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Abstract In many classification problems, neighbor data

labels have inherent sequential relationships. Sequential

learning algorithms take benefit of these relationships in order

to improve generalization. In this paper, we revise the multi-

scale sequential learning approach (MSSL) for applying it in

the multi-class case (MMSSL). We introduce the error-cor-

recting output codesframework in the MSSL classifiers and

propose a formulation for calculating confidence maps from the

margins of the base classifiers. In addition, we propose a

MMSSL compression approach which reduces the number of

features in the extended data set without a loss in performance.

The proposed methods are tested on several databases, showing

significant performance improvement compared to classical

approaches.

Keywords Stacked sequential learning � Multi-scale �
Error-correct output codes (ECOC) � Contextual

classification

Abbreviation List

X Set of samples

Y Set of labels

x A sample

y A label

h(x) A classifier

y0 A prediction from a classifier

y00 A final prediction from a chain of

classifiers

xext Extended set

J Neighborhood relationship function

z Neighborhood model features

q Neighborhood

h Neighborhood parameterization

w Number of elements in the neighborhood

window

s Number of scales

c Set of different classes in a multi-class

problem

F̂ðx; cÞ A prediction confidence map

N Number of classes in a multi-class

problem

n Number of dichotomizers

r Parameter of a Gaussian filterP
Set of scales defined by r parameters

b A dichotomizer

M ECOC coding matrix

Y A class codeword in ECOC framework

X A sample prediction codeword in

ECOC framework

mx Margin for a prediction of sample x

b Constant which governs transition in a

sigmoidean function

t Number of iterations in an ADABoost

classifier

d A soft distance

a Normalization parameter for soft distanced
gr A multidimensional isotropic gaussian

filter with zero mean and r standard

deviation
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P A set of partitions of classes

P A partition of groups of classes

c A symbol in a partition codeword

C A partition codeword

R The mean ranking for each system

configurations

E The total number of experiments

k The total number of system

configuration

vF
2

Friedman statistic value

1 Introduction

Standard classification tasks commonly assume that sam-

ples are independently and identically drawn from a dis-

tribution (i.i.d) of samples X and their labels Y. However,

classification problems in real world databases can break

this i.i.d. assumption. For example, consider the case of

object recognition in image understanding. In this case, if

one pixel belongs to a certain object category, it is very

likely that neighboring pixels also belong to the same

object, with the exception of the borders.

In this scope, sequential learning [3] takes benefit of

these relationships making easier the classification task.

Here, the training data consists of sequences of pairs

(x, y) where neighboring examples on a support lattice

display some kind of coherence. Usually, sequential

learning applications consider one-dimensional support

lattice, i.e. when data samples belong to a sequence of text,

sound or time. Some examples of applications where this

kind of support lattices appears are: speech recognition,

activity or gesture recognition form motion data, stock

market prediction, etc. This kind of relationship is also

frequent in 2-D images (two-dimensional support lattice),

volume images or videos (three-dimensional support lat-

tice), and multiple sensor data (multi-dimensional support

lattice).

In the literature, sequential learning has been addressed

from different perspectives. From the point of view of

graphical models, hidden Markov models or conditional

random fields (CRF) [4, 7, 10, 15, 23] are used for inferring

the joint or conditional probability of the sequence.

Another point of view is to use graph transformer net-

works. In [24], a graph is used to represent segmentation

hypotheses for an image representing a sequence of digits.

Therefore, the input and output are considered as a graph.

Then, it looks for the transformation that minimizes a loss

function of the training data using a Neural Network. From

the point of view of meta-learning, sequential learning has

been addressed by means of sliding window techniques,

recurrent sliding windows [3], or stacked sequential

learning (SSL) [6]. In the case of SSL, the meta-learning

scheme is as follows: first a base classifier is used over the

samples to produce predictions. Then, a window among the

predictions is applied and it is concatenated with the ori-

ginal data, building an extended dataset. Finally, a second

base classifier predicts the final output from the extended

dataset. In [16], it is identified that the main step of the

relationship modeling is how this extended dataset is cre-

ated. In consequence, a general framework for the SSL

called multi-scale stacked sequential learning (MSSL) is

formalized, where a multi-scale decomposition is used in

the relationship modeling step, showing large improvement

with respect to base SSL.

Usually, applications need classifiers that are able to

deal with multiple classes. However, in the case of

sequential learning, few of the previous approaches are

able to deal with the multi-class case. One case of multi-

class extension is the CRF using GraphCut with alpha-

expansion [13]. Another approach is to decompose the

multi-class problem into a set of binary-class problems and

combine them in some way. In this sense, the error-correct

output codes (ECOC) [2] framework is a well-studied

methodology that is used to transform multi-class problems

to an ensemble of binary classifiers. The fundamental

issues here are: how this decomposition can be done in an

efficient way, and how a final classification can be obtained

from the different binary predictions. In the ECOC

framework, these two issues are defined as coding and

decoding phases in a communication problem. During the

coding phase a codeword is assigned to each label in the

multi-class problem. Each bit in the codeword identifies the

membership of such class for a given binary classifier. The

most used coding strategies are the one-versus-all [5],

where each class is discriminated against the rest and one-

versus-one [1], which splits each possible pairs of classes.

The decoding phase of the ECOC framework is based on

error-correcting principles, where distances measurements

between the output code and the target codeword are the

strategies most frequently applied. Among these, Hamming

and Euclidean measures are the most used [14].

