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Abstract In this study, we first examine entropy and
similarity measure of Atanassov’s intuitionistic fuzzy sets,
and define a new entropy. Meanwhile, a construction
approach to get the similarity measure of Atanassov’s in-
tuitionistic fuzzy sets is introduced, which is based on
entropy. Since the independence of elements in a set is
usually violated, it is not suitable to aggregate the values
for patterns by additive measures. Based on the given
entropy and similarity measure, we study their application
to Atanassov’s intuitionistic fuzzy pattern recognition
problems under fuzzy measures, where the interactions
between features are considered. To overall reflect the
interactive characteristics between them, we define three
Shapley-weighted similarity measures. Furthermore, if the
information about the weights of features is incompletely
known, models for the optimal fuzzy measure on feature
set are established. Moreover, an approach to pattern rec-
ognition under Atanassov’s intuitionistic fuzzy environ-
ment is developed.
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1 Introduction

Since the theory of fuzzy sets (FSs) is introduced by Zadeh
[1], it has been successfully used in various fields. Later,
several extension forms are proposed such as interval-
valued fuzzy sets [2], Atanassov’s intuitionistic fuzzy sets
(IFSs) [3] and vague sets [4]. In 1996, Bustince and Burillo
[5] showed the notion of vague sets coincides with that of
IFSs. As an extension of FSs, IFSs are characterized by a
membership degree, a non-membership degree and a hes-
itancy degree. So vagueness in real applications [6—13].

As two important information measures in the theory of
fuzzy sets, entropy and similarity measure of IFSs have
been widely investigated by many researchers from dif-
ferent point of views. Burillo and Bustince [14] introduced
the notion of entropy of IFSs to measure the degree of
intuitionism of an IFS. Bustince et al. [15] presented fuzzy
entropy of IFSs by using the fuzzy implication operators.
Szmidt and Kacprzyk [16] extended the axioms given by
De Luca and Termini [17] and proposed another axiomatic
definition for the entropy of IFSs. Szmidt and Kacprzyk
[16], Wang and Lei [18] and Huang and Liu [19],
respectively, gave an entropy of IFSs from different point
of views, which are shown equivalently by Wei et al. [20].
On the other hand, the similarity measures of IFSs are also
studied by many researchers [10, 21-25], whilst the
application of similarity measures in digital image pro-
cessing is considered in the literature [26, 27].

However, all the above researches are based on the
assumption that the elements in a set are independent, and
each intuitionistic fuzzy value (IFV) has the same impor-
tance. However, in many practical situations, the elements
in a set are usually correlative [28, 29]. The fuzzy measure,
introduced by Sugeno [30], has been shown a very effec-
tive tool for modeling the correlative characteristics among
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elements [31-35], and has been successfully used to deal
with decision problems [36-41]. As far as we know,
however, there is less investigation on entropy and simi-
larity measure of Atanassov’s intuitionistic fuzzy sets by
using fuzzy measures. In the study we first introduce an
entropy of IFSs, and give a construction method to obtain
the similarity measure of IFSs. To overall reflect the
interactive characteristics between features, we further
define three Shapley-weighted similarity measures. If the
information about the weights of features is partly known,
models for the optimal fuzzy measure on feature set are
constructed. Since the fuzzy measure is defined on the
power set, it makes the problem exponentially complex.
Thus, it is not easy to obtain the fuzzy measure of each
combination in a set when it is large. The A-fuzzy measure
proposed by Sugeno [30] seems to well deal with this issue,
which only needs n variables to determine a A-fuzzy
measure on a set with n elements. For this reason, we
further research Atanassov’s intuitionistic fuzzy pattern
recognition problems under A-fuzzy measures.

This paper is organized as follows: in Sect. 2, we review
some basic concepts about IFSs, entropy and similarity
measure. In Sect. 3, we propose a new entropy of IFSs, and
present a construction method to obtain the similarity
measure of IFSs by using entropy. Based on the Shapley
function with respect to fuzzy measures, we propose three
Shapley-weighted similarity measures, which reflect the
interactive between elements. In Sect. 4, models for the
optimal fuzzy measure on feature set are established, and
an approach to pattern recognition under Atanassov’s in-
tuitionistic fuzzy environment is developed. To simplify
the complexity of solving a fuzzy measure, we further
study Atanassov’s intuitionistic fuzzy pattern recognition
under A-fuzzy measures. Moreover, the corresponding
examples are given to illustrate the developed procedure.
In Sect. 5, the conclusions are made.

2 Preliminaries
2.1 Some basic concepts

By extending Zadeh’s fuzzy sets, Atanassov [3] introduced
the concept of Atanassov’s intuitionistic fuzzy sets (IFSs)
as follows:

Definition 1 [3] Let X be a no empty finite set. An IFS A
in X is expressed as

A = {{x,up(x),va(x))|x € X},

where u4 (x) € [0, 1] and v4(x) € [0, 1], respectively, denote
the degrees of membership and non-membership of ele-
ment x € X with the condition wua(x)+va(x)<1. The
hesitancy degree is denoted by 74 (x) = 1 — ua(x) — va(x).

@ Springer

When us (x) = 1 — va(x) for each x € X, we get a fuzzy
set, expressed by A = {(x, [ua(x), 1 — ua(x),])|x € X}. The
set of all IFSs in X is denoted by IFS(X).

Definition 2 Let A = {(x,ua(x),va(x))|x € X} and B =
{{x,up(x),vp(x))|x € X} be two IFSs in X, then

(1) A CBifand only if us(x) <up(x),va(x)>vg(x),
(2) A=Bifand only if A C Band A D B,
(3)  AC = {{x,va(x),ua(x))|x € X}.

Definition 3 [16] A real-valued function E: IFS(X) —
[0,1] is called an entropy measure of IFSs, if it satisfies the
following axiomatic requirements:

(E1) E(A) = 0 if and only if A is a crisp set;

(E2) E(A) =1 if and only if us(x) = va(x) for each
x €X;

(E3) E(A) = E(A);

(E4) E(A) < E(B) if A C B with ug(x) <vg(x) for each
x € X, or A D B with ug(x) >vg(x) for each x € X.

