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Abstract In this study, we first examine entropy and

similarity measure of Atanassov’s intuitionistic fuzzy sets,

and define a new entropy. Meanwhile, a construction

approach to get the similarity measure of Atanassov’s in-

tuitionistic fuzzy sets is introduced, which is based on

entropy. Since the independence of elements in a set is

usually violated, it is not suitable to aggregate the values

for patterns by additive measures. Based on the given

entropy and similarity measure, we study their application

to Atanassov’s intuitionistic fuzzy pattern recognition

problems under fuzzy measures, where the interactions

between features are considered. To overall reflect the

interactive characteristics between them, we define three

Shapley-weighted similarity measures. Furthermore, if the

information about the weights of features is incompletely

known, models for the optimal fuzzy measure on feature

set are established. Moreover, an approach to pattern rec-

ognition under Atanassov’s intuitionistic fuzzy environ-

ment is developed.

Keywords Pattern recognition � Atanassov’s
intuitionistic fuzzy set � Entropy � Similarity measure �
Fuzzy measure

1 Introduction

Since the theory of fuzzy sets (FSs) is introduced by Zadeh

[1], it has been successfully used in various fields. Later,

several extension forms are proposed such as interval-

valued fuzzy sets [2], Atanassov’s intuitionistic fuzzy sets

(IFSs) [3] and vague sets [4]. In 1996, Bustince and Burillo

[5] showed the notion of vague sets coincides with that of

IFSs. As an extension of FSs, IFSs are characterized by a

membership degree, a non-membership degree and a hes-

itancy degree. So vagueness in real applications [6–13].

As two important information measures in the theory of

fuzzy sets, entropy and similarity measure of IFSs have

been widely investigated by many researchers from dif-

ferent point of views. Burillo and Bustince [14] introduced

the notion of entropy of IFSs to measure the degree of

intuitionism of an IFS. Bustince et al. [15] presented fuzzy

entropy of IFSs by using the fuzzy implication operators.

Szmidt and Kacprzyk [16] extended the axioms given by

De Luca and Termini [17] and proposed another axiomatic

definition for the entropy of IFSs. Szmidt and Kacprzyk

[16], Wang and Lei [18] and Huang and Liu [19],

respectively, gave an entropy of IFSs from different point

of views, which are shown equivalently by Wei et al. [20].

On the other hand, the similarity measures of IFSs are also

studied by many researchers [10, 21–25], whilst the

application of similarity measures in digital image pro-

cessing is considered in the literature [26, 27].

However, all the above researches are based on the

assumption that the elements in a set are independent, and

each intuitionistic fuzzy value (IFV) has the same impor-

tance. However, in many practical situations, the elements

in a set are usually correlative [28, 29]. The fuzzy measure,

introduced by Sugeno [30], has been shown a very effec-

tive tool for modeling the correlative characteristics among
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elements [31–35], and has been successfully used to deal

with decision problems [36–41]. As far as we know,

however, there is less investigation on entropy and simi-

larity measure of Atanassov’s intuitionistic fuzzy sets by

using fuzzy measures. In the study we first introduce an

entropy of IFSs, and give a construction method to obtain

the similarity measure of IFSs. To overall reflect the

interactive characteristics between features, we further

define three Shapley-weighted similarity measures. If the

information about the weights of features is partly known,

models for the optimal fuzzy measure on feature set are

constructed. Since the fuzzy measure is defined on the

power set, it makes the problem exponentially complex.

Thus, it is not easy to obtain the fuzzy measure of each

combination in a set when it is large. The k-fuzzy measure

proposed by Sugeno [30] seems to well deal with this issue,

which only needs n variables to determine a k-fuzzy
measure on a set with n elements. For this reason, we

further research Atanassov’s intuitionistic fuzzy pattern

recognition problems under k-fuzzy measures.

This paper is organized as follows: in Sect. 2, we review

some basic concepts about IFSs, entropy and similarity

measure. In Sect. 3, we propose a new entropy of IFSs, and

present a construction method to obtain the similarity

measure of IFSs by using entropy. Based on the Shapley

function with respect to fuzzy measures, we propose three

Shapley-weighted similarity measures, which reflect the

interactive between elements. In Sect. 4, models for the

optimal fuzzy measure on feature set are established, and

an approach to pattern recognition under Atanassov’s in-

tuitionistic fuzzy environment is developed. To simplify

the complexity of solving a fuzzy measure, we further

study Atanassov’s intuitionistic fuzzy pattern recognition

under k-fuzzy measures. Moreover, the corresponding

examples are given to illustrate the developed procedure.

In Sect. 5, the conclusions are made.

2 Preliminaries

2.1 Some basic concepts

By extending Zadeh’s fuzzy sets, Atanassov [3] introduced

the concept of Atanassov’s intuitionistic fuzzy sets (IFSs)

as follows:

Definition 1 [3] Let X be a no empty finite set. An IFS A

in X is expressed as

A ¼ x; uAðxÞ; vAðxÞh ijx 2 Xf g;

where uAðxÞ 2 ½0; 1� and vAðxÞ 2 ½0; 1�, respectively, denote
the degrees of membership and non-membership of ele-

ment x 2 X with the condition uAðxÞ þ vAðxÞ� 1. The

hesitancy degree is denoted by pAðxÞ ¼ 1� uAðxÞ � vAðxÞ.

When uAðxÞ ¼ 1� vAðxÞ for each x 2 X, we get a fuzzy

set, expressed by A ¼ x; ½uAðxÞ; 1� uAðxÞ; �h ijx 2 Xf g. The
set of all IFSs in X is denoted by IFS(X).

