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Abstract We present a new image completion method

that can deal with large holes surrounded by different types

of structure and texture. Our approach is based upon cre-

ating image structure in the hole while preserving global

image structure, and then creating texture in the hole

constrained by this structure. The images are segmented

into homogeneous regions. Similar regions touching the

hole are linked, resulting in new areas in the hole that are

flood-filled and made to match the geometry of the sur-

rounding structure to provide a globally spatially coherent

and plausible topology. This reconstructed structure is then

used as a constraint for texture synthesis. The contribution

of the paper is two-fold. Firstly, we propose an algorithm to

link regions around the hole to create topologically con-

sistent structure in the hole, the structure being then made

to match that of the rest of the image, using a texture

synthesis method. Secondly, we propose a synthesis

method akin to simulated annealing that allows global

randomness and fine detail that match given examples. This

method was developed particularly to create structure

(texture in label images) but can also be used for contin-

uous valued images (texture).

Keyword Image completion � Structure

reconstruction � Texture synthesis � Coarse-to-fine

synthesis � Simulated annealing

1 Introduction

Images sometimes contain regions that are flawed in some

respect. Fixing these flaws correctly is important in many

applications such as photo editing, wireless transmission of

images (recovering lost blocks), and film post-production.

The problem of image completion is, given an original

image and a hole mask, to automatically fill in the area of

the image corresponding to the hole such that the syn-

thesised part seamlessly fuses with the rest of the image.

Another constraint is that the new content must be plau-

sible, i.e. is similar to, but not a copy of, the rest of the

image.

Typically, such completion propagates new texture from

the surrounding areas into the hole by ‘‘copying’’ similar

examples from such areas. This propagation should pro-

duce realistic structure and texture inside the hole so that it

matches the surroundings with no visual artefacts. The hole

can be of any size and shape, and may be surrounded by

many different areas. Figure 1 shows an example of

applying our image completion method.

In contrast to image completion where holes are typi-

cally large, image inpainting is usually the filling-in of

small defects, perhaps created by scratches in analogue

images, sensor noise, etc., typically a few pixels wide, but

possibly elongated.1

During the last decade, there has been substantial

work dedicated to dealing with the problem of image

completion and current results are very convincing for

many types of images. However, existing methods may

produce visual artefacts such as hole boundaries,
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blurring, or the replication of large blocks of texture.

Some simply cannot preserve the structure in the image,

especially when the hole is large and surrounded by

different types of texture. Methods to remove image

flaws have used different approaches and strategies

including completion using structure, completion using

texture, and completion using both structure and texture.

The methods of the first category fill in holes based on

propagating linear structures often using mathematical

models such as partial differential equations (PDEs), e.g.

image diffusion [4, 8, 9]. They are more suited to image

inpainting as the process is local and can cause blurring

artefacts. The second group of methods completes holes

by creating texture that is copied or modelled from the

surrounding examples of texture [7, 13, 15, 20, 21, 39,

42]. This type of approach produces good results for a

large variety of textures. However, it does not ensure the

structure of the image remains correct, as many of these

methods are based on local sampling, which ignores

global image structure.

The third category of methods combines the two

approaches by creating texture that is constrained by

structure. These methods have been successful in com-

pleting holes in images, by propagating structure into the

hole and then creating texture based on that structural

constraint [3, 5, 6, 10, 17, 22, 25, 33, 34, 36, 38].

(a) (b) (c)

(d) (e) (f)

Fig. 1 Result on the CLEDWYN

image (image: 85 9 150,

neighbourhood: 11 9 11)
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1.1 Texture synthesis methods

Many texture synthesis methods have been proposed in the

literature, all falling roughly in three categories: statistical,

PDE-based and exemplar-based [23]. Many authors con-

clude that only exemplar-based methods can succeed in

filling in large holes, and we therefore use such a method in

this work. However, these methods are not without prob-

lems, especially when one wants to deal with label images

[6]. We briefly describe the generic method on which many

current, popular texture synthesis methods are based, and

its limitations along with some variations. Section 2 will

describe our modifications to this generic method so that it

can be used in the context of image completion and, in

particular, for label images.

The generic method is based on the pioneering work in

[15], in which pixels being synthesised are given a value by

matching their neighbourhood to similar pixel configura-

tions elsewhere in the image. In the context of image

completion, possible matches are only considered outside

the hole. The neighbourhood of the current pixel is com-

pared with the neighbourhood of possible matches to build

a list of good matches. From that list, one match is selected

and its centre value is used as the new value for the current

pixel. A histogram of possible values from ‘‘good’’

neighbourhood matches is built for each pixel to be syn-

thesised. ‘‘Good’’ is any match for which the distance

(often SSD or Euclidean, of the colours) is lower than a

fixed threshold, relative to the best match. This histogram

is then used to select the new pixel value using the fre-

quency of the value as the selection criterion. Most pub-

lications using that same method, however, use the value of

the best match (e.g. [17, 26, 40]), or one chosen at random

from the selected matches (e.g. [5]), possibly with a bias

towards the best match [25]. Using the best match, or a low

threshold, coupled with a sequential order of the filling in,

and in some case an approximate search and/or coherence

search [2, 3, 17], can lead to replicating large areas of the

sample texture, or at least bias the selection of matches

towards sub-regions of the sample texture [26]. However,

using too high a value for the threshold can lead to too

much randomness in the result. In [6] the problem of rep-

licating large areas is solved by greedily rejecting potential

candidates if they have been used for nearby pixels.

Introducing some randomisation in the selection process

also helps. This can be done with an initial seed [39, 40]

and/or at the match selection process [3, 16, 25].

Some methods also introduce geometrical and lighting

transformations during the process of matching patches,

allowing for such transformations to be introduced in the

texture (and possibly better matches in some specific

images). This however increases the complexity of the

search, which is a problem tackled in [29] where a

combination of approximate search (as in [3]) and contin-

uous optimisation is performed.