In this paper, we propose an efficient extension of MSSL

to the multi-class case (MMSSL) based on the ECOC

framework. One of the key strength of our proposal is the

fact that any classifier could be used in any of the two steps

of the MSSL. The ECOC framework allows for that, thus it

makes possible to use any kind of classifier, disregarding

the fact of being multi-class or not. We revise the general

stacked sequential learning scheme adapting it to both

binary-class and multi-class problems. The main drawback

of MMSSL is that the number of features in the extended

set linearly increases with the number of classes. As a

consequence, a novel feature compression approach for
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mitigating this problem is presented. Experiments on sev-

eral databases are performed, including images, text, and

sensor data, showing high classification accuracies and

better performance than classical approaches. The termi-

nology used during the rest of the paper is summarized in

abbreviation list.

The paper is organized as follows: In Sect. 2, we review

the original MSSL for the binary-class case and the ECOC

framework. In Sect. 3 we adapt the MSSL steps to MMSSL

and face the problem of feature cardinality in the extended

set by means of a compression approach. Experiments and

results of our methodology are shown in Sect. 4. Finally,

Sect. 5 concludes the paper.

2 Background

This work holds on two frameworks, one for capturing the

sequential relationship among samples and the other for

facing multi-class classification problems. The former is

the MSSL [16] which is a generalization of the stacked

sequential learning [6]. The later is the ECOC framework,

which is a general approach to reduce multi-class problems

to an ensemble of binary classifiers. Each of these meth-

odologies are explained in detail below.

2.1 Multi-scale stacked sequential learning

Sequential learning assumes that samples are not inde-

pendently drawn from a joint distribution of the data

samples X and their labels Y. Thus, the training data is

considered as a sequence of pairs example and its label

(x, y), such that neighboring examples exhibit some kind

of relationship [3]. In [6], an approach of sequential

learning that uses a meta-learning framework [9] is pre-

sented. Basically, the SSL scheme is as follows: first, a

base classifier is trained and tested with the original data.

Then, an extended data set is created which joins the ori-

ginal training data features with the predicted labels pro-

duced by the base classifier considering a window around

the example. Finally, another classifier is trained with this

new feature set. Here the relationship between pairs (x, y)

is expressed by this new feature set. The main drawback of

this approach is that the width of the window around the

sample determines the maximum length of interaction

among samples. Therefore, the longer the window, the

further the interaction considered, but also the extended

data set is increased in terms of features. This makes this

approach not suitable for problems that have more than one

dimension sequential relationships. In [3], the main prob-

lems of sequential learning are highlighted: (a) How to

capture and exploit sequential correlations; (b) how to

represent and incorporate complex loss functions; (c) how

to identify long-distance interactions; and (d) how to make

sequential learning computationally efficient. In [16], all

these points are specifically analyzed and it is proposed a

generalization of the SSL [6] by emphasizing the key role

of neighborhood relationship modeling. For this aim, a

block J is included in the pipeline of the basic sequential

stacked learning as shown in Fig. 1. Therefore, the gen-

eralized stacked sequential Learning process is as follows:

A classifier h1(x) is trained with the input data set (x, y) and

the set of predicted labels y0 is obtained. Next block defines

the policy for creating the neighborhood model of the

predicted labels. It is represented by z ¼ Jðy0; q; hÞ : R !
Rw; where J is a function that captures the data interaction

with a model parameterized by h in a neighborhood q.

Then, the output of J(y0, q, h) is joined with the

original training data creating the extended training set

(xext, y) = ((x, z), y). This new set is used to train a second

classifier h2(xext) with the aim of producing the final

predictiony00.
In [16], MSSL is presented where function Jðy0; q; hÞ

uses a multi-scale decomposition [11]. This function is

proved to be effective in several domains (1D and 2D

sequential relationships). It consists of two steps: first the

multi-scale decomposition answers how to model the

relationship among neighboring locations, and second, the

sampling that answers how to define the support lattice to

produce the final set z. Figure 2 shows an example of

Fig. 1 Generalized stacked sequential learning

Fig. 2 Example of Jðy0; q; hÞ function. Multi-scale decomposition

and sampling producing the output z for a particular sample of the

predicted labels image
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multi-scale decomposition of an image of predicted labels.

In this case a gaussian filter is used for the multi-scale

decomposition, increasing the r parameter of the gaussian

in each scale. Also, it shows the pattern sampling around an

example. This pattern can be represented by a set of dis-

placement vectors that defines the neighborhood. Each

vector is also increased proportionally to the r parameter in

each scale. The vector z resulting of this function is a

w 9 s-dimensional value, where w is the number of ele-

ments in the support lattice of the neighborhood q and

s express the number of scales used in the multi-scale

decomposition. In the case of defining the neighborhood by

means of a window, w is the number of elements in the

window. This approach is able to capture sequential rela-

tionships among data, as well as to capture long-range

interactions in the label field.

2.2 Error-correcting output codes

ECOC are a general framework to combine binary prob-

lems to address the multi-class problem [2, 14]. ECOC

framework consists of two phases: a coding phase, where a

codeword is assigned to each class of a multi-class prob-

lem, and a decoding phase, where, given a test sample, it

looks for the most similar class codeword. Originally [2],

a codeword was a sequence of bits represented by

{-1, ?1}, where each bit identifies the membership of

the class for a given binary classifier (dichotomizer).

Afterwards [1], a third symbol (the zero symbol) was

introduced, which means that a particular class is not

considered by a given classifier. Given a set of N classes to

be learned in an ECOC design, n different bipartitions

(groups of classes) are formed, and n dichotomizers over

the partitions are trained. As a result, a codeword Yc; c 2
1; . . .;N½ � of length n is obtained for each class c.