Definition 2 Let A ¼ x; uAðxÞ; vAðxÞh ijx 2 Xf g and B ¼
x; uBðxÞ; vBðxÞh ijf x 2 Xg be two IFSs in X, then

(1) A � B if and only if uAðxÞ� uBðxÞ; vAðxÞ� vBðxÞ,
(2) A ¼ B if and only if A � B and A � B,

(3) AC ¼ x; vAðxÞ; uAðxÞh ijx 2 Xf g:

Definition 3 [16] A real-valued function E: IFS(X) !
[0,1] is called an entropy measure of IFSs, if it satisfies the

following axiomatic requirements:

(E1) E(A) = 0 if and only if A is a crisp set;

(E2) E(A) = 1 if and only if uAðxÞ ¼ vAðxÞ for each

x 2 X;

(E3) E(A) = E(AC);

(E4) E(A) B E(B) if A � B with uBðxÞ� vBðxÞ for each
x 2 X, or A � B with uBðxÞ� vBðxÞ for each x 2 X.

Definition 4 [23] A real-valued function S: IFS(X) 	
IFS(X) ! [0,1] is called a similarity measure of IFS(X), if

it satisfies the following conditions:

(S1) 0 B S(A,B) B 1;

(S2) S(A,B) = 1 if and only if A = B;

(S3) S(A,B) = S(B,A);

(S4) If A � B � C, then SðA;CÞ� SðA;BÞ and

SðA;CÞ� SðB;CÞ.

In the rest parts, without special explanation, we always

assume that the universe X is a finite set, denoted by {x1,

x2,…, xn}.

2.2 Several entropy of IFSs

Entropy, as an information measure, plays an important

role in uncertain theory. Burillo and Bustince [5] defined

the distance measure between Atanassov’s intuitionistic

fuzzy sets and gave an axiomatic definition of Atanassov’s

intuitionistic fuzzy entropy and a theorem which charac-

terizes it. Furthermore, Burillo and Bustince [5] proposed

the entropy that measures the distance from the considered

set to IFSs rather than crisp sets, denoted by.

EBBðAÞ ¼
Xn

i¼1

1� UðuAðxÞ; vAðxÞÞð Þ; ð1Þ

where the function U:[0,1] 9 [0,1] ? [0,1] satisfies the

properties (1) Uðx; yÞ ¼ 1 iff x ? y = 1, and Uðx; yÞ ¼ 0

iff x = y = 0; (2) Uðx; yÞ ¼ Uðy; xÞ; (3) Uðx; yÞ�Uðx0; y0Þ
for x� x0; y� y0.

Burillo and Bustince [5] gave us a good example of how

to define an entropy measure from a theoretical point of

view. The special cases given by Burillo and Bustince [5]

did not consider hesitancy information.
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Later, Szmidt and Kacprzyk [16] introduced an entropy

measure of IFSs, which is based on the biggest cardinality

(max-sigma-count) of IFSs, denoted by.

ESKðAÞ ¼
1

n

Xn

i¼1

max CountðAi \ AC
i Þ

max CountðAi [ AC
i Þ

; ð2Þ

where for each i, Ai denotes the single-element IFS corre-

sponding to the element xi 2 X, described as Ai ¼
xi; uAðxiÞ; vAðxiÞh i, and max CountðAi \ AC

i Þ ¼ xi;h min

uAðxiÞ; vAðxiÞf g;max uAðxiÞ; vAðxiÞf gi, maxCountðAi [ AC
i Þ

¼ xi;max uAðxiÞ; vAðxiÞf g;min uAðxiÞ; vAðxiÞf gh i:

Later, Huang and Liu [19] proposed an entropy measure

of vague sets. Since the vague sets are IFSs [5]. When we

apply it in the setting of IFSs, for any A 2 IFS(X), it can be

transformed as follows [20]:

EHLðAÞ ¼
1

n

Xn

i¼1

1� juAðxiÞ � vAðxiÞj þ pAðxiÞ
1þ juAðxiÞ � vAðxiÞj þ pAðxiÞ

: ð3Þ

Recently, Wang and Lei [18] gave another entropy

measure of IFSs, for any A 2 IFS(X), defined by.

EWLðAÞ ¼
1

n

Xn

i¼1

min uAðxiÞ; vAðxiÞf g þ pAðxiÞ
max uAðxiÞ; vAðxiÞf g þ pAðxiÞ

: ð4Þ

Wei et al. [20] pointed out that the entropy measures

defined by Szmidt and Kacprzyk [16], Wang and Lei [18]

and Huang and Liu [19] are equivalent, which can be seen

as the arithmetic mean of the ratio of each corresponding

item.

Different from the above-mentioned entropy, Li et al.

[42] gave another entropy measure of IFSs, expressed by:

ELðAÞ ¼
Pn

i¼1 uAðxiÞ ^ vAðxiÞð ÞPn
i¼1 uAðxiÞ _ vAðxiÞð Þ : ð5Þ

EL is the ratio of the sum of different corresponding

items, but it does not consider the hesitancy information.

2.3 Similarity measures of IFSs

Similarity measure, as another important information

measure, is applied to denote the similarity degree of fuzzy

sets and has received considerable attention. Li and Cheng

[23] introduced a concept of similarity measure of IFSs and

applied it to pattern recognition. Later, Liang and Shi [24]

pointed out that Li and Cheng’s method is not always

reasonable in some examples, and gave an improved

entropy of IFSs, defined by:

SLSðA;BÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðfuABðiÞ þ fvABðiÞÞ
p

n

p

r
; ð6Þ

where fvABðiÞ ¼ jð1� vAðxiÞÞ=2� ð1� vBðxiÞÞ=2j, fuABðiÞ ¼
juAðxiÞ � uBðxiÞj=2, and A,B [ IFS(X).

Mitchell [10] adopted a statistical approach and inter-

preted IFSs as ensembles of ordered fuzzy sets to modify

Li and Cheng’s similarity measure. Let SuðA;BÞ and

SvðA;BÞ denote the similarity measures between the ‘‘low’’

membership functions uA and uB and between the ‘‘high’’

membership functions 1 - vA and 1 - vB, respectively, as

follows:

SuðA;BÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 juAðxiÞ � uBðxiÞjp

n

p

r
;

SvðA;BÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 jvAðxiÞ � vBðxiÞjp

n

p

r
:

They then defined the following modified similarity

measure of IFSs.

