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Abstract An infrared search and track system is an

important research goal for military applications. Although

there has been much research into small infrared target

detection methods, we cannot apply them in real field sit-

uations due to the high false alarm rate caused by clutter.

This paper presents a novel target attribute extraction and

machine learning-based target discrimination method. In

our study, eight target features were extracted and analyzed

statistically. Learning-based classifiers, such as SVM and

Adaboost, have been incorporated and then compared to

conventional classifiers using real infrared images. In

addition, the generalization capability has also been

inspected for various types of infrared clutter.

Keywords Infrared search and track � Small target �
Clutter rejection � Discrimination � Machine learning

1 Introduction

Infrared search and track (IRST) systems have been

developed to achieve autonomous searching, detection,

acquisition, tracking, and designation of potential incoming

targets [6, 11]. The most important threats dealt with in

sea-based IRST systems are incoming small targets, such

as anti-ship sea skimming missiles (ASSM) or asymmetric

ships. In this study, we concentrated on the detection of

such targets encountered in sea-based IRST systems. The

detection of long range small targets is quite difficult due to

the small target signal and environmental clutter, such as

sensor noise, sea gulls, clouds, and sun glints.

The related research can be summarized into two cate-

gorical goals: increasing the target detection rate and

reducing the false alarm rate. The increase in the target

detection rate means that true targets in images should be

found as many as possible. It can be easily solved by a low

threshold value. However, it generates many false detec-

tions in clutter area. So, we need to reduce the false alarm

rate, simultaneously. Many studies have been conducted

regarding how to increase the detection rate of small

infrared targets either by enhancing the target signal or

subtracting the background. The difference between the

target intensity profile and background intensity profile,

which is well-known in IRST, is used to enhance the sig-

nal-to-clutter ratio (SCR). The intensity difference can be

between a center pixel and the surrounding pixels [28] or

be adaptive according to the background structure [61].

There are different methods used to accomplish this: mat-

ched filters (template matching) [8, 28, 35], multi-scale

methods [17, 32, 52], and the radial symmetry-based

method [16]. The intensity surface can be modeled using

the facet-based approach [53]. The background estimation-

based detection scheme is a popular approach due to its

simplicity and its good performance in small target

detection. This method detects targets by subtracting the

estimated background from the input image. The detection

performance depends on how accurately the true back-

ground is estimated. The background image can be esti-

mated from an input image using spatial filters, such as

least mean square (LMS) [27, 41, 46], mean [55], median

[42], and morphological (Top-Hat) filter [38, 54]. The LMS

filter minimizes the difference between an input image and
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a background image estimated through the weighted

average of the neighboring pixels. The mean filter esti-

mates the background through a Gaussian mean or simple

moving average. The median filter is based on order sta-

tistics. The median value can effectively remove point-like

targets. The morphological opening filter can remove

specific shapes by erosion and dilation with a specific

structural element. The mean filter-based target detection

method is computationally very simple, but it is sensitive to

edge clutter. Target detection with non-linear filters, such

as the median or morphology filters, has a low false alarm

rate around the edge but is computationally complex.

Combination filters, such as Max-Mean or Max-Median,

can preserve the edge information of clouds and back-

ground structures [13]. There is also the data fitting

approach that models the background using multi-dimen-

sional parameters [50]. The super-resolution method is

useful in background estimation and enhances small target

detection [14].

There are several works regarding the removal or

reduction of false detections. Their false alarm reduction

strategies are strongly dependent on the situation. If a

sensor platform is static, the information regarding the

target motion is enhanced by the removal of several

types of clutter, such as sun-glint. A well-known

approach is the Track-Before-Detect (TBD) method. Its

concept is similar to that of the 3D matched filter. The

TBD method can remove static clutter, such as ground

clutter [37, 40], and detect targets in an environment

suffering from sun-glint [26]. Dynamic programming

(DP), which is a quick version of the traditional TBD

method, achieves a powerful performance in detecting

dim targets [1, 7]. The temporal profiles, including mean

and variance, at each pixel are effective in the detection

of moving targets in slowly moving clouds [5, 45, 47,

49]. Accumulating the detection results of each frame

makes it possible to detect moving targets [39]. The

wide-to-exact search method was developed to enhance

the speed of 3D matched filters [61]. Recently, an

improved power-law-detector-based moving target detec-

tion method has been presented; it is effective for image

sequences that occur in heavy clutter [56]. False alarms

caused by sun-glint can be reduced through three-plot

correlation with temporal filtering [23].