Definition 4 [23] A real-valued function S: IFS(X) x
IFS(X) — [0,1] is called a similarity measure of IFS(X), if
it satisfies the following conditions:

(S1)0 < S(AB) < I}

(S2) S(A,B) = 1 if and only if A = B;

(S3) S(A,B) = S(B,A);

S4) If ACBCC,
S(A,C) <S(B,C).

then S(A,C)<S(A,B) and

In the rest parts, without special explanation, we always
assume that the universe X is a finite set, denoted by {x,
X2yerey X}

2.2 Several entropy of IFSs

Entropy, as an information measure, plays an important
role in uncertain theory. Burillo and Bustince [5] defined
the distance measure between Atanassov’s intuitionistic
fuzzy sets and gave an axiomatic definition of Atanassov’s
intuitionistic fuzzy entropy and a theorem which charac-
terizes it. Furthermore, Burillo and Bustince [5] proposed
the entropy that measures the distance from the considered
set to IFSs rather than crisp sets, denoted by.

n

Epp(A) =) (1= ®(ua(x),va(x))), (1)
i=1

where the function &:[0,1] x [0,1] — [0,1] satisfies the

properties (1) @(x,y) =1 iff x + y =1, and ®(x,y) =0

iff x =y = 0; (2) &(x,y) = (y,x); 3) P(x,y) < P(x',")

for x<x',y<y'.

Burillo and Bustince [5] gave us a good example of how
to define an entropy measure from a theoretical point of
view. The special cases given by Burillo and Bustince [5]
did not consider hesitancy information.
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Later, Szmidt and Kacprzyk [16] introduced an entropy
measure of IFSs, which is based on the biggest cardinality
(max-sigma-count) of IFSs, denoted by.

1 z": max Count(A; N AY) (2)

Esk(A) = —
sx(4) n <= max Count(A; UAS)’

i=1
where for each i, A; denotes the single-element IFS corre-
sponding to the element x; € X, described as A; =
(xi,up(x:),va(x;)), and max Count(4; NAF) = (x;,min
{ua(xi),va(x:)}, max{ua(x;),va(x:)}), maxCount(A; UAF)

= (x;, max{ua (x;), va(x:) }, min{ua (x;), va(x;) }).

Later, Huang and Liu [19] proposed an entropy measure
of vague sets. Since the vague sets are IFSs [5]. When we
apply it in the setting of IFSs, for any A € IFS(X), it can be
transformed as follows [20]:

_1 1 — Jua (i) = va(x)] + ma(x:)
En(4) = nz 1+ Jua(x;) — va(o)| + ma(xi) (3)

i=1

Recently, Wang and Lei [18] gave another entropy
measure of IFSs, for any A € IFS(X), defined by.

Ew(A) = li min{ua (xi), va(xi)} + ma(xi) "

n 4 max{ua(x;), va(x;) } + ma(x;)

Wei et al. [20] pointed out that the entropy measures
defined by Szmidt and Kacprzyk [16], Wang and Lei [18]
and Huang and Liu [19] are equivalent, which can be seen
as the arithmetic mean of the ratio of each corresponding
item.

Different from the above-mentioned entropy, Li et al.
[42] gave another entropy measure of IFSs, expressed by:

Yoy (ua(xi) Avalx;))
Yoy (ua(xi) Vva(x)) (5)

E; is the ratio of the sum of different corresponding
items, but it does not consider the hesitancy information.

EL(A) =

2.3 Similarity measures of IFSs

Similarity measure, as another important information
measure, is applied to denote the similarity degree of fuzzy
sets and has received considerable attention. Li and Cheng
[23] introduced a concept of similarity measure of IFSs and
applied it to pattern recognition. Later, Liang and Shi [24]
pointed out that Li and Cheng’s method is not always
reasonable in some examples, and gave an improved
entropy of IFSs, defined by:

Sis(A.B) =1 </ZZ-’—1 s + a7, 6

where f,,,, (i) = |(1 = va(xi))/2 = (1 = vg(xi)) /2], fus (i) =
|ua(x;) — ug(x;)|/2, and A,B € IFS(X).

Mitchell [10] adopted a statistical approach and inter-
preted IFSs as ensembles of ordered fuzzy sets to modify
Li and Cheng’s similarity measure. Let S,(A,B) and
S.(A, B) denote the similarity measures between the “low”
membership functions u, and up and between the “high”
membership functions 1 — v4 and 1 — vp, respectively, as
follows:

Su(A,B) =1— {/E?—l Ja (x;

) — Up
SV(A,B) =1- ; Z?:l ‘VA()C,') — VB(xi)|p.

()"

b

They then defined the following modified similarity
measure of IFSs.

Sw(A, B) =3 (S.(4.B) + 5,(4. B)) )

for IFSs A,B € IFS(X).
Based on the Hausdorff distance, Huang and Yang [43]
defined three similarity measures of IFSs, denoted by

Shy(A,B) =1 —du(A,B), (8)
—du(AB) _ ,—1

2 76 e

Sur(A,B) = —F 9)
1 —dy(A,B)

S (AB)=—"22—7 10

wy (A, B) (T du(A.B)’ (10)

where  dy(A,B) = 5§max{|uA () — un ()], [va (i) —

i=1
ve(x;)|} and A,B e IFS(X).

3 New entropy and similarity measure of IFSs

Based on analysis above, this section gives a new entropy
and similarity measure of IFSs.

3.1 A new entropy of IFSs

Based on the definitions of IFSs and entropy, we introduce
the following entropy of IFSs:

> filua(xi), va(x)
CEA) = S lua () va ()

where A € IFS(X), the functions f;:[0,1] x [0,1] — [0,1]
and f5:[0,1] x [0,1] — [0.5,1] satisfy the properties (i)
filx,y) =0 and fo(x,y) =1 iff x=0, y=1, or x = 1,
y=0; @) filx,y)=fy) iff x=y, otherwise,
Ay <hxy): (i) filr,y) =f(nx), k=1, 25 (V)
fxy) A
Lxy) = LEY)
Theorem 1 The mapping E: IFS(X) —[0,1], defined by
GE, is an entropy of IFSs.

for x <x’ <y <y,ory<y <x'<x.