Randomness is important for natural images and

avoiding repeated areas is paramount. However, many man

made scenes do have repeating patterns and recreating

these is also paramount. The problem with the use of fixed

thresholds as in [15] is that the randomness of the created

texture is dependant on the value of the threshold, yet the

appropriate threshold depends on the texture. Finding the

right threshold value is therefore not trivial. Linked to this

is the scale at which the texture is considered. In the ori-

ginal method, the size of the neighbourhood defined the

scale. A large neighbourhood can capture larger features.

However, a large size can break the MRF assumption, that

is that a pixel’s value only depends on the values present in

its neighbourhood, which is at the basis of these methods.

A large neighbourhood size also makes the synthesis

slower.

To solve this problem multi-scale methods have been

proposed, creating a pyramid often using Gaussian

smoothing [11, 39] or edge preserving smoothing [19].

These will typically synthesise each scale using the pre-

vious one as a seed, with the first being random. In [26] a

Gaussian stack (Gaussian pyramid where all levels keep

the same resolution) is used and texture is synthesised from

coarse to fine levels by introducing randomness from one

level to the next (jittering of match positions) and only

running a ‘‘correction step’’ (essentially using [15]) at the

finest of levels.

Others use iterative schemes that perform a (near) global

optimisation. In [41] global spatial consistency is ensured

by enforcing (via an optimisation) that all the neighbour-

hoods containing a given pixel match with the synthesised

image, not only the one neighbourhood having the pixel at

the centre. The colour for a given pixel is then computed

optimally from all neighbourhoods that contain that pixel.

This can result in an exact copy of areas of the image into

the hole. To solve this, hole pixels are down weighted

compared to non-hole pixels in the similarity function,

using yet another parameter [41]. This approach and that in

[29] are more appropriate to copying coherent small details

that exist elsewhere in the image to complete the hole. In

[23] a belief propagation method is used that explicitly

represents the interactions between neighbouring pixels

and the outside of the hole (the absolute belief), in a

message passing, iterative optimisation. The pixels are

considered in order of belief which, as computed, roughly

corresponds to the boundaries of homogeneous regions in

the image.

Usually, pixels are considered in some order such as

raster scan [39], or spiral from a central seed (in the case of

unconstrained texture synthesis [15]). Such systematic

order will tend to create visible boundary artefacts. Parallel
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synthesis has been used in [40] to remove this effect and in

[26] to allow GPU computation.

Note that some methods copy entire patches rather than

individual pixels, e.g. [14, 24, 27, 28, 32]. This has the

advantage of reducing synthesis time but can lead to large

patches being copied and require the additional step of

seamlessly merging neighbouring patches.

1.2 Hole filling in methods

Most texture synthesis methods show limitations when

filling in holes surrounded by different textures. One is that

these methods need a set of specially tuned parameters that

will work with a set of textures but not with others.

Moreover, for images presenting different types of texture,

it seems that the use of a structural constraint to make sure

only the right texture is synthesised in the right place is

primordial (Fig. 1f and [22, 25, 30, 33]). Another problem

is that boundaries between the various synthesised textures

propagated from the surroundings of the hole must look

realistic in the hole.

The problem of structure has been addressed in [10] by

propagating image structure into the hole by first syn-

thesising the pixels with a high gradient, along the iso-

phote direction. In [30], level lines in grey-level images

ending at the hole boundary are linked across the hole

using curves that are as short and straight as possible,

therefore being more appropriate for inpainting. In [35], a

curvature prior is used to connect user defined boundaries

across a hole. To achieve this, an MRF model selects the

best matching pattern from a curvature prior that is learnt

from a set of training shapes, and could perhaps be con-

structed from exemplars in the reconstructed image (as

suggested by the authors of [35]). In [5] a decomposition

of the image into two components is proposed. The first is

the structure, the second being the texture (and noise). The

two components are then independently filled in and then

recombined to create the final image. The structure filling

in is done using inpainting [4], and therefore only works

for small holes, while the texture is synthesised using the

method proposed in [15]. Because the two steps are done

independently, it is possible that the final structure and

texture might not match spatially, particularly in the case

of large holes. Similarly, a two-step hole completion is

used in [36]. The first step creates a gradient image using

a method that is essentially the same as in [10] but with a

different similarity measure, taking into account not only

colour but also gradient, and a different metric. The gra-

dient image is then used to compute a colour image by

solving the Poisson equation. The gradient image consti-

tutes a structure image in that it will guide the colours in

the final image. However, the method shares the same

limitations as [10], being local and greedy.

In [19] an implicit region based constraint is used.

Indeed the smoothing method used to create the multi-scale

pyramid preserves high gradients, i.e. boundaries between

regions. This is what makes that method work well (results

obtained with Gaussian smoothing alone were worse).

However, boundaries only appear at the coarsest of

smoothing levels. Smoother transitions between textures

might not be preserved by the smoothing procedure, and

would therefore be lost by that method.

In [25] the image is first segmented into homogeneous

regions and boundaries between these regions terminating

on the edge of the hole are propagated into the hole using

existing boundaries as exemplars for their shape. The

process creates regions containing homogeneous textures,

which are then filled in using a method based upon that of

[15] but using the segmentation image as a constraint on

where to consider possible matches.

These methods cannot control the correctness of the

created topology as they use local processes. To create

plausible topology, curves that will link structures outside

the hole can be created in the hole. For example, in [38]

users draw lines that are used to first propagate texture

along them, creating the structure. In [3], a more elaborate

interaction is possible whereby users can specify specific

areas of the image to use as source pixels in specific areas

of the hole. Methods to automatically create such curves in

the hole have been proposed. In [22], tensor voting is used

to create smooth curves that link regions that are similar

(differences in intensity and intensity gradient below a set

threshold) but separated by the hole. The smoothness of the

curves is controlled by a parameter that needs to be spec-

ified so that the smoothness matches the curves outside the

hole (with potentially multiple parameters per image,

although this is not mentioned). Only simple topologies can

be tackled (the provided results are all topologically simple

and the algorithm cannot cope with intersecting curves). In

[33], arcs of circles are used to link region boundaries and

straight lines for boundaries that cannot be paired.

