoulder

and elbow joints in a max-covering manner. These steps

are explained in detail as follows.

Step 1: Obtaining the closed region inside the fore-

ground silhouette. Once the foreground image is obtained

as we explained in Sects. 4.1 and 4.2, the max-covering

scheme can be formulated as the following optimization

problem:

/ ¼ f ðh; s; rÞ; ð4Þ

where / is coverage rate, a floating point number from 0 to

1 related to each image pixel. The higher the rate is, the

more likely the pixel belongs to the arm. The three

parameters h, s, and r are used to control the coverage rate.

The value of h controls the rotation angle of the joints. The

parameters s and r, respectively, specify the length and the

width of each arm represented by a rectangle. A typical

value of r is 1/6 the length of the torso, according to the

human body proportion. We adjust the value of h and s to

control the number of pixels that are covered in the fore-

ground. This optimization, thus, tends to find the position

of the rectangle that makes / reach its maximum value, 1,

which means that the rectangle completely covers the

foreground pixels by using the proposed method.

The max-covering scheme in Eq. 4 is a local search

problem. We need to find an arm configuration to make /
equal 1 while satisfying the body plan. It is generally NP-

hard because of the incomplete extraction of the fore-

ground introduced by the KDE. We need to make sure that

the region inside the foreground silhouette is closed with-

out holes so that it can be completely covered by the var-

iable rectangles with a different h and s. Thus, a

morphological operation is used here to tackle this prob-

lem. An illustrative example is shown in Fig. 7.

Step 2: Locating the position of the upper arms and

forearms. Assume that we have three coordinate systems:

the torso, the arm, and image coordinates. In the coordinate

system of the left upper arm, the position of a pixel, PL, is

given by its coordinates, (s1, r1). As shown in Fig. 8a, the

coordinate transformation between the left upper arm plane

and the torso plane can be calculated as

x ¼ r1 cos hþ ðs� s1Þ sin h

y ¼ ðs� s1Þ cos h� r1 sin h

(

: ð5Þ

Let (u, v) denote the coordinates of PL in the image

plane, and we can now translate the coordinates (x, y) from

the torso plane to the image plane using

u ¼ x� ðr1 cos hþ ðs� s1Þ sin hÞ
v ¼ y� ððs� s1Þ cos h� r1 sin hÞ

(

; ð6Þ

where h is the rotation angle of the left shoulder joint. The

variable u is the vertical position of PL, and v is its hori-

zontal position in the image coordinate system. Similarly,

as shown in Fig. 8b, the image coordinate system of the

pixel PR that belongs to the right upper arm can be

expressed as

u ¼ xþ ðr1 cos hþ ðs� s1Þ sin hÞ
v ¼ yþ ðr1 sin h� ðs� s1Þ cos hÞ

(

: ð7Þ

Therefore, the variable rectangles of upper arms can be

obtained by adjusting different h and s to completely cover

the foreground pixels. Since the positions of arms are

estimated in depth-first order as shown in the tree structure

of Fig. 6, the detection of the upper arm is then used to

guide the search for the forearm. From the estimated elbow

joint position, a certain rotation angle is found based on

foreground, and the forearm rectangles are converged to

local maximums. Equations 6 and 7 are also used to obtain

the variable rectangles of the forearms.

6 Gesture recognition

The gesture system of the Chinese traffic is defined and

regulated by the Chinese Ministry of Public Security.

Currently, eight gestures for traffic guidance are included:

Fig. 7 Foreground image and

its closed binary image
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(1) stop, (2) move straight, (3) left turn, (4) left turn

waiting, (5) right turn, (6) change lane, (7) slow down, and

(8) pull over. Figure 9 shows the eight gestures.

6.1 Recognizing gestures by using rotation joint angles

It can be seen from Fig. 9 that these gestures need the

upper arms and forearms kept at certain angles and pointed

in a vertical direction by rotating around shoulder or elbow

joints, so the rotation joint angles are used to recognize

gestures, which makes it easy to add a new gesture without

changing the existing angles. Since the gestures may not be

performed perfectly in a real situation, we set the angles in

a certain range and not a fixed value. Let hi ð i ¼ 1. . .4Þ
denote the rotation angle related to each arm for the ges-

tures. Information about hi is provided in Table 2. Here, the

rotation angles of two gestures, ‘‘stop’’ and ‘‘move straight

(leftward or rightward)’’, are given in the table as exam-

ples. These two gestures are most important for intelligent

vehicles.