@ Springer
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Proof To prove GE is an entropy of IFSs, it only needs to
show that GE satisfies (E1)—(E4) given in Definition 3.

(E1): If A is a crisp set, then we have u4(x;) =0,
VA(.X,') =1 or MA()Cl') = l, VA()Cl') =0. It gets
Ji(ua(xi),va(xi)) =0 and fo(ua(xi),va(x;)) =1 for each
x; € X. Thus, GE(A) = 0. On the other hand, if GE
(A) = 0, by f:[0,1] x [0,1] = [0,1] and £:[0,1] x [0,1]
— [0.5,1], it has fj(ua(x;),va(x;)) =0 for each x; € X.
Namely, uA(xi) = 0, VA()CZ‘) =1or MA(X,') = 1, VA(xi) =0.
Thus, A is a crisp set.

(E2): When u4(x;) = va(x;) for each x; € X, we have
Si(ua(xi),va(x:)) = fo(ua(x:),va(x;)). Then, GE(A) = 1.
On the other hand, suppose that GE(A) = 1. Since
fiua(xi),va(x:)) <fa(ua(xi),va(x;)) for each x; € X, we
get  fi(ua(xi),va(xi)) =fa(ua(xi),va(x;)).  Namely,
ua(x;) = va(x;), x; € X.

(E3): From A€ = {{x;,va(x;),ua(x;))|]x; € X} and
fi(x,y) = fi(y,x), k=1, 2, one easily gets GE(A) =
GE(AS).

(E4): When A C B and up(x;) <vp(x;) for each x; € X,
we have

ua(x;) <up(x;) <vp(x;) <va(x;)

for each x; € X.
Thus,

Siua(xi),va(a)) _ filup(xi), vi(x:))
Sa(ua(xi),va(xi)) = fa(up(xi), va(xi))

By GE, it gets GE(A) < GE(B).

Similarly, when A D B with ug(x;) >vg(x;) for each
x; € X, one can also prove GE(A) < GE (B).

Next, let us pay more attention to a special case. To get
more information on IFSs, combining the entropy given by
Szmidt and Kacprzyk [16], Wang and Lei [18], Huang and
Liu [19] and Li et al. [42], we define the following entropy
of IFSs:

Vx; € X.

o (ua(x) Ava(xi) + malxi)
EN(A) = S o) v va o) 7a ()
where A € IFS(X).

In Ey, when we delete the hesitancy information of each
element, it reduces to be the entropy given by Li et al. [42].

; (11)

Corollary 1 The mapping E: IFS(X)—[0,1], defined by
Ey, is an entropy of IFSs.

Theorem 2 Let Ey: IFS(X) —[0,1] be an entropy mea-
sure given as (11), then Ey can be equivalently expressed
by.

>-% , max Count(A; N AF)

E'(A) = &= ! 12
) >, max Count(A; UAY) (12)
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and
Do (1= Jua(xi) — va(x)| + ma(x:))
; (1 + ua(xi) = valxi)| + max:))

E'(4) = (13)

for any A € IFS(X).

Proof We first show (11) can be equivalently expressed
by (12). For (12): By.

max Count(A;) = ua(x;) + ma(x;)

for any i = 1,2,...,n, it has.

Yo (a(xi) Ava
Yoy (ua(xi) Vova

> i (minfua(xi), va(xi

B Z?:l (max{ua(x;), va(x;

> maxCount(A; N AF)

S maxCount(A; U AS)

xi) + ma(xi))
xi) + ma(xi))

b+ mal(xi)
b+ malxi)

En(A) =

N Ny iy

For (13): suppose that u4 (x;) > v4(x;) for some x;, then.

—va(xi)| + ma(xi) = 2(valxi) + ma(x))
= 2(ua (x1) A va(xi) + 7a(xi)),
1 fua (xi) — ) =

=2(ua(xi) Vva(x;) + ma(x;))-

1— |MA X,’)

va(xi)| + ma(xi) = 2(ua(x;) + ma(xi))
Similarly, when ua (x;) <va(x;) for some x;, then.
1 — Jua(x;) — va(xi) | + ma (i) = 2(ua(x;) + ma(x;))
= 2(ua (x;) Ava(xi) + ma(xi)),
L+ Jua(xi) — va(xi)| + ma(x;) =
= 2(ua (x:) V va(xi) + ma (x:)).

2(va(xi) + maxi))

From (13), it gets.
D i (1= Jua(xi) — va(xi)| + ma(x:))
Yoing (L fua(xi) = vax)| + ma(x)
_ 2oin 2(ua(xi) Ava(xi) + ma(xi))
> i 2(ua(xi) V va(xi) + ma(xi))
_ 2oin (ua(xi) Ava(xi) + ma(xi))
Do (ua(xi) Vva(xi) + ma(xi)”
That’s Ey = E/l.

E"(A) =

3.2 A new similarity measure of IFSs

Different from the similarity measures of IFSs introduced
in Sect. 2.3, we here give a construction approach to get the
similarity measure of IFSs by using entropy.

Let A, B € IFS(X). For each x; € X, define
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1 + min{Jua (x;) — ug(xi)|, [va(xi) — ve(xi)|}

uap(x;) = ) )
(14)
vas () = = max {lua (xi) — ug(xi)], [va(xi) — v (xi)[}
AB\Ai ) .
(15)
Let

G(A,B) = {(xi, (uap(x;), vap(x:)))|x; € X}.
It is not difficult to get G(A,B) € IFS(X).

Theorem 3 Let E be an entropy of IFS(X), then the
mapping S: IFS(X) x IFS(X) —[0,1], defined by
S(A,B) = E(G(A,B)) for each pair of IFSs A and B, is a
similarity measure of IFSs.