Boundaries are paired based on circle fitting, corresponding

region matching and sequentiality (to reduce the number of

boundary crossings in the hole). An almost global optimi-

sation is performed to find the best set of pairs of bound-

aries. Boundary and region matching is local, only

performed in a belt around the hole, and regions that are

too different are removed from the optimisation. Although

in theory complex topologies can be tackled, no such

examples are given.

Constraint images have been used to create a number of

effects. For example, in [34] a layered (weathered) surface

is simulated by creating a label image that has the right

properties for the surface being simulated and that is then

used to constrain texture synthesis to produce the right

texture at the right place. Famously, ‘‘texture-by-numbers’’
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is proposed in [17] whereby a new image is user created by

painting a label (structure) image with labels coming from

an annotated known image, and then used as a constraint

for texture synthesis.

Similarly, a method is proposed in [6] to create new

images (not fill in holes) from a label image (the proxy),

each label corresponding to known labels of a source image

(typically manually specified). What is new in this method

compared to [17] is that the proxy (initially hand drawn) is

improved to match the example using an exemplar-based

method that uses a Chamfer distance (instead of L2) and a

label-based voting pyramid. The Chamfer distance mea-

sures spatial proximity of labels, rather than overlaps,

which is good for small features in label images (e.g. lines)

but loses spatial coherence of the pixels (only the spatial

distance to the nearest pixel of the same label is kept).

Also, the labels correspond to semantically distinct regions

of the source image (such as sky, mountain, lake) rather

than corresponding to distinct textures. This means that the

proxy does not necessarily help as a constraint for the

texture synthesis.

To our knowledge, no published work attempts to create

structure that matches the image to be completed, the nearest

work being [6] where manually created boundaries are made

to match similar ones in an example image. All other works

on image completion create boundaries in the hole that are as

straight as possible, rather than trying to match existing

boundaries. Moreover, these works do not allow created

regions to overlap or cover each other in the hole (manually

specified depth information is used to allow this in [6]).

1.3 Method overview

We propose a method that attempts to automatically create

structure, preserving global topological consistency when

possible (i.e. examples exist outside the hole) and plausible

topological consistency when no examples exist. The

method also creates texture over the constructed structure

such that no visible visual artefacts are present and the

created structure and texture seamlessly fuse with the

surrounding areas, not showing any visible boundary.

Finally, the new content is meant to be similar to, but not

replicate, the rest of the image.

The structure of an image is its decomposition into

regions that correspond to identifiable parts. In this work, the

parts will correspond to homogeneously coloured regions.

The topology of the structure will describe how the regions

that constitute the structure are connected to each other.

We can tackle complex topologies in a recursive man-

ner. Because we do not use any high level information

about the content of the images (in particular occlusion

information) the automatically produced topology can be

wrong and some manual intervention may be necessary.

Finally, the actual shape of the curves is matched to

exemplars from the rest of the image rather than being

arbitrarily shaped. As others have done, this structure is

then used to constrain texture synthesis. We use the same

method to create the boundaries of the structure and the

texture of the final image. We propose a modification of the

method in [15] that allows the convergence of the syn-

thesis, akin to simulated annealing, in a coarse to fine

scheme, that can tackle varied textures (and indeed labels,

for which it was primarily created) providing both ran-

domness and fine details.

An overview of our method, along with a graphical

example and the corresponding sections where each step is

described, is given in Algorithm 1. We start by describing

the structure/texture synthesis method in Sect. 2, despite

being used after the creation of the structure in the hole in

Sects. 3.1 to 3.5. This is because choices made for the

construction of the structure in the hole depend on the

structure/texture synthesis method. Sections 3.6 and 2

describe how the structure and texture are made to match

that of the rest of the image. Section 4 presents results. We

conclude with a discussion of the method and explore

future avenues in Sect. 5.
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2 Texture synthesis method for image completion

In this section we present our synthesis method. The first

step of our method is to synthesise an image structure

that matches the surroundings of the hole (Step 3 in

Algorithm 1). The structure is encoded in a label image,

each label corresponding to a region of the image.

Therefore, our synthesis method was developed specifi-

cally with label images in mind. It can however also

synthesise continuous valued images, such as texture

images. Although both types of images are synthesised

in the same way, there are subtle differences, which are

highlighted.

Our method follows the general idea of the generic

method presented in Sect. 1.1 We now present what makes

our method different.

2.1 Parallel synthesis

Because the structure synthesis we present later in Sect. 3

uses a segmentation of the image, we cannot rescale ima-

ges as small regions could disappear at lower resolutions.

Instead, we use a parallel synthesis scheme similar to the

one in [40]. At each iteration, the new value of any given

pixel is independent of the new value of the other pixels

and is therefore not affected by the order in which the

pixels are considered. In practice, a new image (temporary

buffer) holds the values of the synthesised pixels. This

temporary buffer is then copied back to the image being

synthesised at the end of each iteration, when all the pixels

have been processed.

As with the generic method, a pixel is given the value of

the centre of a good match selected at random from a list

determined using a fixed threshold on the distance between

the target neighbourhood and source neighbourhoods from

the rest of the image. However, the threshold is updated as

the iterations progress (see Sect. 2.3).

A square, symmetric neighbourhood is used (the figure

captions include the image and neighbourhood sizes). In

the case of texture images, neighbourhoods are compared

using the Euclidean distance between the RGB pixel values

of all pixels, where only neighbourhoods belonging to the

correct region (centre pixel in the same region as the

synthesised pixel) are considered.