6.2 Estimating similarity by using Gabor feature-based

2DPCA

Once the police’s arms are located, a method of Gabor

feature-based 2DPCA [14], which is used for palm print

recognition and proved to be one of the best algorithms for

object recognition, is adopted as another way to accomplish

the gesture recognition task with appropriate parameters.

Gabor filters can provide robust features against varying

brightness and contrast of images. However, the procedure

for feature coding and matching by pixels requires too

much time and memory. Thus, statistical approaches, such

as principal component analysis (PCA) or 2DPCA, can be

used here to obtain useful features in gesture recognition.

PCA is a useful statistical technique that has found appli-

cation in fields such as pattern recognition and image

compression and is a common technique for finding pat-

terns in data of high dimension. The method is a powerful

tool for analyzing data. PCA finds the collection of certain

normalized orthogonal axes that indicate each direction of

the maximum covariance for input data. However, the

method is based on two assumptions: (1) the dimension-

ality of data can be efficiently reduced by linear transfor-

mation and (2) most information is contained in those

directions where input data variance is maximum. As it is

(a) The coordinate system of the left arm (b) The coordinate system of the right arm

r
Torso

x

y

RP

X

Y

θ

1s

1r

s

r

Torso
x

y

LP

X

Y

s

θ1r1s

Fig. 8 Coordinate system of

the left arm and the right arm

Left turn
waiting

Left
turn

Move
straight

Stop
signal

Right
turn

Change
lane

Slow
down

Pull
over

Fig. 9 Chinese traffic police gestures
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evident, these conditions are by no means always met, and

the directions maximizing variance do not always maxi-

mize information. A straightforward image projection

technique, called 2DPCA, is developed for image feature

extraction. As opposed to conventional PCA, 2DPCA is

based on 2-D matrices rather than 1-D vectors; that is, the

image matrix does not need to be previously transformed

into a vector. Instead, an image covariance matrix can be

constructed directly using the original image matrices. In

contrast to the covariance matrix of PCA, the size of the

image covariance matrix using 2DPCA is much smaller. As

a result, 2DPCA has two important advantages over PCA.

First, it is easier to evaluate the covariance matrix accu-

rately. Second, less time is required to determine the cor-

responding eigenvectors. Therefore, 2DPCA is adopted in

the proposed algorithm to extract features from given

images.

Taking together both Gabor filters and 2DPCA, we use

the Gabor feature-based 2DPCA for gesture recognition of

Chinese traffic police. The algorithm consists of three

steps: (1) Gabor features of different scales and orienta-

tions are extracted through the convolution of the Gabor

filter bank and the arm location images, (2) 2DPCA is then

applied for dimensionality reduction of the feature space in

both row and column direction, and (3) Euclidean distance

and the nearest-neighbor classifier are finally used for

classification. The method is not only robust to illumination

and rotation but also efficient in feature matching for the

gestures of Chinese traffic police.

6.2.1 Gabor filter bank for feature extraction

2-D Gabor has the following general form:

Gðx; y; h; u; rgÞ ¼
1

2pr2
g

exp � x2 þ y2

2r2
g

( )

� expf2piðux cos hþ uy sin hÞg; ð8Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

, u is the frequency of the sinusoidal wave,

and h is the standard deviation of the Gaussian envelope. rg

is a constant, which defines the size of the Gaussian

envelope. In our experiment, we set rg = 2p. In order to

extract more effective features on various orientations and

scales, a Gabor filter bank is used in our method since the

filter has been found to be particularly appropriate for

texture representation and discrimination. Thus, Gabor

filter can achieve better performance for police gesture

recognition compared with other feature extraction meth-

ods, such as Hu invariant moments [15], Zernike invariant

moments [16], and others.

For Gabor filter, different orientations and scales can

extract different image features and thus can obtain dif-

ferent recognition rates. Table 3 shows the recognition rate

with different combinations of orientations and scales for

300 testing images. One can clearly see that the highest

value of recognition rate is achieved when six scales and

six orientations are chosen for different local features. This

process can be written as

u ¼ 0:2592=
ffiffiffi
2
p v

v ¼ 0; 1; . . .; 5: ð9Þ

hk ¼
pðk � 1Þ

6
v ¼ 1; 2; . . .; 6: ð10Þ

Thus, 36 Gabor filters are selected for feature extraction.