Arranging the codewords as rows, a coding matrix M 2
f�1; 0;þ1gN�n

is defined. The most used coding strategy

is the one-versus-all [5], where each class is discriminated

against the rest, obtaining a codeword of length equal to the

number of classes. Figure 3 shows an example of one-

versus-one coding matrix, which considers all possible

pairs of classes, with a codeword length of
NðN�1Þ

2
: The

matrix is coded using ten dichotomizers fb1; . . .; b10g for a

5-class problem. The white regions are coded by 1 (con-

sidered as one class by the respective dichotomizer bj, the

dark regions by -1 (considered as the other class), and the

gray regions correspond to the zero symbol (classes that are

not considered by the respective dichotomizer bj).

During the decoding process, applying the n binary

classifiers, a code X is obtained for each data sample in the

test set. This code is compared to the base codewords

ðYc; c 2 ½1; . . .;N�Þ of each class defined in the matrix

M. The data sample is then assigned to the class with the

closest codeword. In order to find the closest codeword, the

decoding strategies most frequently used are Hamming and

Euclidean measures [21].

3 MMSSL: multi-class multi-scale stacked sequential

learning

In order to extend the generalized stacked sequential

learning scheme to the multi-class case, it is necessary that

base classifiers h1(x) and h2(xext) can deal with data

belonging to N classes instead of just two. This can be

achieved using the ECOC framework explained before.

Apart from the extension of the base classifiers, the

neighborhood function Jðy0; q; hÞ has also to be modified.

Figure 4 shows the MMSSL scheme presented in this

work. Given an input sample x; the first classifier produces

not only a prediction, but a measure of confidence F̂ðx; cÞ
for belonging to each class defined in c 2 ½1; . . .;N�: These

confidence maps are the input of the neighborhood function

JðF̂ðx; cÞ; q;RÞ: This function performs a multi-class

decomposition over the confidence maps into s scales

defined by R: Over this decomposition, a sampling q
around each input example is returned, producing the z

vector. The extended data set is built up using the original

Fig. 3 ECOC one-versus-one coding matrix

Fig. 4 Multi-class multi-scale stacked sequential learning and detail

of function JðF̂ðx; cÞ; q;RÞ with the compression step between multi-

scale decomposition and sampling
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samples as well as the set of features in z. Finally, having

the extended data set xext as input, the second classifier will

predict to which class the input sample x belongs to. In the

next two subsections we explain in detail this process. In

the last subsection, we propose a compression approach for

encoding the resulting confidence maps in order to reduce

them to log2N without degrading the performance of the

second classifier. Figure 4 shows the detail of function

J once added the compression step between multi-scale

decomposition and sampling.

3.1 Extending the base classifiers

For training the first base classifier h1ðxÞ; where x is a

sample of N possible classes, an ECOC coding strategy is

defined. Based on this strategy, we obtain a codeword

Yc; c 2 1; 2; . . .;N½ � of length n for each class. The symbols

in the codeword �1; 1; 0f g indicate whether this class

belongs to one partition or another or if it should not be

considered at all. The length of the codeword determines

the number of dichotomizers (binary classifiers) that has to

be trained. The matrix M defines for each dichotomizer

which binary partition has to be performed on the training

set. Given a test sample x; each dichotomizer produces a

prediction 1;�1½ �; forming a new codeword X of length n.

The final predicted class is the closest codeword Yc to

codeword X : A distance measure between codewords can

be used for determining the closest class.

If the dichotomizers only produce binary predictions, all

the predictions within X have the same importance.

Instead, if the dichotomizers can produce a measure of

confidence on its predictions, a more fine-grained distance

between codewords can be obtained. Unfortunately, not all

kind of classifiers can give a confidence for its predictions.

However, classifiers that work with margins such as Ada-

Boost or SVM can be used [8]. In these cases, it is nec-

essary to convert the margins used by these classifiers to a

measure of confidence with values between the codeword

interval [-1, 1]. For example, in the AdaBoost case, we

apply a sigmoid function that normalizes AdaBoost mar-

gins from the interval ½�1;1� to [-1, 1], by means of the

following equation,

f ðbiðxÞÞ ¼
1� e�bmx

1þ e�bmx
;

where mx is the margin of the predicted label given by one

of the dichotomizers for the example x, and a constant that

governs the transition b ¼ � lnð0:5�Þ
0:25t

; which depends on the

number of iterations t that AdaBoost performs, and an

arbitrary small constant �: We apply this equation for each

dichotomizer forming a new codeword X of length

n, where all the symbols 2 R:

Once we have a normalized codeword, we use a soft dis-

tance d for decoding, i.e. we compare the codeword X with

each codeword Yc; c 2 ½1; . . .;N� defined in the matrix M.

These distance measures can be seen as a prediction confi-

dence measure for each class, once we normalize them to the

range [0,1]. Therefore, given a set of possible labels ci; i 2
½1; . . .;N�;we define the membership confidences as follows:

F̂ðy ¼ cijxÞ ¼ e�adðY1;XÞ; 8i 2 ½1; . . .;N�;

where d is a soft distance such as the Euclidean one, and a
depends on d. By applying this to the all data samples in X we

define the confidence map for each class as expressed in Eq. 1:

F̂ðx; cÞ ¼ fF̂ðy ¼ c1jxÞ; . . .; F̂ðy ¼ cN jxÞg; 8x 2 X:

ð1Þ

3.2 Extending the neighborhood function J

We define the neighborhood function J in two stages: (1) a

multi-scale decomposition over the confidence maps

F̂ðx; cÞ and (2) a sampling performed over the multi-scale

representation. This function is extended in order to deal

with multiple classes. Now it is formulated as follows:

z ¼ JðF̂ðx; cÞ; q;RÞ:

Starting from the confidence maps, we apply a multi-scale

decomposition upon them, resulting in as many

decomposition sequences as labels. For the decomposition

we use a multi-resolution Gaussian approach. Each level of

the decomposition (scale) is generated by the convolution of

the confidence map by a Gaussian mask with standard

deviation r. In this way, the bigger r is, the longer

interactions are considered. Therefore, at each level of

decomposition all the points have information from the rest

according to the sigma parameter. Given a set of

R ¼ fr1; . . .; rsg 2 R
þ and all the predicted confidence

maps F̂ðx; cÞ; each level of the decomposition si; i 2
½1; . . .; s� is computed as follows:

F̂siðx; cÞ ¼ griðxÞ � F̂ðx; cÞ; 8i 2 ½1; . . .; s�;

where griðxÞ is defined as a multidimensional isotropic

gaussian filter with zero mean:

griðxÞ ¼ 1

ð2pÞd=2r1=2
i

e�
1
2
xT r�1

i x:

Once the multi-scale decomposition is performed, we

define the support lattice z. This is, the sampling over the

multi-scale representation which forms the extended data.

Our choice is to use a scale-space sliding window over

each label multi-scale decomposition. The selected window

in d-dimensional space has a fixed radius with length

defined by q in each dimension and with origin in the

current prediction example. Thus, the elements covered by

Pattern Anal Applic (2015) 18:247–261 251
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the window is w = (2q ? 1)d around the origin. Then, for

each scale si considered in the previous decomposition the

window is stretched in each direction using a displacement

proportional to the scale we are analyzing. This displace-

ment at each scale forces that each point considered around

the current prediction has very small influence from pre-

vious neighbor points. In this way, the number of features

of z appended to the input data set is equal to ð2qþ 1Þd�s�c:
According to this, we can see that the extended data set

increases with the number of classes. This can produce a

scalability problem, since the second classifier has to deal

with large feature sets.

3.3 Extended data set grouping: a compression

approach

The goal of grouping the extended data set is to compress its

number of features without losing significant performance.

Using our MMSSL approach, we can see that the size of the

extended set depends on the number of classes, the number of

scales, and the number of samples around each example. We

can choose the number of samples and scales, but the number

of classes is problem dependent. Therefore, for reducing the

number of confidence maps, we add a compression process

between the multi-scale decomposition and the sampling

process as shown in Fig. 4. This compression is done fol-

lowing information theory by means of partitions.

Let P be a set ffP1
1;P

2
1g; . . .; fP1

j;P
2
jgg of partition

groups of classes and c ¼ fc1; . . .; cNg the set of all the

classes, so that for any j; P1
j � c; P2

j � c jP1
j [ P2

j ¼ c; and

Pj
1 \ Pj

2 = [. The confidence maps are grouped using the

elements on P: We have defined two different ways of

combining the partitions: using binary compression or

using ternary compression. Let the confidence map F̂sk of a

certain scale sk; k 2 ½1; . . .; s� be expressed as follows,

F̂skðx;PjÞ ¼
XN

i

cijF̂
skðx; ciÞ; ð2Þ

where

cij ¼
a if ci 2 P1

j

b if ci 2 P2
j

�

for all the sets of partitions Pj; j 2 ½1; . . .; j� inP; being a = 0

and b = 1 in the case of binary compression and a = -1 and

b = 1 in the case of ternary compression (we choose only

{ -1, 1} values from the ternary set { -1, 0, 1}).

We use a partition strategy for P which produces a

minimum set of partitions P ¼ ffP1
1;P

2
1g. . .; fP1

j;P
2
jgg;

where j ¼ dlog2 jcje; being dxe ¼ minfn 2 Z j n� xg: Our

strategy builds the partitions assigning an unique binary

code of length equals to number of partitions in P for each

class. For example in Fig. 5 a 5-class problem

c = {c1, c2, c3, c4, c5} is illustrated. We can reduce the

problem to a set of three partitions P ¼ ffP1
1 ¼

fc2; c3g;P2
1 ¼ fc1; c4; c5gg; ffP1

2 ¼ fc1; c4g; P2
2 ¼ fc2;

c3; c5gg; ffP1
3 ¼ fc2; c4g;P2

3 ¼ fc1; c3; c5gg: Therefore,

in the binary case, the assigned codes for each partition

are C1 ¼ f1; 0; 0; 1; 1g; C2 ¼ f0; 1; 1; 0; 1g; and C3 ¼
f1; 0; 1; 0; 1g; and in the ternary case, the assigned codes

are C1 ¼ f1;�1;�1; 1; 1g; C2 ¼ f�1; 1; 1;�1; 1g; and

C3 ¼ f1;�1; 1;�1; 1g: Thus, applying Eq. 2, we obtain

the likelihood maps for each partition, P1, P2, P3. As it is

shown in Fig. 5, in the case of binary compression, the

classes in Pi
1 for any partition i are not considered, while in

the case of ternary compression, the classes in Pi
1 and Pi

2

for any partition i are combined.

Following this compression approach, now the support

lattice z is defined over F̂Rðx;PÞ: This is, applying Eq. 2

over all the scales defined by R ¼ fr1; . . .; rsg: Therefore,

the number of features in z is reduced from ð2qþ 1Þd s c to

ð2qþ 1Þd s dlog2 ce Moreover, this compression approach

in general comes in a reduction of training time of the

second classifier. For example, if we use a very simple

linear classifier, then the training time will decrease in
c

dlog2 ce ; where c is the number of classes.

