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Abstract The evaluation of appearance parameters is

critical for quality assurance purposes when determining

lifetime and/or beauty of textile products. Practical evalu-

ations of appearance are often performed by human visual

inspection, which is repetitive, exhausting, unreliable and

costly. Thus, computerized automatic visual inspection has

been used to alleviate those problems. Several papers have

proposed objective mechanisms for quality inspection

mostly using texture analysis approaches which are often

not robust enough. One of the main issues for robustness of

texture analysis approaches is the capability of distin-

guishing between similar textures. In this paper, we review,

select and evaluate texture analysis approaches for distin-

guishing fine changes of global texture in degradation of

textile floor coverings. As a result, we found that the power

spectrum, local binary patterns, the texture spectrum,

Gaussian Markov random fields, autoregressive models and

the pseudo-Wigner distribution provide good descriptors

for measuring fine changes of global texture. That is, those

features can be used as starting point in applications

involving fine changes of global texture, as well as a basis

for the development of new methods.

Keywords Appearance retention in floor

coverings � Appearance retention in textiles �
Fine changes of global texture � Multiple regression

analysis � Quality inspection � Texture analysis

1 Introduction

The lifetime and/or beauty of textile products are closely

related to the surface appearance [1]. Therefore, the eval-

uation of appearance parameters is critical for quality

assurance purposes when determining lifetime and/or

beauty of textile products. The appearance evaluation

consists of visually identifying categorized deviations from

a reference in textile material surfaces. Particularly, stan-

dards for evaluating appearance retention of textile floor

coverings are defined in terms of samples exhibiting tran-

sitional degrees of degradation related to daily exposure.

Usually, practical evaluation is performed by certified

experts who compare the standard samples to a test spec-

imen, termed visual inspection. During the evaluation,

samples of the original appearance are rated 5, while

samples of the changes range from 1 to 4.5 in steps of 0.5

or 1.0 (according with the standard), called wear labels.

Thus, rate 1 indicates severe wear, whereas a 4.5 rate

represents a little change in appearance. Generally, the

visual inspection procedure is repetitive, exhausting,

unreliable and costly [2]. Therefore, manufacturers are

interested in a more objective system, which can be

developed using computer vision technologies.

Recently, automatic visual inspection had been used for

automatic quality inspection of textile products, mainly, for

recognizing defects [3]. Particularly, computer vision

technologies had proved to be highly relevant, providing

objective measurements of relevant visual attributes related
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to the product under inspection [4]. In this regard, several

papers consider to automate the quality inspection of textile

surfaces using texture analysis approaches [5–10].

Based on computer vision, the quality inspection using

texture analysis can be conducted by the following two

approaches: (1) using local textural irregularities, in which

the main concern is to detect local deviation of texture

(Fig. 1 left side); (2) using the fine changes of global tex-

ture (FCGT), where texture local patterns do not exhibit

abnormalities (Fig. 1 right side). FCGT approach has been

largely neglected until recently [8], however, several works

dealing with FCGT had been developed, for example [5, 9,

11–13]. Yet, there are no surveys in the literature con-

cerning the evaluation of the FCGT descriptors, in terms of

their suitability for implementing the automatic visual

inspection.

The aim of this paper is to review, select and evaluate

several texture analysis descriptors for distinguishing

FCGT, taking advantage of the nature of degradation

present on the surface of textile floor coverings. In the

beginning, we conduct a review of texture analysis

descriptors for evaluating FCGT in textiles. Then based on

multiple regression analysis, we propose a methodology for

feature selection, in terms of distinguishing FCGT.

Obtained findings show that the power spectrum, local

binary patterns, the texture spectrum, Gaussian Markov

random fields, autoregressive models and the pseudo-

Wigner distribution provide good descriptors in measuring

FCGT due to degradation in textile floor coverings. That is,

those features can be used as starting point in applications

involving FCGT, as well as a basis for the development of

new methods.

This work is organized as follows: in Sect. 2, current

approaches dealing with inspection applications in textiles

are discussed. Afterwards, we provide an explanation of

multiple regression analysis which is used as framework

for feature selection in distinguishing FCGT. Later, Sect. 3

shows the database and the parameters selected for

validating our tests. Thereafter, in Sect. 4, we discuss the

results obtained in our particular case of study. Finally, in

Sect. 5, conclusions and future work are drawn.

2 Materials and methods

In this Section, we discuss current researches dealing with

inspection applications of textiles in which FCGT is eval-

uated. Also, we provide an explanation concerning multi-

ple regression analysis, which is used as framework for

feature selection. Afterwards, the proposed methodology

for feature selection in distinguishing FCGT is explained.

2.1 Texture analysis approaches and techniques

The aim of this Section is to review the state of art in

texture analysis and its applications relating to textile

appearance evaluation. Nonetheless, it is not practical to

provide an exhaustive overview of all texture analysis

techniques. In this section, we present only those tech-

niques in which deviations of texture from original are

evaluated. Particularly, we narrow the set of techniques by

considering the following applications: (1) roughness

measurement, (2) wrinkling evaluation, (3) seam puckering

assessment, (4) pilling assessment and (5) appearance

retention in floor coverings. Among the most commonly

used techniques in appearance evaluation of textiles are the

following: co-occurrence matrices [5, 14, 15], filter bank

decomposition [16–18], fractal dimension [1, 6, 10], gray

level differences [19], gray value histogram analysis [11],

the power spectrum [20–23], the Radon transform [24],

spatial gray level dependences [25], wavelet analysis [7,

26, 27], Gaussian models [28] and the Wigner distribution

[29]. For evaluating small changes in texture, however, the

Radon transform is discarded because it can only identify

dominant texture and not the small changes we are inter-

ested in [3]. Likewise, the fractal approach is discarded

since the images under consideration may have the same

fractal dimension, while looking completely different [8],

which is a disadvantage for identifying small changes in

global texture. The remaining techniques that are explained

thoroughly in the following paragraphs are organized

according to the classical categories, namely, techniques

based on statistics, structural primitives, filtering, and

models [3, 8].