In the case of structure (label) images, a different metric

is used:

dðNs;NtÞ ¼
X

i

�dðNsðiÞ;NtðiÞÞ; ð1Þ

where Ns and Nt are the source and target neighbourhoods

and N(i) is the ith pixel of the neighbourhood. �d is the

complement of the Kronecker delta function:

�dði; jÞ ¼ 0; i ¼ j;
1; i 6¼ j:

�
ð2Þ

This counts how many pixels have a different label, rather

than how different the pixels are. No constraint is used in

this case, and neighbourhood matching is left to wander

everywhere in the image. However, it is unlikely that any

neighbourhood not sharing any label will be selected.

To be able to use a complete square neighbourhood,

initial pixel values must be provided for all the pixels in the

hole. This is now described.

2.2 Initial hole filling

The aim is to provide initial values for the unknown pixels

of the hole that are plausible yet have a certain amount of

randomness. In [40], values are randomly copied from the

texture example. Following this idea, we copy from nearby

pixels of the image that do not belong to the hole, and

belong to the same region for texture synthesis only. This is

done using a Gaussian distribution centred on the current

pixel. The distribution allows us to obtain random positions

close to the current pixel. The standard deviation of the

distribution is initially set to 1 pixel, implying that 99.7 %

of the positions will be within 3 pixels of the current pixel.

If after a number of randomly selected positions (1000),

none fall outside the hole and in the correct region (texture

synthesis only), the standard deviation is increased by one

pixel and the process is repeated. Figure 2 shows the pro-

cess for a large value of the standard deviation.

For structure synthesis, we use information about the

regions surrounding the hole to first explicitly create

regions in the hole, Sect. 3. Random filling in is only used

for these areas that are not covered by a region.

2.3 Iterative synthesis scheme

To avoid having to choose the threshold used for neigh-

bourhood selection and to provide an optimisation to the

synthesis method, we use an iterative scheme akin to

simulated annealing. This allows a coarse synthesis at the

initial stages, using a large value for the threshold, creating

random features. This randomness is then forced to con-

verge towards detailed features that match the exemplars

more precisely, using a lower threshold. A complete step of

the parallel synthesis is performed for each threshold value.

More precisely, the threshold T = d 9 r is used in the

match selection process, where d is the best match distance

and r is a randomness factor. We set r = 1.2 at the first

iteration. The threshold is then reduced by decreasing the

value of r by 0.01 at each iteration. The initial value for

r and its decreasing rate were determined experimentally.

Their exact value is not critical because of the iterative
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nature of the process. However, a sharp decrease in r could

lead to the convergence of the process to a local minimum,

which typically would create repetitive texture, often at

low scale (i.e. small details). This behaviour is similar to

simulated annealing, which can converge to a bad local

minimum if annealing is too fast.

The automatic termination of the synthesis can be

based on the Euclidean distance between consecutive

synthesised images, as reported in [2, 37]. However, the

Euclidean distance is not a good measure of visual

quality as the behaviour of visual similarity between two

synthesised textures can vary depending on the particular

texture [2]. Instead, the termination is based on the

percentage CðtÞ of changed pixels in the hole compared

with the previous iteration, as a function of time. The

process is stopped when CðtÞ falls below a specific

threshold (0.1 for the texture synthesis, 0.002 for the

structure synthesis, lower because of the discrete nature

of the labels). Experiments reported in [1] show that CðtÞ
decreases as the process progresses and that the syn-

thesised textures or structures do not change significantly

after a while, and that the given thresholds constitute a

good compromise between quality of the result and

number of iterations.

This simulated annealing process coupled with parallel

synthesis not only removes the order dependency of the

synthesis but also offers a more spatially global solution to

the synthesis, which is what provides, in particular, the

realistic (and topologically correct) boundaries between

regions of the hole, Sect. 3.6.

After describing the synthesis method that will be used

to make the structure and texture in the hole match that of

the rest of the image, we now describe how structure is

created in the hole.

(a) (b)

(c) (d)

(e)

Fig. 2 The BUSH image (image:

150 9 101, neighbourhood:

15 9 15)
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3 Reconstruction of image structure

The reconstruction of the hole structure is based on the

assumption that distinct image areas (particularly in natural

images) tend to be spatially continuous and are only sep-

arated by the hole: these must therefore be linked across the

hole. Images are first segmented into homogeneous regions

and those around the hole that are similar, based on colour

statistics, are identified. Indeed, two regions with similar

properties touching the hole should correspond to the same

real area of the scene and should therefore be linked.

However, spatial proximity between regions is also to be

considered: regions that are close-by are more likely to

correspond to the same area of the scene than regions that

are far apart. This spatial information is used to order pairs

of similar regions. This order is used to recursively link

selected pairs of similar regions, using straight lines, and

the newly created regions are flood-filled to create the

corresponding regions. Areas of the hole might be left

unfilled (e.g. due to non-matching regions). These are

randomly filled-in. The created structure in the hole is

topologically plausible but geometrically does not yet

match the regions surrounding the hole. This is adjusted

using the synthesis method described in Sect. 2.

The segmentation of the image is an important part in

identifying the different regions. In this work, we have

used the segmentation method in [12] called JSEG, which

we found to work well for a wide variety of colour-textured

images; this method has been reported to be one of the best

available segmentation methods [22, 33].

Algorithm 2 describes the various steps of the structure

synthesis method. We start with matching regions that are

touching the hole.

3.1 Hole Bounded Region (HBR) matching

A Hole Bounded Region (HBR) is a region, created by the

segmentation, that intersects the hole. Based on the

assumption that regions tend to be spatially continuous and

are only broken up by the presence of the hole, the regions

created by the segmentation may have to be relabelled to

ensure that similar regions separated by the hole are indeed

considered to be the same region. However, without high-

level knowledge about the image, the relabelling can create

false or too numerous possible matches that would be

impossible to reconcile. Therefore, because it is more

likely for nearby regions to match, connections between

nearby regions will be preserved over connections between

distant regions.