4 Experiments and results

Before presenting the results, data, methods and validation

protocol for each experiment are discussed. The results are

presented in two aspects, (a) statistical results, where

Fig. 5 5-class likelihood maps compressed to three, using partitions.

Binary approach is represented by Table 1. The symbols used are 0

and 1. Ternary approach is represented by Table 2. The symbols used

are -1 and 1. Applying Eq. 2 we obtain the aggregated likelihood

maps P1;P2;P3 2 P: In the case of binary compression, any class

marked with zero in a codeword C is not considered, while in the case

of ternary compression, all classes are aggregated according to each

of the codewords C:
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different measures are computed and significance tests are

performed on different datasets, and (b) qualitative results,

where concrete results are particularly analyzed for a more

intuitive understanding of the behavior of each method.

4.1 Experimental settings

– Data: we test our multi-class methodology performing

nine different experiments out from four databases:

1. Sensor Motion data database: The sensor motion

database [20] is a data set of accelerometer sensor

runs from 15 different people performing certain

activities. Each accelerometer sample is labeled as

one of five different activities, namely walking,

climbing stairs, standing idle, interacting and

working. The spatial relationship in label space is

1D. There are two different scenarios. Sequential

scenario is where all the people are doing the

activities in the same order (motion sequential

scenario). Random scenario is where all the people

are performing the activities in random order

(motion random scenario). We also performed a

third experiment for benchmark purposes in which

there are only activities from one person (motion

one person).

2. FAQ database [4, 6]: The FAQ database is a set of

frequented asked questions pages from Usenet.

There are 48 annotated pages from several topics.

Each line in a page is labeled as (0) header, (1)

question, (2) answer, or (3) tailing. There are 24

boolean features characterizing each line. The

spatial relationship in label space is 1D.

3. IVUS image database [17]: It contains images from

intravascular ultrasound (IVUS). They are a set of

IVUS frames manually labelled. 8 classes are

considered: (1) blood, (2) plaque, (3) media, (4)

media adventitia, (5) guide-wire, (6) shadowing,

(7) external tissue, and (8) calcium. The spatial

relationship in label space is 2D. There are 29

textural features in total extracted from IVUS data.

4. e-trims database [12]: The e-trims database is

comprised of two image datasets, e-trims 4-class

with four annotated object classes and e-trims

8-class with eight annotated object classes. There

are 60 annotated images in each of the dataset. The

object classes considered in 4-class dataset are: (1)

building, (2) pavement/road, (3) sky, and (4)

vegetation. In 8-class dataset the object classes

considered are: (1) building, (2) car, (3) door, (4)

pavement, (5) road, (6) sky, (7) vegetation, and (8)

window. Additionally, for each database we have a

background class (0) for any other object. All

images are resized proportionally to 150 pixels

height. Train images are stratified sampled, taking

3000 pixels. We have performed experiments with

two different set of features: RGB representation of

each pixel, and RGB plus HOG (histogram of

oriented gradient [18]) with 9 bins, ending up with

12 features for sample. The spatial relationship in

label space is 2D.

– Methods: We test all the databases with four different

configurations of our MMSSL methodology. Also, we

test with Real AdaBoost [22] and CRF multi-label

optimization through GraphCut a-expansion [13] as

baseline experiments. The settings for all the MMSSL

configurations are the same, the only difference is the

way the extended data set is generated. We have used

as base classifier a Real AdaBoost ensemble of 100

decision stumps. For the sake of reproducibility, the

coding strategy for the ECOC framework in each

classifier is one-versus-one and the decoding measure is

Euclidean distance. Moreover, this standard formula-

tion has shown to yield good accuracies and it is

independent of any parameterization [14]. The neigh-

borhood function performs a Gaussian multi-resolution

decomposition in 4 scales, using R ¼ f1; 2; 4; 8g;
except in IVUS database where we used 6 scales R ¼
f1; 2; 4; 8; 16; 32g due to the images dimensions. In 1D

databases, we used w = 7 elements in both directions

of the neighborhood, while in 2D databases we used

just the surrounding points, i.e. w = 1. Summarizing,

the different experiments we have performed are:

1. MMSSL using labels. It uses the MMSSL frame-

work using only the predicted labels from the first

classifier as input for neighborhood function.

2. MMSSL using confidences. It uses the MMSSL

framework using the confidence maps for all the

classes as input for neighborhood function.

3. MMSSL using compression approach with binary

matrix: It uses the MMSSL framework using a

compression over the confidence map. The com-

pression matrix uses binary values 0; 1f g:
4. MMSSL using compression approach with ternary

matrix. It uses the MMSSL framework using a

compression over the confidence map. The com-

pression matrix uses ternary values �1; 1f g:
5. AdaBoost. Uses only one AdaBoost classifier,

without taking into account the neighborhood

relationship. Used as baseline experiment.

6. Multi-label optimization. It uses multi-label opti-

mization via a-expansion. We have applied the

a-expansion optimization, using the confidence

maps for each class obtained from the first
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classifier. For the neighborhood term, we use the

intensity between the point and its neighbors for

each direction defined in the database.