2.1.1 Techniques based on statistics

These techniques are used to measure the spatial distribu-

tion of gray values at specific relative pixel positions [3, 8]

and are applied in tasks such as texture analysis, image

segmentation, texture classification, defect detection, wear

Fig. 1 Comparison between textural irregularities and fine changes

of global texture. Texture irregularities are shown as local deviation

of texture. Fine changes of global texture are represented by two

equal textures with small variation due to wear. Left image textile

sample exhibiting two defects. Middle image cut/frisé textile floor

covering with is original appearance. Right image cut/frisé textile

floor covering after some degree of wear
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evaluation, among others [9, 30, 31]. The most popular

techniques in this category are described in the following

paragraphs.

Autocorrelation function two different textures can be

distinguished by evaluating differences in their regularity

or fineness presented in the image. One way of measuring

these kind of differences is by computing and comparing

the autocorrelation function in both textures [32]. The

autocorrelation function has been used in several applica-

tions such as fabric analysis, macro-texture analysis, esti-

mation of deformation, among others [33–35]. The

autocorrelation function of a given image X can be defined

as: q ¼ F�1fFfXgFfX�gg=e; where e =
P

x=1
N P

y=1
M X2(x,

y) is the energy of X;X� is the complex conjugate of

X, Ff�g and F�1f�g are the direct and inverse discrete

Fourier transform (FT), respectively. Practical algorithms

approximate the autocorrelation function using a polyno-

mial qðx; yÞ � a1x2 þ a2y2 þ a3xyþ a4xþ a5yþ a6; of

degree 2 where x and y are the cartesian coordinates [32].

In the present paper, the parameters of the polynomial are

used to characterize the image.

Co-occurrence matrix it is one of the most well known

texture analysis techniques [3, 36], particularly, in surface

flaw detection [5, 12]. The co-occurrence matrix is a matrix

of relative frequencies Pðg1; g2jði; jÞÞ; where g1 and g2 are

gray level values of two disjoint pixels separated by a

displacement (i, j). The number of occurrences of g1 and

g2, separated by the vector (i, j), contributes to the

ðg1; g2Þth entry in the matrix of relative frequencies. To

characterize those matrices we extract the following

parameters: energy, entropy, contrast, homogeneity and

correlation [36, 37].

Histograms of sum and difference this technique has

proved to be nearly as powerful as the co-occurrence

matrices for texture discrimination but exhibiting lower

computational cost [38]. Also, it shows a significant

capacity to measure visually perceivable qualities of texture

[39]. The non-normalized sum and difference of an image

X of size N 9 M with itself displaced by vector (i, j),

are defined as: S(x, y) = X(x, y) ? X(x ? i, y ? j) and

D(x, y) = X(x, y) - X(x ? i, y ? j), respectively. Usu-

ally, the following parameters are extracted from the his-

tograms of S and D to characterize the image: mean, energy,

correlation, entropy, contrast and homogeneity [38].

Texture spectrum and Local Binary Patterns (LBP) the

key concept of these methods is the computation of the

relative intensity relations between the pixels in a small

neighborhood and not on their absolute intensity values.

The LBP is a widely used texture descriptor including a

wide range of extensions [40]. The texture spectrum and

LBP are computed as follows: from a given set of pixels in

Fig. 2, it is possible to compute a texture code, g3k ¼

P7
k¼0 T1ðgk � gcÞ3k for the texture spectrum and g2k ¼

P7
k¼0 T2ðgk � gcÞ2k for the LBP, where

T1ðxÞ ¼
0; if x\0

1; if x ¼ 0

2; if x [ 0

8
<

:
; T2ðxÞ ¼

0; if x\0

1; if x� 0

�

;

then texture units are grouped into a histogram to charac-

terize the image.

2.1.2 Techniques based on structural primitives

From the structural point of view, texture is characterized

by primitives and spatial arrangement of those primitives

[3, 8, 36]. Usually, texture primitives are collected from a

number of different samples assuming that texture is reg-

ular. Within the textile defect detection framework, for

instance, it is possible to cover the range of variations by

extracting textural primitives from non-defective samples

[8]. Then, any variation from the textural primitives is

classified as a defective sample. Therefore, these kind of

algorithms are limited in discrimination power except for

regular textures [36]. When evaluating texture appearance

due to degradation of textiles at local small scales, the

resulting textures may not exhibit regular patterns. This

aspect makes techniques based on structural primitives

impractical for evaluating texture appearance due to

degradation.

2.1.3 Techniques based on filtering

Most of the techniques based on filtering apply linear

transformations or filter bank decomposition, followed by

computing some energy measures [3, 8, 36, 37]. Particu-

larly, the spectral histogram is widely used as descriptor in

texture analysis applications [41]. The construction of the

spectral histogram is illustrated in Fig. 3, where h0;

. . .; hk�1 are image filters, X0; . . .;Xk�1 are the images after

filtering and f0; . . .; fk�1 are the histograms of those images.

Spectral histograms have been used in several texture

analysis tasks [41, 42]. We use the spectral histogram for

characterizing an image after applying one of the following

signal decomposition methods: eigenfilters, Gabor filters,

the Gaussian pyramid, the Laplacian pyramid, measures of

Fig. 2 Pixel set distributed

within a circular symmetric

neighbor. Here, a eight circu-

larly symmetric neighbor
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Laws, the steerable pyramid, the wavelet transform and the

pseudo-Wigner distribution. Those signal decomposition

methods are detailed in the following paragraphs.