Figure 10a, b shows the real and imaginary parts of the

Gabor filter bank with six scales and six orientations.

Suppose that there are N 60 9 90 training police arm

location images denoted by matrices as Ai ði ¼ 1; 2; . . .;NÞ.
The convolution of the Gabor filter bank and image Ai

yields Gabor feature matrices Hiðv; kÞ ðv ¼ 0; . . .;

5; k ¼ 1; . . .; 6Þ. Figure 11 shows the amplitude of the

Gabor filter bank for the input arm-located image on the

left.

For simplicity, we downsample the Gabor feature with a

downsampling rate of q = 3. By concatenating all the

20 9 30 downsampled Gabor feature matrices,

Oiðv; kÞ ðv ¼ 0; . . .; 5; k ¼ 1; . . .; 6Þ, in the column direc-

tion, the Gabor feature matrix Xi of image Ai can be rep-

resented as

Table 2 Rotation joint angle

related to each arm
Gesture Left upper arm

(h1)

Left forearm (h2) Right upper arm

(h3)

Right forearm (h4)

Stop signal ½0�; 10�� ½h1 � 10�; h1 þ 10�� ½170�; 180�� ½h3 � 10�; h3 þ 10��
Move straight

(leftward)

½80�; 110�� ½h1 � 30�; h1 þ 30�� ½100�; 175�� ½h3 þ 30�; h3 þ 160��

Move straight

(rightward)

½100�; 175�� ½h1 þ 30�; h1 þ 160�� ½80�; 110�� ½h3 � 30�; h3 þ 30��

Table 3 Recognition rate of Gabor filter with different orientations

and scales

Scale Orientation

4 5 6 7 8

4 95.24 96.20 96.13 96.11 96.57

5 96.47 97.23 97.06 96.05 96.62

6 96.72 97.82 98.81 98.54 97.89

7 96.11 96.76 98.77 98.06 97.91

8 96.43 97.58 97.99 98.56 98.11
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Xi ¼ fOið0; 1Þ
0
;Oið0; 2Þ

0
; . . .;Oið5; 6Þ

0
g: ð11Þ

The Gabor feature space X is constructed by all the

Gabor feature matrices of training samples in the row

direction X ¼ fX1;X2; . . .;XNg, the dimension of which is

20 9 30 9 36 N. If we directly adopt the Gabor features to

match the templates, the dimension of image space is very

high, which requires too much time and memory. Thus,

2DPCA is used here to effectively reduce the dimension.

6.2.2 2DPCA for dimensionality reduction of Gabor

feature space

In 2DPCA, the covariance matrix G can be evaluated by

G ¼ 1

N

XN

i¼1

ðXi � �XÞTðXi � �XÞ; ð12Þ

where

�X ¼ 1

N

X

i

Xi: ð13Þ

Since the size of Xi is 20 9 30 9 36 = 21,600, G has a

dimension of 360 9 60. The orthonormal eigenvectors of

G corresponding to the d largest optimal value are proven

to be the optimal projection matrix

R ¼ ½r1; . . .; rd�: ð14Þ

The value of d can be determined by the ratio of the sum

of the chosen d largest eigenvalues to all. In our experi-

ment, we set d = 10. That is because the recognition rate is

the highest when d is 10. Thus, the dimensions of R are

360 9 10, and the ultimate dimension of a Gabor feature

vector is reduced from 36 9 600 = 21,600 to

360 9 10 = 3,600.

Fig. 10 The real and imaginary parts of the Gabor filter bank with six scales and six orientations

Fig. 11 The amplitude image

of the Gabor filter bank with six

scales and six orientations
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6.2.3 Gesture recognition using Gabor feature-based

2DPCA

After extracting features using 2DPCA, a nearest-neighbor

classifier is adopted for classification. Supposed that traffic

police gesture category ci (i = 1, 2,…, p) has Ni template

training samples B
ðiÞ
j ¼ ðR

ðiÞ
j ; R

ðiÞ
j ; . . .R

ðiÞ
m Þ,

ðj ¼ 1; 2; . . .;NiÞ N ¼
Pp

i¼1 Niis the total number of

training samples in the template database, and these sam-

ples are assigned cp categories, p is the number of traffic

police gesture categories used to classify. Supposed that the

feature of testing image B would be recognized, Euclidean

distance DiðB;BðiÞj Þ can be computed as

DiðB;BðiÞj Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðB� B
ðiÞ
j Þ

TðB� B
ðiÞ
j Þ

q

ð15Þ

The distance is computed to measure the similarity

between B and template samples B
ðiÞ
j . The following

decision rules are taken to judge two things. One is to what

categories of Chinese traffic police gesture the recognized

gesture belong; the other is whether the gesture is a traffic

police gesture. If DmðBÞ ¼ min
i2ð1;2;...;pÞ

j2ð1;2;...;NiÞ

fDiðB;BðiÞj Þg and

DmðBÞ� T , then B 2 cm, else B is not a traffic police

gesture. T is called similarity threshold, and we set

T = 1.35 in our experiment.