– Validation: For final prediction, we use one-leave-out

in sensor motion database, whereas in FAQ, IVUS and

E-trims databases we use 5, 10 and 6 fold cross-

validation, respectively. For each training fold, the

base classifier h1(x) uses ten-fold cross-validation for

predicting the labels of the training set, which

produces the confidence maps used later for the

second classifier h2(x). We measure the results in

terms of the accuracy, and the mean of overlapping,

recall, and precision from a N 9 N confusion matrix,

computed as follow: accuracy ¼
PN

i
TPiPN

i
ðTP+ FP + FNÞi

;

overlappingi ¼ TPi

ðTP+ FN+ FPÞi
; recalli ¼ TPi

ðTP + FNÞi
;

and precisioni ¼ TPi

ðFP + TPÞi
; where TPi means the

predictions correctly classified in the class i, FPi

means the predictions misclassified as class i and FNi

means the actual class i predictions misclassified as

any other class. For comparing the results obtained

from the different experiments we have used statistic

tests: the Friedman test for checking the non-random-

ness of the results and the Nemenyi test for checking

if one of the configurations can be statistically singled

out [19].

4.2 Numerical results

Tables 1, 2, 3, 4, 5, 6, 7 show accuracy, overlapping,

recall, and precision averaged for each experiment. Best

results are marked in bold. The tables show similar ten-

dency of the different classifiers results for different dat-

abases. Non-sequential methods such AdaBoost give the

poorest accuracies. Multi-label optimization using Graph-

Cut achieves better results, specially in 2D databases.

Finally, all methods based on MMSSL give the best results.

Usually, using just predictions it leads to worse results than

using confidence maps.

It is also remarkable that by using compression tech-

niques (binary and ternary coding), as we found in our

experiments, the training time is at least halved with

respect to standard approach, while the global accuracy is

not significantly degraded. In order to compare the per-

formances provided for each of theses strategies, Table 8

shows in the mean rank of each strategy considering the

accuracy terms of the nine different experiments. The

rankings are obtained estimating each particular ranking ri
j

for each data sequence i and each system configuration

j, and computing the mean ranking R for each

Table 1 Result figures for database motion sequential scenario

Accuracy Overlapping Recall Precision

ADABoost 0.5771 0.3142 0.4419 0.4504

GraphCut 0.5766 0.3129 0.4404 0.4489

Labels 0.6403 0.4766 0.6079 0.6516

Standard 0.7069 0.5905 0.7048 0.8098

SublinealBinary 0.7361 0.6021 0.7427 0.7914

SublinealTernary 0.7026 0.5648 0.6843 0.7638

Table 2 Result figures for database motion random scenario

Accuracy Overlapping Recall Precision

ADABoost 0.5771 0.3142 0.4419 0.4504

GraphCut 0.5766 0.3129 0.4404 0.4489

Labels 0.5951 0.3833 0.5292 0.5375

Standard 0.7109 0.4365 0.552 0.5867

SublinealBinay 0.7305 0.4677 0.5912 0.6266

SublinealTernary 0.6937 0.4392 0.5748 0.6159

Table 3 Result figures for database motion one person

Accuracy Overlapping Recall Precision

ADABoost 0.7607 0.553 0.6805 0.715

GraphCut 0.7888 0.5865 0.7043 0.7654

Labels 0.879 0.7489 0.8372 0.8736

Standard 0.902 0.793 0.8792 0.8824

SublinealBinary 0.8571 0.7133 0.8125 0.8458

SublinealTernary 0.8796 0.7477 0.8395 0.8652

Table 4 Result figures for database FAQ

Accuracy Overlapping Recall Precision

ADABoost 0.8552 0.2392 0.2781 0.3906

GraphCut 0.858 0.2355 0.2718 0.4427

Labels 0.8906 0.4346 0.4961 0.6675

Standard 0.8866 0.5125 0.5627 0.8122

SublinealBinary 0.8786 0.4809 0.5275 0.7649

SublinealTernary 0.8998 0.5628 0.6277 0.8067

Table 5 Result figures for database IVUS, using 6 scales

Accuracy Overlapping Recall Precision

ADABoost 0.6605 0.3127 0.422 0.4978

GraphCuts 0.6748 0.3102 0.4175 0.4654

Labels 0.6789 0.3359 0.4435 0.5098

Standard 0.7199 0.3764 0.4842 0.5555

SublinealBinary 0.684 0.3379 0.4457 0.5205

SublinealTernary 0.7006 0.3544 0.4618 0.5345
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configuration as Rj ¼ 1
E

P
i r

j
i ; where E is the total number

of experiments.

In order to reject the null hypothesis that the measured

ranks differ from the mean rank, and that the ranks are

affected by randomness in the results, we use the Fried-

man test. The Friedman statistic value is computed as

follows:

v2
F ¼

12E

kðk þ 1Þ
X

j

R2
j �

kðk þ 1Þ2

4

" #

:

In our case, with k = 6 system configurations to compare,

vF
2 = 35.79. Since this value is undesirable conservative,

Iman and Davenport [19] proposed a corrected statistic:

FF ¼
ðN � 1Þv2

F

Eðk � 1Þ � v2
F

:

Applying this correction we obtain FF = 31.11. With six

methods and nine experiments, FF is distributed according

to the F distribution with 5 and 40 degrees of freedom. The

critical value of F(5, 40) for 0.05 is 2.44. As the value of

FF = 31.11 is higher than 2.44 we can reject the null

hypothesis. Once we have checked for the non-randomness

of the results, we can perform a post hoc test to check if

one of the configurations can be statistically singled out.

For this purpose we use the Nemenyi test. The Nemenyi

statistic is obtained as follows:

CD ¼ qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk þ 1Þ

6E

r

:

In our case with k = 6 system configurations to compare

and E = 9 experiments (data configurations) the critical

value for a 90 % of confidence is CD = 1.27. In Fig. 6 we

can see a graphical representation of this post-hoc test. As

the ranking of the MMSSL Standard method intersects with

both sub-lineal approaches ranks for that value of the

CD, we can state that MMSSL using confidences outper-

forms the rest of the methods in the presented experiments.