Power spectrum the FT is used in a wide range of

applications, such as image analysis, image filtering, image

reconstruction, image compression and the texture ana-

lysis. From the power spectrum of the FT, it is possible to

extract several descriptors (for more detail see [3, 32]).

Particularly, a set of wedge and ring filters have been

suggested, assuming that texture is discriminant in spatial

frequency and orientation [3, 37, 43]. In this paper, we use

the set of dyadic filters proposed in [43]. After applying

that set of filters we extract ten energy measures charac-

terizing coarseness and directionality of the texture.

Eigenfilters The ability to incorporate various spatial

and spatial-frequency constraints make eigenfilters an

useful tool for signal analysis and synthesis [44], as well as

in a variety of applications [44, 45]. The eigenfilters are

computed as follows: Suppose that d overlapping windows

of size W 9 W (usually window size is 3 9 3) are

extracted from an image. After vectorizing those windows,

it is possible to arrange them as row entries of a matrix E of

size d �W2: Afterwards, the covariance matrix is com-

puted from the new matrix of data as B = ETE. Then, a

singular value decomposition over the covariance matrix

B is performed to obtain W2 eigenvectors. Usually, those

eigenvectors are used as filters to perform a filter bank

decomposition that results in a set of images. Lastly, the

spectral histogram is computed from those images to

characterize the texture.

Gabor filters Gabor filtering allows imaging with opti-

mal joint localization in the spatial–spatial/frequency

domain [3, 37, 42, 46]. Also, it is widely used for char-

acterizing the human vision system [46, 47]. Hence, this

technique should be appropriate for identifying and quan-

tifying the degree of wear in a textile floor covering using

image analysis. Mathematically, a two-dimensional Gabor

function g(x, y) is defined as [46],

gðx; yÞ ¼ 1

2prxry

exp � 1

2

x2

r2
x

þ y2

r2
y

 !

þ 2p|u0x

 !

ð1Þ

Here, rx and ry characterize the band width of the filter

centered at the point (u0,0) in the spatial/frequency domain.

From Eq. (1) it is possible to generate a set of Gabor

functions by appropriate dilations and rotations, i.e.,

gm;n ¼ a�mgðx0; y0Þ; a [ 1; m; n 2 Z

x0 ¼ a�mðx cosðhÞ þ y sinðhÞÞ
y0 ¼ a�mð�x sinðhÞ þ y cosðhÞÞ

where h = np/K, with n ¼ 0; . . .;K � 1;ê and K is the total

number of orientations. Here a-m, with m ¼ 0; . . .; L� 1;

is the scale parameter, where L is the number of scales.

Usually, that set of filters is used for performing a filter

bank decomposition that results in a set of images. After-

wards, the spectral histogram is computed from those

images to characterize the texture.

Gaussian pyramid the Gaussian pyramid is one of the

simplest multi-scale representations on image processing.

This kind of pyramid is created using Gaussian filters with

increasing spatial resolution. A Gaussian pyramid consists

of low-pass filtered and downsampled images of the ori-

ginal image [48]. In this paper the spectral histogram is

extracted from those low-pass filtered and downsampled

images to characterize the texture.

Laplacian pyramid the laplacian pyramid is very similar

to the laplacian of Gaussian and the difference of Gaussian

filters [48]. It is also a multi-scale technique that is more

desirable than a single-scale technique. Also, the laplacian

pyramid has been used in several texture analysis appli-

cations [49, 50]. The laplacian pyramid consists of a

sequence of differences between two consecutive levels of

the Gaussian pyramid [48], i.e., Xjþ1 ¼ Xj � eXj; where Xj is

the image X at the jth level and eXj is the image X at the jth

level after Gaussian filtering. Here, we compute the spec-

tral histogram from that sequence of differences to char-

acterize the image under analysis.

Measures of laws Laws filters are considered as one of

the first filtering approaches in texture analysis, presented

by Laws [51]. This technique has been used and referenced

very often in the texture analysis field [52, 53]. Laws

suggested five separable filter masks for characterizing an

image. By convolving an image across rows and columns

with that set of masks, 25 images characterizing the image

under analysis are obtained. Afterwards, a non-linear

windowing operation is applied as proposed in [51].

Finally, images representing the same information are

Fig. 3 Spectral histogram

feature extraction for an image

decomposed in k components
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combined to obtain a set of 14 images as discussed in [51].

From those images, the spectral histogram is extracted to

characterize the texture.

Steerable pyramid the steerable pyramid incorporates a

multi-orientation image decomposition to a multi-scale

method. In this decomposition, an image is divided into

a collection of levels localized in both scale and orien-

tation [54]. This technique has been proved to be suc-

cessful in several texture analysis tasks [55, 56]. In

general, this pyramid is obtained using Gaussian filters,

downsampled images and first derivatives of those ima-

ges. Thus, an image at the jth scale in direction h is

defined as Xj;h ¼ cosðhÞXj;x þ sinðhÞXj;y where j ¼
0; . . .; J � 1; Xj;x and Xj,y are the scale, first derivative in

x and y direction, respectively [55, 56]. Finally, to obtain

the steerable pyramid, it is necessary to repeat the above

procedure for several angles h0; . . .; hk; resulting in a set

of images. From the images representing scale and ori-

entation, the spectral histogram is extracted to charac-

terize the texture.

Wavelet transform the wavelet transform has been

extensively used in texture analysis [41, 57]. Particularly,

the application of the discrete wavelet transform (DWT)

for texture identification has received considerable atten-

tion in the literature. The DWT is seen as a filter bank

decomposition of an image using a low-pass and high-pass

filters that results in a set of images [57]. Afterwards, the

spectral histogram is computed from those images to

characterize the texture.