It is also possible to reduce false detection through the

use of decision methods. These decision methods have to

determine whether or not a probing region is a target. The

hysteresis method has two thresholds. The first threshold is

a very low value and is used to find the candidate target

regions. The second threshold possesses a relatively high

value which depends on the operational requirements [12].

As information about the size information becomes avail-

able, it is possible to remove large sun glints and other

large objects. By applying an iterative threshold, we can

obtain similar results [2]. Statistics-based adaptive thresh-

old methods, such as the constant false alarm rate (CFAR),

are useful in a severely cluttered background [9, 33]. If we

apply the CFAR detector after a spatial filtering to an IRST

image, we can obtain the detection results shown in

Fig. 1b, where a lot of false detections caused by strong

sun glints, cloud clutter, and ground clutter exist for a given

test image, as shown in Fig. 1a. If we apply an additional

temporal filter, such as a three-plot correlation, we can

remove false detection in the sea surface region. However,

false detections from cloud clutter and ground clutter still

remain, as shown in Fig. 1c.

The target detection performance can be upgraded by

introducing multi-features and machine learning. Zhang

et al. [62] proposed spectral profile feature for sub-pixel

target detection and tensor feature by combining spectral

feature with spatial characteristics [63]. Yu et al. [57–60]

proposed multi-attribute features such as color histogram,

shape feature (Hausdorff edge feature or shape context),

and skeleton feature to represent and match cartoon char-

acters. The proposed semisupervised multiview distance

metric learning is effective in cartoon character classifi-

cation and content-based image retrieval.

The focus of this study was on finding a novel approach

to remove the remaining false detections. Motivated from

the above works, we applied machine learning approaches

for the target attribute features. A classifier divides the

correct targets and clutter points in the feature space. The

simplest method is the nearest neighbor classifier (NNC)

algorithm, which uses only feature similarity [21]. In

addition to NNC, there are the model-based Bayesian

classifier [19], learning-based neural network, and support

vector machine (SVM) [44] methods. Recently, manifold

regularized methods have been presented to handle semi-

supervised learning [3, 29, 31]. Classification information

can be useful to remove various clutter points. However, it

is not easy to apply these classification methods, because

the targets are very small resulting in little available

information.

Our contributions can be summarized as follows. The

first contribution is to introduce the false alarm rejection

scheme based on the machine learning methods. The sec-

ond contribution is the proposition of eight kinds of small

infrared target attributes, especially ranked-fill-ratio and

rotational size variation. The third contribution is the

proposition of novel feature selection method by area under

ROC curve (AUC) metric-based sequential forward selec-

tion. The fourth contribution is the performance evaluation

among state-of-the art classifiers such as Bayes, Adaboost,

Kernel SVM, and Laplacian SVM. The last contribution is

the experimental validation on real infrared target

sequences.

884 Pattern Anal Applic (2014) 17:883–900

123



Section 2 introduces the basics of the IRST small target

detection method. Section 3 presents the proposed target

discrimination algorithm including the feature analysis and

feature selection method. The performance of our method

is evaluated in Sect. 4 and we conclude in Sect. 5 .

2 The basics of filter-based small target detection

As shown in Fig. 2, the overall flow for small infrared

target detection consists of spatial filtering, background

subtraction, target detection, and a discriminator. First, we

will discuss the basics of filter-based small target detection

and then explain the details of the target discrimination

method.

The state-of-the art small infrared target detector is

based on two spatial filters: a modified mean subtraction

filter (M-MSF) and a directional background estimation

(DBE) and removal filter [22]. So the method is called

Double Layered Filter (DLF). An input image (I(x, y)) is

pre-filtered using the filter coefficients to enhance the sig-

nal-to-clutter ratio (ISCR). Simultaneously, the background

image (IBG(x, y)) is estimated by a moving average kernel

(MA7 9 7(x,y)). The background image is subtracted from

the pre-filtered image, which produces a Modified Mean

Subtraction Filter (M-MSF) image (IFL1(x,y)) by

IFL1ðx; yÞ ¼ ISCRðx; yÞ � IBGðx; yÞ ð1Þ

As can be seen in Fig. 3b, the M-MSF can enhance the

SCR, but there is a strong stripe visible on the horizon.