A simple illustrative example is shown in Figs. 12 and

13. The arm location results of standard police gestures

constitute the template database. Figure 12 shows some

sample templates for the gestures ‘‘stop’’, ‘‘move straight

(left/right)’’, and ‘‘no sign’’. Four arm location results

obtained by real captured photos are randomly chosen for

testing, as shown in Fig. 13. From the Euclidean distance

obtained by the above method, we can arrange the standard

‘‘move straight (left)’’ (see Fig. 12b) and four testing

images in decreasing order of similarity: Fig. 13d, a, b, and

c. Thus, we deduce that Fig. 13d indicates the ‘‘move

straight (left)’’ gesture. This confirms our observation in

real captured images.

7 Experiments and results

In our experiment, we not only test for a single image but

also extend to videos. Although the final goal of our project

is serving the driver assistance system, as a preliminary

analysis of the problem, we mainly focus on the algorithm

design at present. To test the proposed contribution, we

measure gesture recognition of the Chinese traffic police

while their arms in the image were automatically marked

by our proposed method or located by a previous semiau-

tomatic method. The assumption the proposed algorithm

makes is that traffic police are seen approximately from a

frontal viewpoint.

In the first experiment, we present results to show how

the imprecise detection of a traffic police’s torso affects the

results of arm location and discuss which factors affect the

precise detection of traffic police. The second experiment

is performed to test the effectiveness of the two proposed

gesture recognition methods. In this experiment, the loca-

tion of the arms was automatically marked. In the last

experiment, we present the comparative results and com-

pare the proposed methods to the tree stick model method.

In these experiments, the corresponding located arms are

represented as rectangles in an automatic way or as a tree

stick in a semiautomatic way.

7.1 How precision in the detection of the police’s torso

affects the result of arm location

It is important to note that imprecision in the detection of a

traffic police’s torso may greatly affect the results of arm

location. In this section, some experiments for quantifying

the influence of this detection on the final results are pre-

sented. Here, we use three different precise torso locations

to analyze the effect of torso detection on the result of arm

location. In the experiments, the test video sequences were

captured by a Canon digital camera (S80) from a real

driving scenario or from the Internet. Sample results of arm

location using the proposed method are shown in Fig. 14. It

shows the results of arm location under the three different

Fig. 12 Template examples: a arm location image of ‘‘stop’’, b arm location image of ‘‘move straight (left)’’, c arm location image of ‘‘move

straight (right)’’, and d arm location image of ‘‘no sign’’
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situations. Note that the forearm rectangles are not dis-

played since the foreground extraction is based on the color

segmentation, and the traffic police wears a short-sleeved

shirt. In Fig. 14, the images under the first column indicate

the marked torso location with the highest precision. In the

images under the second column, the torso location varies a

little from the ground truth, and in the images under the

third column, the error between the located torso and the

corresponding ground truth is very great. We observe that

the more precise the detection of the police’s torso, the

more precise the location of the police’s arms. Thus, we

can deduce that precision in regard to arm location depends

on some factors, including camera resolution and the dis-

tance between the traffic police and the camera. The higher

the resolution of the digital camera, the more precise the

arm location will be, and the closer the police is to the

digital camera, the more precise the arm location will be, as

shown in Fig. 14.

7.2 Recognizing the gestures while the arm positions

are located

We thoroughly tested our proposed method over several

challenging video sequences captured by a digital camera

or from the Internet. In the following, we evaluate the

performance of two proposed algorithms with correct rec-

ognition rates based on 634 frames of traffic police video

material. Here, the five-part body model is used to locate

both the upper arms and forearms, as shown in Fig. 15. For

video gesture recognition, transitional gestures are not

considered; only the final standard gestures are considered

as recognition results, manual labeling or computer

Fig. 13 Arm location examples

with different Euclidean

distances (D): a D = 1.5931,

b D = 1.7038, c D = 1.8143,

and d D = 1.2933

Fig. 14 Results of arm location

for different distances between

the police and the camera:

a original images, b the results

of detecting the police’s torso,

and c the results of the

corresponding arm location
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recognition process notwithstanding. The experiment’s test

environment is introduced as follows.