SMðA;BÞ ¼
1

2
SuðA;BÞ þ SvðA;BÞð Þ ð7Þ

for IFSs A,B [ IFS(X).

Based on the Hausdorff distance, Huang and Yang [43]

defined three similarity measures of IFSs, denoted by

S1HYðA;BÞ ¼ 1� dHðA;BÞ; ð8Þ

S2HYðA;BÞ ¼
e�dHðA;BÞ � e�1

1� e�1
; ð9Þ

S3HYðA;BÞ ¼
1� dHðA;BÞ
1þ dHðA;BÞ

; ð10Þ

where dHðA;BÞ ¼ 1
n

Pn

i¼1

maxfjuAðxiÞ � uBðxiÞj; jvAðxiÞ�
vBðxiÞjg and A,B [ IFS(X).

3 New entropy and similarity measure of IFSs

Based on analysis above, this section gives a new entropy

and similarity measure of IFSs.

3.1 A new entropy of IFSs

Based on the definitions of IFSs and entropy, we introduce

the following entropy of IFSs:

GEðAÞ ¼
Pn

i¼1 f1ðuAðxiÞ; vAðxiÞÞPn
i¼‘ f2ðuAðxiÞ; vAðxiÞÞ

;

where A 2 IFS(X), the functions f1:[0,1] 9 [0,1] ? [0,1]

and f2:[0,1] 9 [0,1] ? [0.5,1] satisfy the properties (i)

f1ðx; yÞ ¼ 0 and f2ðx; yÞ ¼ 1 iff x = 0, y = 1, or x = 1,

y = 0; (ii) f1ðx; yÞ ¼ f2ðx; yÞ iff x = y, otherwise,

f1ðx; yÞ\f2ðx; yÞ; (iii) fkðx; yÞ ¼ fkðy; xÞ, k = 1, 2; (iv)
f1ðx;yÞ
f2ðx;yÞ �

f1ðx0;y0Þ
f2ðx0;y0Þ for x� x0 � y0 � y, or y� y0 � x0 � x.

Theorem 1 The mapping E: IFS(X) ![0,1], defined by

GE, is an entropy of IFSs.

Pattern Anal Applic (2016) 19:11–20 13
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Proof To prove GE is an entropy of IFSs, it only needs to

show that GE satisfies (E1)–(E4) given in Definition 3.

(E1): If A is a crisp set, then we have uAðxiÞ ¼ 0,

vAðxiÞ ¼ 1 or uAðxiÞ ¼ 1, vAðxiÞ ¼ 0. It gets

f1ðuAðxiÞ; vAðxiÞÞ ¼ 0 and f2ðuAðxiÞ; vAðxiÞÞ ¼ 1 for each

xi 2 X. Thus, GE(A) = 0. On the other hand, if GE

(A) = 0, by f1:[0,1] 9 [0,1] ? [0,1] and f2:[0,1] 9 [0,1]

? [0.5,1], it has f1ðuAðxiÞ; vAðxiÞÞ ¼ 0 for each xi 2 X.

Namely, uAðxiÞ ¼ 0, vAðxiÞ ¼ 1 or uAðxiÞ ¼ 1, vAðxiÞ ¼ 0.

Thus, A is a crisp set.

(E2): When uAðxiÞ ¼ vAðxiÞ for each xi 2 X, we have

f1ðuAðxiÞ; vAðxiÞÞ ¼ f2ðuAðxiÞ; vAðxiÞÞ. Then, GE(A) = 1.

On the other hand, suppose that GE(A) = 1. Since

f1ðuAðxiÞ; vAðxiÞÞ� f2ðuAðxiÞ; vAðxiÞÞ for each xi 2 X, we

get f1ðuAðxiÞ; vAðxiÞÞ ¼ f2ðuAðxiÞ; vAðxiÞÞ. Namely,

uAðxiÞ ¼ vAðxiÞ, xi 2 X.

(E3): From AC ¼ xi; vAðxiÞ; uAðxiÞh ijxi 2 Xf g and

fkðx; yÞ ¼ fkðy; xÞ, k = 1, 2, one easily gets GE(A) =

GE(AC).

(E4): When A � B and uBðxiÞ� vBðxiÞ for each xi 2 X,

we have

uAðxiÞ� uBðxiÞ� vBðxiÞ� vAðxiÞ

for each xi 2 X.

Thus,

f1ðuAðxiÞ; vAðxiÞÞ
f2ðuAðxiÞ; vAðxiÞÞ

� f1ðuBðxiÞ; vBðxiÞÞ
f2ðuBðxiÞ; vBðxiÞÞ

8xi 2 X:

By GE, it gets GE(A) B GE(B).

Similarly, when A � B with uBðxiÞ� vBðxiÞ for each

xi 2 X, one can also prove GE(A) B GE (B).

Next, let us pay more attention to a special case. To get

more information on IFSs, combining the entropy given by

Szmidt and Kacprzyk [16], Wang and Lei [18], Huang and

Liu [19] and Li et al. [42], we define the following entropy

of IFSs:

ENðAÞ ¼
Pn

i¼1 uAðxiÞ ^ vAðxiÞ þ pAðxiÞð ÞPn
i¼1 uAðxiÞ _ vAðxiÞ þ pAðxiÞð Þ ; ð11Þ

where A 2 IFS(X).

In EN, when we delete the hesitancy information of each

element, it reduces to be the entropy given by Li et al. [42].

Corollary 1 The mapping E: IFS(X)![0,1], defined by

EN, is an entropy of IFSs.

Theorem 2 Let EN: IFS(X) ![0,1] be an entropy mea-

sure given as (11), then EN can be equivalently expressed

by.