Spatial filter Background subtraction CFAR detector Target discriminationFig. 2 The overall flow of

small target detection and

discrimination

Ground truth

Detection

(b)

(c)

(a)

Fig. 1 False alarm reduction

method limitations: a the

original infrared image, b
spatial filter ? CFAR detection

only, and c additional three plot

correlation
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After applying Filter Layer 1, we obtain an improved

SCR image. The second spatial filter, Filter Layer 2, is

directly applied to the result of Filter Layer 1. It is rea-

sonable to estimate the background along the row direction

for each row in a sea-based IRST. The target pixel values

are regarded as outliers, whereas the background pixel

values are regarded as inliers. The proposed directional

background estimator (DBE, IDBE(x, y)) is defined as

IDBEðx; yÞ ¼ medianfIFL1ðx� n; yÞ; IFL1ðx� nþ 1; yÞ; . . .;

IFL1ðx; yÞ; . . .; IFL1ðxþ n� 1; yÞ; IFL1ðxþ n; yÞg
ð2Þ

where the tab size is 2n ? 1.

We use 1D local median filter to handle the image tilt

instead of using a whole row pixels. Fig. 3c demonstrates

the directional background estimation from Filter Layer 2.

The input of Filter Layer 2 is the output (IFL2(x,y)) of Filter

Layer 1 from which directional background (IDBE(x, y)) is

estimated. Then, the output (IFL2(x,y)) of Filter Layer 2 is

calculated using Eq. (3)

IFL2ðx; yÞ ¼ ILF1ðx; yÞ � IDBEðx; yÞ ð3Þ

Since the horizontal background is estimated and

removed by Filter Layer 2, the clutter noise is reduced,

leading to the enhancement of the SCR calculation, as seen

in Fig. 3d.

The last step in the small target detection process is in

deciding which pixels correspond to the target pixels. In

this study, we used an adaptive hysteresis thresholding

method. The first threshold is selected to be as low as

possible to find the candidate target region. Then, the

8-nearest neighbor (8-NN)-based clustering method is uti-

lized to group the detected pixels. The detection criteria are

reduced to the SCR test problem as defined by

A probed region is a target if

SCRðx; yÞ ¼ Tmax � lBG

rBG

[ k;
ð4Þ

where lBG and rBG represent the average and standard

deviation of the background region, respectively. Tmax

denotes the maximal target signal in a target cell. k denotes

the user defined parameter. As depicted in Fig. 4c, the

probing region is divided into a target cell, guard cell, and

background cell, according to the results of global low

thresholding and clustering. Figure 4 summarizes the

overall adaptive Hysteresis threshold procedures.

3 The proposed target discrimination system

This section explains the details of the proposed small

target discrimination system. As shown in Fig. 5, the target

discrimination system consists of a learning phase and a

discrimination phase. In the learning phase, a training

database (DB) is automatically prepared using the target

detection algorithm and ground truth information. Given a

set of target attribute feature, we conduct feature selection

by the Area Under ROC Curve (AUC) metric-based for-

ward selection. The classifiers are learned using the

selected features. In the discrimination phase, the features

are extracted by probing the target regions; the final target

discrimination is performed by the learned classifier.

3.1 Target feature extraction

Small infrared targets are usually small bright blobs of

under 100 pixels; it is quite difficult to extract informative

features from point-like target images. In this paper, we

present two kinds of feature extraction approaches, the

(a) (b) (c) (d)

Fig. 3 The basic spatial filtering procedures: a a target in the heterogeneous background is b filtered by Filter Layer 1. Filter Layer 2 image

(d) is then obtained from directional background estimation shown in c. Note the improvement of the SCR of the target
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intensity-based and the region-based methods. In the

intensity-based approach, we consider standard deviation,

ranked-fill-ratio, and 2nd-order moment methods. In the

region-based approach, we consider area, size ratio, rota-

tional size variation, frequency energy, and average dis-

tance methods. In advance, we consider a filtered database

to inspect the features.

Feature 1-standard deviation: The first feature is a

simple standard deviation of the image intensity for a

considered region, as defined by Eq. (5). I(i) denotes the

intensity at ith pixel, N denotes the total number of pixels,

and l is the average intensity.