Wigner distribution in recent years, the Wigner distri-

bution (WD) has become one of the most popular tech-

niques to describe local joint distribution in image

processing tasks [29, 58]. Usually, the computation of the

2D WD is carried out numerically when the available data

is discrete. This numerical approximation is termed as

pseudo-Wigner distribution (PWD). The PWD of a two-

dimensional discrete function is defined as follows:

PWDfXgðx; y; u; vÞ ¼
XW=2

i¼�W=2

XW=2

j¼�W=2

hsði; jÞ
XW=2

k¼�W=2

XW=2

l¼�W=2

hf ðk; lÞXðxþ k þ i; yþ lþ jÞ
X�ðxþ k � i; yþ l� jÞ
expð�2|ðiuþ jvÞÞ

where hs; hf are two smoothing windows of size

W 9 W (usually window size is 5 9 5) and X� is the

complex conjugate of X. The result of applying the

PWDf�g is a set of W2 images that are used to characterize

the spatial/spatial-frequency distribution of an image. Here,

we compute the spectral histogram from those images to

characterize the image under analysis.

2.1.4 Techniques based on models

these kind of techniques uses stochastic or generative

models to represent images. Then, the estimated model

parameters are used to characterize the image [3].

Autoregressive models autoregressive (AR) models

exploit the linear dependency between image pixels [8, 37,

59]. The AR models have been applied in several tasks

such as texture synthesis, texture segmentation and texture

classification [59, 60]. Mathematically, a two-dimensional

AR model is defined as the linear combination of the sur-

rounding neighbors of a central point [59]. The AR model

for the central pixel in Fig. 2 is given by bgc ¼
P7

k¼0 akgk;

where ak for k ¼ 0; . . .; 7 are the parameters of the model to

be estimated. Particularly, this method is called circular

autoregressive model [59]. If overlapped circular neighbors

are taken, the above statement can be generalize as

bXðx; yÞ ¼
X1

i¼�1

X1

j¼�1

aði; jÞXðxþ i; yþ jÞ:

Usually, the set of parameters are estimated using the least

squares method. In this work, that parameters are used to

characterize the texture.

Gaussian Markov random fields (GMRF) Markov ran-

dom fields (MRF) have been very popular for modeling

images. They have been applied in several tasks such as

image segmentation, texture synthesis and classification

[61–63]. Also, the MRF provides means to capture the

local information in an image [3, 36]. Particularly, the

parameters of GMRF, unlike to other MRF extensions, can

Table 1 Summary of the used techniques

Abbreviation Technique

FFT Power spectrum

LBP Local binary patterns

TSU Texture spectrum

MRF Gaussian Markov random field

AR Autoregressive models

PWD Wigner distribution

AF Autocorrelation function

IH Image Histogram

GP Gaussian pyramid

GF Gabor filters

CP Co-occurrence matrix

LP Laplacian pyramid

DWT Wavelet

SDH Histograms of Sum and diff.

ML Measures of Laws

SP Steerable pyramid

EF Eigenfilter
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be computed efficiently. Furthermore, GMRF have proved

to be suitable for image classification and defect detection

[64]. In this paper, the GMRF for the third order Markov

neighbors is computed as discussed in [64]. The GMRF

model is defined by the following formula:

pðXðx; yÞjXðxþ i; yþ jÞ; ði; jÞ 2 ½�2; 2�Þ

¼ 1ffiffiffiffiffiffiffi
2pr2
p exp � 1

2r2 Xðx; yÞ �
P6

l¼1 alSx;y;l

� �2
� �

;

where Sx;y;l for l ¼ 1; . . .; 6 are defined as follows:

Sx;y;1 ¼ Xðx� 1; yÞ þ Xðxþ 1; yÞ
Sx;y;2 ¼ Xðx; y� 1Þ þ Xðx; yþ 1Þ
Sx;y;3 ¼ Xðx� 2; yÞ þ Xðxþ 2; yÞ
Sx;y;5 ¼ Xðx� 1; y� 1Þ þ Xðxþ 1; yþ 1Þ
Sx;y;6 ¼ Xðxþ 1; y� 1Þ þ Xðx� 1; yþ 1Þ

Here, seven parameters are estimated ( a1; . . .; a6; rf g)
characterizing the texture under analysis. Those parameters

are estimated by least squares method. Table 1 summarizes

the techniques used in this paper.

2.2 Feature selection using multiple regression analysis

Before giving details about the proposed methodology for

feature selection (in statistics: selection of variables), it is

necessary to introduce some key concepts in the field of

multiple regression analysis. Multiple regression is a

method used to model the relationship between a variable

provided by a system or an expert (in statistics: the response

variable) and one or more input variables provided by

measuring physical magnitudes (in statistics: the predictor

variables). A linear model is defined as c ¼ Dbþ �; where

c 2 R
n�1;D 2 R

n�p; b 2 R
p�1 and � 2 R

n�1 are the

response variable, predictor variables, unknown parameters

and error associated to the model, respectively.

There are two common used measures for determining

the success of the linear model. One is the coefficient of

determination which is defined as

R2 ¼ b̂T DT c� ð
P

cÞ2=n

cTc� ð
P

cÞ2=n
:

The second is the partial coefficient of determination which

is defined as

q2
c;d	;j
¼

b̂jd
T
	;jc� ð

P
cÞ2=n

cTc� ð
P

cÞ2=n
;

where d	;j and b̂j are the jth predictor variable and esti-

mated parameter, respectively. Here, b̂ is the least square

estimation of b; i.e., b̂ ¼ DT Dð Þ�1
DT cð Þ:

The selection of variables is probably the most funda-

mental and important topic in regression analysis. First, it

is necessary to build models with high coefficient of

determination between response and predictor variables.