Proof (S1): Since E(A) € [0,1] for any A € IFS(X), and
G(A,B) is an IFS in X, we have E(G(A,B)) € [0, 1].

(S2): From the definition of the entropy measure of IFSs,
we have E(G(A,B)) = 1 if and only if uap(x;) = vap(x;)
for each x; € X. From (14) and (15), we know u,(x;) =
up(x;) = va(x;) = vg(x;) = 0 for each x; € X. Thus, A = B.

(S3): from the construction of G(A,B), it is obvious that
G(A,B) = G(B.A). Thus, E(G(A, B)) = E(G(B, A)).

(S4): when A C B C C, it has us(x;) <up(x;) <uc(x;)
and vs(x;) >vg(x;) >ve(x;) for each x; € X. Namely,
lua (xi) — uc(xi)| = |ua(xi) —up(xi)| and  |va(x;) — ve(x)
| > |va(x;) —vp(x;)| for each x; € X. Thus, G(A,B) C
G(A, C).

Since uap(x;) > >vap(x;) for each x; € X, it follows
from Definition 3 that E(G(A,B)) > E(G(A, C)).

Similarly, one can also proveE(G(B, C)) > E(G(A, C)).
Corollary 2 Let Ey be an entropy measure of IFSs
defined by (11), then the mapping Sy, given in Theorem 3,
i.e., Sy(A,B) = Ex(G(A, B)) for each pair of IFSs A and B,
is a similarity measure and can be denoted by
Sn(A,B)

_ 2oig (1 — minflua(xi) — ug (xi)], [va(xi) —
>y (1 max{|ua (x;) — up(x)], [va(x:) —

ve(xi)[})
ve(xi)|})

Corollary 3 Let E; be an entropy measure of IFSs
defined by (5), then the mapping S, given in Theorem 3,
i.e., SL(A,B) = EL(G(A, B)) for each pair of IFSs A and B,
is a similarity measure and can be denoted by

SL(A,B)

_ i (1 — max{Jua(xi)
> izt (1 + min{jua (x;)

—up (i), [va(xi) — vB(xi)[})
—ug(x;)], [va(xi) —vp(xi)[})

Corollary 4 Let Esx be an entropy measure of IFSs
defined by (2), then the mapping Ssk, given in Theorem 3,

i.e., Ssk (A, B) = Esg(G(A, B)) for each pair of IFSs A and
B, is a similarity measure and can be denoted by

SSK(A B)

11— min{Jua(xi) — up(xi)], [va(xi) — ve(xi)[}
Z 1+ max{|ua (x;) — up(x;)|, [va(xi) — ve(xi)|}

From Corollaries 2-4, we know they are more easily
calculated than some existing similarity measures [10, 24],
as well as consider more information than some existing
similarity measures [43].

Example 1 Assume that there are four kinds of minerals
A = {A, Ay, A3, A4}, and a recognized sample ¢, which are
represented by IFSs in the feature space C = {cy, ¢3, c3}.
Suppose we have the following data.

Ar = {{c1,0.4,0.4), (c2,0.3,0.5), (c3,0.6,0.3) },
A = {{c1,0.2,0.6), (¢2,0.3,0.5), {c3,0.4,0.6) },
Az = {{c1,0.2,0.4,), (c2,0.4,0.5), (c3,0.3,0.5) },
Ag = {{c1,0.2,0.5), (c2,0.4,0.4,), {c3,0.4,0.3)},
e = {(c1,0.2,0.6), (¢2,0.2,0.5), (c3,0.4,0.3)}.

Calculate the similarity measure between A;
(i = 1,2,3,4) and ¢, the results are presented in Table 1.

From the boldface letters in Table 1, it shows that the
sample ¢ belongs to the pattern A4 according to the simi-
larity measures (8)—(10) and S;. Furthermore, the sample ¢
belongs to the pattern A, according to the similarity mea-
sures Sy and Sgx. However, the similarity measures S; ¢ and
Sy cannot classify this sample.

3.3 The Shapley-weighted similarity measures of IFSs

Although there are many similarity measures of IFSs, they
are all based on the assumptions that the elements in a set
are independent, and each feature has the same importance.
In most situations, these assumptions do not hold, for
example, we give the following classical example: “we are
to evaluate a set of different brands of cars in relation to

Table 1 The results with respect to the different similarity measures

=10
Sn S Ssk Sts Smr

1 2 3
SHY SHY SHY

A, 08 078 08 077 088 083 076 0.71
A, 088 08 08 087 093 087 080 0.76
A; 081 077 081 077 088 080 071 0.67
Ay 087 087 088 087 093 090 085 0.82
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three subjects: {security, service, price}, we want to give
more importance to security than to service or price, but on
the other hand we want to give some advantage to cars that
are good in security and in any of service and price”. In
this situation, it is not suitable to endow their weights by
using additive measures. Fuzzy measures [30] as a pow-
erful tool for modeling the interaction among elements can
well deal with this issue.

Definition 5 [30] A fuzzy measure on a finite set
N = {1,2,...,n} is a set function u: P(N) — [0, 1] satisfy-
ingu (¢p) =0, u (N) = 1LIFA,Be P(N) and A < B then u
(A) = n(B),

where P(N) denotes the power set of N.

In the pattern recognition, u(A) can be viewed as the
importance degree of feature set A. Especially, if A = {i},
then u(7) is the importance degree of the feature i. When
we have u(A) =", , u(i) for any A € P(N), the fuzzy
measure p degenerates to be an additive measure.

When there are inter-dependent or interactive phenomena
among features, the importance of each feature is not only
determined by itself, but also receives the influence from other
features. In order to overall reflect the interaction between
features, we shall use their Shapley values as their weights.
The Shapley function [44] as one of the most important payoff
indices has been deeply researched in game theory, which
satisfies several reasonable axioms, denoted by

o) = 3 O s Uiy sy, vie

SCN\i n!
(16)

where u is a fuzzy measure as given in Definition 5, s and
n denote the cardinalities of S and N, respectively.