Similarity is based on colour histograms. The norma-

lised colour histogram of each HBR is collected and the

Euclidean distance between histograms is computed. In all

our experiments we used the RGB colour space and 256

bins per colour component.

Pairs of matching regions are selected in a two-step

filtering process. The first step ensures that only good

matches are selected. This is done using an absolute

threshold on the distance between histograms (0.2 in all our

experiments); pairs for which the distance is below that

threshold are selected as possible matches. The second step

selects the best matches. It uses a threshold that is a

function of the lowest distance dm between pairs of histo-

grams selected at the previous step (the threshold was set to

1.2 9 dm in all our experiments). This two-step procedure

ensures that only good matches are selectable (through the

absolute threshold) and that the best matches are selected.

If only the second threshold was used, then it would be
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possible for bad matches to be selected, depending on the

quality of the best match. Note that at this stage, some

regions can be selected as part of several pairs.

The value of the two constants was determined experi-

mentally and represent a good compromise between

selecting only regions that really match and creating too

many pairs of regions. A high value of the absolute

threshold will lead to a large list of potential matches that

might not match well and will need to be weeded out at the

next step. A too low value might lead to not linking regions

that should have been matched. Two such cases are shown

in Figs. 7 and 9. A high value of the multiplicative constant

in the second threshold can lead to a large list of retained

matches. However, these should all be good matches

(because of the absolute threshold). This will lead to more

iterations when the regions will be linked (see Sect. 3.5). A

low value of this same constant will lead to too few mat-

ches being kept and therefore the need for more random

initial filling in (Sect. 2.2) and potentially erroneous

structure being created, as in Fig. 9.

Once pairs of similar regions have been established, the

regions must be linked in the hole. A description of this

process follows.

3.2 HBR connections

A HBR has, as part of its boundary, a section of the

boundary of the hole. The two HBR boundary extremities

(HBR-BEs) of this section are labelled in a consistent

(clockwise) order and are noted p1
i and p2

i as the first and

second extremities of the boundary between the hole and

the HBR i. The clockwise ordering is there to prevent the

creation of region pair connections that cross each other.

Pairs of HBRs can be linked, using the HBR-BEs in a

sequential order, to create a closed region in the hole.

HBRs that cannot be paired can be self-connected. For the

purpose of determining HBR-BEs, if the hole touches the

edge of the image, the outside of the image is considered as

a region. Therefore, HBRs touching the edge of the image

will be self-connected, such as the sky region in Fig. 1.

Figure 3 shows boundary extremities, and their con-

nections, for a toy example. If (R2, R4) is a pair of matching

HBRs, then their HBR-BEs can be linked using straight

lines (lines (p2
4, p1

2) and (p2
2, p1

4)). Similarly, the HBRs that

cannot be grouped in pairs (R1 and R3) can be self-con-

nected (lines (p1
1, p2

1) and (p1
3, p2

3)).

One could argue that only creating pairs of regions is too

constraining and that tripartite, or even larger, groups

should be considered. For example, a cross of which only

the four arms are visible, the centre being in the hole,

should be dealt with using a group of four regions. How-

ever, this could lead to intractable situations that may be

difficult, if not impossible, to solve. Instead, we iteratively

create connections between pairs of HBRs, which overall

provides a tractable way of creating larger groups of HBRs

(Sect. 3.5).

Some connections cannot be kept as they would modify

the structure of the image outside the hole. These con-

nections, either pair- or self-connections, are detected by

checking for intersections between the corresponding lines

and any other region outside the hole, other than the con-

nected ones. If such an intersection happens, the connec-

tion is discarded. However, a line-crossing that is

completely inside the hole is allowed in order to preserve

parts of the structure of the pair of regions.

HBRs, particularly natural ones, often tend to have two

points which connect them to different neighbouring

HBRs. However, there can exist cases where regions can

spread around the hole and enclose other regions that are

also HBRs. In such cases, the HBR-BEs of such regions are

the first and last points of the region, discarding interme-

diate boundary extremities. This is shown in Fig. 4.

At the end of this process, pairs of HBRs that can be

linked across the hole using straight lines are stored in a

list. Regions belonging to a pair are relabelled with a single

label for the pair. This list must now be prioritised, using

proximity of the regions, before the hole can be filled in.

This list is the Region Connections Priority List (RCPL).

Fig. 3 HBRs and their HBR-BEs. The hole is in white. p1
i and p2

i are

the two HBR-BEs of HBR Ri. Potential self- (R1 and R3) and pair-

connections (R2 and R4) are shown with dashed lines

Fig. 4 Enclosed HBR and HBR-BE numbering
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Regions that can only be self-connected are kept apart for

now.

3.3 HBR spatial proximity

Pairs in the RCPL are sorted in descending order of the

distance between their HBRs. Connections at the head of

the list therefore correspond to regions that are far apart

across the hole while regions at the tail of the list are close

to each other. The reason for this sorting is that regions far

apart are less likely to be relevant to the content of the hole

than regions that are close by.

The distance between two HBRs i and j is expressed as:

dij ¼ jjpj
2 � pi

1jj þ jjp
j
1 � pi

2jj; ð3Þ

where jjq� pjj is the Euclidean distance between points

p and q. Note that one or two of the terms in (3) can vanish

if the two HBRs are adjacent. In practice, this does not

happen because adjacent regions that are similar enough to

be considered as one should have been segmented as one

by the segmentation procedure. This is nevertheless a

possibility and just means that the two regions are touching

on one or two sides.

Once the list of connections and their order has been

created, the structure that matches regions outside the hole

can be created in the hole.

3.4 HBR connection priorities and flood-filling

Straight lines are drawn in the structure image following

the order of the RCPL, from head (lower priority, larger

spatial distance) to tail. Self-connections are drawn after

the pair connections. This is because they are more likely

to correspond to local events in the structure of the image

and must therefore be preserved as much as possible. The

lines are drawn following the same order as for the creation

of the HBR-BEs.