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1ðIðiÞ � lÞ2

N

s

ð5Þ

Feature 2-ranked-fill-ratio: The second feature considers

the ratio between the K brightest pixels and the total

intensity as defined in Eq. (6). Targets usually have higher

values than clutter, since targets have a hot spot on a cold

background. Originally, this attribute used in radar society

to reject natural-clutter false alarms [34]. It is first trial to

adopt the ranked-fill-ratio to the infrared target detection

problem.

g ¼
P

j IðjÞ
P

i IðiÞ ð6Þ

Feature 3-2nd order moment: The third feature considers

the 2nd image moment as defined in Eq. (7).

m22 ¼
P

x

P

yðx� lxÞ2ðy� lyÞ2Iðx; yÞ
P

i

P

j Iði; jÞ ð7Þ

The following five features are basically extracted from

target region:

Feature 4-area: In this feature, a black and white target

region is obtained by applying Otsu’s method, which

chooses the threshold to minimize the intraclass variance of

(b)(a)

(c)

Threshold1 (low value)

Threshold2 

(d)

( , )RD LBRFI x y−

Target cell
Guard cell
Background cell

Target cell
Guard cell
Bg cell

Fig. 4 The adaptive hysteresis

threshold-based target detection

flow: a filtered image, b pre-

threshold and 8-NN based

clustering, c the SCR

estimation, and d final detection

Intensity-based 
feature

Region-based 
feature

Feature extraction

Intensity-based 
feature

Region-based 
feature

Feature extraction

Training DB

Probing region of  
candidate target

Classifier

Classifier 
learning

Classification

Target discrimination 
results

Learning phase

Discrimination phase

AUC metric 
based Forward 

selection

Feature selection

Fig. 5 The overall flow of the

target discrimination

Pattern Anal Applic (2014) 17:883–900 887

123



the black and white pixels [15]. Given a gray image

I(i), the segmented target region is denoted as R(i). This

feature can be calculated by

a ¼
X

i

RðiÞ ð8Þ

Feature 5-size ratio: The fifth feature considers the target

size ratio. If we denote the target width as lW and target

height as lH, then the ratio is defined as:

Sratio ¼
lH

lW

ð9Þ

Feature 6-rotational size variation: The sixth feature is

based on the rotational size profile (L(i)) as shown in

Fig. 6. We propose the concept of the rotational size profile

and variation in this paper. Given an intensity image

(Fig. 6a), the target region is extracted by the Otsu’s

thresholding method (Fig. 6b). By rotating the region, a

target size profile is generated (Fig. 6c). Therefore, the

rotational size profile reflects the target shape. If a small

target has a circular blob, the profile is uniform; if it has a

rectangular shape, as shown in the Fig. 6b, the profile is

similar to cosine curve. We can quantify the rotational size

profile using the standard deviation of the curve, as defined

in Eq. (10).

rL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1ðLðiÞ � lLÞ2

N

s

ð10Þ

Feature 7-frequency energy: The seventh feature regards

frequency energy and is obtained by applying a fast Fourier

transform (FFT) to the rotational size profile (L(i)):

MðkÞ ¼ FFTðLðiÞ � lLÞ;

fenergy ¼
X

M

k¼1

jMðkÞj2

M

ð11Þ

Feature 8-average distance: The last feature is average

distance. If a region consists of N pixels and region center

is ðlx; lyÞ; we can calculate the average Euclidean distance

using:

d ¼
PN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxðiÞ � lxÞ2 þ ðyðiÞ � lyÞ2
q

N
ð12Þ

Until now, we presented eight kinds of target attributes.

We can summarize that the feature 3 (ranked-fill-ratio) is the

first adoption to infrared target detection problem and the

feature 6 (rotational size variation) is proposed in this paper.

3.2 Area under ROC curve-based feature selection

In the previous section, we introduced eight kinds of target

attribute features. It is critical to select the most discrimi-

native features and to combine those features. Feature

selection has been an active research area in machine

learning community. The feature selection problem can be

interpreted as choosing a subset of features that achieves

the lowest error according to a certain allowed loss. So, we

have to choose a class separation metric and a selection

scheme. In this paper, we use the Area Under ROC Curve

(AUC) to measure the overall discrimination performance

[43]. There are three types of feature selection schemes

such as filter, wrapper and embedded. Filter-based methods

used indirect measuring of the quality of the selected fea-

ture such as feature correlation [4]. On the other hand,

wrapper methods use sequential forward selection or

backward elimination [25]. In embedded approaches, there

are random forest, simulated annealing [36]. Because we

have small size of target attributes, we choose the wrapper

method, especially sequential forward selection. Figure 7

summarizes the proposed feature selection algorithm using

the sequential forward scheme with AUC metric.

3.3 Machine learning-based target discrimination

We have discussed feature extraction methods and

observed the feature distributions of target and clutter

+

projection

Binarization
(Otsu)

Profile 
(L)

(a) (c)(b)

Fig. 6 The rotational size profile extraction procedure: a the input test image, b binarization using Otsu’s method, and c the rotational target size

profile
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samples. The rest of the process is in the selection of the

optimal classifier. In this study, we considered five kinds of

classifiers: simple threshold, the Naı̈ve Bayes classifier, a

support vector machine (SVM), Adaboost, and Laplacian

SVM.