From Definition 5 and the Shapley function, it is not
difficult to get ¢;(u,N)>0 for each i€ N and
> i1 @i N) = p(N). Thus, {@;(u,N)},cy is a weight
vector. Further, if the fuzzy measure u is an additive
measure, namely, there is no interaction between features;
their Shapley values are equal to the importance of them-
selves. That’s @;(u, N) = u(i) for any i € N. Based on the
introduced similarity measures in Sect. 3.2, we give the
following Shapley-weighted similarity measures of IFSs.

SSN(A,B)
_ i @il N)(1 — min{Jua(xi) — ug(xi)], [va(xi) — ve(xi)})

iy @i N) (1 + max{ fua (i) — up(x;)|, [va(x:) — va(xi)|})

(17)

SSL(A,B)
i @il N)(1 = max{|ua (xi) — ug(xi)], [va(xi) — ve(xi)[})

L @il N) (1 4+ min{ua (xi) — up(xi)|, [va (i) — va(xi)[})

(18)

@ Springer

Sssk (A, B)

I+ max{|ua(x;) — up(x;)], [va(xi) — vp(xi)[}

(19)

_ li 0.1 N) I — minflua(xi) — ug(xi)|, [va(xi) — ve(xi)[}

where ¢;(p, N) as given (16).

Similarly, we have the following Shapley-weighted
similarity measures of IFSs.

(1) The Shapley-weighted similarity measure [24]

Ssis(A,B) = 1 — \/ 2 izt (@i, N) i (8) + 1 (1))

n

(20)

where f,,, (i) and f,,, (i) as given in (6).
(2) The Shapley-weighted similarity measure [10]

SSM(A;B) :%(SSM(A7B) +SSV(A7B))7 (21)

where

o2 it (@i N) |ua (xi) — up(x:)])”

SM(AaB) == 1 — n ’
S,(A,B)=1—1{ >int (%(%N)I\;A(x,-) — VB(x,-)I)p.

(3) The Shapley-weighted similarity measures [43]

Ssuy1(A,B) = 1 —dsg(A, B), (22)
o—dsn(AB) _ o—1
SSHYZ(A7B> = 1 1 9 (23)
— e
1 —dsy(A,B)
Ssuy3(A,B) = —————1, 24
suy3(A, B) T ds(A.B) (24)

n
where  dsu(A,B) = 1% ¢, (1, Nymax{|us(x;) — up(x;)],
[va(x;) — va(x;)|} and A,B e IFS(X).
If there is no interaction among elements in N, then we
get their corresponding weighted similarity measures.

4 Approaches to pattern recognition based on fuzzy
measures

4.1 A general case

If the fuzzy measure of each combination in feature set is
given, then we give the following decision procedure to
pattern recognition under Atanassov’s intuitionistic fuzzy
environment.

Step 1: Suppose that there exist m patterns A = {Aj,
Ay,...,A,,} and n features C = {cy,c5,...,c,}. The evalua-
tion of each pattern A; w.r.t. each feature c; is an Atanas-
sov’s IFV

Ai:{<cj,a,-j,bij>[]' = 1,2,...,11} i:1,2,...,m.
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Furthermore, assume that there is a sample ¢ to be rec-
ognized, which is represented by an IFS
e={{cepf)li = 1,2,...,n}.

Step 2: Calculate the Shapley value of each feature
using (16).

Step 3: Calculate the Shapley-weighted similarity mea-
sure between A; (i = 1,2,...,m) and ¢ using (17) or (18, 19),
and then select the best one.

Step 4: End.

According to the entropy theory, if the entropy value for
a feature is small across patterns, it can provide decision-
makers with useful information. Therefore, the feature
should be assigned a bigger weight; otherwise, such a
feature will be judged unimportant by most decision-
makers. In other words, such a feature should be evaluated
as a very small weight. If the information about the weights
of features is incompletely known, the following linear
programming model for the optimal A-fuzzy measure on
feature set C is built.

min i i E(Aij)(Pj(,u? C)

u(0) =0, u(C)=1,
,u(cJ) €H;, j=1,2,...n, (25)
uS)<u(T)¥s, TCC SCT,

where @;(1, C) is the Shapley value of the feature c;, and

= [h, hf] is its range.

Since (28) is a linear programming, we can easily get its
solution by using Simplex method. If there are no inter-
active characteristics among elements in a set, then we get
the corresponding model for the optimal weight vector.

Example 2 In Example 1, if the importance of features is
different, which is, respectively, given by [0.4,0.6],
[0.3,0.5] and [0.6,0.8]. Then the main steps are given as
follows:

Step 1: Calculate the fuzzy measures of all combinations
in feature set C. Let E = Egz and ®(us(x),va(x)) =
us(x) + va(x). From the model (25), the following linear
programming model is established.

min 0.12(1%8(c1) — 1P (¢, ¢3)) — 0.03(uPB(c»)
— 1 (c1,¢3)) = 0.08(1" (¢3) — u(c1,¢2)) +0.73
:uBB(S) SIMBB(T) SvT g {C],Cz,Cg,}, N g T
s.t.d 1B (c)) €[0.4,0.6], 15 (cy) €10.3,0.5],
158 (c3) €[0.6,0.8]

Solve above linear programming, it gets

1P (cr) = P (c2) = 1P’ (c1,¢2) = 0.4, 1" (c3) =

:uBB(ClaC3) = O~87#BB(C27C3) = MBB(CI;C27C3) = 13

Step 2: By (16), calculate the feature Shapley values
W.I.t. ,uBB, it has

(18, C) = 0.13, 0, (18, C) = 0.23, @5 (1®®, C) = 0.63;

Step 3: Calculate the Shapley-weighted similarity mea-
sure between A; (i = 1,2,3,4) and ¢, the results are pre-
sented in Table 2.

Similarly, when E = Ey or E = E;, the results are
presented in Table 3.