The lines are drawn with the colour of the corresponding

region (self or pair), which creates a new enclosed area for

each connection. This area is flood-filled with the same

colour, therefore creating a new region in the hole.

As the HBRs are connected, each newly created region

can override a previously created region. This however is

done from less likely to more likely connections, so that the

more likely new regions remain intact in the hole.

3.5 Iterative connections and flood-filling of hole

regions

It was mentioned earlier that some regions could be

involved in more than one pair of HBRs, based on the

histogram matching procedure (Sect. 3.1). Moreover, new

regions are created in Sect. 3.4 that could potentially be

linked to HBRs. Therefore, the regions are connected and

flood-filled in an iterative connection and flood-filling

process.

The process is similar to the main connections and

flood-filling stage described in the previous sections, which

constitutes the first iteration of the iterative process.

However there are small differences. First, for each new

hole region, similar regions are selected from the already

saved good match regions list, which is therefore not

recomputed. This prevents any drift of the statistics of the

colour of the regions due to merging. The new region pair

list is checked for line-crossings as done previously. Sec-

ondly, pairs of regions that are not touching the same hole

are excluded. This is because the initial hole might have

been split into multiple holes from the previous iteration

(this also allows us to tackle the case of multiple holes that

might have been present initially). If the new pair passes

the test, it is added to the RCPL at its correct position. This

process is continued while there remains regions to be

connected.

Figure 5 shows an example of iterative hole region

connections and flood-filling. Figure 5a shows a hole (in

white) that is surrounded by eight regions. We assume

that regions R1 and R7 as well as regions R2, R4, R5 and

R6 are similar according to their colour properties. Fig-

ure 5b shows the HBR-BEs that will be connected. Fig-

ure 5c is the result of the first iteration. The regions R1

and R7 are relabelled with the same label, connected and

flood-filled. The same procedure applies to pairs (R2, R4)

and (R5, R6). Note the shape of the area created by pairs

(R2, R4) and (R5, R6); it is due to the positions of the

HBR-BEs. R8 is self-connected and then flood-filled.

Figure 5d shows the result of the first iteration with the

new regions (R1 replacing (R1, R7), R2 replacing (R2, R4)

and R5 replacing (R5, R6)) and a new hole. Figures 5e and

f show the second iteration of connection, flood-filling

and result where the regions R2 and R5 of the pairs (R2,

R4) and (R5, R6) in Fig. 5d were assumed similar

according to the relabelling process, and therefore itera-

tively connected and flood-filled. Note that during the first

iteration, HBRs R4 and R5 could have been linked first.

This newly created region would then have been linked to

either R2 or R6 at the second iteration and the remaining

similar HBR (R6 or R2) during the third iteration, pro-

ducing the same result.

We cannot prove that the established connections are

independent of the order in which the regions are consid-

ered. However, the fact that the statistics of the regions and

the list of good matches are not recalculated during the

process helps that order independence. There might be

structures for which this is not the case, but we have not

been able to create such an example. However, we are not

after creating the only possible solution, but rather a
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solution that is possible and plausible. This lack of proof of

independence is therefore not an issue.

It is important to point out that the connection process in

some cases cannot be fully automated (because this is often

not possible without high level knowledge about the

scene). There could therefore be problems related to region

mismatch in the relabelling process, creating wrong con-

nections, or connections wrongly not created. This is par-

ticularly the case of occluding boundaries. As a result,

some user interaction may be needed to modify these

connections. Simple user interaction can happen at this

stage by modifying the list of possible connections. The

user can also modify the actual region connections by

adding or deleting straight lines in the structure image.

Finally, it is possible that some areas of the hole have

been left unfilled. This can happen when connections could

not be made and the ones that could did not cover the hole.

These areas will be filled in at the structure synthesis stage,

in the next section.

3.6 Structure synthesis

In previous sections we proposed a method to fill in the

hole with a structure that matches, as best as possible, the

topology of the surroundings of the hole. However, the

structure was created using straight boundaries between

regions. This is unlikely to match the geometry of existing

boundaries outside the hole. We therefore need to modify

the shape of these boundaries to create a more plausible

structure with boundaries that match the shape of, and

seamlessly propagate, the boundaries outside the hole into

the hole. This is performed using the synthesis method

described in Sect. 2 but applied to label images, instead of

colour images.

The synthesis process will first introduce randomness in

the straight lines that will match the coarse shapes in the

rest of the structure image. Because only good matches are

used, the random shapes will remain plausible at all stages

and will progressively converge towards shapes that match

(a) (b)

(c) (d)

(e) (f)

Fig. 5 Example of iterative

hole regions connection and

flood-filling. The hole is in

white. Regions with the same

pattern match from the point of

view of their colour statistics.

Dashed lines indicate which

HBR-BEs will be connected
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the fine details of the rest of the structure. The random fill-

in will be smoothed out by the process, with unlikely

region labels removed due to lack of support for their

presence.

It is possible that a boundary created by linking regions

across the hole does not have a counterpart outside the hole

(boundary between regions that are not touching). In this

case, pixels on either side of the boundary will match

equally well (or badly) region pixels outside the hole. At

the beginning, when the boundaries are straight, the prob-

ability of choosing one of the two regions will only depend

on the relative sizes of the two regions, larger regions being

picked more often. Similarly, when random initial filling-in

is used, the selection will depend on the size of the regions

around that part of the hole and the distance to the non-hole

parts. Overall, this will tend to create boundaries that

favour larger and closer regions, which is not unreasonable.

4 Results

We now present and discuss some results on images chosen

from [1], selected because they illustrate different aspects

of the performance and failures of our method, the latter to

highlight the failure modes.

We evaluate our method in a qualitative manner, unlike

others who proposed quantitative evaluations (e.g. [29]).