Second, it is necessary to select the model with the smallest

number of predictor variables for keeping the smallest

variance in the estimated parameters. The idea of selecting

the \\best[[ regression model from a set of predictor

variables (features) is to find a balance between goodness

of fit versus small variance in parameters [65]. Several

studies in the literature have highlighted that including

irrelevant predictor variables or features in the model

produces overfitting. Also, it is required a high computa-

tional cost even with moderate number of predictor vari-

ables (2p � 1 models to test, where p is the number of

predictor variables or features) [65, 66]. Thereafter, there is

the challenge of concluding which model is significantly

better than the others [65]. In this field, several approaches

have been applied such as standardized parameters, simple

correlation, ANOVA, Pratt’s measure, decomposition of

the coefficient of determination [65, 67]. Particularly, the

decomposition of the coefficient of determination proposed

by Genizi [67] can be used as framework to design a

methodology for selecting features using an orthogonal

transformation of D. The construction of the matrix D is

explained thoroughly in Sect. 2.3 The main idea of the

Genizi approach is that when a set of mutually orthogonal

predictors is available, the sum of each partial coefficient

of determination is equal to the coefficient of determina-

tion. That is, R2 ¼
Pp

j¼1 q2
c;d	;j

: In such case, it is possible to

conclude that the most relevant predictor variables or

features in the linear model are those variables with greater

partial coefficient of determination. However, predictor

variables are often non mutually orthogonal. In that case, it

is necessary to find an index vj for j ¼ 1; . . .; p which holds

the condition R2 ¼
Pp

j¼1 vj for non mutually orthogonal

variables. That index can be computed using a singular

value decomposition of the data correlation matrix as

DTD ¼ QC2QT : Thus, each variable has an index repre-

senting its relevance in the linear model, which is com-

puted as:

vj ¼
Xp

k¼1

a2
j;kc

2
k ; ð2Þ

where aj;k is the ðj; kÞth element of the matrix A ¼ QCQT

and ck is the kth element of the vector c ¼ AD�1c as dis-

cussed in [47, 67]. Using v indexes, it is possible to con-

clude that the most relevant predictor variables or features

in the linear model are those variables with greater v index

[47]. Then, a simple backward elimination or forward

selection can be performed using as elimination or addition

criteria the v index, respectively. Finally, the \\best[[

6 Pattern Anal Applic (2014) 17:1–15
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model is selected by finding a compromise between the

coefficient of determination and the number of predictor

variables or features. This procedure ensures that the

\\best[[ model is selected by testing only p models

instead of 2p � 1 models [47, 67].

2.3 Proposed methodology for feature selection

in distinguishing fine changes of global texture

Figure 4 shows the proposed methodology for variable

selection (feature selection) using multiple regression

analysis in distinguishing FCGT due to degradation on

textile floor coverings. This methodology was based on

recent advances in which the appearance retention of floor

coverings is measured [9, 12, 13]. First at all, the i-th image

Xi is preprocessed and divided into two sub-images Xw,i

(worn area) and Xu,i (unworn area). This procedure is

explained in Sect. 3 Then, texture descriptors are extracted

independently from each image, termed fw;i (texture

descriptors extracted from a worn area of the image) and

fu;i (texture descriptors extracted from an unworn area of

the image). Here, fw;i and fu;i are the parameters and his-

tograms explained in Sect. 2.1 computed from worn and

unworn areas, respectively. It means that fw;i and fu;i are set

of vectors, in which, each vector represents a descriptor

extracted using a particular technique. Afterwards, a dis-

similarity measure between each pair of vectors is com-

puted, i.e., dðfw;i; fu;iÞ ¼ di;	; where dð�; �Þ is an appropriate

metric or pseudo metric according to the nature of the

descriptor. In this work, with the purpose of measuring

differences between worn and unworn samples, the

Euclidean distance and the symmetrized adaptation of the

Kullback-Leibler divergence are used.

On the one hand, the Euclidean distance was selected to

measure differences in the following techniques: AF, AR,

CP, SDH, FFT and MRF. That distance was selected for

measuring differences in those techniques because it is

probably the most common chosen type of distance due to

its simplicity. Also, the Euclidean distance can be used to

model numerous natural facts of the human-scale world and

most of the powerful image recognition techniques make

use of it [68]. On the other hand, we use the symmetrized

adaptation of the Kullback-Leibler divergence in the fol-

lowing techniques: IH, TSU, LBP and spectral histograms

extracted from: EF, GF, GP, LP, ML, SP, DWT and PWD.

This divergence is used to measure differences in the above

techniques because those generate a histogram and the

symmetrized adaptation of the Kullback-Leibler divergence

has proved to be very accurate in measuring differences

between histograms. Also, it has proved to be very suitable

for texture analysis applications [9, 32, 41, 42].

Here, we consider those differences as predictor vari-

ables or features of the linear model. Then, we define

d	;j 2 R
n�1 as the jth column of the matrix D where each

entry is a difference obtained from worn and unworn areas

for the jth descriptor. Also, we define each row of

D (di;	 2 R
1�p) as the differences obtained from worn and

unworn areas for the ith sample. It means, each entry of the

matrix D ¼ ½di;j�n�p represents a descriptor difference

between worn and unworn areas using the jth technique on

the ith sample.

Finally, given the evaluation of the experts, termed wear

labels c; and computing the matrix of differences

D (descriptor variables or features), we obtain the matrix

A and vector c: Afterwards, v index is obtained for each

predictor variable as is shown in Eq. (2). Then, the model is

selected by performing a backward elimination or forward

selection using as elimination or addition criteria the

v indexes. Finally, predictor variables are added or

removed as discussed in Sect. 2.2

3 Experimental set-up

3.1 Database

We use two databases, each one composed with samples of

wear with grades in steps of 0.5 from 1.0 to 4.5. Also, we

have an extra database which only possesses four samples

of wear from 1.0 to 4.0 in steps of 1.0.