Furthermore, when E = Egg, the results are presented in
Table 4.

According to Tables 2, 3 and 4, the different ranking
results are obtained by using the Shapley-weighted simi-
larity measures (17)—(24). But all ranking results show that
the recognized sample ¢ belongs to the fourth kind of
minerals (A4), see the boldface letters in Tables 2, 3 and 4.

Example 3 [45] Let us consider a set of diagnoses
0 = {Q,(Viral fever), Q,(Malaria), Q5(Typhoid)}, and a
set of symptoms S = {s;(Temperature), s,(Headache), s5.
(Cough)}. Suppose a patient, with respect to all the
symptoms, can be represented by the following IFS:

Table 2
=D
BB BB BB BB BB BB BB BB
w " o W W W W
SSN SS‘L SSK SSLS SSM SYHYI SHY2 SYHY}

The results for the Shapley-weighted similarity measures

Ln
=

A 083 080 027 097 097 094 0.91 0.89
A, 082 079 027 096 096 093 0.89 0.87
A; 078 085 029 096 096 093 0.90 0.88
Ay, 092 092 032 099 099 098 0.97 0.96

Table 3 The results for the Shapley-weighted similarity measures
=D

i W i i i i i i
Son Ssr Sssk Ssis Ssm Syt Ssuy2 Ssuvs

Ay 076 074 026 095 095 094 0.90 0.88
A, 087 086 030 098 098 095 0.93 0.91
A; 080 077 029 096 096 093 0.90 0.87
Ay, 093 093 032 099 099 098 0.97 0.96

Table 4 The results for the Shapley-weighted similarity measures

="

SK SK SK SK SK
n o n n n
Son Sse Sssk Sss Ssm

SK SK

o
SSHYI SSHYZ SSHY3

Ay 081 077 027 096 096 094 0.90 0.88
A, 083 038 028 097 097 093 0.90 0.87
A; 078 086 026 096 096 093 0.90 0.87
Ay, 095 095 032 099 099 099 0.98 0.97
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P (patient) = {<sy, 0.6, 0.1>, <s;, 0.5, 0.4>, <s3, 0.7,
0.2>};

And assume each diagnosis Q; (i = 1,2,3) can also be
viewed as an IFS with respect to all the symptoms as
follows:

0, (Viral fever) = {<s;, 0.4, 0>, <s,, 0.3, 0.5>, <s3,
0.4, 0.3>};

0> (Malaria) = {<sq, 0.7, 0>, <s,, 0.2, 0.6>, <s3, 0.7,
0>};

Q3 (Typhoid) = {<sy, 0.3, 0.3>, <s,, 0.6, 0.1> , <s3,
0.2, 0.6>}.

The importance of symptoms is different, which is,
respectively, given by [0.4,0.5], [0.3,0.4] and [0.2,0.3]. Our
aim is to classify the patient P to one of the diagnoses (O,
0, and Q. Similar to Example 2, if E = Epp, E = Ey or
E = Egi the results are presented in Table 5.

When E = E;, the results are presented in Table 6.

According to Table 5, the same ranking results are
obtained, and from Table 6, we get the different ranking
results. However, all ranking results show that the patient
belongs to the diagnosis O, (Malaria), see the boldface
letters in Tables 5 and 6.

4.2 A special case

As we know, the fuzzy measure is defined on the power set,
which makes the problem exponentially complex. Thus, it
is not easy to get the fuzzy measure of each combination in
a set when it is large. For this reason, we further research
pattern recognition under A-fuzzy measures, which will
largely simplify the complexity of solving a fuzzy measure.

Definition 6 [30] Let g;: P(N) — [0, 1] be a fuzzy
measure.g, is called a A-fuzzy measure if

8, (AUB) = g;(A) + g.(B) + 4g:(A)g.(B)
for any A,B C N with ANB = (), where A > — 1.

Table 5 The results for the Shapley-weighted similarity measures

="

Sov S5t Sssk Sas Ssw Ssuvt Ssva Ssavs
0, 073 069 024 094 094 092 0.88 0.85
0 073 070 024 094 094 092 0.88 0.86
0 055 050 019 090 090 0.87 0.81 0.77

Table 6 The results for the Shapley-weighted similarity measures

@=1

L

L L L LL L L L
S §N S gL S gSK SlSLS S;M S §H Y1 N gH Y2 N gH Y3
0, 074 071 025 084 084 093 089 087
0, 077 076 026 09 096 095 092 090
0; 059 055 020 091 091 089 084  0.80

@ Springer

Table 7 The results for the Shapley-weighted similarity measures

="

A, 080 078 027 096 096 094 091 089
A, 086 084 029 097 097 095 092 090
A; 080 077 027 096 096 093 090 087
As 090 090 030 098 098 097 09 095

Table 8 The results for the Shapley-weighted similarity measures

=D

Sov Sst Sssk Sas Ssr Ssuvt Ssva Ssavs
0, 073 070 024 095 094 092 0.88 0.86
0 074 072 025 095 095 093 0.90 0.87
0 058 053 020 091 091 0.88 0.82 0.79

It is evident if 2 =0, then g, is an additive measure,
which means there is no interaction between subsets A and
B. If >0, then g; is a superadditive measure, which
indicates there exists complementary interaction between
subsets A and B. If —1<A<0, then g;is a subadditive
measure, which shows there exists redundancy interaction
between subsets A and B.

For a finite set N, the A-fuzzy measure g; can be
equivalently expressed by

(O 4g:()]—1) if A#0
— )L i€A
Gl = ( ,EAi 8:(i) if 1=0 (26)

Since u(N)=1, we know A is determined by
I?V[l + 2g,(i)] = 1 + A. So when each g, (i) is given, one
i€

can get the value of 4. From (26), for a set with n elements
it only needs n values to get a A— fuzzy measure.