There are two reasons for this. One is that it is not clear that

the total cost of the reconstruction (how well each syn-

thesised pixel’s neighbourhood matches the image) reflects

the visual quality of the result. The second is that, even if

we had ground truth, there is no reason that a synthesised

image that is different from ground truth should not be

visually as acceptable. This is the difference between

image completion and inpainting, where one would expect

the reconstruction to be close to the ground truth (original,

perfect) image.

An example of reconstruction of structure is demon-

strated in Fig. 1 where the structure of regions inside the

hole match the surrounding regions, particularly for the tree

area. Compared with the same image, but without structure

(only texture synthesis, Fig. 1f), the structure in the hole

was not properly preserved, particularly in the bushes. The

tree line is however plausible, albeit somewhat repetitive. It

is more plausible than the bush area because the contrast

between trees and sky is greater than that between the

various shades of green. The repetitiveness comes from the

rather small number of tree line samples. This example is

topologically simple, especially because most of the trees

and bushes are seen as one region at the region connection

stage. This implies that only self-connections were created

(the sky area from the right of the trees to the top right of

the image and the bush-trees area from the right of the trees

to the right of the image), leaving a large unfilled area in

between. This area was randomly filled in from the sky and

bush-trees areas and improved to the given result.

Another example is shown in Fig. 6e where, without

structure, the region of the wall expanded into the grass

area resulting in unrealistic completion. However, with

structure (Fig. 6d), the boundaries between the grass and

wall regions is realistic. Note that the brickwork is well

reconstructed with regular spacing of the bricks as in the

original texture. This is partly due to the fact that one brick

in the texture is 12 pixels wide, just smaller than the

neighbourhood size. This is probably also due to the fact

that at the end of the synthesis, the best match is chosen,

therefore exactly replicating the pattern, although this

would need to be verified.

Figure 7 shows a case where the structure is not prop-

erly reconstructed. Because of the change in colour of the

edge of the pavement on either side of the hole, the two

corresponding areas are not recognised as one and are

therefore not connected. This left only self-connections of

the regions above and below, the rest being randomly fil-

led-in from the surrounding regions. Despite this, the two

regions corresponding to the pavement edge are correctly

created and the resulting structure looks plausible. As a

result, the synthesised texture also looks plausible with the

minor colour changes within each region being correctly

reproduced.

Figure 8 shows a failure of topology creation. Because

we only create boundaries in the hole that link HBR-BEs,

the vertical tube boundaries have not been propagated

upwards in the hole. If left like that, the wrong structure is

created. However, simply drawing two vertical lines to

close the tube upwards is enough to fix this problem.

Figure 9 shows an example of a failure due to the seg-

mentation. The regions on either side of the hole were too

different to create HBR connections across the hole, as

should have been created. The result is due to a combined

effect of more samples being taken from the grass areas

than the sky areas during random filling-in, resulting in

Fig. 6 Random initial filling in
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more of the grass areas being kept during synthesis, and the

grass-sky boundary just left of the hole going up, therefore

providing examples for the boundary going up in the hole.

The hard vertical boundary created across the sky in the

hole means that the texture did not link up correctly. If the

sky and grass areas had been segmented as single areas, or

recognised as being similar areas, this would not have

happened. A simple manual intervention to force the

desired HBR connections would have solved the problem.

In order to compare our method to other methods, we

used images from previous publications. Figure 10 shows

results on two of these images. They show more compli-

cated structures than the previous examples, the ELEPHANT

being diagrammatically shown in Fig. 5. In the case of the

ELEPHANT image, a plausible structure and texture were

created. The result is similar to that in [13, 23]. The BUNGEE

JUMPER image on the other hand shows a limitation of the

structure reconstruction. The two water areas on either side

of the hole are not detected as similar because of their

difference in colour. However, this was dealt with properly

(this is the same situation as for Fig. 7). The same does not

apply to the two areas below the house on either side of the

hole. These two areas were detected by the segmentation as

part of the water. Moreover, because the bush and water

areas were considered to be the same regions and because

there is more water than bush in the regions, the created

texture corresponds to water rather than bush, even where

clearly bushes should have been created. This is a case

where the segmentation is not good enough. However, this

could have been rectified using simple structure image

editing. The roof area is well reconstructed and favourably

compares to the results in [10, 41].

Finally, Fig. 11 shows three additional results on images

obtained from http://www.freefoto.com. These show that

our method can cope with a variety of structures and

textures.

(a) (b)

(c) (d)

Fig. 7 The PAVEMENT image

(image: 200 9 200,

neighbourhood: 15 9 15)
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5 Discussion, conclusions and future work

We have presented a method that fills in a hole left by the

removal of an undesired area in an image. Our method first

creates a structure in the hole that is then used as a con-

straint to guide the texture synthesis. The structure and

texture synthesis is done using an exemplar-based method

akin to simulated annealing. The method can create

structure that is realistic at all scales and texture that shares

the visual qualities of the exemplar, for both stochastic and

regular textures. This is due to the annealing provided by

our coarse-to-fine synthesis that combines the advantages,

without their disadvantages, of spatially variable random-

ness (to tackle different textures) and random selection of

matches (to prevent the replication of large areas).

Moreover, this provides an effect that is similar to that

provided by multi-scale methods. Indeed, large changes of

structure/texture happen at high levels of randomness,

which are then refined at lower levels of randomness. From

that point of view, this is similar to the effect changing one

pixel at coarse scales has on many pixels at finer scales.

This contributes to creating boundaries that match the

examples and are not only constrained by their extremities,

as in [22, 33].

Many publications mathematically express image com-

pletion as an optimisation problem and try to find the

global optimum in an efficient manner. Our simulated

annealing inspired method allows convergence to a mini-

mum that is not necessarily global (from the point of view

of the optimised objective function) but rather explores the

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 8 The TUBE image, and

close ups of the intersection of

the railing (image: 240 9 240,

neighbourhood: 15 9 15)
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solution space. We claim that the non-optimal solution is

not necessarily worse from a visual, qualitative view point

and in fact is possibly beneficial to offer randomness at

large scales and detailed texture at smaller scales.