Simple threshold: The first classification method under

consideration is the threshold-based approach. If a feature

value is larger than a pre-defined threshold, it is declared

to be a target. We use this method to rank the target

discrimination capability of an individual feature. We use

the area of the receiver operating characteristic curve

(AUC) and the equal error rate (EER) as performance

measures.

Naı̈ve Bayes classifier [10]: This classifier can be

viewed as the maximum a posteriori probability classifier

for a generative model. Targets and clutter can be modeled

by their multi-modal distribution in the feature space.

Practically, it is quite difficult to determine such distribu-

tions due to the high dimensionality and non-linearity.

Since Naı̈ve Bayes assumes independent feature measure-

ments, it is relatively easy to determine the joint probability

distribution through independent Gaussian distributions

characterized by means (li) and standard deviations (ri) of

feature vector (x) as shown in Eqs. (13) and (14). PT

denotes target distribution and PC denotes clutter distri-

bution. N T and N C represent Gaussian distributions of

target and clutter, respectively. In Eq. (15), the likelihood

ratio (lðxÞ) of a probing region is defined as the ratio

between the target distribution and the clutter distribution.

If the ratio is larger than 1, it is declared as a target. It is

well-known that the accuracy of the Naı̈ve Bayes classifi-

cation results is typically high [10].

PTðxÞ ¼
Y

8

i¼1

N Tðx; li; riÞ ð13Þ

PCðxÞ ¼
Y

8

i¼1

N Cðx; li; riÞ ð14Þ

lðxÞ ¼ PTðxÞ
PCðxÞ

ð15Þ

SVM: SVM is one of the popular classifiers, known for

its learning capability of non-linear decision boundaries

using a kernel recipe [51]. We regard the eight feature

types as vectors and train the SVM using SVMlight

software [20]. The intersection kernel is used as a distance

metric, as derived in Eq. (16). The intersection kernel

shows an efficient classification performance with the run

time logarithmic in the number of support vectors [30].

kðx; zÞ ¼
X

n

i¼1

minðxðiÞ; zðiÞÞ ð16Þ

Adaboost [48]: The SVM method considers multi-

dimensional feature vectors and finds support vectors

using a kernel recipe. Adaboost, on the other hand, uses

simple weak classifiers (hi) and the weighted sum of weak

classifiers, which leads to a strong classifier as Eq. (17). In

this study, the weak classifiers are just simple threshold-

based binary decisions for the individual feature space.

HstrongðxÞ ¼ sign
X

N

i¼1

aihiðxÞ
 !

ð17Þ

LapSVM [3, 31]: The Laplacian SVM (LapSVM) is the

state-of-the art classifier in the semi-supervised learning

problem. Basically, it needs manifold assumption that

states that the marginal probability distribution underlying

the data is supported on or near a low-dimensional mani-

fold, and that the target function should change smoothly

along the tangent direction. The LapSVM provides a nat-

ural out-of-sample extension, so that they can classify data

that become available after the training process, without

having to retrain the classifier or resort to various heuristics

[3]. Recently, the LapSVM method has been improved the

training time considerably [31]. In this paper, we use the

open source code in the homepage of http://www.dii.unisi.

it/melacci/lapsvmp/ for fare comparison.

4 The experiment results

4.1 The target and clutter database preparation

It is important to prepare a large enough data set to ensure

successful learning. In this study, 136 real target images

were collected using either a mid-wave infrared (MWIR)

Step1: Compute AUC for
each attribute feature

Step2: Rank features in
descending order

Step3: Select k highest
ranking features

Step4: Add a next ranking
feature

Step5: Compute AUC for the
selected feature

AUCprev < AUCcurr

Step6: Select the added
feature

Step6: Remove the
added feature

Yes

No

* Iterate Step4~Step6
until the final feature

Fig. 7 The proposed sequential forward feature selection algorithm

with AUC metric
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camera or a long-wave infrared (LWIR) camera. The target

images were acquired by real airplanes, such as the KT-1,

F-5, and F-16. The cloud clutter database was prepared

using the detection algorithms introduced in the previous

section. In Sect. 2, we summarized the small target detec-

tion flow. As shown in Fig. 4b, target sizes are determined

by the 8-NN-based clustering after low level thresholding.