The first set of images is composed of scanned printed

images, using an office scanner, from the CRI standard

Fig. 4 Proposed methodology

for feature selection in

distinguishing fine changes of

global texture

Pattern Anal Applic (2014) 17:1–15 7
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photo set. The CRI references include texture types with

loop (CRI-3), cut (CRI-1 and CRI-4) and tip-sheared (CRI-

6) piles, see Fig. 5. To keep the relevant characteristics in

the scanned images we used a resolution of 7.8 pixels per

milliliter. Each reference contains photographs corre-

sponding to eight wear degrees from 1.0 to 4.5 in steps of

0.5. Also, in the same photograph, the original texture of

the floor covering is included. Each printed photograph was

digitized in a 2,300 9 1,100 pixels image [9].

The second set of images is composed of photographs of

physical samples from loop (EN-A), cut/frisé (EN-B),

woven cut (EN-G), and cut/tufted (EN-C, EN-D and EN-H)

piles from the EN1471 standard, see Fig. 6. In these sets,

wear degrees were photographed at 30 cm with a pro-

gressive 3CCD Sony camera model DXC-9100 P using

a Sony macro lens model VCL-707BXM. We took

photographs of size of 720 9 576 pixels corresponding to

18� 14:5 cm2: This offers a resolution of 4 pixels per

milliliter, which is proved to be sufficient for describing the

wear of this references. Each reference contains photo-

graphs corresponding to four wear degrees from 1.0 to 4.0

in steps of 1.0. Also, in the same photograph, the original

texture of the floor covering is included [9].

In the third database, the wear degrees were assessed by

three inspectors of the textile Department of Ghent Uni-

versity, in collaboration with the textile floor covering

company LANO. The set is composed of one high/low loop

(DB-10), two loops (DB-5 and DB-9), one cut (DB-7), one

cut design (DB-16), one frizé (DB-3) and two types of

shaggy (DB-2 and DB-4) piles, see Fig. 7. Each physical

sample corresponds to the eight wear degrees from 1.0 to

4.5 in steps of 0.5. Also, in the same sample, the original

texture of the floor covering is preserved. The physical

samples were photographed at 30 cm with a progressive

3CCD Sony camera model DXC-9100 P using a Sony

macro lens model VCL-707BXM. We took photographs of

size of 720 9 576 pixels corresponding to 18 9 14.5 cm2.

This offers a resolution of four pixels per millimeter [13].

3.2 Preprocessing

The preprocessing stage is performed in two steps. The

first step involves a cropping procedure which is shown

in Fig. 8. This cropping procedure is performed by

extracting random cutouts from either the part of the

original or the part with the appearance change. We used

this cropping procedure with the purpose of increasing

the number of samples in the experiment (we analyze

many cropped regions instead of one large image). Thus,

using more samples it is possible to reduce the variance

of the results for providing more accurate conclusions.

The second step involves gray scale conversion. As

standards for evaluating appearance changes judge color

and surface changes independently, our analysis is based

on gray scale images.

Fig. 5 Textures evaluated from the CRI standard

Fig. 6 Textures evaluated from the EN1471 standard

Fig. 7 Textures evaluated from the Ghent University—Textile

Department DB

Fig. 8 Cropping procedure. Cut outs of 400 9 400 used as replicas

8 Pattern Anal Applic (2014) 17:1–15
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3.3 Parameter selection for the techniques

In this paragraph, we summarize the parameters and

descriptors used for each technique described in Sect. 2.1

(1) In the autocorrelation function technique, we use the

parametric model explained in [32]. Thereby, the texture

descriptor is represented by the coefficients of a two-

dimensional second-order polynomial. (2) In the co-

occurrence matrix technique, we extracted from every

matrix P, with displacement (i, j), the following measures:

energy, entropy, contrast, homogeneity and correlation [36,

37]. Also, we used the displacements suggested in [37]. (3)

From the histograms of sum and difference we computed

mean, energy, correlation, entropy, contrast and homoge-

neity [38]. In our experiments we used the same dis-

placement vectors used in co-occurrence matrix. (4) In the

texture spectrum and the LBP, the texture units were

grouped into a histogram to extract the texture descriptor

[40]. (5) The parameters estimated in AR and GMRF

models are used as local image descriptors.

(6) In the power spectrum, a set of wedge and ring filters

proposed by Weszka et. al. [43] were used. (7) From ei-

genfilters, Laplacian pyramid, Laws filters, steerable pyr-

amid and Wigner distribution, the spectral histogram

explained in Sect. 2.1 is extracted as texture descriptor. (8)

In the case of Gabor filters, we used the configuration

(a) (b)

(c) (d)

(e)

(f)

Fig. 9 Relevance of the predictor variables using the proposed

methodology for the three databases. %v is the relevance of the

variable for the linear model in a range of [0-100] %. a CRI

database, b EN1471 database part 1, c EN1471 database part 2, d
DB database part 1, e DB database part 2, f Mean values
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proposed by Manjunath and Ma [46] with the purpose of

reducing the redundancy presented in the filter bank

decomposition. Then, the spectral histogram is also

extracted as texture descriptor. (9) In the case of Gaussian

pyramid, a dyadic scale-space is used because it has proved

to be a good and efficient discrete representation of the

scale-space [69]. After applying the Gaussian pyramid the

spectral histogram is also extracted as texture descriptor.

(10) Finally, for wavelet transform, as the evaluation of

absolutely all filter banks is beyond of the main scope of

this study, we selected the Daubechies 9/7 wavelet because

it has been used very often in textural analysis tasks [57].

From this filter bank decomposition the spectral histogram

is also extracted as texture descriptor.