The aim was to automatically, without high-level

knowledge about the content of the image, create a com-

pletion that is plausible. Figure 8 has shown that not

extending unmatched boundaries into the hole can have a

detrimental effect. Both [22, 33] do that and maybe this is

something that could be incorporated in our method as a

special case or by creating ‘ghost’ HBR-BEs. However, it is

not clear that the simple straight continuation of such

boundaries is always a good solution. It is possible that

occlusion analysis, such as in [18], could be used at the stage

of initialising the new boundaries in the hole. However, the

boundaries we use and create do not necessarily correspond

to object boundaries and vice-versa. Other cues than colour

and distance could also be used to match HBRs across the

hole, such as angle of their boundaries with that of the hole or

continuity of the boundaries of the candidate matches, to

possibly improve smoothness of the created boundaries. This

remains an open question and manual intervention might

well be the best solution as others have done [3].

The quality of the segmentation has an influence on the

result. The segmentation may fail by including irrelevant

regions or excluding relevant ones, affecting the initiali-

sation of the hole by copying pixels from irrelevant areas.

Also, segmenting by colour is not always equivalent to

segmenting by texture. If a segment contains several tex-

tures, degenerate texture could be synthesised that contains

pixels from the multiple textures without their spatial

consistency.

(a) (b)

(c) (d)

(e)

Fig. 9 The TREE image (from

http://www.freefoto.com (refer-

ence 15-15-44), image:

260 9 174, neighbourhood:

11 9 11)
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Other segmentation methods could have been used. The

segmentation needs to produce regions of sufficient size

that enough examples are available to copy from. Some

methods will create non-connected regions. This implies

that the matching of regions across the hole and their rel-

abelling (Sects. 3.1 and 3.2) might not be necessary with

such methods.

If the hole cuts identifiable objects in two, it is very

unlikely that our method (like most methods) will be able

to reconstruct the missing part, unless there are other

examples of the same object. Similarly, if the image con-

tains repeating structures and colours (cityscape seen from

the sky for example) and the two opposite sides of distinct

elements are separated by the hole, then it is likely that a

single element will be created because of the lines created

across the hole.

By limiting ourselves to straight lines at the initial stage

of the structure creation, it is possible that some regions

that could have been linked with curves have been elimi-

nated from the process because the line goes outside the

hole. In [22] this situation is dealt with by forcing curves to

be in the hole. It is not clear what happens in such a sit-

uation in [33]. It is possible that using smooth curves to

create the initial topology could extend the range of images

that can be dealt with, possibly with Euler’s elastica [31].

Our method implicitly performs a form of belief prop-

agation, similar to the method described in [23], but

without the explicit message passing. This is because

updating one pixel at one iteration will influence its

neighbouring pixels at the following iterations (therefore

implementing the implicit message passing). The outside of

the hole being static, it corresponds to absolute belief that

is propagated inwards as the iterations progress. Although

[23] do not first segment the image as we do, the results of

message passing priority that they give (e.g. [23, Fig. 10])

at the beginning of the process roughly correspond to one

of the areas (and specifically its boundary) that our struc-

ture reconstruction could have produced. The belief is

being propagated first to a specific reconstructed region and

its boundary, which has the effect of facilitating the crea-

tion of structure. This is done implicitly, while we do this

explicitly, which gives us the advantage of allowing user

interaction to fix any errors that may arise.

Results show that the proposed synthesis method performs

well for label images, creating structure that can be mostly

straight and/or horizontal (e.g. Fig. 6) but also geometrically

more complex in larger holes (e.g. Fig. 1), matching exem-

plars. It would be interesting to assess how well the synthesis

performs for texture compared to recent methods, and in

particular assess the importance of the neighbourhood size.

Our guess is that the proposed coarse-to-fine approach alle-

viates the need for large neighbourhoods, but extensive

experimentation would be needed to verify this.

Our current implementation is far from being optimised.

Its complexity is of the same order as that of [15],

assuming the number of iterations is small. More specifi-

cally, the complexity of synthesising one structure or tex-

ture pixel in one iteration is O(nN), where n is the number

of pixels in the neighbourhood and N the number of pos-

sible matches outside the hole. The current implementation

considers all pixels outside the hole. It would therefore be

more efficient to index pixels based on the region they

belong to and only consider relevant pixels, rather than

going through all pixels and discarding the ones that do not

belong to the correct region. Since only the regions sur-

rounding the hole can exist in the hole, a significant

reduction of the search space could also be attained by only

using these regions as the source for potential matches.

(a) (b) (c) (d)

Fig. 10 The ELEPHANT (top,

[13], Copyright � 2003,

Association for Computing

Machinery, Inc., image:

384 9 256, neighbourhood:

15 9 15) and BUNGEE JUMPER

(bottom, [10], image:

206 9 308, neighbourhood:

21 9 21) images: a original

with hole, b segmentation,

c structure and d result
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Similarly, for the structure image, when neighbourhoods

are homogeneous (single label) it is unlikely that they will

change. These could be ignored and not synthesised.

Many of the methods to accelerate exemplar-based

methods could be used to accelerate our method. In par-

ticular, the Approximate Nearest-Neighbour Field method

proposed in [3] could be adapted by retaining the multiple

solutions explored in our list of possible matches. This

would provide an incomplete, yet possibly sufficient, search

to replace our exhaustive search. Early termination of dis-

tance computation for new patches could also be used as in

[3]. Finally, a GPU implementation could also be done

given that the algorithm is inherently parallel (e.g. [26]).

Neighbourhood matching could be done using more

information than just labels at the structure synthesis stage

or colour at the texture synthesis stage. Other authors have

used a variety of filters [6, 11, 17] either to further con-

strain the match, to take into account geometrical infor-

mation, or to force some effect. Although this adds

complexity, it could help further in creating structure and

features in the texture.
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