We perform the recognition algorithm by executing

MATLAB on a PC with a 3.00 GHz Intel Pentium Dual-

Core Processor. The frame resolution of the video is

320 9 240, and the typical torso of the traffic police

appears as 35–42 pixels in height. The gestures in the video

include ‘‘stop’’, ‘‘move straight (leftward or rightward)’’,

and six other gestures. Each gesture appears alternately in

short intervals of time. It should be stated that the data set

is difficult as the scenarios are very complex with high-

density vehicles and crowds, as shown in Fig. 15. In the

following, we respectively adopt the proposed two methods

to recognize police gestures in the testing video. Note that

an image may not contain a policeman or a gesture. In this

case, no result is produced, and the intelligent vehicle will

keep its current state of movement. In order to reduce the

probability of misjudgment as much as possible, like in

[17], a single frame is far from enough, so a fusion strategy

should be designed to make full use of the dynamic char-

acteristics of the video sequence. Here, we defined that the

intelligent vehicle will change its state of movement only if

the suddenly changing results are the same across three

consecutive frames. Otherwise, the vehicle will still keep

its current state of movement.

7.2.1 Recognition with rotation joint angles

Recognizing police gestures with a rotation joint angle is

very simple but effective. Figure 16 shows the recognition

results of manual annotations and the rotation angle

method.

In the experiment, we defined the following errors in

order to analyze the reasons for the wrong recognition

results, as shown in Table 4:

• Omission error: mistook existing gesture for no gesture

• Substitution error: mistook one gesture for another.

It is clear from Table 4 that the rotation angle method

achieved a high recognition rate even when the gestures are

not very standard. The reason for the omission errors and

substitution errors is that the algorithm selects the two

vertices of the torso rectangle as the position of shoulder

joints to locate the upper arms. Thus, when the algorithm

only detects a small part of the vest as the police’s torso,

the rotation angle and the length of the arm will be wrong,

and errors will be produced. For the rotation joint angle

algorithm, the main advantage is its speed; its computa-

tional time for each frame of the video is less than one

second in the MATLAB environment. However, only two

gestures, ‘‘stop’’ and ‘‘move straight’’, are tested here.

Since the rotation joint angles of other gestures only differ

slightly among themselves, they are easily confused using

this method. Thus, we propose a method using Gabor

feature-based 2DPCA for recognizing gestures.

7.2.2 Recognition with Gabor feature-based 2DPCA

In this experiment, the correct recognition rate and testing

time of the proposed Gabor feature-based 2DPCA

(GB2DPCA) are investigated. The parameter setting of the

Gabor filter is depicted in subsection 6.2.1, and the

downsampling rate, q, remains 3 for the Gabor feature-

based algorithm.

Fig. 15 Sample results of arm location using the proposed method: a original images, b arm location results
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We collect eight classes of arm location results of

standard traffic police gestures according to Chinese reg-

ulations for our template database, and each class has five

sample images. All the original images of the samples are

captured approximately from a frontal viewpoint. Each

frame of the above video sequences can be regarded as the

testing image of gesture recognition. Figure 17 presented

the correct rate of GB2DPCA. As can be seen, all eight

gestures can be recognized using this method. Furthermore,

there is a ‘‘no sign’’ class (no. 0) in Fig. 17. Otherwise,

each time a police is spotted, the closest gesture class will

be assumed. In the experiment, some gestures (e.g., ‘‘stop’’,

‘‘move straight’’, ‘‘slow down’’) can achieve a high rec-

ognition rate of over 90 %, whereas other gestures (‘‘left

turn’’, ‘‘right turn’’) have a low rate of \70 %. The low

recognition rates for these gestures are mainly due to the

difficulty in accurately locating the arms in previous steps.

For GB2DPCA, the computational time is approximately

10 s per frame.