4 Results and discussion

Figure 9 shows the relevance of the predictor variables

(features) for the corresponding databases in a range of [0-

100] %. The percentages are related to the relevance of the

predictor variable in distinguishing FCGT due to degra-

dation on textile floor coverings. Figure 9f shows the mean

values of v indexes for each database. Taking into account

that R2 ¼
Pp

j¼1 vj; it is possible to conclude that the first

six techniques accounted at least the 70 % of the coefficient

of determination. According to those v indexes, the most

relevant features or predictor variables are those provided

by the power spectrum, local binary patterns, the texture

spectrum, Gaussian Markov random fields, autoregressive

models and the pseudo-Wigner distribution.

To validate the results obtained by the linear regression

methodology, we use the Friedman test and pairwise

comparisons as discussed in [70]. Here, the related samples

are the performance of the methods measured across the

types of textile floor coverings. Using Friedman test, we

found that there are statistically significant differences

between the techniques (p value = 0.00). To examine where

the differences actually occur, we use pairwise compari-

sons on the different combinations of related groups.

Table 2 shows the pairwise comparisons between the

techniques evaluated in this paper. From the table, it is

possible to conclude that there are no statistically signifi-

cant differences between FFT, LBP, TSU, MRF, AR and

PWD (p values higher than 0.21). Also, from the Table it is

possible to conclude that those techniques perform better

than the rest of techniques evaluated in this paper (p values

lower than 0.05).

Since we are interested in selecting the best model with

lower number of variables, we use the methodology pre-

sented in Sect. 2.2 using forward selection. In such case,

we only have to test the following models: c ¼
Pk

j¼1 bjd	;j;

where k ¼ 1; . . .; p; bj and d	;j are the model number, the

parameters of a linear model and the descriptors

Table 2 Post hoc test based on Friedman test

Median rank FFT LBP TSU MRF AR PWD AF IH GP GF CP LP DWT SDH ML SP EF

3 FFT -                 
4 LBP 0.21 -                
5 TSU 1.00 0.44 -  =             
6 MRF 1.00 0.53 0.58 - :             
5 AR 0.40 0.59 0.96 0.45 -             
7 PWD 0.25 0.53 0.26 0.58 0.25 -            
9 AF 0.00 0.03 0.04 0.04 0.05 0.04 -  =         
10 IH 0.03 0.04 0.03 0.02 0.03 0.05 0.90 -  = =       
9 GP 0.04 0.02 0.05 0.04 0.04 0.03 0.74 1.00 -         
10 GF 0.03 0.03 0.01 0.02 0.03 0.05 1.00 1.00 1.00 - =       
10 CP 0.02 0.02 0.00 0.05 0.02 0.03 1.00 1.00 1.00 1.00 -       
11 LP 0.01 0.01 0.03 0.04 0.01 0.04 0.90 1.00 0.24 1.00 1.00 -  =    
12 DWT 0.01 0.01 0.01 0.03 0.01 0.04 0.45 0.18 0.09 0.97 0.75 1.00 - :    
11 SDH 0.01 0.01 0.00 0.03 0.01 0.02 0.53 1.00 1.00 1.00 0.36 1.00 1.00 -    
13 ML 0.00 0.00 0.01 0.01 0.00 0.01 0.09 0.26 0.07 0.91 0.18 0.45 1.18 0.65 - =  
13 SP 0.00 0.00 0.00 0.00 0.00 0.01 0.10 0.77 0.12 1.00 0.19 1.05 0.89 1.00 1.00 -  
14 EF 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.11 0.09 0.06 0.00 0.42 0.83 0.13 0.89 0.67 -

Adjusted p values were obtained using Bonferroni–Holm correction for multiple comparisons. In each entry, the direction of the arrow indicates

which of the two methods (row or column) perform better. The equal sign stands for a tie. Elements below the diagonal are p values. If p values

are higher than 0.05, there were no significant differences between the methods. The median rank is a measure of performance, e.g., the ideal

performing descriptor should have median rank of 1
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enumerated as shown in Fig. 9, respectively. Those models

were selected using as variable addition criteria the

v indexes in a forward selection algorithm. Coefficients of

determination for the corresponding models are presented

in Fig. 10 as function of the model number. With these

plots, it is possible to identify which models are more

suitable for each database. Figure 10d shows the mean

coefficient of determination for the corresponding dat-

abases. According to those mean values, the model with the

higher mean performance and minimum number of vari-

ables is the model of order 2 which is consistent with

median ranks in Table 2. This model combines those two

predictor variables with the higher v index and median

rank. Here, the predictor variables (features) with higher

v index and median rank are the differences between

descriptors in the power spectrum (FFT) and the local

binary patterns (LBP), see Fig. 9 and Table 2. Then, we

chose as model the linear combination between FFT and

LBP, i.e., ĉ ¼ b0 þ b1d1 þ b2d2; where ĉ; d1; d2 and bi; i ¼
f0; 1; 2g are automatic assessment, differences between

FFT descriptors, differences between LBP descriptors and

constants to best fit with human assessment, respectively.

To validate the selected model, we use the leave-one-out

cross validation procedure as discussed in [71]. Fig-

ures 11–13 show the validation using leave-one-out pro-

cedure for the corresponding databases. Each reference is

described by an error bar plot representing good of fit of

estimation of an incoming sample. The gray strips repre-

sent the error accepted by experts, i.e., a labeling error

below ±0.5 [2, 13].

The plot for references CRI-1 and CRI-3 (Fig. 11a, b,

respectively) shows an adjusted coefficient of determina-

tion over 0.9 and the error of labeling in the worst case

scenario is below 0.5 which is within the error interval

accepted by experts. The other two plots (Fig. 11c, d) show

a lower performance. However, the monotonic behavior

instead of a random behavior gives a good indication for

developing complementary features in measuring appear-

ance retention in floor coverings. For instance, the refer-

ence CRI-6 is a level loop with small repetitive patterns.