Moreover, it reveals that among compressed and non-

compressed MMSSL strategies statistically significant

differences do not exist. This fact reinforces our idea of

grouping features without losing performance is feasible.

The main advantage for using the compression approach is

that by reducing the number of features in the extended

dataset, the time of the learning phase for the second

classifier is reduced. Therefore, the MMSSL framework

scales sublinearly in feature space with the number of

classes without a loss in generalization.

4.3 Qualitative results

In this section we highlight general observations compar-

ing ADABoost, multi-label optimization GraphCut and our

MMSSL approach. Figure 7 shows results in 1D motion

database. The rest of figures shows results in 2D databases,

Table 6 Result figures for database ETRIMS 4 classes RGB and

HOG

Accuracy Overlapping Recall Precision

RGB

ADABoost 0.7274 0.3612 0.4351 0.5334

GraphCuts 0.7283 0.3435 0.4113 0.4688

Labels 0.7612 0.4232 0.5004 0.6716

Standard 0.8074 0.5189 0.6137 0.6922

SublinealBinary 0.7987 0.4957 0.5806 0.6924

SublinealTernary 0.8078 0.5172 0.6085 0.7028

HOG

ADABoost 0.8067 0.5115 0.608 0.6648

GraphCuts 0.8317 0.53 0.6108 0.6962

Labels 0.8305 0.5447 0.6385 0.6878

Standard 0.8686 0.599 0.6912 0.7373

SublinealBinary 0.8514 0.5767 0.678 0.7151

SublinealTernary 0.8599 0.5852 0.6752 0.7333

Table 7 Result figures for database ETRIMS 8 classes RGB and

HOG

Accuracy Overlapping Recall Precision

RGB

ADABoost 0.606 0.1991 0.2591 0.3003

GraphCuts 0.6039 0.1859 0.2405 0.2719

Labels 0.6549 0.2526 0.3193 0.4297

Standard 0.703 0.3133 0.3891 0.4752

SublinealBinary 0.6616 0.267 0.3389 0.4439

SublinealTernary 0.6742 0.2768 0.346 0.4361

HOG

ADABoost 0.6723 0.2868 0.3618 0.4623

GraphCuts 0.6812 0.2618 0.3255 0.3678

Labels 0.6885 0.3031 0.3797 0.4706

Standard 0.7312 0.3479 0.4338 0.5103

SublinealBinary 0.6895 0.3038 0.3837 0.4765

SublinealTernary 0.7164 0.3348 0.4222 0.4986

Table 8 Mean rank of each strategy considering the accuracy terms of the different experiments

Method ADABoost GraphCut Labels Standard Sub.Binary Sub.Ternary

Rank 5.7 5.1 3.9 1.7 2.8 1.9
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Figs. 8 and 9 show results in e-trims database 4 and 8

classes, respectively, and Fig. 10 shows results in IVUS

database.

The images resulting from ADABoost classification

show how this method does not capture sequential rela-

tionship among labels. For example, in 1D database results

shown in Fig. 7, we can see how contiguous points inside a

long class interval are classified as belonging to another

class. In 2D database results show spurious classified pixels

appearing inside big objects. For example, in the first row

of Fig. 8 in the upper side of the building few pixels appear

labelled as tree. In the second row of the same image

clouds in the middle of sky are marked as building and in

the third row of the same figure a wire crossing the sky is

misclassified. In the last two rows shadows on the top of
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Fig. 7 Figures of final

classification in motion

sequential scenario and motion

random scenario for ADABoost,

multi-label optimization

GraphCut, and our proposal

MMSSL. Y axis shows the

labels for each class and X axis

is the time interval. Predictions

values are marked with ? and

real values are marked just

below with dots

Fig. 6 Comparison of all methods against each other with the

Nemenyi test. Groups of classifiers that are not significantly different

are connected
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the buildings are classified as road. In Fig. 9 as many other

classes exist, the effect of spurious artifacts on AdaBoost

results are more notorious, for example in the last row, dark

clouds are misclassified as belonging to the building. In

Fig. 10 we can see that AdaBoost fails, producing results

far from the real classification, like in the first and second

row. All artifacts observed appear due to specific pixel

values which lead the classifier to a misclassification.

On the contrary, the multi-label optimization technique

by means of GraphCut captures sequential relationships

between labels, erasing such interclass artifacts. In 1D

database results shown in Fig. 7, we can see how the

number of bad classified contiguous points decreases with

respect to ADABoost, but it still fails to classify correctly

short intervals of contiguous points of certain classes. In

2D databases, the drawbacks of this method are (a) the

tendency to crop the contours of the objects producing

sharp shapes resembling blobs, as is reflected in the first,

third and fourth rows of Fig. 8 where trees lose all their

shape, even the building in the third row is rounded, and

(b) the elimination of entire overlapped objects, as is

shown in the first three rows of Fig. 9, where trees, win-

dows and doors are completely removed, only prevailing

the building class. Even though, long objects are still

misclassified, as the shadows in the top part of the build-

ings in the last two rows in Fig. 8, or worst, the dark clouds

in the last row of Fig. 9 are completely joined with the

building forming a huge building. In Fig. 10 we can see a

fair improvement with respect to AdaBoost, but it still fails

in the classification of the first three rows. This method

fails mainly because it is not considering the relationship

among objects at different scales.