7.3 Comparison to the human pose estimation method

based on tree stick model

Since the problem we are dealing with is considered quite

novel, there are no directly similar methods to compare our

results with. For instance, techniques in [1] are based on an

accelerometer; however, equipping every member of the

traffic police with the on-body sensor to command intelli-

gent vehicles is impractical, and therefore, such a method

does not fit in this environment. However, although the

problem has not been the focus of the literature, substantial

advances in human pose estimation have been made. In this

section, we have shown that the proposed method to rec-

ognize gestures of Chinese traffic police can present

encouraging recognition results. To prove the efficiency of

the proposed method, we will compare it with the widely

used tree stick model method [18]. The accuracy of the

methods was compared using challenging test sequences.

For the tree stick model method [18], the input is an

image and a bounding box around the head and shoulders

of a person in the image. The output of the algorithm is a

set of line segments indicating location, size, and orienta-

tion of the body parts, as shown in Fig. 18b, c.
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(a) Results of manual annotation (b) Results of rotation angle method

Fig. 16 Gesture recognition

results by using rotation joint

angles (gesture numbers: 0 no

gesture, 1 stop, 2 left turn, 3

right turn, 4 other gestures)

Table 4 Correct recognition of

police gestures
Total

number

Omission

error

Substitution

error

Correct

recognition

Correct rate

(%)

Proposed

algorithm

634 12 19 603 95
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Fig. 17 Correct rate for GB2DPCA (gesture numbers: 0 no gesture, 1

stop, 2 move straight, 3 left turn, 4 left turn waiting, 5 right turn, 6

change lane, 7 slow down, 8 pull over)
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For our comparison with the tree stick model method,

upper-body-part detection was performed on the original

video sequences. As can be seen for the four selected

frames in Fig. 18, our proposed method to recognize ges-

tures was successful in locating the police’s arms in the

sequences. The arm box detector perfectly matched the

Fig. 18 Comparison between the tree stick model method and the

proposed arm location method: The second and third rows show the

upper-body poses for four frames obtained using the stick model

method. The results for the proposed arm location method are shown

in the last two rows. The images are as follows: a original frames,

b the input of the tree stick model method, c body-part detection

results by the tree stick model method, d and e body-part detection

results by the proposed method
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ground truth, as shown in Fig. 18e, whereas the tree stick

model method was not able to locate the arms with the

same efficiency (Fig. 18c). The reason for this is that the

prior locations and the appearance transfer mechanism [17]

used in the existing method during body-part detection

require a training stage, which is hard to satisfy in all kinds

of complex traffic environments. We notice that the error

will increase when the segment is far from the root joint in

the five-part body model (e.g., the position error of the

forearms is bigger than that of the upper arms). Since the

police’s arms located by the tree stick model method

deviate from the ground truth, the estimated rotation angles

will deviate from the ground truth accordingly. Therefore,

the correct recognition rate for the tree stick method is very

low using either the rotation joint angle method or the

Gabor feature-based 2DPCA method. Furthermore,

requiring user interaction also limits its use in police ges-

ture recognition, as shown in Fig. 18b.

8 Discussions and conclusions

In this paper, we have proposed a very simple but effective

algorithm for recognizing the gestures of traffic police in a

complex scene. Key features of our proposed method are

the use of a max-covering scheme to locate arms and the

use of a rotation joint angle or Gabor feature-based 2DPCA

to recognize gestures. There are several advantages of the

proposed method. First, the proposed method is based on a

vision sensor, which is more convenient and cheaper than

an on-body sensor-based method. Second, the method

requires no special clothing or marks as is common in the

motion-capture applications. Finally, the method exploits

five-part body model searching to obtain a good arm

location, and the police gestures can be recognized even if

they are not performed perfectly.

However, the proposed algorithm also has some limi-

tations: (1) The arm-located results of the proposed algo-

rithm may not be correct while considering the side

viewpoint of police, as shown in Fig. 19b. That is because

the police torso is hard to accurately detect, which makes

the five-part body model invalid in that case. (2) Although

the proposed method can effectively exclude the road

works since the color of their uniform is orange in most

cases in China, it can only deal with the situation with just

one traffic police. For the image with more traffic police

wearing reflective vests, our method shows a tendency to

detect a wrong police torso, as shown in Fig. 19d. This

disqualifies our algorithm from segmenting each traffic

police in the same scene. (3) The police are required to be

in focus, visible, and not blurry. If the vehicle is moving

fast, the image may very well be blurry in that case, and

our method will underestimate the foreground for the

police. Nevertheless, we provide a new way to solve the

problem of gesture recognition of Chinese traffic police

only based on a vision sensor, which is rare in the litera-

ture. We intend to enhance the flexibility of the algorithm

in the future.
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