The 8-NN clustering can estimate target width and height.

The final region sizes are determined by considering both

target sizes and guard cell sizes. Figure 8 shows examples

of the target and clutter images. In addition, we also con-

sidered a filtered database, as shown in Fig. 9. We used

these datasets in the following feature extraction subsection.

4.2 The target and clutter feature distribution

observations

The intensity-based feature observations—standard devia-

tion, ranked-fill-ratio, and 2nd order moment: Figure 10

summarizes the intensity-based feature observations. Fig-

ure 10a shows the standard deviation feature for each tar-

get and clutter. The target feature has similar or a slightly

higher values. In terms of the statistical analysis, as shown

in Fig. 10b, the distributions of the target and clutter

overlap strongly, from which we can predict that this fea-

ture is not useful for target discrimination. Figure 10c

shows the ranked-fill-ratio feature for the targets and

clutter. The target feature has a relatively high value

compared to the clutter feature. In terms of statistical

analysis, as shown in Fig. 10d, the target distribution is

located in the upper values and the clutter distribution is

located in the lower values. Figure 10e shows the 2nd order

moment feature for the targets and clutter. The clutter

feature has a similar or slightly higher value compared to

the target feature. In terms of statistical analysis, as shown

in Fig. 10f, the target distribution is concentrated in the

lower values but has a strong overlap with the clutter

distribution.

Fig. 8 Examples of the target and clutter database without spatial

filtering: a sample images of target chips, b sample images of clutter

chips. The chips are automatically generated by the small target

detection algorithm with ground truth information

Fig. 9 Examples of the target and clutter database after spatial

filtering: a sample images of filtered target chips, b sample images of

filtered clutter chips. The chips are automatically generated by the

small target detection algorithm with ground truth information
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Region-based feature observations—area and size ratio:

Figure 11 summarizes the area and size ratio feature

observations. Figure 11a displays the area feature of the

target and clutter images. Targets usually have small area

compared to clutter. Figure 11b shows the corresponding

probability density functions (pdf). The target pdf has a

narrow distribution, whereas the clutter pdf is dispersed.

Figure 11c shows the size ratio observation. The targets

(b)(a)

+

+

+

(d)(c)

(f)(e)

Fig. 10 The intensity feature observations: a the standard deviation feature values, b the pdf of the standard deviation feature, c the ranked-fill-

ratio feature values, d the pdf of the ranked-fill-ratio, e the 2nd-order moment feature values, and f the pdf of the 2nd-order moment
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have a size ratio around 1 and the clutter has low values,

which means that the clutter usually has long striped pat-

terns. Figure 11d represents corresponding pdf of the tar-

gets and clutter. The two distributions have different

centers.

Region-based feature observations—rotational size

variance, frequency energy, and average distance: Fig-

ure 12 summarizes the observations regarding the rota-

tional size variance, frequency energy, and average

distance features. Figure 12a shows the observed values of

the rotational size variance feature for the target and clutter

samples. Since small targets have a circular symmetry, the

variance of the profile is very low. Figure 12b presents the

corresponding pdfs of the targets and clutter. Their distri-

butions are quite different. Figure 12c shows the observed

values of the frequency energy feature for the target and

clutter samples. The frequency energy of the target profile

is quite low compared to that of the clutter profile. Fig-

ure 12d shows the corresponding target and clutter pdfs.

Figure 12e shows the observed values of the average dis-

tance feature for the target and clutter samples. Since small

targets have small areas, the average pixel distance is low

compared to that of the clutter. Figure 12f shows the cor-

responding target and clutter pdfs. The two pdfs have quite

different distributions, which are useful in target

discrimination.

According to the observations of the eight different

features, we can deduce that Features 2, 4, 5, 6, 7, 8 will be

useful for target discrimination. However, these features

have been extracted from filtered images. If we use the raw

images directly, what happens? Figure 13 shows the partial

pdf results derived directly from the raw images. The target

and clutter distributions overlap strongly. This problem

originates from the unstable region extraction shown in

+

+

(a) (b)

(c) (d)

Fig. 11 The region feature-area and size ratio observations: a the

area feature values for the target and clutter samples, b the probability

density function of the area feature for the targets and clutter, c the

size ratio feature values, and d the probability density function of the

size ratio feature for the targets and clutter
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Fig. 14. Targets usually are placed in front of various

backgrounds. Therefore, if we apply Otsu’s method,

incorrect regions are extracted, which leads to unstable

feature extraction. According to these results, we can

conclude that filtered image-based feature extraction is

better than raw image-based feature extraction.