E0ðAÞ ¼
Pn

i¼1 max CountðAi \ AC
i ÞPn

i¼1 max CountðAi [ AC
i Þ

ð12Þ

and

E00ðAÞ ¼
Pn

i¼1 1� juAðxiÞ � vAðxiÞj þ pAðxiÞð Þ
Pn

i¼1

1þ juAðxiÞ � vAðxiÞj þ pAðxiÞð Þ
ð13Þ

for any A 2 IFS(X).

Proof We first show (11) can be equivalently expressed

by (12). For (12): By.

max CountðAiÞ ¼ uAðxiÞ þ pAðxiÞ

for any i = 1,2,…,n, it has.

ENðAÞ ¼
Pn

i¼1 uAðxiÞ ^ vAðxiÞ þ pAðxiÞð ÞPn
i¼1 uAðxiÞ _ vAðxiÞ þ pAðxiÞð Þ

¼
Pn

i¼1 min uAðxiÞ; vAðxiÞf g þ pAðxiÞð ÞPn
i¼1 max uAðxiÞ; vAðxiÞf g þ pAðxiÞð Þ

¼
Pn

i¼1 maxCountðAi \ AC
i ÞPn1

i¼1 maxCountðAi [ AC
i Þ

For (13): suppose that uAðxiÞ� vAðxiÞ for some xi, then.

1� juAðxiÞ � vAðxiÞj þ pAðxiÞ ¼ 2 vAðxiÞ þ pAðxiÞð Þ
¼ 2 uAðxiÞ ^ vAðxiÞ þ pAðxiÞð Þ;
1þ juAðxiÞ � vAðxiÞj þ pAðxiÞ ¼ 2 uAðxiÞ þ pAðxiÞð Þ
¼ 2 uAðxiÞ _ vAðxiÞ þ pAðxiÞð Þ:

Similarly, when uAðxiÞ� vAðxiÞ for some xi, then.

1� juAðxiÞ � vAðxiÞj þ pAðxiÞ ¼ 2 uAðxiÞ þ pAðxiÞð Þ
¼ 2 uAðxiÞ ^ vAðxiÞ þ pAðxiÞð Þ;
1þ juAðxiÞ � vAðxiÞj þ pAðxiÞ ¼ 2 vAðxiÞ þ pAðxiÞð Þ
¼ 2 uAðxiÞ _ vAðxiÞ þ pAðxiÞð Þ:

From (13), it gets.

E00ðAÞ ¼
Pn

i¼1 1� juAðxiÞ � vAðxiÞj þ pAðxiÞð ÞPn
i¼1 1þ juAðxiÞ � vAðxiÞj þ pAðxiÞð Þ

¼
Pn

i¼1 2 uAðxiÞ ^ vAðxiÞ þ pAðxiÞð ÞPn
i¼1 2 uAðxiÞ _ vAðxiÞ þ pAðxiÞð Þ

¼
Pn

i¼1 uAðxiÞ ^ vAðxiÞ þ pAðxiÞð ÞPn
i¼1 uAðxiÞ _ vAðxiÞ þ pAðxiÞð Þ :

That’s EN ¼ E00.

3.2 A new similarity measure of IFSs

Different from the similarity measures of IFSs introduced

in Sect. 2.3, we here give a construction approach to get the

similarity measure of IFSs by using entropy.

Let A, B 2 IFS(X). For each xi 2 X, define

14 Pattern Anal Applic (2016) 19:11–20
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uABðxiÞ ¼
1þminfjuAðxiÞ � uBðxiÞj; jvAðxiÞ � vBðxiÞjg

2
;

ð14Þ

vABðxiÞ ¼
1�maxfjuAðxiÞ � uBðxiÞj; jvAðxiÞ � vBðxiÞjg

2
:

ð15Þ

Let

GðA;BÞ ¼ xi; uABðxiÞ; vABðxiÞð Þh ijxi 2 Xf g:

It is not difficult to get G(A,B) 2 IFS(X).

Theorem 3 Let E be an entropy of IFS(X), then the

mapping S: IFS(X) 9 IFS(X) ![0,1], defined by

S(A,B) = E(G(A,B)) for each pair of IFSs A and B, is a

similarity measure of IFSs.

Proof (S1): Since EðAÞ 2 ½0; 1� for any A 2 IFS(X), and

G(A,B) is an IFS in X, we have EðGðA;BÞÞ 2 ½0; 1�.
(S2): From the definition of the entropy measure of IFSs,

we have EðGðA;BÞÞ = 1 if and only if uABðxiÞ ¼ vABðxiÞ
for each xi 2 X. From (14) and (15), we know uAðxiÞ ¼
uBðxiÞ ¼ vAðxiÞ ¼ vBðxiÞ ¼ 0 for each xi 2 X. Thus, A ¼ B.

(S3): from the construction of G(A,B), it is obvious that

G(A,B) = G(B,A). Thus, EðGðA;BÞÞ ¼ EðGðB;AÞÞ.
(S4): when A � B � C, it has uAðxiÞ� uBðxiÞ� uCðxiÞ

and vAðxiÞ� vBðxiÞ� vCðxiÞ for each xi 2 X. Namely,

juAðxiÞ � uCðxiÞj � juAðxiÞ � uBðxiÞj and jvAðxiÞ � vCðxiÞ
j � jvAðxiÞ � vBðxiÞj for each xi 2 X. Thus, GðA;BÞ �
GðA;CÞ.

Since uABðxiÞ� 1
2
� vABðxiÞ for each xi 2 X, it follows

from Definition 3 that EðGðA;BÞÞ�EðGðA;CÞÞ.
Similarly, one can also proveEðGðB;CÞÞ�EðGðA;CÞÞ.