When the information about the weights of features is
partly known, the following linear programming model for
the optimal A— fuzzy measure on feature set C is built.

min ZZE(AH)%(&’A;C)
==

g (0) =0,8,(C) =1,
s.t.¢ g(q) €Hi(j=1,2,...,n)
A> —1

(27)

where ¢;(u, N) is the Shapley value of the feature ¢; (j = 1,
2,....n), and H; = [hj’,h;“] is its range.

Similar to the decision procedure given in Sect. 4.1, the
main steps to Atanassov’s intuitionistic fuzzy pattern rec-
ognition under A-fuzzy measures are given as follows:

Step 1”: See Step 1.

Step 2': When the fuzzy measure of each combination in
feature set is given, calculate their Shapley values by (16);
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Table 9 The results for the Shapley-weighted similarity measures

="

L L L L
" i " o i
Son S, Sssk Ssis Ssm

L L L
" " W
Ssuyt  Ssuy> Ssuys

0, 074 071 024 095 095 093 0.88 0.86
0, 075 074 025 095 095 094 0.91 0.89
0 059 055 019 091 091 0.89 0.83 0.80

otherwise, use the model (27) to get the optimal A-fuzzy
measure on feature set C. Then, calculate their Shapley
values using (16).

Step 3’: Calculate the Shapley-weighted similarity
measures between A; (i = 1,2,...,m) and ¢ using (17) [or
(18), (19)], and then select the best one.

Step 4’: End.

Example 4 In Example 2, if we make a decision by using
the A-fuzzy measures, then the main steps are given as
follows:

Step I-1": Calculate the optimal A-fuzzy measure on
feature set C, it gets the optimal A-fuzzy measure on feature
set  C s (gfl(cj))je{llﬁ}: (0.4,0.3,0.6),
A= —0.9439.

Step II-2": By (16), it gets the feature Shapley values

¢©,(g2,C) = 0.3032, p5(g;,C) = 0.2409, @5(g;,C)
= 0.456.

where

Step II-3’: Calculate the Shapley-weighted similarity
measure between A; (i = 1,2,3,4) and ¢, the results are
presented in Table 7.

In Example 4, the same ranking results are obtaining by
using the Shapley-weighted similarity measures (17)—(24),
and all ranking results show that the recognized sample ¢
belongs to the fourth kind of minerals (A4,4), see the boldface
letters in Table 7.

Example 5 In Example 3, if we make a decision by using
A-fuzzy measures, Similar to Example 4, if E = Epp,
E = Ey or E = Egg; the results are presented in Table 8.

Similarly, if E = E;; the results are presented in
Table 9.

According to Tables 8 and 9, the same ranking results
are obtained, and the ranking results all show that the
patient to the diagnosis O, (malaria), see the boldface
letters in Tables 8 and 9.

5 Conclusions
We have researched entropy and similarity measures of

IFSs and proposed a new entropy of IFSs. Furthermore, we
give a construction method to get the similarity measure of

IFSs by using entropy. To deal with the interactive char-
acteristics among features, we further introduce three
Shapley-weighted similarity measures of IFSs, which can
be seen an extension of some weighted similarity measures.
When the information about the weights of features is
incompletely known, the model for the optimal fuzzy
measure on feature set is built. As we know, the fuzzy
measure is defined on the power set, which makes the
problem exponentially complex. In order to simplify the
complexity of solving a fuzzy measure and reflect the
interaction among features, we further research the pattern
recognition problems under A-fuzzy measures. Based on
the introduced entropy, similarity measure and the model
for the optimal fuzzy measure on feature set, we develop an
approach to pattern recognition problems under Atanas-
sov’s intuitionistic fuzzy environment.

Similar to the application of the Shapley-weighted
similarity measures in pattern recognition, we can also
apply them in some other fields, such as digital image
processing, clustering analysis and decision-making.

Acknowledgments The authors gratefully thank the Editor-in-Chief
and two anonymous referees for their valuable comments, which have
much improved the paper. This work was supported by the Funds for
Creative Research Groups of China (No. 71221061), the Projects of
Major International Cooperation NSFC (No. 71210003), the National
Natural Science Foundation of China (Nos. 71201089, 71201110,
27127117 and 71271029), the Natural Science Foundation Youth
Project of Shandong Province, China (ZR2012GQ005), the Special-
ized Research Fund for the Doctoral Program of Higher Education
(No. 20111101110036), and the Program for New Century Excellent
Talents in University of China (No. NCET-12-0541).

References

—_

. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338-353

2. Zadeh LA (1975) The concept of a linguistic variable and its
application to approximate reasoning-I. Inf Sci 8(3):199-249

3. Atanassov K (1983) Intuitionistic fuzzy sets. In: Seventh Scien-
tific Session of ITKR, Sofia

4. Gau WL, Buehrer DJ (1993) Vague sets. IEEE Trans Syst Man
Cybern B Cybern 23(2):610-614

5. Bustince H, Burillo P (1996) Vague sets are intuitionistic fuzzy
sets. Fuzzy Sets Syst 79(3):403—405

6. Bustince H, Herrera F, Montero J (2007) Fuzzy sets and their
extensions: representation, aggregation, and models. Springer-
Verlag, Heidelberg

7. Hung WL, Yang MS (2008) On the J-divergence of intuitionistic
fuzzy sets with its application to pattern recognition. Inf Sci
178(6):1641-1650

8. Kharal A (2009) Homeopathic drug selection using intuitionistic
fuzzy sets. Homeopathy 98(1):35-39

9. Li DF (2008) A note on ‘‘using intuitionistic fuzzy sets for fault-
tree analysis on printed circuit board assembly’’. Microelectron
Reliab 48(10):1741

10. Mitchell HB (2003) On the Dengfeng-Chuntian similarity mea-

sure and its application to pattern recognition. Pattern Recogn

Lett 24(16):3101-3104

@ Springer



20

Pattern Anal Applic (2016) 19:11-20

11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Xu ZS (2008) Intuitionistic fuzzy information: aggregation theory
and applications. Science Press, Beijing

Chen TY, Li CH (2010) Determining objective weights with
intuitionistic fuzzy entropy measures: a comparative analysis.
Inform Sci 180(21):4207-4222