(b)(a)

(d)(c)

(f)(e)

+

+

+

Fig. 12 Region feature observations: a the rotational size variation feature values, b the pdfs of the rotational size variation feature, c the

frequency energy feature values, d the pdfs of the frequency energy, e the average distance feature values, and f the pdfs of the average distance
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4.3 Evaluations of feature selection

According to the observations on the target attributes,

individual feature has different distributions. Optimal

feature set should be selected using the proposed feature

selection scheme as shown in Fig. 7. We use the AUC

metric in sequential forward feature selection. ROC curves

are generated by Adaboost classifier. Before the feature

(b)(a)

(c) (d)

Fig. 13 Target and clutter pdfs obtained directly from a raw image: a ranked-fill-ratio feature pdfs, b size ratio feature pdfs, c rotational size

variance feature pdfs, and d average distance feature pdfs

Fig. 14 The analysis for the cause of unstable feature extraction from a raw image: a the raw target image, b the 3D view of the target image,

and c the region extraction by Otsu’s method
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selection process, selected scalar feature should be nor-

malized to achieve stable and maximal classification per-

formance [18]. Hsu said that we have to use the same

method to scale both training and testing data. For exam-

ple, suppose that we scaled the first attribute of training

data from [3, 11] to [0, 1]. If the first attribute of testing

data lies in the range [4, 12], we must scale the testing data

to [1/8, 9/8] [18]. The [0, 1] normalization can be done by

[x¯ min]/[max¯ min].

In the feature selection Step 1, the AUC value of each

attribute should be evaluated. Fig. 15a represents the ROC

curves of each feature generated by controlling by

changing the threshold for each feature space. We can rank

the individual features based on the AUCs as shown in

Fig. 15b. According to the graph, the descending order of

AUC rank is F8 [ F2 [ F4 [ F6 [ F5 [ F7 [ F1 [ F3.

(b)(a)

Fig. 15 Results of feature ranking process: a ROC performance of the individual features using the simple threshold method, b AUC

comparison from the ROC curves

(b)(a)

Fig. 16 Results of feature selection process: a ROC curves of feature selection types, b AUC comparison among selected feature set

Table 1 The performance of the: (a) Naı̈ve Bayes, (b) SVM, and

(c) Adaboost classifiers in terms of detection rate (DR) and false

alarm rate (FAR) at the specific operating point

Measure Naı̈ve Bayes SVM Adaboost LapSVM

DR (%) 87.85 90.16 91.80 93.44

FAR (%) 16.40 16.40 16.40 16.40
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Top four features are selected as a base feature vector. We

denote it as FS1: Fbase = F[8 2 4 6]. The sequential for-

ward algorithm adds a hypothesized next feature and

compares the AUC values between the previous AUC and

the current AUC. We use the Adaboost to obtain the AUC

values by changing the bias given hypothesized feature

vector. If the current AUC is larger than the previous one,

the hypothesized feature is selected to the feature vector.

Figure 16 shows the results of feature selection process.

According to the graph, we achieved upgraded AUC values

by sequentially adding F5, F7, F1, F3 to the base feature

set, FS1. So, we can conclude that the selected 8 kinds of

target attributes are useful to the target/clutter

discrimination.

4.4 The classifier evaluations

In this subsection, we compare four kinds of classifiers:

Naı̈ve Bayes classifier, SVM, Adaboost, and LapSVM. We

randomly selected training samples and used the remaining

samples for the test set. We use two kinds of performance

measures such as AUC and detection rate (DR) at a fixed

false alarm rate (FAR) to check the overall behavior and

real operating performance, respectively (Table 1). Fig-

ure 17 shows the ROC curves and AUC results. According

to the results, we found that the Adaboost showed the best

overall performance. The rest rankings are Naı̈ve Bayes,

SVM, and LapSVM. However, we get different classifier

performance results if we consider the real operating con-

ditions such as highest detection rate at a fixed false alar

rate. The highest DR is more important in target discrim-

ination since true targets need to be detected. Table 2

shows the detection rate at a fixed FAR point. The LapS-

VM shows the best DR, then followed by Adaboost, SVM,

and Naı̈ve Bayes.

4.5 Evaluation of target detectors and classifiers

Until now, we evaluated the discrimination performance

according to the feature types and classifiers on cropped

target chips and clutter chips. In this subsection, we applied

the target detector and classifier on a real test set composed

of cloud and ground clutter. The test set consists of 18 real

images with real moving targets (F-16).