Corollary 2 Let EN be an entropy measure of IFSs

defined by (11), then the mapping SN , given in Theorem 3,

i.e., SNðA;BÞ ¼ ENðGðA;BÞÞ for each pair of IFSs A and B,

is a similarity measure and can be denoted by

SNðA;BÞ

¼
Pn

i¼1 1�minfjuAðxiÞ � uBðxiÞj; jvAðxiÞ � vBðxiÞjgð ÞPn
i¼1 1þmaxfjuAðxiÞ � uBðxiÞj; jvAðxiÞ � vBðxiÞjgð Þ :

Corollary 3 Let EL be an entropy measure of IFSs

defined by (5), then the mapping SL, given in Theorem 3,

i.e., SLðA;BÞ ¼ ELðGðA;BÞÞ for each pair of IFSs A and B,

is a similarity measure and can be denoted by

SLðA;BÞ

¼
Pn

i¼1 1�maxfjuAðxiÞ � uBðxiÞj; jvAðxiÞ � vBðxiÞjgð ÞPn
i¼1 1þminfjuAðxiÞ � uBðxiÞj; jvAðxiÞ � vBðxiÞjgð Þ :

Corollary 4 Let ESK be an entropy measure of IFSs

defined by (2), then the mapping SSK , given in Theorem 3,

i.e., SSKðA;BÞ ¼ ESKðGðA;BÞÞ for each pair of IFSs A and

B, is a similarity measure and can be denoted by

SSKðA;BÞ

¼ 1

n

Xn

i¼1

1�minfjuAðxiÞ � uBðxiÞj; jvAðxiÞ � vBðxiÞjg
1þmaxfjuAðxiÞ � uBðxiÞj; jvAðxiÞ � vBðxiÞjg

:

From Corollaries 2–4, we know they are more easily

calculated than some existing similarity measures [10, 24],

as well as consider more information than some existing

similarity measures [43].

Example 1 Assume that there are four kinds of minerals

A = {A1, A2, A3, A4}, and a recognized sample e, which are

represented by IFSs in the feature space C = {c1, c2, c3}.

Suppose we have the following data.

A1 ¼ c1; 0:4; 0:4h i; c2; 0:3; 0:5h i; c3; 0:6; 0:3h if g;
A2 ¼ c1; 0:2; 0:6h i; c2; 0:3; 0:5h i; c3; 0:4; 0:6h if g;
A3 ¼ c1; 0:2; 0:4;h i; c2; 0:4; 0:5h i; c3; 0:3; 0:5h if g;
A4 ¼ c1; 0:2; 0:5h i; c2; 0:4; 0:4;h i; c3; 0:4; 0:3h if g;
e ¼ c1; 0:2; 0:6h i; c2; 0:2; 0:5h i; c3; 0:4; 0:3h if g:

Calculate the similarity measure between Ai

(i = 1,2,3,4) and e, the results are presented in Table 1.

From the boldface letters in Table 1, it shows that the

sample e belongs to the pattern A4 according to the simi-

larity measures (8)–(10) and SL. Furthermore, the sample e
belongs to the pattern A2 according to the similarity mea-

sures SN and SSK. However, the similarity measures SLS and

SM cannot classify this sample.

3.3 The Shapley-weighted similarity measures of IFSs

Although there are many similarity measures of IFSs, they

are all based on the assumptions that the elements in a set

are independent, and each feature has the same importance.

In most situations, these assumptions do not hold, for

example, we give the following classical example: ‘‘we are

to evaluate a set of different brands of cars in relation to

Table 1 The results with respect to the different similarity measures

(p = 1)

SN SL SSK SLS SM S1HY S2HY S3HY

A1 0.80 0.78 0.80 0.77 0.88 0.83 0.76 0.71

A2 0.88 0.86 0.89 0.87 0.93 0.87 0.80 0.76

A3 0.81 0.77 0.81 0.77 0.88 0.80 0.71 0.67

A4 0.87 0.87 0.88 0.87 0.93 0.90 0.85 0.82
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three subjects: {security, service, price}, we want to give

more importance to security than to service or price, but on

the other hand we want to give some advantage to cars that

are good in security and in any of service and price’’. In

this situation, it is not suitable to endow their weights by

using additive measures. Fuzzy measures [30] as a pow-

erful tool for modeling the interaction among elements can

well deal with this issue.

Definition 5 [30] A fuzzy measure on a finite set

N = {1,2,…,n} is a set function l: P(N) ? [0, 1] satisfy-

ingl (/) = 0, l (N) = 1,If A, B [ P(N) and A ( B then l
(A) B l (B),

where P(N) denotes the power set of N.

In the pattern recognition, lðAÞ can be viewed as the

importance degree of feature set A. Especially, if A ¼ fig,
then lðiÞ is the importance degree of the feature i. When

we have lðAÞ ¼
P

i2A lðiÞ for any A 2 PðNÞ, the fuzzy

measure l degenerates to be an additive measure.

When there are inter-dependent or interactive phenomena

among features, the importance of each feature is not only

determined by itself, but also receives the influence fromother

features. In order to overall reflect the interaction between

features, we shall use their Shapley values as their weights.

The Shapley function [44] as one of themost important payoff

indices has been deeply researched in game theory, which

satisfies several reasonable axioms, denoted by

uiðl;NÞ ¼
X

S�Nni

ðn� s� 1Þ!s!
n!

ðlðS [ iÞ � lðSÞÞ; 8i 2 N

ð16Þ

where l is a fuzzy measure as given in Definition 5, s and

n denote the cardinalities of S and N, respectively.

From Definition 5 and the Shapley function, it is not

difficult to get uiðl;NÞ� 0 for each i 2 N andPn
i¼1 uiðl;NÞ ¼ lðNÞ. Thus, uiðl;NÞf gi2N is a weight

vector. Further, if the fuzzy measure l is an additive

measure, namely, there is no interaction between features;

their Shapley values are equal to the importance of them-

selves. That’s uiðl;NÞ ¼ lðiÞ for any i 2 N. Based on the

introduced similarity measures in Sect. 3.2, we give the

following Shapley-weighted similarity measures of IFSs.