Usually, the change of pattern definition is very important

for measuring the degree of wear in textile floor coverings

[13]. Because of that it is necessary to include features

capable of measuring the change of pattern definition for

performing a better characterization of the textile floor

covering.

Figure 12 shows the results for the database EN. From

those plots it is possible to conclude that when a labeling

error of 1.0 between consecutive wear labels is allowed, the

linear combination between features of FFT and LBP is

enough for measuring appearance retention in floor cov-

erings. Only one of the models does not fit well (Fig. 12d).

In this reference we have also a loop pile with repetitive

patterns in which, as was established before, it is very

important to measure the change of pattern definition.

Figure 13h, floor covering with cut pile design, shows

the worst performance with labeling errors up to 1.5 in the

worst case scenario. This fact shows that the methods are

not good enough for assessing textile floor coverings with

complex patterns. Also, Fig. 13a and c, floor coverings

(a) (b)

(c) (d)

Fig. 10 Model selection using

coefficient of determination and

the proposed methodology for

the three databases. Coefficient

of determination per reference

versus number of features into

the model. a CRI database, b
EN1471 database. c DB

database, d Mean values
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with cut pile shag design, shows errors of labeling up to 1.5

in the worst case scenario. It means that the descriptors

tested in this paper are not good enough for assessing wear

degree in textile floor coverings with cut pile shag design.

Then, it is necessary to include other kind of techniques,

e.g., hairiness, for building accurate models. The errors of

labeling for references DB1-3, DB1-7 and DB1-10

(Fig. 13b, e and g, respectively) are up to 1.0 in the worst

case scenario. These results are not good enough according

to the errors accepted by experts, labeling errors below 0.5.

However, it brings a initial background to improve the

process of measuring appearance retention in floor cover-

ings. On the other hand, noteworthy is that the models for

references DB1-5 and DB1-9 (Fig. 13d, f, respectively)

show labeling errors, in the worst case scenario, below 0.5

which is within the labeling error interval accepted by

experts. This means that the degradation in textile floor

coverings with loop pile construction can be characterized

using only texture analysis.

5 Conclusions and future work

This paper has reviewed, selected and evaluated features in

distinguishing fine changes of global texture. Particularly,

we investigated the problem of appearance change in tex-

tile floor coverings due to degradation. The research was

performed by following the conventional way of dividing

the problem into a feature extraction stage, feature selec-

tion and classification stage. In the feature extraction stage

we evaluated seventeen texture descriptors for character-

izing changes in texture due to wear. We included

descriptors based on statistics, filtering and models. We

used two type of descriptors, one type computed from

histograms and the other computed from data vectors.

Then, the wear degree was quantified using descriptor

differences between a reference sample and a degraded

specimen. In this paper, those differences are used as

(a) (b) (c)

(f)(e)(d)

Fig. 12 Validation of the models for EN1471 database using leave-

one-out cross validation procedure. Here ĉ and c are automatic and

human assessment respectively. The gray strips in plots represent the

error accepted by experts. a EN-A, b EN-B, c EN-C, d EN-D, e EN-

G, f EN-H

(a) (b) (c)

(d)

Fig. 11 Validation of the models for CRI database using leave-one-

out cross validation procedure. Here ĉ and c are automatic and human

assessment, respectively. The gray strips in plots represent the error

accepted by experts. a CRI-1, b CRI-3, c CRI-4, d CRI-6

(a) (b) (c)

(f)(e)(d)

(g) (h)

Fig. 13 Validation of the models for DB1 database using leave-one-

out cross validation procedure. Here ĉ and c are automatic and human

assessment respectively. The gray strips in plots represent the error

accepted by experts. a DB1-2, b DB1-3, c DB1-4, d DB1-5, e DB1-

7, f DB1-9, g DB1-10, h DB1-16
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features or predictor variables. In the feature selection

stage we designed a methodology for selecting features

based on multiple regression analysis. Finally, in the

classification stage, we used the conventional leave-one-

out cross validation procedure to validate our methodology.

The results showed that the power spectrum, local binary

patterns, the texture spectrum, Gaussian Markov random

fields, autoregressive models and the pseudo-Wigner dis-

tribution provide good descriptors in measuring appearance

retention in floor coverings. Then, we believe that future

work in distinguishing fine changes of global texture

should be developed using those techniques.

Furthermore, a study of how the texture descriptors

perform in changes of textile floor covering construction

types was also presented. The results showed that textile

floor coverings with high pile construction do not exhibit

significative relationship between wear degree and the

texture descriptors tested in this paper. Also, we proved

that texture is an important descriptor in textile floor cov-

erings with low pile construction. However, the degree of

wear cannot be characterized using only texture unless the

textile floor covering has loop pile construction. In such

case, the linear combination between FFT and LBP is

enough for measuring changes due to wear in textile floor

coverings.

The study of complementary descriptors to texture for

improving the process of measuring appearance retention

in floor coverings remains as a future work. For instance, it

is necessary to explore descriptors as hairiness, pilling,

change of pattern definition, change in color, among others

for improving the results presented in this paper. In addi-

tion, since the methodology is generic enough, it can be

applied in any application in which a comparison between

global textures is needed. For instance, in medical appli-

cations such as monitoring evolution of burned patients,

texture changes in magnetic resonance imaging, evaluation

of skin changes, among others. Also, it can be used in

quality evaluation of still and/or image sequences in which

a change of texture is seen as an artifact producing a

change of quality. In general, this kind of methodology is

very useful when it is necessary to compare two samples

between them. Finally, we still need to study the impact of

the feature selection methodology in classification results,

i.e., to compare different feature selection methodologies

within the proposed framework. Thus, it would be possible

to measure the impact of feature selection in FCGT

applications.
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