In the first evaluation, we compared spatial target

detection filters, especially the proposed double layered

filter (DLF) with the Top-hat filter (baseline method) [54].

The structural element is ‘ball type’ with size of ‘3 9 3’.

Detection thresholds were controlled to produce the same

detection rates. As shown in Table 2, two spatial filters

have the same detection rate and similar false alarms per

image.

0.9532    0.9246    0.8713    0.8624

(a) (b)

Fig. 17 Results of classifier evaluation: a ROC curves, b corresponding AUC values

Table 2 The performance evaluation results according to target

detector and classifier on cluttered test images

Filter Classifier Detection rate (%) False alarms/image

DLF ¯ 95.8 (46/48) 84.5 (1,522/18)

Top-hat filter ¯ 95.8 (46/48) 86.1 (1,549/18)

DLF Adaboost 93.5 (43/46) 6.1 (110/18)

Top-hat Adaboost 82.6 (38/46) 43.5 (784/18)

DLF LapSVM 95.6 (44/46) 10.6 (191/18)

DLF double layered filter
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In the second evaluation, we compared the effects of

detectors on the classifier. We applied the Adaboost clas-

sifier to the spatial filter-based detection results. We used

eight kinds of target attributes as a feature vector.

According to the results, the proposed DLF with Adaboost

showed much better performance than the Top-hat with

Adaboost (baseline method) as shown in Table 2.

In the last evaluation, we compared classifiers using the

same target detector (DLF). We applied LapSVM classifier

to the DLF-based detection results. We used classifiers

learned from the training chips with no biased thresholds.

The DLF with LapSVM showed higher detection rate than

the DLF with Adaboost combination as shown in Table 2.

However, the former generated more false alarms than the

latter. So, if we consider both detection rate and false alarm

rate, we can conclude that both the Adaboost and LapSVM

have comparable performance (Fig. 18).

4.6 Target discrimination performance on a test

sequence

According to the results from the feature analysis and

classifier tests, we conclude that the Adaboost classifier

using the eight feature types is suitable for target discrim-

ination, since it achieves the highest detection rate with a

moderate false alarm rate. Therefore, we applied this target

discriminator to a test sequence. The test sequence con-

sisted of 156 1,280 9 1,024 frames. The number of syn-

thetic targets was 1,478, generated using Kim et al.’s

method [24]. The Adaboost was retrained by adding new

targets and clutter to the previous database. We used five

randomly selected frames. Table 3 summarizes the overall

evaluation results with and without a discriminator in terms

of detection rate and number of false alarms per frame. The

target discriminator reduced the number of false alarms by a

factor of 5.7 with just a 0.6% degradation in the detection

rate. Figure 19 shows examples of the target discrimination

effects. Note that false detections in the cloudy sky region

are almost all removed by the proposed discriminator, while

still maintaining target detection.

5 Conclusions

It is quite challenging to reduce false detections caused by

clutter occurring in small infrared target detection due to

Table 3 The spatial detection performance with and without Ada-

boost-based target discrimination

Measure Detector only Detector ? discriminator

(Adaboost)

DR (%) 99.8 (1,576/1,478) 99.2 (1,467/1,478)

# of false

alarms/frame

49.8 (7,769/156) 8.5 (1,326/156)

Spatial detection
Discrimination
Ground truth

DLF+Adaboost DLF+Adaboost

Tophat+Adaboost Tophat+Adaboost

DLF+LapSVM DLF+LapSVM

Fig. 18 Examples of target

detection and discrimination

according to different spatial

filters and classifiers. DLF

denotes double layered filter
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the point-like target nature. This paper presented inten-

sity- and region-based features and observed the target

and clutter feature distributions. Except for the standard

deviation and 2nd-order moment features, they show

distinctive distributions. We also considered four kinds of

classifiers: a simple thresholding method and three

machine learning-based methods (Naı̈ve Bayes, SVM, and

Adaboost). According to the simple thresholding method,

we can evaluate individual feature in terms of ROC curve,

where the average distance feature shows the best per-

formance. The Naı̈ve Bayes generative learning method

had the best false alarm rate; the Adaboost discriminative

learning method had the best detection rate. The SVM

results show a moderate detection rate with the worst

false alarm rate. According to the results of the Adaboost-

based target discrimination method on the test sequence,

we achieved a false alarm reduction by a factor of 5.7

with only a 0.6 % degradation of the detection rate. In the

future, we will conduct further evaluations on various

databases in the search for a practical infrared search and

track system.
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