SSNðA;BÞ

¼
Pn

i¼1 uiðl;NÞ 1�minfjuAðxiÞ � uBðxiÞj; jvAðxiÞ � vBðxiÞjgð ÞPn
i¼1 uiðl;NÞ 1þmaxfjuAðxiÞ � uBðxiÞj; jvAðxiÞ � vBðxiÞjgð Þ

ð17Þ
SSLðA;BÞ

¼
Pn

i¼1 uiðl;NÞ 1�maxfjuAðxiÞ � uBðxiÞj; jvAðxiÞ � vBðxiÞjgð ÞPn
i¼1 uiðl;NÞ 1þminfjuAðxiÞ � uBðxiÞj; jvAðxiÞ � vBðxiÞjgð Þ

ð18Þ

SSSKðA;BÞ

¼ 1

n

Xn

i¼1

uiðl;NÞ
1�minfjuAðxiÞ � uBðxiÞj; jvAðxiÞ � vBðxiÞjg
1þmaxfjuAðxiÞ � uBðxiÞj; jvAðxiÞ � vBðxiÞjg

ð19Þ

where uiðl;NÞ as given (16).

Similarly, we have the following Shapley-weighted

similarity measures of IFSs.

(1) The Shapley-weighted similarity measure [24]

SSLSðA;BÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 uiðl;NÞðfuABðiÞ þ fvABðiÞÞð Þp

n
;

p

r

ð20Þ

where fuABðiÞ and fvABðiÞ as given in (6).

(2) The Shapley-weighted similarity measure [10]

SSMðA;BÞ ¼
1

2
SSuðA;BÞ þ SSvðA;BÞð Þ; ð21Þ

where

SuðA;BÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 uiðl;NÞjuAðxiÞ � uBðxiÞjð Þp

n

p

r
;

SvðA;BÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 uiðl;NÞjvAðxiÞ � vBðxiÞjð Þp

n

p

r
:

(3) The Shapley-weighted similarity measures [43]

SSHY1ðA;BÞ ¼ 1� dSHðA;BÞ; ð22Þ

SSHY2ðA;BÞ ¼
e�dSHðA;BÞ � e�1

1� e�1
; ð23Þ

SSHY3ðA;BÞ ¼
1� dSHðA;BÞ
1þ dSHðA;BÞ

; ð24Þ

where dSHðA;BÞ ¼ 1
n

Pn

i¼1

uiðl;NÞmaxfjuAðxiÞ � uBðxiÞj;
jvAðxiÞ � vBðxiÞjg and A,B [ IFS(X).

If there is no interaction among elements in N, then we

get their corresponding weighted similarity measures.

4 Approaches to pattern recognition based on fuzzy

measures

4.1 A general case

If the fuzzy measure of each combination in feature set is

given, then we give the following decision procedure to

pattern recognition under Atanassov’s intuitionistic fuzzy

environment.

Step 1: Suppose that there exist m patterns A = {A1,

A2,…,Am} and n features C = {c1,c2,…,cn}. The evalua-

tion of each pattern Ai w.r.t. each feature cj is an Atanas-

sov’s IFV

Ai ¼ cj; aij; bij
� �

jj ¼ 1; 2; . . .; n
� �

i ¼ 1; 2; . . .;m:
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Furthermore, assume that there is a sample e to be rec-

ognized, which is represented by an IFS

e ¼ cj; ej; fj
� �

jj ¼ 1; 2; . . .; n
� �

:

Step 2: Calculate the Shapley value of each feature

using (16).

Step 3: Calculate the Shapley-weighted similarity mea-

sure between Ai (i = 1,2,…,m) and e using (17) or (18, 19),
and then select the best one.

Step 4: End.

According to the entropy theory, if the entropy value for

a feature is small across patterns, it can provide decision-

makers with useful information. Therefore, the feature

should be assigned a bigger weight; otherwise, such a

feature will be judged unimportant by most decision-

makers. In other words, such a feature should be evaluated

as a very small weight. If the information about the weights

of features is incompletely known, the following linear

programming model for the optimal k-fuzzy measure on

feature set C is built.

min
Xn

j¼1

Xm

i¼1

EðAijÞujðl;CÞ

s:t:
l ;ð Þ ¼ 0; l Cð Þ ¼ 1;
l cj
� �

2 Hj; j ¼ 1; 2; . . .; n;
l Sð Þ� l Tð Þ 8S; T � C; S � T ;

8
<

: ð25Þ

where ujðl;CÞ is the Shapley value of the feature cj, and

Hj ¼ ½h�j ; hþj � is its range.
Since (28) is a linear programming, we can easily get its

solution by using Simplex method. If there are no inter-

active characteristics among elements in a set, then we get

the corresponding model for the optimal weight vector.

Example 2 In Example 1, if the importance of features is

different, which is, respectively, given by [0.4,0.6],

[0.3,0.5] and [0.6,0.8]. Then the main steps are given as

follows:

Step 1: Calculate the fuzzy measures of all combinations

in feature set C. Let E = EBB and UðuAðxÞ; vAðxÞÞ ¼
uAðxÞ þ vAðxÞ. From the model (25), the following linear

programming model is established.

min 0:12ðlBBðc1Þ � lBBðc2; c3ÞÞ � 0:03ðlBBðc2Þ
� lBBðc1; c3ÞÞ � 0:08ðlBBðc3Þ � lBBðc1; c2ÞÞ þ 0:73

s:t:

lBBðSÞ� lBBðTÞ S; T � fc1; c2; c3g; S � T

lBBðc1Þ 2 ½0:4; 0:6�; lBBðc2Þ 2 ½0:3; 0:5�;
lBBðc3Þ 2 ½0:6; 0:8�

8
><

>:
:

Solve above linear programming, it gets

lBBðc1Þ ¼ lBBðc2Þ ¼ lBBðc1; c2Þ ¼ 0:4; lBBðc3Þ ¼

lBBðc1; c3Þ ¼ 0:8; lBBðc2; c3Þ ¼ lBBðc1; c2; c3Þ ¼ 1;

Step 2: By (16), calculate the feature Shapley values

w.r.t. lBB, it has

u1ðlBB;CÞ ¼ 0:13;u2ðlBB;CÞ ¼ 0:23;u3ðlBB;CÞ ¼ 0:63;

Step 3: Calculate the Shapley-weighted similarity mea-

sure between Ai (i = 1,2,3,4) and e, the results are pre-

sented in Table 2.