Fig. 8 Figures of final

classification in ETRIMS 4

Classes HOG database. a Shows

the original image, b the

groundtruth image, and

c–e show ADABoost,

GraphCut, and MMSSL without

compression, respectively
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The last method considered is our approach, MMSSL

using confidences without compression.The results of this

method are qualitatively better than the rest. The results are

a trade-off between spacial coherence and shape preser-

vation. This is because the relationship among classes is

considered at different scales. In 1D database results shown

in Fig. 7, we can see how the MMSSL is the only method

that achieves good performance as well in long sequences

as in short sequences of points of the same class and does

not matter whether the activities are carried on in the same

order as trained or not. In 2D databases, we can see in

Fig. 8 how MMSSL is able to keep the shape of buildings

and trees in all the images and how it removes interclass

artifacts that previous method were not able to, for example

the shadows on the top of the building in the last two rows.

In Fig. 9 we can see in all the images that windows, trees

and doors are fairly kept, even the dark clouds in the last

row are practically removed, appearing only spurious

pixels in the border of the image. Moreover, in Fig. 10, we

can see how MMSSL is able to close big areas of the same

class like in the first three rows, where the rest of methods

fail. Also is remarkable in the fourth and fifth row how

narrower classes between wider classes are preserved. The

points where our method fails the most are the junctions

between not clearly distinct classes, for example in the

second row in Fig. 9 where cars are classified altogether as

one, mixing with the grass and the road.

4.4 Comparing among proposed techniques

Finally, Figs. 11 and 12 show the difference among four

different MMSSL configurations: MMSSL using only label

predictions, MMSSL using confidences without compres-

sion, MMSSL using binary compression, and MMSSL

using ternary compression. MMSSL using labels is prone

to fail in some long areas of contiguous pixels. For

example in the first three rows of Fig. 11 some areas

between road and vegetation are misclassified as building.

In the first two rows of Fig. 12 also appear strange mis-

classified areas on the top of the building. Although, in this

situations, the rest of methods that use confidences do not

fail. This is because using confidences instead of the most

probable label in the extended data set, the second classifier

can learn relationships between labels considering not only

the final prediction class, but the probabilities of being of

each class. In this way, it is easier to break ties of equi-

probable predictions in favor of the most coherent class.

The second row of Fig. 12 shows the learning capacity of

Fig. 9 Figures of final

classification in ETRIMS 8

Classes HOG database. a Shows

the original image, b the

groundtruth image, and

c–e show ADABoost,

GraphCut, and MMSSL without

compression, respectively
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the likelihood maps. In column (d), MMSSL using confi-

dences without compression, we can see a boundary

marked as unknown object (class 0, black label) in front of

the building. Inside this region, it is marked as car label. In

column (c), MMSSL only using labels predictions, and in

the groundtruth image, column (b), these elements are

omitted, but in the original image, column (a), it is

appreciable a woman riding a bicycle in that area. There-

fore MMSSL using likelihood maps is capable of detecting

them as an element different to road or building, and

assigning the inner region to car label, given its visual

appearance and position.

Differences between compressed and non-compressed

methods are not so straightforward to see, but while in

Fig. 11 there are few differences in Fig. 12 we can see how

non-compressed methods lead to smoother results than

compressed methods. Compressed methods tend to fail in

closing some classes, appearing spurious pixels inside

them. For example, in second and third rows in Fig. 11

using binary compression some few pixels labeled as

vegetation appear in the middle of the building, while this

does not happen in the non-compressed approach. In

Fig. 12 we can see in the first and second rows of binary

approach pixels in the sky labeled as building and in the

first row of ternary approach pixels in the top of the

building labeled as car. All in all, these misclassified

samples with respect to non-compressed MMSSL are very

few, taking into consideration the number of features that

are compressed. In fact, in some images like the fourth row

in Fig. 11 and the last row in Fig. 12 the results of the three

MMSL methods using likelihoods are almost the same.

Even in situations like the building roof in the last row of

11 ternary compression can reduce areas of misclassified

pixels that standard method could not resolve.

5 Conclusion

In this paper we adapt the MSSL to the MMSSL. First, we

introduce the ECOC framework in the MSSL classifiers.

Next, we show how to compute the confidence maps using

the normalized margins obtained from the ECOC base

Fig. 10 Figures of final

classification in IVUS using 6

scales. a Shows the original

image, b the groundtruth image,

and c–e show ADABoost,

GraphCut, and MMSSL without

compression, respectively
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classifiers. Finally we define a compression approach for

reducing the number of features in the extended data set.

The results show that, on the one hand, MMSSL achieves

accurate classification performance in multi-class classifi-

cation problems taking benefit of sequential learning. On

the other hand, the compression process is feasible, since in

Fig. 12 Comparison between

multi-class multi-scale stacked

sequential learning approaches

in ETRIMS 8 Classes HOG

database. a Shows the original

image, b the groundtruth image,

and the different MMSSL

schemes: c MMSSL using label

predictions, d MMSSL using

confidences, e MMSSL using

binary compression, and

f MMSSL using ternary

compression

Fig. 11 Comparison between

multi-class multi-scale stacked

sequential learning approaches

in ETRIMS 4 Classes HOG

database. a Shows the original

image, b the groundtruth image,

and the different MMSSL

schemes: c MMSSL using label

predictions, d MMSSL using

confidences, e MMSSL using

binary compression, and

f MMSSL using ternary

compression
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terms of accuracy the loss of information is negligible. As

future work, we will study how to extend the compression

process not only to the set of confidence labels, but to the

whole extended set. By reducing the amount of features

used in neighbor sampling, we can improve the speed of

the method and deal with databases having larger number

of classes.
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