. Chen ZP, Yang W (2011) A new multiple attribute group deci-

sion making method in intuitionistic fuzzy setting. Appl Math
Model 35(9):4424-4437

Burillo P, Bustince H (1996) Entropy on intuitionistic fuzzy sets
and on interval valued fuzzy sets. Fuzzy Sets Syst 78(3):305-316
Bustince H, Barrenechea E, Pagola M, Fernandez J, Guerra C,
Couto P (2011) Generalized Atanassov’s intuitionistic fuzzy
index: construction of Atanassov’s fuzzy entropy from fuzzy
implication operators. Int J Uncertain Fuzz 19(1):51-69

Szmidt E, Kacprzyk J (2001) Entropy for intuitionistic fuzzy sets.
Fuzzy Sets Syst 118(3):467-477

De Luca A, Termini S (1972) A definition of nonprobabilistic
entropy in the setting of fuzzy theory. Inf Control 20(4):301-312
Wang Y, Lei YJ (2007) A technique for constructing intuition-
istic fuzzy entropy. Control Decis 22(12):1390-1394

Huang GS, Liu YS (2005) The fuzzy entropy of vague sets based
on non-fuzzy sets. Comput Appl Soft 22(6):16-17

Wei CP, Wang P, Zhang YZ (2011) Entropy, similarity measure
of interval-valued intuitionistic fuzzy sets and their applications.
Inf Sci 181(19):4273-4286

Chen SM (1995) Measures of similarity between vague sets.
Fuzzy Sets Syst 74(2):217-223

Chen SM (1997) Similarity measures between vague sets and
between elements. IEEE Trans Syst Man Cybern B Cybern
27(1):153-158

Li DF, Cheng CT (2002) New similarity measures of intuition-
istic fuzzy sets and application to pattern recognitions. Pattern
Recogn Lett 23(1-3):221-225

Liang ZZ, Shi PF (2003) Similarity measures on intuitionistic
fuzzy sets. Pattern Recogn Lett 24(15):2687-2693

Szmidt E, Kacprzyk J (2009) Analysis of similarity measures for
Atanassov’s intuitionistic fuzzy sets. In: Proceedings IFSA/
EUSFLAT, the DBLP Computer Science Bibliography, Lisbon,
Portugal, pp 1416-1421

Bustince H, Barrenechea E, Pagola M (2007) Image thresholding
using restricted equivalence functions and maximizing the mea-
sures of similarity. Fuzzy Sets Syst 158(5):496-516

Bustince H, Barrenechea E, Pagola M (2008) Relationship
between restricted dissimilarity functions, restricted equivalence
functions and normal EN-functions: image thresholding invariant.
Pattern Recogn Lett 29(4):525-536

Grabisch M (1995) Fuzzy integral in multicriteria decision
making. Fuzzy Sets Syst 69(3):279-298

@ Springer

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Grabisch M (1996) The application of fuzzy integrals in multi-
criteria decision making. Eur J Oper Res 89(3):445-456
Sugeno M (1974) Theory of fuzzy integral and its application.
Doctorial Dissertation, Tokyo Institute of Technology

Grabisch M (1997) k-order additive discrete fuzzy measures and
their representation. Fuzzy Sets Syst 92(2):167—-189

Grabisch M, Roubens M (1999) An axiomatic approach to the
concept of interaction among players in cooperative games. Int J
Game Theory 28(4):547-565

Kojadinovic I (2005) Relevance measures for subset variable
selection in regression problems based on k-additive mutual
Information. Comput Stat Data Anal 49(4):205-1227

Marichal JL, Kojadinovic I, Fujimoto K (2007) Axiomatic
characterizations of generalized values. Discret Appl Math
155(1):26-43

Li SJ, Zhang Q (2008) The measure of interaction among players
in games with fuzzy coalitions. Fuzzy Sets Syst 159(2):119-137
Grabisch M, Murofushi T, Sugeno M (2000) Fuzzy measure and
integrals. Physica-Verlag, New York

Grabisch M, Labreuche C (2008) A decade of application of the
Choquet and Sugeno integrals in multi-criteria decision aid. 4OR-
Q J Oper Res 6(1):1-44

Tan CQ, Chen XH (2010) Intuitionistic fuzzy Choquet integral
operator for multi-criteria decision making. Expert Syst Appl
37(1):149-157

Tan CQ (2011) Generalized intuitionistic fuzzy geometric
aggregation operator and its application to multi-criteria group
decision making. Soft Comput 15(5):867-876

Tan CQ, Chen XH (2011) Induced intuitionistic fuzzy Choquet
integral operator for multi-criteria decision making. Int J Intell
Syst 26(7):659-686

Xu ZS (2010) Choquet integrals of weighted intuitionistic fuzzy
information. Inf Sci 180(5):726-736

Li JQ, Deng GN, Li HX, Zeng WY (2012) The relationship
between similarity measure and entropy of intuitionistic fuzzy
sets. Inf Sci 188(1):314-321

Hung WL, Yang MS (2004) Similarity measures of intuitionistic
fuzzy sets based on Hausdorff distance. Pattern Recogn Lett
25(14):1603-1611

Shapley LS (1953) A value for n-person game. In: Kuhn H,
Tucker A (eds) Contributions to the theory of games. Princeton
University Press, Princeton

Zhang QS, Jiang SY (2008) A note on information entropy
measures for vague sets and its applications. Inf Sci
178(21):4184-4191



	Entropy and similarity measure of Atanassov’s intuitionistic fuzzy sets and their application to pattern recognition based on fuzzy measures
	Abstract
	Introduction
	Preliminaries
	Some basic concepts
	Several entropy of IFSs
	Similarity measures of IFSs

	New entropy and similarity measure of IFSs
	A new entropy of IFSs
	A new similarity measure of IFSs
	The Shapley-weighted similarity measures of IFSs

	Approaches to pattern recognition based on fuzzy measures
	A general case
	A special case

	Conclusions
	Acknowledgments
	References