Similarly, when E = EN or E = EL, the results are

presented in Table 3.

Furthermore, when E = ESK, the results are presented in

Table 4.

According to Tables 2, 3 and 4, the different ranking

results are obtained by using the Shapley-weighted simi-

larity measures (17)–(24). But all ranking results show that

the recognized sample e belongs to the fourth kind of

minerals (A4), see the boldface letters in Tables 2, 3 and 4.

Example 3 [45] Let us consider a set of diagnoses

Q = {Q1(Viral fever), Q2(Malaria), Q3(Typhoid)}, and a

set of symptoms S = {s1(Temperature), s2(Headache), s3-
(Cough)}. Suppose a patient, with respect to all the

symptoms, can be represented by the following IFS:

Table 2 The results for the Shapley-weighted similarity measures

(p = 1)

S
lBB

SN S
lBB

SL S
lBB

SSK S
lBB

SLS S
lBB

SM S
lBB

SHY1 S
lBB

SHY2 S
lBB

SHY3

A1 0.83 0.80 0.27 0.97 0.97 0.94 0.91 0.89

A2 0.82 0.79 0.27 0.96 0.96 0.93 0.89 0.87

A3 0.78 0.85 0.29 0.96 0.96 0.93 0.90 0.88

A4 0.92 0.92 0.32 0.99 0.99 0.98 0.97 0.96

Table 3 The results for the Shapley-weighted similarity measures

(p = 1)

S
l
SN S

l
SL S

l
SSK S

l
SLS S

l
SM S

l
SHY1 S

l
SHY2 S

l
SHY3

A1 0.76 0.74 0.26 0.95 0.95 0.94 0.90 0.88

A2 0.87 0.86 0.30 0.98 0.98 0.95 0.93 0.91

A3 0.80 0.77 0.29 0.96 0.96 0.93 0.90 0.87

A4 0.93 0.93 0.32 0.99 0.99 0.98 0.97 0.96

Table 4 The results for the Shapley-weighted similarity measures

(p = 1)

S
lSK

SN S
lSK

SL S
lSK

SSK S
lSK

SLS S
lSK

SM S
lSK

SHY1 S
lSK

SHY2 S
lSK

SHY3

A1 0.81 0.77 0.27 0.96 0.96 0.94 0.90 0.88

A2 0.83 0.8 0.28 0.97 0.97 0.93 0.90 0.87

A3 0.78 0.86 0.26 0.96 0.96 0.93 0. 90 0.87

A4 0.95 0.95 0.32 0.99 0.99 0.99 0.98 0.97
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P (patient) = {\s1, 0.6, 0.1[,\s2, 0.5, 0.4[,\s3, 0.7,

0.2[};

And assume each diagnosis Qi (i = 1,2,3) can also be

viewed as an IFS with respect to all the symptoms as

follows:

Q1 (Viral fever) = {\s1, 0.4, 0[, \s2, 0.3, 0.5[,\s3,

0.4, 0.3[};

Q2 (Malaria) = {\s1, 0.7, 0[,\s2, 0.2, 0.6[,\s3, 0.7,

0[};

Q3 (Typhoid) = {\s1, 0.3, 0.3[,\s2, 0.6, 0.1[ ,\s3,

0.2, 0.6[}.

The importance of symptoms is different, which is,

respectively, given by [0.4,0.5], [0.3,0.4] and [0.2,0.3]. Our

aim is to classify the patient P to one of the diagnoses Q1,

Q2 and Q3. Similar to Example 2, if E = EBB, E = EN or

E = ESK the results are presented in Table 5.

When E = EL, the results are presented in Table 6.

According to Table 5, the same ranking results are

obtained, and from Table 6, we get the different ranking

results. However, all ranking results show that the patient

belongs to the diagnosis Q2 (Malaria), see the boldface

letters in Tables 5 and 6.

4.2 A special case

As we know, the fuzzy measure is defined on the power set,

which makes the problem exponentially complex. Thus, it

is not easy to get the fuzzy measure of each combination in

a set when it is large. For this reason, we further research

pattern recognition under k-fuzzy measures, which will

largely simplify the complexity of solving a fuzzy measure.

Definition 6 [30] Let gk: P(N) ? [0, 1] be a fuzzy

measure.gk is called a k-fuzzy measure if

gkðA [ BÞ ¼ gkðAÞ þ gkðBÞ þ kgkðAÞgkðBÞ

for any A;B � N with A \ B ¼ ;, where k[ � 1.

It is evident if k ¼ 0, then gk is an additive measure,

which means there is no interaction between subsets A and

B. If k[ 0, then gk is a superadditive measure, which

indicates there exists complementary interaction between

subsets A and B. If �1\k\0, then gkis a subadditive

measure, which shows there exists redundancy interaction

between subsets A and B.

For a finite set N, the k-fuzzy measure gk can be

equivalently expressed by

gkðAÞ ¼
1

k
P
i2A

½1þ kgkðiÞ� � 1

	 

if k 6¼ 0

P
i2A

gkðiÞ if k ¼ 0

8
><

>:
: ð26Þ

Since lðNÞ ¼ 1, we know k is determined by

P
i2N

½1þ kgkðiÞ� ¼ 1þ k. So when each gkðiÞ is given, one

can get the value of k. From (26), for a set with n elements

it only needs n values to get a k� fuzzy measure.

When the information about the weights of features is

partly known, the following linear programming model for

the optimal k� fuzzy measure on feature set C is built.

min
Xn

j¼1

Xm

i¼1

EðAijÞujðgk;CÞ

s:t:
gy ;ð Þ ¼ 0; gy Cð Þ ¼ 1;

gy cj
� �

2 Hj j ¼ 1; 2; . . .; nð Þ
k[ � 1

8
<

: ð27Þ

where ujðl;NÞ is the Shapley value of the feature cj (j = 1,

2,…,n), and Hj ¼ ½h�j ; hþj � is its range.
Similar to the decision procedure given in Sect. 4.1, the

main steps to Atanassov’s intuitionistic fuzzy pattern rec-

ognition under k-fuzzy measures are given as follows:

Step 10: See Step 1.

Step 20: When the fuzzy measure of each combination in

feature set is given, calculate their Shapley values by (16);

Table 5 The results for the Shapley-weighted similarity measures

(p = 1)

S
l
SN S

l
SL S

l
SSK S

l
SLS S

l
SM S

l
SHY1 S

l
SHY2 S

l
SHY3

Q1 0.73 0.69 0.24 0.94 0.94 0.92 0.88 0.85

Q2 0.73 0.70 0.24 0.94 0.94 0.92 0.88 0.86

Q3 0.55 0.50 0.19 0.90 0.90 0.87 0.81 0.77

Table 6 The results for the Shapley-weighted similarity measures

(p = 1)

S
lL

SN S
lL

SL S
lL

SSK S
lL

SLS S
lL

SM S
lL

SHY1 S
lL

SHY2 S
lL

SHY3

Q1 0.74 0.71 0.25 0.84 0.84 0.93 0.89 0.87

Q2 0.77 0.76 0.26 0.96 0.96 0.95 0.92 0.90

Q3 0.59 0.55 0.20 0.91 0.91 0.89 0.84 0.80

Table 7 The results for the Shapley-weighted similarity measures

(p = 1)

S
gk
SN S

gk
SL S

gk
SSK S

gk
SLS S

gk
SM S

gk
SHY1 S

gk
SHY2 S

gk
SHY3

A1 0.80 0.78 0.27 0.96 0.96 0.94 0.91 0.89

A2 0.86 0.84 0.29 0.97 0.97 0.95 0.92 0.90

A3 0.80 0.77 0.27 0.96 0.96 0.93 0.90 0.87

A4 0.90 0.90 0.30 0.98 0.98 0.97 0.96 0.95

Table 8 The results for the Shapley-weighted similarity measures

(p = 1)

S
l
SN S

l
SL S

l
SSK S

l
SLS S

l
SM S

l
SHY1 S

l
SHY2 S

l
SHY3

Q1 0.73 0.70 0.24 0.95 0.94 0.92 0.88 0.86

Q2 0.74 0.72 0.25 0.95 0.95 0.93 0.90 0.87

Q3 0.58 0.53 0.20 0.91 0.91 0.88 0.82 0.79
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otherwise, use the model (27) to get the optimal k-fuzzy
measure on feature set C. Then, calculate their Shapley

values using (16).

Step 30: Calculate the Shapley-weighted similarity

measures between Ai (i = 1,2,…,m) and e using (17) [or

(18), (19)], and then select the best one.

Step 40: End.

Example 4 In Example 2, if we make a decision by using

the k-fuzzy measures, then the main steps are given as

follows:

Step I-10: Calculate the optimal k-fuzzy measure on

feature set C, it gets the optimal k-fuzzy measure on feature

set C is gkðcjÞ
� �

j2f1;2;3g¼ 0:4; 0:3; 0:6ð Þ, where

k ¼ �0:9439.

Step II-20: By (16), it gets the feature Shapley values

u1ðgk;CÞ ¼ 0:3032;u2ðgk;CÞ ¼ 0:2409;u3ðgk;CÞ
¼ 0:456:

Step II-30: Calculate the Shapley-weighted similarity

measure between Ai (i = 1,2,3,4) and e, the results are

presented in Table 7.

In Example 4, the same ranking results are obtaining by

using the Shapley-weighted similarity measures (17)–(24),

and all ranking results show that the recognized sample e
belongs to the fourth kind of minerals (A4), see the boldface

letters in Table 7.

Example 5 In Example 3, if we make a decision by using

k-fuzzy measures, Similar to Example 4, if E = EBB,

E = EN or E = ESK; the results are presented in Table 8.

Similarly, if E = EL; the results are presented in

Table 9.

According to Tables 8 and 9, the same ranking results

are obtained, and the ranking results all show that the

patient to the diagnosis Q2 (malaria), see the boldface

letters in Tables 8 and 9.

5 Conclusions

We have researched entropy and similarity measures of

IFSs and proposed a new entropy of IFSs. Furthermore, we

give a construction method to get the similarity measure of

IFSs by using entropy. To deal with the interactive char-

acteristics among features, we further introduce three

Shapley-weighted similarity measures of IFSs, which can

be seen an extension of some weighted similarity measures.

When the information about the weights of features is

incompletely known, the model for the optimal fuzzy

measure on feature set is built. As we know, the fuzzy

measure is defined on the power set, which makes the

problem exponentially complex. In order to simplify the

complexity of solving a fuzzy measure and reflect the

interaction among features, we further research the pattern

recognition problems under k-fuzzy measures. Based on

the introduced entropy, similarity measure and the model

for the optimal fuzzy measure on feature set, we develop an

approach to pattern recognition problems under Atanas-

sov’s intuitionistic fuzzy environment.

Similar to the application of the Shapley-weighted

similarity measures in pattern recognition, we can also

apply them in some other fields, such as digital image

processing, clustering analysis and decision-making.
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